JP2015086628A - Metabolic rate increasing room and interior material using therefor - Google Patents
Metabolic rate increasing room and interior material using therefor Download PDFInfo
- Publication number
- JP2015086628A JP2015086628A JP2013227715A JP2013227715A JP2015086628A JP 2015086628 A JP2015086628 A JP 2015086628A JP 2013227715 A JP2013227715 A JP 2013227715A JP 2013227715 A JP2013227715 A JP 2013227715A JP 2015086628 A JP2015086628 A JP 2015086628A
- Authority
- JP
- Japan
- Prior art keywords
- room
- metabolic rate
- temperature
- interior material
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radiation-Therapy Devices (AREA)
Abstract
Description
本発明は、人の代謝率を改善、向上させる内装材を備えた部屋に関し、人が特殊な運動をしなくとも、通常生活をしていてだけであっても、代謝率が向上し、また、この室内で運動する時には、代謝率向上効果が著名に表われてダイエット効果、その他代謝率の向上による身体への好ましい効果を奏する、代謝率向上ルームに関する。 The present invention relates to a room equipped with an interior material that improves and enhances a person's metabolic rate, and the metabolic rate is improved even if a person does not perform a special exercise or is only living normally. The present invention relates to a metabolic rate improving room that, when exercising in this room, exhibits a metabolic rate improving effect prominently, and provides a diet effect and other favorable effects on the body by improving the metabolic rate.
室内において、代謝を促進する発明として、特許文献1の技術が公開されている。特許文献1の発明は、血液の循環を促進し、人体の気を増進するとして知られている遠赤外線を大量に発散する鉱石粉末を利用し、遠赤外線を身体全体から吸収して湿布を行うことができるようにし、身体内部の老廃物を排出し、人体の新陳代謝を促進し、ストレスや疲労感を解消でき、特に湿布室に好適な部屋構造であって、部屋の壁面の底部に取り付ける枠体1の内部底面に、スチロフォーム2などの断熱材と保温材3を下から順に積層するとともに、その上面に遠赤外線の発散する鉱石粉末4を、枠体1と同一の高さになるように積層し、その鉱石粉末4層の内部に温熱管を適正間隔で埋設し、鉱石粉末4層の上面に蓋6を、縁の底面と枠体1の上面に取り付けたベルクロファスナー7、7’を介して着脱自在に取り付けるとなる遠赤外線を発散させる部屋構造である。 As an invention for promoting metabolism indoors, the technique of Patent Document 1 is disclosed. The invention of Patent Document 1 uses ore powder that emits a large amount of far-infrared rays, which is known to promote blood circulation and enhance the body's qi, and performs farting by absorbing far-infrared rays from the entire body. It is a room structure that is suitable for a poultry room and can be attached to the bottom of the wall of the room, which can discharge waste products inside the body, promote the metabolism of the human body, and eliminate stress and fatigue. A heat insulating material such as styrofoam 2 and a heat insulating material 3 are laminated in order from the bottom on the inner bottom surface of the body 1, and ore powder 4 from which far-infrared rays diverge on the upper surface so as to have the same height as the frame body 1. Velcro fasteners 7, 7 ′ in which the thermal tubes are embedded in the ore powder 4 layers at appropriate intervals, the lid 6 is attached to the upper surface of the ore powder 4 layer, and the bottom surface of the edge and the upper surface of the frame 1 are attached. Far red that will be detachably attached via A room structure for diverging lines.
しかしながら、特許文献1では、床下に遠赤外線の発散する鉱石粉末4を積層するとともに、その鉱石粉末4層の内部に温熱管を配置して熱供給していため、設置、施行が煩雑で、導入コストが高く、ランニングコストも高いものであった。 However, in Patent Document 1, the ore powder 4 that emits far-infrared rays is laminated under the floor, and a heat pipe is arranged inside the ore powder 4 layer to supply heat, so installation and enforcement are complicated and introduced. The cost was high and the running cost was high.
他方、軽い服装のヒトが暑くも寒くも感じない中温域の室内で活動する時は、人体が周囲の壁面に向けて放射するエネルギーは、人体への入射量をはるかに上回って体温調節上の主要な冷却手段である。室内で過ごしているヒトの放射熱収支は、ヒトの平均皮膚温と壁面の平均放射温度を求め、それぞれの放射率(皮膚:0.98、壁面:0.90−0.95)を乗じて算出され、一般的な室内では放射熱伝達率(4.0kcal/m2/h/℃)が用いられている。電気などの外部のエネルギーを消費して病室の天井の温度を調節する放射冷暖房が試みられているように、放射熱を活用する試みがテストされているが、一方で内装材の放射率を操作して、外部のエネルギーを消費することなくヒトの体温調節に影響を及ぼす効果を検証した試みは知られていない。 On the other hand, when a lightly dressed person is active in a mid-temperature room where neither hot nor cold feels, the energy that the human body radiates toward the surrounding wall is much higher than the amount of incident light on the human body. It is the main cooling means. The radiant heat balance of a person spending in the room is obtained by multiplying the average skin temperature and the average radiant temperature of the human wall by the respective emissivities (skin: 0.98, wall: 0.90-0.95). The radiant heat transfer coefficient (4.0 kcal / m 2 / h / ° C.) is used in a general room. Attempts to use radiant heat have been tested, like radiant air conditioning that consumes external energy, such as electricity, to regulate the temperature of the ceiling of a hospital room, while manipulating the emissivity of interior materials. Thus, there is no known attempt to verify the effect of affecting human temperature regulation without consuming external energy.
そこで、本発明は、設置が容易で、かつ初期費用が低廉でランニングコストがかからない、内装材に基づく、代謝率向上ルームを提供することを目的とする。 Therefore, an object of the present invention is to provide a metabolic rate improving room based on an interior material that is easy to install, has low initial costs, and does not require running costs.
本発明では、壁紙等の内装材で人為的に室内の内壁面の放射率を高めた際の居住者の体温や代謝応答を観察して、本発明に到った。
そして、本発明は、上記の課題を解決するために、具体的には、次の構成とした。
(1)
生物体内の代謝活性を高める代謝率向上ルームであって、
室内の壁、天井又は床から選ばれる1種以上の前記室内側表面に、断熱塗材を固着させたことを特徴とする代謝率向上ルーム。
(2)
前記断熱塗材を、
セラミック粒子を含む流動体を、噴霧、塗布又は含浸させた後に、乾燥させ、前記内装材表面に固着させた断熱塗材としたことを特徴とする(1)に記載の代謝率向上ルーム。
(3)
建物に設置される前の建物の内装材の表面であって、
設置後に室内側に位置する表面に、断熱塗材を固着させたことを特徴とする代謝率向上ルーム用内装材。
(4)
前記内装材が、
壁紙、石膏ボード、木製板、フローリング材の内から選ばれる何れか1種以上であることを特徴とする(3)に記載の代謝率向上ルーム用内装材。
(5)
前記断熱塗材が、
少なくとも、セラミック粒子を含むことを特徴とする(3)又は(4)に記載の代謝率向上ルーム用内装材。
(6)
前記断熱塗材が、
少なくとも、次の成分比率の素材
二酸化チタン9〜15重量%、
エチレングリコール0.25〜0.3重量%、
セラミック粒子12.8〜20.0重量%、
鉱油0.062〜0.065重量%、
を含むことを特徴とする(3)〜(5)の何れかに記載の代謝率向上ルーム用内装材。
(7)
生物体内の代謝活性を高める代謝率向上ルームであって、
室内の壁又は天井又は床から選ばれる1種以上の前記室内側表面に、断熱セラクックを配置したことを特徴とする代謝率向上ルーム。
In the present invention, the occupant's body temperature and metabolic response when artificially increasing the emissivity of the inner wall surface of the room with an interior material such as wallpaper have been observed to arrive at the present invention.
