JP2015082394A - Electrode for microorganism fuel battery - Google Patents

Electrode for microorganism fuel battery Download PDF

Info

Publication number
JP2015082394A
JP2015082394A JP2013219464A JP2013219464A JP2015082394A JP 2015082394 A JP2015082394 A JP 2015082394A JP 2013219464 A JP2013219464 A JP 2013219464A JP 2013219464 A JP2013219464 A JP 2013219464A JP 2015082394 A JP2015082394 A JP 2015082394A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
microbial fuel
fuel cell
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013219464A
Other languages
Japanese (ja)
Inventor
直樹 岡山
Naoki Okayama
直樹 岡山
謙吾 井上
Kengo Inoue
謙吾 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
University of Miyazaki NUC
Original Assignee
Asahi Kasei Corp
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, University of Miyazaki NUC filed Critical Asahi Kasei Corp
Priority to JP2013219464A priority Critical patent/JP2015082394A/en
Publication of JP2015082394A publication Critical patent/JP2015082394A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a microorganism fuel battery which has a diaphragm less expensive compared to an ion-exchange membrane, and in which an inter-electrode distance is reduced for reduction in battery internal resistance, and an electric charge transfer density is increased by arranging microorganism to be present on the face of a negative electrode opposed to a positive electrode.SOLUTION: An electrode for a microorganism fuel battery comprises: a diaphragm 4 made of an insulative material having a three-dimensional structure which enables the prevention of contact between electrodes; and pores inside the diaphragm or on at least part of the surface thereof. The pores have an average pore size of 150 μm to 5 cm; and at least part of the pores preferably form through-holes.

Description

本発明は、電極同士の接触を防ぐ三次元構造の絶縁性物質からなる隔膜を有する微生物燃料電池用電極に関する。より詳しくは、本発明は、微生物及びそれを含有するバイオフィルム並びにその栄養物質の移動が可能である多孔質の三次元構造を有する絶縁性物質からなる、電極を隔てる隔膜を有する微生物燃料電池用電極に関する。   The present invention relates to an electrode for a microbial fuel cell having a diaphragm made of an insulating material having a three-dimensional structure that prevents the electrodes from contacting each other. More specifically, the present invention relates to a microbial fuel cell having a diaphragm separating electrodes, which is made of an insulating material having a porous three-dimensional structure capable of transferring microorganisms and biofilms containing the microorganisms and nutrients thereof. It relates to an electrode.

持続可能エネルギーとして、バイオマスを利用して発電をする微生物燃料電池が脚光を浴びている。微生物燃料電池とは、微生物を反応触媒として応用した燃料電池であり、触媒として利用する微生物によって代謝可能な多様な有機物を電力変換できる技術を利用した電池である。微生物燃料電池は、有機廃棄物処理をしながらエネルギー回収が出来るという優れたシステムではあるが、有機物分解微生物の発する電力が非常に小さく、それゆえ微生物燃料電池の出力電流密度が低いという問題があり、実用的な発電力を得るためにさらなる改良が必要とされている。   As a sustainable energy, a microbial fuel cell that uses biomass to generate electric power is in the spotlight. A microbial fuel cell is a fuel cell in which microorganisms are applied as a reaction catalyst, and is a battery that uses technology that can convert various organic substances that can be metabolized by microorganisms that are used as catalysts. Microbial fuel cells are an excellent system that can recover energy while treating organic waste, but there is a problem that the output power density of microbial fuel cells is low because the power generated by organic matter-decomposing microorganisms is very small. Further improvements are needed to obtain practical power generation.