In order to solve the above problems, the present invention is specifically configured as follows.
(1)
A room for improving metabolic rate that enhances metabolic activity in the organism,
A room for improving metabolic rate, characterized in that a heat insulating coating material is fixed to one or more indoor surfaces selected from an indoor wall, ceiling, or floor.
(2)
The thermal insulation coating material,
The metabolic rate improving room according to (1), wherein a fluid containing ceramic particles is sprayed, applied, or impregnated, and then dried to be a heat insulating coating material fixed to the surface of the interior material.
(3)
It is the surface of the interior material of the building before it is installed in the building,
An interior material for a metabolic rate improving room, characterized in that a heat-insulating coating material is fixed to the surface located on the indoor side after installation.
(4)
The interior material is
The interior material for improving metabolic rate according to (3), wherein the interior material is any one or more selected from wallpaper, plasterboard, wooden board, and flooring material.
(5)
The thermal insulation coating material is
The interior material for a metabolic rate improving room according to (3) or (4), comprising at least ceramic particles.
(6)
The thermal insulation coating material is
At least 9-15% by weight of titanium dioxide
0.25 to 0.3% by weight of ethylene glycol,
12.8 to 20.0% by weight of ceramic particles,
Mineral oil 0.062-0.065 wt%,
The interior material for a metabolic rate improving room according to any one of (3) to (5), comprising:
(7)
A room for improving metabolic rate that enhances metabolic activity in the organism,
A room for improving metabolic rate, characterized in that a heat insulating ceramic is arranged on one or more indoor surfaces selected from an indoor wall, ceiling, or floor.
本発明は、上記構成であるので、以下の効果を発揮する。部屋の室内側の内表面に、断熱セラミックを配置するだけで、生体の代謝率を向上させることができる。部屋の室内側の内表面は、壁、天井、床であり、それらに貼られる内装材表面、又は壁、天井、床の下地の表面である。既存の部屋の場合には、内装材の上に断熱セラミックを固着などすればよい。新築の場合には、予め断熱セラミックを固着させた内装材を貼り付けるなどすればよい。さらに、下時の上に、断熱セラミックを固着させればよい。したがって、設置が容易で、かつ初期費用が低廉でランニングコストがかからない代謝率向上ルームを提供することができる。その結果、特別の運動をすることなく、即ち普段の生活をしながら、代謝率向上に基づく、生体への多面的な健康促進効果がある。例えば、ダイエット効果、安眠などが例示できえる。断熱セラミックの配置としては、セラミックブロック、セラミックプレート或いはセラミック製外壁パネルを室内側内表面に配置、内装材表面に貼付すること、さらに、セラミック塗材、例えばセラミック粒子を室内側の表面に固着、或いは被覆する方法が例示できる。セラミック塗材であれば既存の室内の内装材の表面に塗布するだけで、既存の室内を代謝率向上ルームに改修できる。予め既存の内装材の表面に、断熱セラミック材を配置しておけば、新築建物においても、従来とかわらない施工で、室内を代謝率向上ルームとすることができるので、極めて、簡易かつ経済的である。 Since this invention is the said structure, the following effects are exhibited. The metabolic rate of the living body can be improved simply by disposing a heat insulating ceramic on the inner surface of the room. The inner surface on the indoor side of the room is a wall, a ceiling, or a floor, and is an interior material surface that is affixed thereto, or a surface of a base of the wall, ceiling, or floor. In the case of an existing room, a heat insulating ceramic may be fixed on the interior material. In the case of a new construction, an interior material to which a heat insulating ceramic is fixed in advance may be attached. Furthermore, a heat insulating ceramic may be fixed on the lower side. Therefore, it is possible to provide a metabolic rate improving room that is easy to install, has low initial costs, and does not require running costs. As a result, there is a multifaceted health promotion effect on the living body based on the improvement of the metabolic rate without performing special exercise, that is, in a normal life. For example, a diet effect, a sleep can be illustrated. As the arrangement of the heat insulating ceramic, a ceramic block, a ceramic plate or a ceramic outer wall panel is arranged on the inner surface of the indoor side, and is adhered to the surface of the interior material. Or the method of coating can be illustrated. If it is a ceramic coating material, the existing room can be renovated to a metabolic rate improving room simply by applying it to the surface of the existing interior material. If a thermal insulation ceramic material is placed on the surface of the existing interior material in advance, even in new buildings, the room can be made into a room with improved metabolic rate, which can be changed to a room with improved metabolic rate, making it extremely simple and economical. It is.
以下、添付図面に基づき、本発明について詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to the following Example.
[緒言]
恒温動物の体温が一定に保たれている時には、体内で作られた熱の全てが体外に放出されていることを意味する。熱が身体外環境に流出する機序には伝導、対流と放射の3方式があり、環境の条件に応じてこれらの割合を動物自身が調節することによって、総放熱が代謝産熱量と等しくなるような調節が行われている。
[Introduction]
When the body temperature of a thermostat is kept constant, it means that all the heat generated in the body is released outside the body. There are three ways of heat flowing out of the body: conduction, convection, and radiation. By adjusting these ratios according to environmental conditions, the total heat release becomes equal to the calorific value. Such adjustments are made.
伝導は、身体が直接物質に接触して熱を流出(入)させることである。対流は、身体の周囲の空気に熱や水蒸気を伝達してその流れに乗せて熱を放出することである。放射は、絶対零度以上の全ての物体がその温度に応じて発する電磁波のエネルギーのことであり、相対する全ての物体表面と体表との間で温度差と放射率に従って熱交換が行われている。放射率は、完全黒体を最大値1.0とした時に表面の性状に応じてどれほど減衰するかを示す数値であり、ヒトの皮膚のそれは0.98程度とされている。 Conduction means that the body directly contacts the material and releases (in) heat. Convection is the transfer of heat or water vapor to the air around the body and release it on the flow. Radiation is the energy of electromagnetic waves emitted by all objects of absolute zero or higher according to their temperature, and heat exchange is performed between all opposing object surfaces and the body surface according to the temperature difference and emissivity. Yes. The emissivity is a numerical value indicating how much the black body is attenuated according to the surface properties when the maximum value is 1.0, and that of human skin is about 0.98.
Tシャツ1枚とハーフパンツ+ブリーフを着て椅座安静に過ごしているヒトが熱的に快適に感じられる環境とは、体内で発生する熱(安静時代謝=1500〜2000kcal/day)の全てを放出できる環境であり、この場合の放熱機序は対流と放射が担っているが、その時にヒトは、対流と放射で放熱していることを自覚することがほとんどできない。 An environment in which a person who is sitting in a chair with a T-shirt and half pants + briefs feels thermally comfortable is all the heat generated in the body (resting metabolism = 1500 to 2000 kcal / day). In this case, the heat dissipation mechanism is convection and radiation, but at that time humans can hardly realize that heat is radiated by convection and radiation.
屋内の場合には、気流(=風速)がほとんど無い自然対流の範囲内であることから、対流放熱は最低値をとると考えられる。従って、実験で設定した28℃の室内における安静時代謝エネルギーの主要部分は、放射によって体外に放出されていると見なすことが出来る。放射放熱とは、目に見えない電磁波(遠赤外線)を物体が互いに放出し合い、その際の実質的な熱の流れは、両表面間の温度差と放射率に依存して行われている。 In the case of indoors, since it is within the range of natural convection with almost no airflow (= wind speed), it is considered that convective heat radiation takes the minimum value. Therefore, it can be considered that the main part of the metabolic energy at rest in the room at 28 ° C. set in the experiment is released outside the body by radiation. Radiation heat dissipation means that invisible electromagnetic waves (far infrared rays) are emitted from each other, and the substantial heat flow at that time depends on the temperature difference between the two surfaces and the emissivity.
発明者等は、人体輻射熱計(特許第4608653号)を用いた簡単な実験によって、人体と同程度の発熱体と断熱塗装表面との間の放射熱交換では、輻射熱計の発熱部の表面温度が上昇するに従って放熱量が増大することを見出していた。この実験で明らかになったセラミック塗材で被覆された壁紙とビニル系の壁紙との放射熱交換の相違点は、人体輻射熱計の表面温度23.46℃を境にして低温側では、セラミック塗材で被覆された壁紙に向けた放熱がビニル系の壁紙への放熱より大きくなり、逆に高温側では放熱量が低下するという結果を得ている。 The inventors have conducted a simple experiment using a human body radiant thermometer (Patent No. 4608653), and in the radiant heat exchange between the heat generating body and the heat insulating coating surface similar to the human body, the surface temperature of the heat generating portion of the radiant thermometer. It has been found that the amount of heat radiation increases as the temperature rises. The difference in the radiant heat exchange between the wallpaper coated with the ceramic coating material and the vinyl-based wallpaper, which was clarified in this experiment, is that the ceramic coating is on the low temperature side with the surface temperature of the human body radiation thermometer being 23.46 ° C. The heat radiation toward the wallpaper coated with the material is larger than the heat radiation to the vinyl-based wallpaper, and conversely, the heat radiation amount decreases on the high temperature side.
また、別の試験の結果では、安静時と軽運動時の被験者の皮膚温と直腸温を測定して、セラミック塗材を塗布した内装材を備える小室で軽運動をしている時に末梢の皮膚温、平均体温と直腸温が、ビニル系の壁紙を内装した部屋で同様に過ごした時よりも有意に高い状態が出現することを確認し、セラミック塗材を塗布した内装材が代謝産熱を増大させる可能性が示唆された。 In another test result, the skin temperature and rectal temperature of the subject at rest and light exercise were measured, and peripheral skin was observed during light exercise in a small room equipped with an interior material coated with a ceramic coating. It was confirmed that the temperature, average body temperature and rectal temperature were significantly higher than when the same was spent in a room decorated with vinyl-based wallpaper. The possibility of increase was suggested.
それら知見に基づき、内装材の違いによって生じる体温差の原因を明らかにするために、呼気を採集して代謝産熱量を直読する方法を用いて運動中の代謝亢進作用の直接証明を行うこととした。 Based on these findings, in order to clarify the cause of the body temperature difference caused by the difference in the interior material, direct proof of the metabolic enhancement effect during exercise using a method of collecting exhalation and directly reading the metabolic calorific value, did.
[試験方法、結果概要]
2枚のホットカーペット上にそれぞれ1辺2mの木組みを設け、一方の内壁面は白いセラミック塗材壁紙を貼り(Room1)、もう一方には市販の白いビニルコート壁紙を貼った石膏ボードで内装した(Room2)。室内への被験者の出入りと換気のために4方に30cmの隙間を設け、室内には布製の椅子と自転車エルゴメータ各1台を設置した(図9)。Room1とRoom2を設置した実験室全体を28℃を目安として暖房し、扇風機で攪拌した。
[Test method, summary of results]
Two hot carpets are each provided with a wooden frame of 2m on one side, one inner wall is coated with white ceramic coating wallpaper (Room1), and the other is decorated with a plasterboard with a commercial white vinyl coated wallpaper (Room2). A 30 cm gap was provided in each of the four directions for entry and exit of the subject and ventilation, and a cloth chair and a bicycle ergometer were installed in the room (FIG. 9). The entire laboratory in which Room 1 and Room 2 were installed was heated at 28 ° C. as a guide and stirred with a fan.
また、床面の温度が他の壁面と同じになるようにホットカーペットの電源を自動的にON/OFF調節した。8名の被験者は全員長距離走者であり、半袖Tシャツとハーフパン+ブリーフという軽装をさせ、試験Room内で2時間の椅座安静後に30分間の自転車こぎ運動をさせた。 In addition, the hot carpet power supply was automatically turned ON / OFF so that the floor surface temperature was the same as the other wall surfaces. All eight subjects were long-distance runners, dressed in short-sleeved T-shirts and half-pans + briefs, and allowed 30 minutes of bicycle rowing exercises after resting for 2 hours in the test room.
この間皮膚温7点と直腸温を連続で計測し、呼気を採集してその酸素の消費量から代謝量を1呼吸毎に計算した。各被験者は2名ずつの対を編成し、日を違えて両方のRoomを1回ずつ経験させた。その際、被験者には内装材の材質についての情報は伝えないブラインドテストとした。 During this time, the skin temperature 7 points and rectal temperature were measured continuously, exhaled air was collected, and the metabolic rate was calculated for each breath from the oxygen consumption. Each subject formed a pair of two people and experienced both of them once each day on different days. At that time, a blind test was conducted in which the subject was not informed about the material of the interior material.
[結果と考察]
Room1とRoom2の室温、湿度、気流と内壁面温度には相違は見られなかった。安静時の被験者の皮膚温、直腸温と代謝量にも差は見られなかった。しかし、運動中の代謝率、直腸温と心拍数はRoom1の方が有意に高く、皮膚温は有意に低いという結果が得られた。
[Results and discussion]
There were no differences in the room temperature, humidity, airflow, and inner wall surface temperature of Room 1 and Room 2. There were no differences in the skin temperature, rectal temperature, and metabolic rate of the subjects at rest. However, the results showed that the metabolic rate during exercise, rectal temperature and heart rate were significantly higher in Room 1, and skin temperature was significantly lower.
Room1とRoom2は、壁紙の材質以外に違うところは無い。したがって、これら試験結果の相違の原因は、全て壁紙の材質に帰すると考えてよい。 There is no difference between Room1 and Room2 other than the material of the wallpaper. Therefore, it can be considered that the causes of the difference in these test results are all attributed to the material of the wallpaper.
Room内の熱源は、被験者に由来するものであり、これを壁紙の表面が受け取って直ちに再放射又は反射していると考えられる。ヒトは、こうした微弱な放射熱を自覚できないが、心拍数や代謝を調節している交感神経は、敏感に応答しているものと思われる。 The heat source in the room comes from the subject and is considered to be re-radiating or reflecting immediately upon receipt of the surface of the wallpaper. Although humans are unaware of such faint radiant heat, sympathetic nerves that regulate heart rate and metabolism appear to respond sensitively.