かかる問題を解決するためには、電池の内部抵抗を減らすため電極間距離を減らしつつなおかつ正極に対向する負極面側にも微生物を存在させ発電効率を向上させることが考えられる。例えば、これまで開発された微生物燃料電池の電極構造は以下の特許文献1に示されたとおり、イオン透過膜を挟み込む構造となっている。これはそれぞれの電極に直接又はスペーサーをかまして貼り付ける方法であるが、微生物やその栄養物質が移動できる空間を持たない。また、Nafion(Dupon社)に代表されるイオン交換膜は高価格のため微生物燃料電池のコスト高の要因のひとつとなっている。以下の非特許文献1では、イオン交換膜などのセパレーターを使わない微生物燃料電池を紹介している。グラファイトロッドなどの剛体を電極として使用するのであれば、短絡しない距離に設置は容易であるがカーボンフェルトのような柔軟性のある素材を用いる場合、電極間距離の一定化が困難で安定した電力が得にくく、また短絡しない様に電極間距離を十分に取らざるを得ず、そのため内部抵抗の増大を招いている。   In order to solve such a problem, it is conceivable to improve the power generation efficiency by reducing the distance between the electrodes in order to reduce the internal resistance of the battery and also allowing microorganisms to be present on the negative electrode side facing the positive electrode. For example, the electrode structure of the microbial fuel cell developed so far has a structure in which an ion permeable membrane is sandwiched as shown in Patent Document 1 below. This is a method in which each electrode is attached directly or by biting a spacer, but does not have a space where microorganisms and their nutrients can move. In addition, ion exchange membranes represented by Nafion (Dupon) are one of the causes of high cost of microbial fuel cells due to their high price. Non-Patent Document 1 below introduces a microbial fuel cell that does not use a separator such as an ion exchange membrane. If a rigid body such as a graphite rod is used as an electrode, it is easy to install at a distance that does not short-circuit, but when using a flexible material such as carbon felt, it is difficult to make the distance between the electrodes constant and stable power. Is difficult to obtain, and a sufficient distance between the electrodes must be taken so as not to cause a short circuit, which leads to an increase in internal resistance.

特開2009−93861号公報JP 2009-93661 A

Jae Kyung Jang et al., Process Biochm. 2004, 39, p. 1007-1012Jae Kyung Jang et al., Process Biochm. 2004, 39, p. 1007-1012

前記した従来技術に伴う問題に鑑み、本発明が解決しようとする課題は、電池の内部抵抗を減らすため電極間距離を減らしつつ、正極に対向する負極面にも微生物を存在させ電荷移動密度を増やし、さらに、イオン交換膜より安価な隔膜を有する微生物燃料電池用電極を提供することである。   In view of the problems associated with the prior art described above, the problem to be solved by the present invention is to reduce the distance between the electrodes in order to reduce the internal resistance of the battery, and to reduce the distance between the electrodes and to allow the presence of microorganisms on the negative electrode surface facing the positive electrode, thereby In addition, it is to provide an electrode for a microbial fuel cell having a diaphragm that is cheaper than an ion exchange membrane.

本発明者らは、前記課題を解決すべく、鋭意検討し実験を重ねた結果、隔膜に微生物由来のバイオフィルムに埋没しない孔径を持つ孔を備えることにより、微生物自身の移動が可能となり隔膜に接触する電極面に微生物が付着することができ、さらに微生物が必要な栄養物質の移動も十分に行われ電極単位体積あたりの微生物存在比率を増やし発電効率を高めることができることを見出した。また、電極間に絶縁構造物を配することで電極間距離を一定に保つことが出来、出力安定化に寄与した。さらに隔膜の構成材もイオン交換膜のような高価な有機物材料は必要なく、樹脂の様な生物分解されない材料であれば構わないので、汎用材料が利用でき、イオン交換膜に比べ安価に作製することも見いだし本発明を完成するに至ったものである。   As a result of intensive studies and repeated experiments to solve the above-mentioned problems, the present inventors have provided a hole having a hole diameter not embedded in a biofilm derived from a microorganism in the diaphragm so that the microorganism itself can move and the diaphragm can be moved. It has been found that microorganisms can adhere to the electrode surface in contact with each other, and that nutrients necessary for the microorganisms can be sufficiently transferred to increase the ratio of microorganisms per unit volume of the electrode and increase the power generation efficiency. In addition, by providing an insulating structure between the electrodes, the distance between the electrodes can be kept constant, contributing to the stabilization of the output. Furthermore, the material for the diaphragm is not required to be an expensive organic material such as an ion exchange membrane, and any material that does not biodegrade such as a resin can be used. This has been found and the present invention has been completed.