なお、運動のような副交感神経優位となるべき状況下では、心拍数と代謝率の交感神経刺激への応答が顕著になっているということを合理的に説明することは容易ではないが、結果的にセラミック塗材を塗布した壁紙を内装したRoom1の方が、代謝率を向上させていた。被験者を全て取り替えて行った別の実験でも、セラミック塗材壁紙が運動中の皮膚温と直腸温を上昇させるという全く同じ結果が再現され、代謝率を上昇させることも確認できた。 It is not easy to rationally explain that the response to sympathetic stimulation of heart rate and metabolic rate is prominent under conditions that should be parasympathetic dominant, such as exercise, but the results In particular, Room 1 with a wallpaper coated with a ceramic coating material improved the metabolic rate. In another experiment where all subjects were replaced, the same results were observed that the ceramic coating wallpaper increased skin temperature and rectal temperature during exercise, and it was also confirmed that the metabolic rate was increased.
以下、より具体的な試験方法、計測結果、考察について、説明する。 Hereinafter, more specific test methods, measurement results, and considerations will be described.
[実験方法]
被験者は大学の陸上部に所属して競技活動をしている現役の長距離走選手8名とした(表1)。表1は、実験当日の被験者の身体計測データである。
[experimental method]
The subjects were eight active long-distance runners who belong to the track and field department of the university and are engaged in competition activities (Table 1). Table 1 shows the body measurement data of the subject on the day of the experiment.
実験装置(室)は上述の通りである。床の温度が壁面よりも低い傾向があったので、装置の下にホットカーペットを差し入れ、床に張り付けた熱電対を室温の設定温度に調節して装置内壁面が全て同一となるようにした。 The experimental apparatus (room) is as described above. Since the floor temperature tended to be lower than the wall surface, a hot carpet was inserted under the apparatus, and the thermocouple attached to the floor was adjusted to the set temperature of the room temperature so that the inner wall surfaces of the apparatus were all the same.
実験中の空調は、実験室の空調機を前日から28℃にセットして運転し続けて、専用装置と実験室とが十分に熱的に平衡するように配慮した。両室にはそれぞれ1台のPMV環境計測記録ロガー、自転車エルゴメータとデッキチェアを設置した。健康でスポーツを実施している8名の被験者は、毎回同じ相手とペアーを作って、実験に臨ませた。 During the experiment, the air conditioner in the laboratory was set to 28 ° C. from the previous day and continued to operate so that the dedicated device and the laboratory were in sufficient thermal equilibrium. In each room, one PMV environmental measurement recording logger, bicycle ergometer and deck chair were installed. Eight subjects who are doing sports with good health made a pair with the same partner every time, and went to the experiment.
実験当日は8時半に集合させ実験着に更衣させた後、発信機付きの直腸温測定用プローブ(Type HT150002、HQInc., USA)を極薄のラバーゾンデに入れて肛門から挿入させた。次いで、以下に示した各部位に皮膚温計測用のサーミスタ温度計を貼り付け、1分間隔で測定し、携帯データロガー内に記録した。記録されたデータは専用のデータ交換ソフトを用いて実験終了後にコンピュータにダウンロードして回収した。 On the day of the experiment, they were gathered at 8:30 pm and dressed in an experimental garment, and then a rectal temperature measuring probe with a transmitter (Type HT150002, HQ Inc., USA) was inserted into the ultrathin rubber sonde and inserted through the anus. Next, a thermistor thermometer for skin temperature measurement was attached to each site shown below, measured at 1-minute intervals, and recorded in a portable data logger. The recorded data was downloaded to a computer and collected after the experiment was completed using dedicated data exchange software.
この状態のままRoom外で椅座安静に過ごさせた後に、二人同時にそれぞれのRoom内に移動させて2時間を椅座安勢に過ごさせた。また、その後30分間の自転車漕ぎ運動をさせ、続いて30分間の椅座安静をとらせた。 In this state, after sitting in the chair outside the room, the two persons were moved into the room at the same time to spend 2 hours in the chair. In addition, a 30-minute bicycle rowing exercise was then performed, followed by a 30-minute rest on the chair.
この間の直腸温は10分置き、皮膚温は1分置き、10g精度の体重測定は、それぞれの過ごし方の変更に合わせて計測記録した。ヒトの皮膚温を模擬した35℃の黒体平面上で赤外線から変換されて境界面を貫通して流入する熱量をW/m2/hで表記した。なお、平均体温、平均皮膚温と蓄熱量は次式で算出した。 During this period, the rectal temperature was kept for 10 minutes, the skin temperature was kept for 1 minute, and the body weight measurement with an accuracy of 10 g was measured and recorded in accordance with the change of each way of spending. The amount of heat converted from infrared rays and flowing through the boundary surface on a black body plane at 35 ° C. simulating human skin temperature was expressed in W / m 2 / h. In addition, average body temperature, average skin temperature, and heat storage amount were calculated by the following equations.
平均体温 (℃) =直腸温×0.8+平均皮膚温×0.2
平均皮膚温(℃) =額温×0.1+胸温×0.25+前腕外側温×0.07+上腕中央外側温×0.13+大腿中央外側温×0.25+下腿中央外側温×0.15+足背中央部上面温×0.05
蓄熱量(kcal)=0.82(人体の比熱)×平均体温(℃)×体重(kg)
Average body temperature (° C) = rectal temperature x 0.8 + average skin temperature x 0.2
Average skin temperature (° C) = Forehead temperature x 0.1 + Chest temperature x 0.25 + Forearm outer temperature x 0.07 + Upper arm central outer temperature x 0.13 + Thigh central outer temperature x 0.25 + Lower thigh central outer temperature x 0.15 + Upper surface temperature of foot sole x 0.05
Heat storage (kcal) = 0.82 (specific heat of human body) × average body temperature (° C.) × body weight (kg)
食事条件は、厳密に調整することとし、実験開始の2時間前に同一の食事内容と量を全員に摂取させるようにした。測定項目は、各図の通りである。 Meal conditions were strictly adjusted, and everyone was allowed to consume the same meal content and amount 2 hours before the start of the experiment. The measurement items are as shown in each figure.
[データ収集]
環境計測記録:PMVロガー(JMS、東京)2台をそれぞれの部屋に1台ずつ入れ、センサーの高さが椅座の胸の高さになるように設置した。計測記録間隔は5分とした。室温、湿度、気流を測定記録、解析した。実験室全体のパッケージ型エアコンの室温の設定は、28℃にした。額中央、右胸部、上腕外側、前腕外側、大腿外側、下腿外側及び足背の皮膚温の測定間隔は2分、直腸温は10分とした。呼気は30分間隔に5分間の採集を行い、一呼吸毎の酸素濃度を測定し、吸気との差から代謝産熱量を算出した。皮膚温は測定部位の面積案分比から平均皮膚温を求め、直腸温との容積案分比を決めて平均体温を求めた。各部位の皮膚温、直腸温、平均皮膚温、平均体温と代謝量は時系列に配置してそれぞれの動向を観察した。
[Data collection]
Environmental measurement record: Two PMV loggers (JMS, Tokyo) were placed in each room, and the sensors were placed so that the height of the sensor was the height of the chest of the chair. The measurement recording interval was 5 minutes. Room temperature, humidity and airflow were measured and recorded. The room temperature setting of the packaged air conditioner in the entire laboratory was 28 ° C. The measurement interval of skin temperature at the forehead, right chest, outer upper arm, outer forearm, outer thigh, outer lower leg and back of the foot was 2 minutes, and rectal temperature was 10 minutes. The exhaled breath was collected for 5 minutes at 30 minute intervals, the oxygen concentration for each breath was measured, and the metabolic calorific value was calculated from the difference from inspiration. For skin temperature, the average skin temperature was determined from the proportion of the measured area, and the volume ratio of the volume to the rectal temperature was determined to determine the average body temperature. The skin temperature, rectal temperature, average skin temperature, average body temperature and metabolic rate at each site were arranged in chronological order, and their respective trends were observed.
[実験室の環境測定値の等質性]
内装材の異なる同じ仕様の部屋を設置したので、内装材を除いて両室の環境条件が、同一であることを証明しておく必要がある。そのために、表2では、実験中の両室の環境条件の測定値を示した。8回行われた測定の間の測定値は、それぞれ約100セットが記録されている。これらの平均値の差を検定すれば有意差があることもあるが、その実質的な差は、室温が±0.2℃、湿度が±2%、気流が−0.01m/秒以内と両室が同じ環境条件下にあると断言できる範囲である。
[Homogeneity of laboratory measurements]
Since rooms with the same specifications with different interior materials are installed, it is necessary to prove that the environmental conditions of both rooms are the same except for the interior materials. Therefore, Table 2 shows the measured values of the environmental conditions in both chambers during the experiment. About 100 sets of measurements are recorded for each of the eight measurements. If the difference between these average values is tested, there may be a significant difference, but the substantial difference is that the room temperature is ± 0.2 ° C, the humidity is ± 2%, and the airflow is within -0.01 m / sec. It is the range that can be declared that both rooms are under the same environmental conditions.
[内装材表面温度の等質性]
内装材の表面温度は、サーモカメラで撮影し、画像のそれぞれの場所を読み取る方法で測定した。
[Equivalence of interior material surface temperature]
The surface temperature of the interior material was measured by taking a picture with a thermo camera and reading each location of the image.
[椅座安静時と自転車運動時の代謝]
椅座安静時には内装材の違いによる代謝量に差は見られなかった。他方、運動開始直後からビニルクロス内装よりもセラミック塗材内装の方が有意に大きな代謝量を示すようになった。その増加率は15%程であった。
[Metabolism when resting on a chair and exercising on a bicycle]
When the chair was resting, there was no difference in the amount of metabolism due to the difference in the interior materials. On the other hand, immediately after the start of exercise, the ceramic coating interior showed significantly higher metabolic rate than the vinyl cloth interior. The increase rate was about 15%.
代謝量を体表面積で割って求めた代謝率では、この差は10%であった(図1)。当然ながら、実験に用いた2台の自転車エルゴメータの負荷設定は同じであり、自転車エルゴメータに若干の機器差があったとしても、被験者が自覚できない程度の範囲の相違である。 In the metabolic rate calculated by dividing the metabolic rate by the body surface area, this difference was 10% (FIG. 1). Of course, the load settings of the two bicycle ergometers used in the experiment are the same, and even if there is a slight difference in equipment between the bicycle ergometers, the difference is in a range that the subject cannot recognize.
[椅座安静時と自転車運動時の皮膚温]
皮膚は、熱エネルギーが赤外線に、またその逆に赤外線が熱エネルギーに変換される場であり、その温度は放出(入)するエネルギー量の決定的因子である。身体の7部位の皮膚温を計り、これをそれぞれの部位の面積案分比に応じて平均する方法によって平均皮膚温を算出できる。
[Skin temperature when chair is resting and cycling]
The skin is a place where heat energy is converted into infrared rays and vice versa, and its temperature is a decisive factor for the amount of energy released (entered). The average skin temperature can be calculated by a method of measuring the skin temperature of 7 parts of the body and averaging this according to the proportion of the area of each part.
こうして求めた値は、安静時には群間に差は認められないが、運動時にはビニル群が長時間上昇し続けるのに反して、セラミック塗材内装群では短時間で上昇が止まる結果、運動開始11分後以降の両群の差は統計的に有意となった(図2矢印)。上腕、前腕、大腿の各皮膚温は、平均皮膚温と同様に推移した。 The values obtained in this manner are not different between the groups at rest, but the vinyl group continues to rise for a long time during exercise, whereas the ceramic coating interior group stops rising in a short time. The difference between the two groups after the minute became statistically significant (arrow in FIG. 2). The skin temperature of the upper arm, forearm, and thigh changed similarly to the average skin temperature.
セラミック塗材内装群の額中央部の皮膚温は、安静時と運動時の両条件を通じて一貫してビニル群より高値を維持した(図3)。胸の皮膚温は、額の皮膚温と同様に推移した(データ示さず)。 The skin temperature at the center of the forehead of the ceramic coating material interior group remained consistently higher than that of the vinyl group throughout both resting and exercise conditions (FIG. 3). The skin temperature of the chest was similar to that of the forehead (data not shown).
下腿と足背の皮膚温は、実験の全行程を通じて、群間に差は認められない。足背の皮膚温は、セラミック塗材内装群の数値のバラツキが大きくなったために統計的な有意差は見られないが、運動開始後にセラミック塗材群がビニル群を上回るという他の皮膚温や平均皮膚温には見られない特異な現象が観察された(図4矢印)。 Skin temperature at the lower leg and back of the foot is not different between groups throughout the course of the experiment. There is no statistically significant difference in the skin temperature on the soles of the feet due to the large variation in the numerical value of the ceramic coating interior group, but other skin temperatures such as the ceramic coating group exceeding the vinyl group after the start of exercise A peculiar phenomenon not observed in the average skin temperature was observed (arrow in FIG. 4).
[椅座安静時と自転車運動時の直腸温]
安静時の直腸温は、セラミック塗材内装群が高目で推移したが2時間後まで差は見られなかった。安静最後の10分ほどの間は、セラミック塗材内装群が明らかに高値を示した(P<0.05)。運動開始後はセラミック塗材内装群の値は、直後から明らかに高値を示し、その差も0.20℃から0.27℃まで漸増していった(図5)。
[Rectal temperature when sitting on a chair and exercising on a bicycle]
The rectal temperature at rest remained high in the ceramic coating interior group, but there was no difference until 2 hours later. During the last 10 minutes of rest, the ceramic coating interior group clearly showed a high value (P <0.05). After the start of exercise, the value of the ceramic coating material interior group clearly showed a high value immediately after, and the difference gradually increased from 0.20 ° C. to 0.27 ° C. (FIG. 5).
[椅座安静時と自転車運動時の体熱収支]
椅子に座って安静に過ごして体温が変化しない状態の代謝産熱量は、伝導、対流と放射による放熱の総和と等しいはずである。代謝産熱量は呼気中の酸素消費量を測定して求めることができる。伝導による放熱量は、椅座では無視できる量である。
[Body heat balance when sitting on a chair and cycling]
The metabolic calorific value when sitting in a chair and staying calm without changing body temperature should be equal to the sum of heat released by conduction, convection and radiation. Metabolic calorific value can be obtained by measuring oxygen consumption in exhaled breath. The amount of heat released by conduction is negligible for a chair.
対流による放熱量は、姿勢や作業内容ごとに発表されている対流熱伝達率(椅座安静時;0.18kcal/m2/h/℃、自転車運動時;5.2kcal/m2/h/℃)を導入すれば、平均皮膚温と室温との温度差の関数として容易に算出できる。 The amount of heat released by convection is the convective heat transfer coefficient published for each posture and work content (when the chair is at rest; 0.18 kcal / m 2 / h / ° C., during bicycle exercise; 5.2 kcal / m 2 / h / C.) can be easily calculated as a function of the temperature difference between the average skin temperature and room temperature.