すなわち、本発明は、以下の通りものである:
[1]電極同士の接触を防ぐ三次元構造の絶縁性物質からなり、かつ、その内部又はその表面の少なくとも一部に、平均孔径が150μm以上、5cm以下である複数の孔を持つ隔膜を有する微生物燃料電池用電極。
That is, the present invention is as follows:
[1] A diaphragm made of an insulating material having a three-dimensional structure for preventing contact between electrodes, and having a plurality of pores having an average pore diameter of 150 μm or more and 5 cm or less inside or on the surface thereof Microbial fuel cell electrode.

[2]前記複数の孔の少なくとも一部は貫通孔である、前記[1]に記載の微生物燃料電池用電極。   [2] The microbial fuel cell electrode according to [1], wherein at least some of the plurality of holes are through holes.

[3]前記絶縁性物質が、生物分解を受けない物質である、前記[1]又は[2]に記載の微生物燃料電池用電極。   [3] The microbial fuel cell electrode according to [1] or [2], wherein the insulating substance is a substance that does not undergo biodegradation.

[4]前記隔膜が、単層又は積層構造を有する、前記[1]〜[3]のいずれかに記載の微生物燃料電池用電極。   [4] The electrode for a microbial fuel cell according to any one of [1] to [3], wherein the diaphragm has a single layer or a laminated structure.

微生物燃料電池で一般的に利用され、また本発明の比較対象で用いている濾紙(平均孔径数μm〜数十μm)やイオン交換膜(平均孔径数nmオーダー)では、その内部に微生物が侵入することが困難で、隔膜に接触している電極面には微生物が存在し得なかった。これに反し、本発明の微生物燃料電池は、微生物によるバイオフィルムで孔が覆われない平均孔径150μm以上の孔を備える隔膜を有することにより、微生物が隔膜と接触している電極表面まで容易に到達することができ、さらに該微生物の増殖に必要な有機物の供給を容易にして、発電効率を高めることができる。   In filter paper (average pore diameter of several μm to several tens of μm) and ion exchange membranes (average pore diameter of the order of several nm), which are generally used in microbial fuel cells and used as a comparison target of the present invention, microorganisms enter the inside. Microorganisms could not exist on the electrode surface in contact with the diaphragm. On the other hand, the microbial fuel cell of the present invention has a diaphragm having pores with an average pore diameter of 150 μm or more that are not covered with a biofilm made of microorganisms, so that the microorganism can easily reach the electrode surface in contact with the diaphragm. In addition, it is possible to facilitate the supply of organic substances necessary for the growth of the microorganisms and increase the power generation efficiency.

ここに示す孔とは貫通孔及び閉塞孔を指す。貫通孔は表面に穴の空いている面から他の表面に向かい貫通している孔であり、閉塞孔は貫通していない孔である。微生物が正極と対向する負極面に微生物が存在できる隔膜構造であれば、貫通孔閉塞孔のいずれでも構わない。
微生物燃料電池用電極では、近接配置するとたわみにより正極負極同士が接触してしまうので、その接触を防ぐために、少なくとも電極中央部に短絡防止隔膜構造体が必要になる。正極負極の対向する面積が異なる場合、微生物を保持している負極の大きさに合わせ隔膜サイズを決定するが、負極自体の剛性が確保でき正極負極間の距離を一定に確保できる構造であればその限りではない。
さらに、本発明の微生物燃料電池用電池の隔膜は、セルロースなどからなる濾紙のように生物分解を受けなく、またイオン交換膜のように高価な材料を用いてはないので微生物燃料電池製造コストを抑えることができる。
かかる3つの特徴を備えることにより、本発明の微生物燃料電池用電極は、従来の微生物燃料電池用電極に比較して、その使用により高出力の電力を得ることができ、低コストで製造が可能である。
The hole shown here refers to a through hole and a blocking hole. A through-hole is a hole penetrating from the surface having a hole in the surface toward another surface, and a closed hole is a hole that does not penetrate. As long as the microorganism has a diaphragm structure in which microorganisms can exist on the negative electrode surface facing the positive electrode, any of the through-hole blocking holes may be used.
In the microbial fuel cell electrode, since the positive electrode and the negative electrode are brought into contact with each other due to bending when placed close to each other, a short-circuit prevention diaphragm structure is required at least in the center of the electrode in order to prevent the contact. If the areas of the positive and negative electrodes are different, the size of the diaphragm is determined according to the size of the negative electrode holding the microorganisms, but if the structure can secure the rigidity of the negative electrode itself and a constant distance between the positive and negative electrodes Not so.
Further, the membrane of the microbial fuel cell of the present invention is not subject to biodegradation like filter paper made of cellulose or the like, and expensive materials such as ion exchange membranes are not used. Can be suppressed.
By providing these three features, the microbial fuel cell electrode of the present invention can obtain high output power by using it compared to the conventional microbial fuel cell electrode, and can be manufactured at low cost. It is.

本発明の微生物燃料電池用電極を用いた微生物燃料電池の一例を示す概念図。The conceptual diagram which shows an example of the microbial fuel cell using the electrode for microbial fuel cells of this invention.

以下、本発明の実施形態を詳細に説明する。
(微生物燃料電池の構成)
図1を参照して、本発明の微生物燃料電池用隔膜を用いた具体例を説明する。
微生物燃料電池は、通常一対の電極(負電極(3)と正電極(5))、隔膜(4)、及び電解質液(2)を収容した反応槽(1)、並びに前記一対の電極と電気的に接続された外部回路(例えば、データロガー、ポテンショスタット等)(6)を備える。以下、前記構成に基き本発明の実施形態を説明するが、本発明の微生物燃料電池の構成は、かかる構成を有するものには限定されない。
Hereinafter, embodiments of the present invention will be described in detail.
(Configuration of microbial fuel cell)
With reference to FIG. 1, the specific example using the diaphragm for microbial fuel cells of this invention is demonstrated.
The microbial fuel cell generally comprises a pair of electrodes (a negative electrode (3) and a positive electrode (5)), a diaphragm (4), a reaction tank (1) containing an electrolyte solution (2), and the pair of electrodes and an electric Connected external circuit (eg, data logger, potentiostat, etc.) (6). Hereinafter, embodiments of the present invention will be described based on the above-described configuration, but the configuration of the microbial fuel cell of the present invention is not limited to the one having such a configuration.

[微生物燃料電池用電極、及び隔膜]
電極と隔膜の配置は隔膜を挟み込むようにその両側に電極が接する形で固定される。接触面の接合方法は接着剤による接合のほか、固定具で挟み込んでもよい。
電極同士の接触を防ぐ三次元構造の絶縁性物質からなる隔膜は、その内部又はその表面の少なくとも一部に、平均孔径が150μm以上5cm以下である多数の孔を持ち、該孔の少なくとも一部は貫通孔であることができる。微生物及びそれを含有するバイオフィルムが電極内部にまで存在することが可能な平均孔径150μm以上の孔であれば形状や分布は問わない。本発明に係る隔膜の平均孔径は、好ましくは200μm≦R(平均孔径)<2cm、より好ましくは300μm≦R(平均孔径)<1.5cmであることができる。
通常バイオフィルムで覆われる表面は、数十μm程度の孔ではそのバイオフィルムに被覆され孔自体埋没してしまい、孔としての機能が無くなるが、平均孔径が150μm以上になるとバイオフィルムを支持する足場が無くなり、バイオフィルム自体形成されず孔としての機能を保たれる。尚、隔膜に関して用語「表面」とは、立体を構成する表面すべてを意味する。
[Electrode and diaphragm for microbial fuel cell]
The arrangement of the electrodes and the diaphragm is fixed so that the electrodes are in contact with both sides so as to sandwich the diaphragm. As a method for joining the contact surfaces, in addition to joining with an adhesive, the contact surfaces may be sandwiched with a fixture.
A diaphragm made of an insulating material having a three-dimensional structure that prevents the electrodes from contacting each other has a large number of holes having an average pore diameter of 150 μm or more and 5 cm or less inside or at least a part of the surface thereof, and at least a part of the holes. Can be a through hole. The shape and distribution are not limited as long as the pores have an average pore diameter of 150 μm or more in which microorganisms and biofilms containing them can exist inside the electrode. The average pore diameter of the diaphragm according to the present invention is preferably 200 μm ≦ R (average pore diameter) <2 cm, more preferably 300 μm ≦ R (average pore diameter) <1.5 cm.
Usually, the surface covered with biofilm is covered with the biofilm in the case of holes of about several tens of μm, and the hole itself is buried, and the function as a hole is lost. However, when the average pore diameter is 150 μm or more, the scaffold supporting the biofilm The