汗が蒸発する際に身体から奪われる熱は、物質伝達率から算出することもできるが、精密な体重計を用いれば、体重の変化量と水の気化潜熱から算出する方法が最も精度が高い。放射による放熱量は、平均皮膚温、壁温、およびそれぞれの放射率(皮膚;0.98、セラミック塗材;0.95(測定値を反映)、ビニル;0.90(仮の値))をStefan−Boltzmannの式に入れて算出することができる。 The heat deprived from the body when sweat evaporates can be calculated from the mass transfer rate, but with a precise scale, the most accurate method is to calculate from the amount of change in weight and the latent heat of vaporization of water. . The amount of heat released by radiation is the average skin temperature, wall temperature, and the respective emissivity (skin; 0.98, ceramic coating material; 0.95 (reflecting the measured value), vinyl; 0.90 (temporary value)) In the Stefan-Boltzmann equation.
[代謝産熱量]
ヒトを含む恒温動物の体温は、体内で発生した熱(代謝産熱量)の全てを体外に放出することによって一定に維持されている。表3に示した通り、運動中のセラミック塗材内装群は116kcal/m2/h、ビニル群は104kcal/m2/hの発熱をしている。したがって、身体はこれに適応して放熱を促進するために皮膚への血流量を増大させて皮膚温を上昇させると考えられる。図2−図4でセラミック塗材内装群の運動中の皮膚温が急上昇しているのには、こうした背景が予想される。
[Metabolic calorific value]
The body temperature of constant temperature animals including humans is maintained at a constant level by releasing all the heat (metabolic calorific value) generated in the body. As shown in Table 3, the ceramic coating material interior group during exercise generated heat of 116 kcal / m 2 / h, and the vinyl group generated 104 kcal / m 2 / h. Therefore, in order to adapt to this and promote heat dissipation, the body is considered to increase the blood flow to the skin and raise the skin temperature. This background is expected because the skin temperature during the exercise of the ceramic coating material interior group rapidly increased in FIGS.
[放射放熱量]
運動中の人体表面と壁面との間の放射熱交換量は、次式(1)で求めることが出来る(Stefan−Boltzmannの法則)。
R=ε1σT1 4−ε2σT2 4(Kcal/m2/h)・・・式(1)
ただし、Rは放射熱交換量,ε1はヒト皮膚の放射率、ε2は壁面の放射率,σはStefan−Boltzmann定数=4.88×10−8(kcal/m2/h/K−4),T1は皮膚表面絶対温度,T2は壁面絶対温度を示す。
[Radiation heat dissipation]
The amount of radiant heat exchange between the surface of the human body and the wall surface during exercise can be obtained by the following equation (1) (Stepan-Boltzmann's law).
R = ε 1 σT 1 4 −ε 2 σT 2 4 (Kcal / m 2 / h) (1)
Where R is the amount of radiant heat exchange, ε 1 is the emissivity of human skin, ε 2 is the emissivity of the wall surface, σ is Stefan-Boltzmann constant = 4.88 × 10 −8 (kcal / m 2 / h / K − 4 ), T 1 indicates the skin surface absolute temperature, and T 2 indicates the wall surface absolute temperature.
式(1)を用いれば、平均皮膚温が0.5℃低くなっているセラミック塗材内装群の被験者が28℃の周囲壁面に向かって放出する放射放熱量(42kcal/m2/h,壁面の放射率として0.95(測定値)を採用)が、ビニル群の被験者が放出する放射熱量(21kcal/m2/h,放射率0.90と仮定して試算)より21kcal/m2/hほど小さいと、見積もることが出来る。 Using Equation (1), the amount of radiant heat released by the subject in the ceramic coating material interior group whose average skin temperature is 0.5 ° C. lower toward the surrounding wall surface at 28 ° C. (42 kcal / m 2 / h, wall surface 0.95 as the emissivity adopted (measured value)), and radiate heat subjects vinyl group to release (21kcal / m 2 / h, assuming estimated that emissivity 0.90) than 21kcal / m 2 / If it is as small as h, it can be estimated.
[対流放熱量]
静止空気中の対流放熱量(C)は、姿勢や作業内容ごとに実験的に得られている対流熱伝達率(hc,kcal/m2/h/℃)を用いて次式(2)で算出できる。座位のhcは1.8、自転車運動中のそれは5.2が与えられている。
C=hc(Ts−Ta)(kcal/m2/h)・・・式(2)
ただし、Cは対流放熱量、hcは対流熱伝達率、Tsは平均皮膚温、Taは室温を示す。
[Convection heat dissipation]
The convection heat dissipation amount (C) in still air is expressed by the following equation (2) using the convective heat transfer coefficient (h c , kcal / m 2 / h / ° C.) experimentally obtained for each posture and work content. It can be calculated by The sitting position h c is 1.8 and during cycling is given 5.2.
C = h c (Ts−Ta) (kcal / m 2 / h) (2)
However, C is the convective heat release, h c is the convective heat transfer coefficient, Ts is the average skin temperature, and Ta is the room temperature.
式(2)と平均皮膚温の測定値から椅座安静時の対流放熱量:セラミック塗材内装;10.3、ビニル内装;10.8 (kcal/m2/h)と、自転車運動時の対流放熱量:セラミック塗材内装;31.2、ビニル内装;35.9 (kcal/m2/h)が各々得られる。この結果を表3にまとめた。 Convection heat dissipation when resting on the chair: Equation (2) and average skin temperature: ceramic coating interior; 10.3, vinyl interior; 10.8 (kcal / m 2 / h) Convective heat release: Ceramic coating material interior; 31.2, vinyl interior; 35.9 (kcal / m 2 / h), respectively. The results are summarized in Table 3.
[発汗(不感蒸泄を含む)による放熱]
発汗量(g/m2/h)は、10g精度の体重変化量を測定し、体表面積で除して求める。安静時の値は、セラミック塗材内装:25.1、ビニル内装:26.6、運動時はセラミック塗材内装:100.2、ビニル内装:87.8g/m2/hが得られた。皮膚温付近の蒸発潜熱を580cal/gとして、発汗と不感蒸泄による蒸発放熱量(kcal/m2/h)を求め、表3に示した。
[Heat release due to sweating (including insensitive digestion)]
The amount of sweating (g / m 2 / h) is obtained by measuring the amount of change in body weight with an accuracy of 10 g and dividing by the body surface area. The values at rest were as follows: ceramic coating material interior: 25.1, vinyl interior: 26.6, during exercise, ceramic coating material interior: 100.2, vinyl interior: 87.8 g / m 2 / h. The evaporation heat release (kcal / m 2 / h) due to perspiration and insensitive vaporization was determined with the latent heat of vaporization near the skin temperature being 580 cal / g, and is shown in Table 3.
[蓄熱量]
蓄熱量は身体が保有する熱エネルギーの総量を表す数字であり、平均体温(℃)、身体の比熱(0.83)及び体重(kg)の積で与えられる。その表示単位はkcalである。ここで用いる平均体温とは、平均皮膚温と直腸温のそれぞれ3割と7割に案分した和で与えられる。
[Heat storage amount]
The amount of stored heat is a number representing the total amount of heat energy held by the body, and is given by the product of average body temperature (° C.), specific heat of the body (0.83), and body weight (kg). The display unit is kcal. The average body temperature used here is given as the sum of 30% and 70% of the average skin temperature and rectal temperature, respectively.
安静時と運動時の蓄熱量は、いずれもセラミック塗材内装群がビニル内装群より明らかに大きい(図7の左バーと右バーとの比較)が、安静時と運動時の蓄熱量には明らかな増大は認められなかった(左バー同士、右バー同士の比較)。 The amount of heat storage during rest and exercise is clearly larger in the ceramic coating interior group than in the vinyl interior group (comparison between the left bar and the right bar in Fig. 7). No obvious increase was observed (comparison between left bars and right bars).
これらの比較結果は、28℃の室内で、健康な人間で、尚且つ椅座安静から軽い自転車こぎ運動に変化する程度の運動負荷の増加では、体温調節が適切に行われることによって、壁材の放射率が大きくなることによる極端な蓄熱増大は生じないと予測し得ることを示している。 The results of these comparisons show that the body temperature is adjusted appropriately in a room temperature of 28 ° C., with a healthy human being, and with an increase in exercise load enough to change from sitting on a chair to a light bicycle. It shows that it can be predicted that an extreme increase in heat storage will not occur due to the increase in emissivity.
[椅座安静時と自転車運動時の心拍数]
1分当りの心拍数は、交感神経の緊張状態を表す良い指標となる。一般的に温熱刺激に対しては、寒さや冷たさを感じ取っている時に、より多くの交感神経シグナルが発生して末梢血管を収縮させて皮膚温を低下させることにより、放熱を抑制させて体温を下げさせないように調節が行われていると考えられている。実験中の心拍数をセラミック塗材内装群とビニル内装群とに分けて示したのが、図8である。
[Heart rate when sitting on a chair and cycling]
Heart rate per minute is a good indicator of sympathetic tone. In general, for thermal stimulation, when feeling cold or cold, more sympathetic nerve signals are generated and the peripheral blood vessels are contracted to lower the skin temperature, thereby suppressing heat dissipation and body temperature. It is thought that adjustments are made so as not to lower the value. FIG. 8 shows the heart rate during the experiment divided into a ceramic coating material interior group and a vinyl interior group.
安静時の心拍数は群間に統計的な差は見られないが、運動中はセラミック塗材内装群がビニル内装群よりも有意に大きな値を示している。部屋の内装材以外の環境要因に相違が無い場所で過ごさせた同じ集団の心拍数に差が生じるということは、内装の違い(表面の放射率の違い)を唯一の原因とする交感神経の緊張が起きていることを示している。 There is no statistical difference between the groups in the heart rate at rest, but during exercise, the ceramic coating interior group shows a significantly larger value than the vinyl interior group. The difference in the heart rate of the same group spent in a place where there is no difference in environmental factors other than the interior materials of the room means that sympathetic nerves are the only cause of the difference in interior (difference in surface emissivity). It shows that tension is occurring.
測定した指標のうち、セラミック塗材内装時の平均皮膚温その他の皮膚温の低下、代謝量の上昇、直腸温の上昇および蓄熱量の増大は、いずれも交感神経の緊張の高まりで矛盾無く説明できる。 Among the measured indices, the decrease in average skin temperature and other skin temperature, the increase in metabolic rate, the increase in rectal temperature, and the increase in the amount of stored heat when ceramic coating is applied are all explained consistently by the increase in sympathetic nerve tension. it can.
こうした顕著な差が安静時には見られずに、運動時だけに顕著となる理由については更に考察を深める必要がある。しかし、安静時の各データには統計的な差は無いとは言っても皮膚温、直腸温、心拍数代謝率などはそれぞれ、交感神経の緊張傾向を示しており、安静時のデータのバラツキに隠されているに過ぎないと解釈することも出来る。 It is necessary to further consider the reason why such a significant difference is not observed at rest, but becomes significant only during exercise. However, although there is no statistical difference between the resting data, the skin temperature, rectal temperature, heart rate metabolic rate, etc. show sympathetic nervous tension, and there is variation in resting data. It can be interpreted that it is only hidden in
[結果の概要と結論]
居室壁面の放射率のわずかな違いが、その室内に滞在する人々にどのような熱的影響を及ぼすことになるかはコンピュータによる数値シミュレーションで容易に解を得ることが出来る。しかし、ヒトを対象としてそれを実験的に検証した例はない。
[Summary and conclusion of results]
It can be easily obtained by numerical simulation by a computer how the slight difference in the emissivity of the room wall will affect the people staying in the room. However, there is no example that has been experimentally verified for human subjects.
セラミック塗材という大きな放射率を有するセラミック粒子含有塗材を部屋の内装に用いることにより、実験的にこれを検証することが出来るようになった。 By using a ceramic particle-containing coating material having a large emissivity called a ceramic coating material in the interior of a room, it has become possible to verify this experimentally.
セラミック粒子含有塗材(日進産業社製、断熱塗材)を内装した部屋で過ごしている時には、代謝率が約10%高まり、皮膚温が低目(平均皮膚温で0.5℃)に推移し、直腸温は0.3℃高く、心拍数は毎分最大5拍ほど高まるという結果が得られた。この現象は、運動時にはとりわけ顕著であった。これらの結果は、いずれも交感神経が緊張状態の時に起きる生理的な現象に近似している。 When staying in a room with ceramic particle-containing coating (made by Nisshin Sangyo Co., Ltd., heat-insulating coating), the metabolic rate increases by about 10% and the skin temperature is low (average skin temperature is 0.5 ° C). As a result, the rectal temperature was increased by 0.3 ° C., and the heart rate increased by up to 5 beats per minute. This phenomenon was particularly noticeable during exercise. These results are close to physiological phenomena that occur when the sympathetic nerve is in tension.
2基の実験装置の唯一の相違点は内装材である。セラミック塗材の内装材は交感神経系を刺激する作用を有する可能性が示された。代謝率の直接測定で10%もの増加を示していることは、内装材の放射率が高いことが強力な交感神経活性化誘導作用を有していると考えられる(図10)。交感神経系は、冷気や冷たい物体に触れることでも容易に一過性の緊張状態にすることが出来るが、この実験のように特別の刺激を与えることなく長時間にわたって交感神経の緊張状態を創出させる作用をセラミック塗材は有すると考えられる。 The only difference between the two experimental devices is the interior material. It was shown that the interior material of ceramic coating material has the effect of stimulating the sympathetic nervous system. A direct measurement of the metabolic rate shows an increase of 10%, and it is considered that the high emissivity of the interior material has a strong sympathetic nerve activation inducing action (FIG. 10). The sympathetic nervous system can be easily put into a transient tension state by touching cold air or a cold object. It is considered that the ceramic coating material has an action to make it.
上記試験結果から、断熱塗材を室内の内装材の表面に用いることで、ヒト、その他動物等の生体に対して、代謝率を向上させ、それに伴う健康促進効果、例えば、ダイエット効果を得ることが実現できる。 From the above test results, by using a heat insulating coating material on the surface of indoor interior materials, the metabolic rate is improved for living bodies such as humans and other animals, and the accompanying health promotion effect, for example, a diet effect is obtained. Can be realized.
Claims (7)
室内の壁、天井又は床から選ばれる1種以上の前記室内側表面に、断熱塗材を固着させたことを特徴とする代謝率向上ルーム。 A room for improving metabolic rate that enhances metabolic activity in the organism,
A room for improving metabolic rate, characterized in that a heat insulating coating material is fixed to one or more indoor surfaces selected from an indoor wall, ceiling, or floor.
セラミック粒子を含む流動体を、噴霧、塗布又は含浸させた後に、乾燥させ、前記内装材表面に固着させた断熱塗材としたことを特徴とする請求項1に記載の代謝率向上ルーム。 The thermal insulation coating material,
2. The metabolic rate improving room according to claim 1, wherein the fluid containing ceramic particles is sprayed, applied or impregnated and then dried to be a heat insulating coating material fixed to the interior material surface.
設置後に室内側に位置する表面に、断熱塗材を固着させたことを特徴とする代謝率向上ルーム用内装材。 It is the surface of the interior material of the building before it is installed in the building,
An interior material for a metabolic rate improving room, characterized in that a heat-insulating coating material is fixed to the surface located on the indoor side after installation.
壁紙、石膏ボード、木製板、フローリング材の内から選ばれる何れか1種以上であることを特徴とする請求項3に記載の代謝率向上ルーム用内装材。 The interior material is
The interior material for a metabolic rate improving room according to claim 3, wherein the interior material is one or more selected from wallpaper, gypsum board, wooden board and flooring material.
少なくとも、セラミック粒子を含むことを特徴とする請求項3又は請求項4に記載の代謝率向上ルーム用内装材。 The thermal insulation coating material is
The interior material for an improved metabolic rate room according to claim 3 or 4, wherein the interior material comprises at least ceramic particles.
少なくとも、次の成分比率の素材
二酸化チタン9〜15重量%、
エチレングリコール0.25〜0.3重量%、
セラミック粒子12.8〜20.0重量%、
鉱油0.062〜0.065重量%、
を含むことを特徴とする請求項3〜請求項5の何れか1項に記載の代謝率向上ルーム用内装材。 The thermal insulation coating material is
At least 9-15% by weight of titanium dioxide
0.25 to 0.3% by weight of ethylene glycol,
12.8 to 20.0% by weight of ceramic particles,
Mineral oil 0.062-0.065 wt%,
The interior material for a metabolic rate improving room according to any one of claims 3 to 5, comprising:
室内の壁又は天井又は床から選ばれる1種以上の前記室内側表面に、断熱セラクックを配置したことを特徴とする代謝率向上ルーム。 A room for improving metabolic rate that enhances metabolic activity in the organism,
A room for improving metabolic rate, characterized in that a heat insulating ceramic is arranged on one or more indoor surfaces selected from an indoor wall, ceiling, or floor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013227715A JP6442721B2 (en) | 2013-10-31 | 2013-10-31 | Metabolic rate improvement room, interior material used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013227715A JP6442721B2 (en) | 2013-10-31 | 2013-10-31 | Metabolic rate improvement room, interior material used for it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015086628A true JP2015086628A (en) | 2015-05-07 |
JP6442721B2 JP6442721B2 (en) | 2018-12-26 |
Family
ID=53049707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013227715A Active JP6442721B2 (en) | 2013-10-31 | 2013-10-31 | Metabolic rate improvement room, interior material used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6442721B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09110552A (en) * | 1995-10-16 | 1997-04-28 | Riboole:Kk | Production of tourmaline-containing foamed ceramic molded plate |
JP3085174U (en) * | 2001-08-22 | 2002-04-19 | 末彦 吉田 | Heat reflective interior material (heat reflective cloth, wallpaper) |
JP2002308665A (en) * | 2001-02-01 | 2002-10-23 | Shosuke Nagata | Composite material capable of generating negative ion, and fibrous product, sheetlike material and pottery using the same composite material |
JP2004155640A (en) * | 2002-11-05 | 2004-06-03 | Chino Denki Kogyosho:Kk | Gypsum board coated with thermal insulating ceramic material |
US20040231743A1 (en) * | 2003-05-19 | 2004-11-25 | Keyes Thomas Joseph | Ceramic coating process for pre-insulated piping |
JP3121542U (en) * | 2006-02-28 | 2006-05-18 | 株式会社エコホリスティック | Hot bath unit |
JP3140280U (en) * | 2007-12-28 | 2008-03-21 | 株式会社中部水研 | Hot bath equipment |
-
2013
- 2013-10-31 JP JP2013227715A patent/JP6442721B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09110552A (en) * | 1995-10-16 | 1997-04-28 | Riboole:Kk | Production of tourmaline-containing foamed ceramic molded plate |
JP2002308665A (en) * | 2001-02-01 | 2002-10-23 | Shosuke Nagata | Composite material capable of generating negative ion, and fibrous product, sheetlike material and pottery using the same composite material |
JP3085174U (en) * | 2001-08-22 | 2002-04-19 | 末彦 吉田 | Heat reflective interior material (heat reflective cloth, wallpaper) |
JP2004155640A (en) * | 2002-11-05 | 2004-06-03 | Chino Denki Kogyosho:Kk | Gypsum board coated with thermal insulating ceramic material |
US20040231743A1 (en) * | 2003-05-19 | 2004-11-25 | Keyes Thomas Joseph | Ceramic coating process for pre-insulated piping |
JP3121542U (en) * | 2006-02-28 | 2006-05-18 | 株式会社エコホリスティック | Hot bath unit |
JP3140280U (en) * | 2007-12-28 | 2008-03-21 | 株式会社中部水研 | Hot bath equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6442721B2 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lan et al. | Local body cooling to improve sleep quality and thermal comfort in a hot environment | |
Zhu et al. | Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments | |
Tanda | Skin temperature measurements by infrared thermography during running exercise | |
Xiong et al. | Thermal perception and skin temperature in different transient thermal environments in summer | |
Song et al. | Temperature field of bed climate and thermal comfort assessment based on local thermal sensations | |
Butera | —Principles of thermal comfort | |
Wang et al. | Human thermal physiological and psychological responses under different heating environments | |
Streblow | Thermal sensation and comfort model for inhomogeneous indoor environments | |
Zhai et al. | Preferred temperatures with and without air movement during moderate exercise | |
Wang et al. | The key local segments of human body for personalized heating and cooling | |
Foda et al. | Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control | |
Parsons | Human heat stress | |
Jia et al. | Transient thermal comfort and physiological responses following a step change in activity status under summer indoor environments | |
Zhao et al. | Gender differences in thermal sensation and skin temperature sensitivity under local cooling | |
Liu et al. | Effects of local heating of body on human thermal sensation and thermal comfort | |
Cheong et al. | Assessment of thermal environment using a thermal manikin in a field environment chamber served by displacement ventilation system | |
Luo et al. | Dynamic thermal responses and showering thermal comfort under different conditions | |
Kim et al. | Influencing factors on thermal comfort and biosignals of occupant-a review | |
Fakir et al. | Prediction of individual thermal sensation from exhaled breath temperature using a smart face mask | |
Bouzidi et al. | Assessment of thermal comfort of frail people in a sitting posture under non-uniform conditions using a thermal manikin | |
Bogdan et al. | Influence of a breathing process on the perception of the thermal environment using personalised ventilation | |
Fan et al. | Thermal comfort | |
Zhou et al. | Thermal and draught perception in fluctuating stratified thermal environments with intermittent impinging jet ventilation | |
JP6442721B2 (en) | Metabolic rate improvement room, interior material used for it | |
Nie et al. | Improvement and validation of the Tanabe model to simulate human thermal behaviors in hot environments at high altitudes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170727 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6442721 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |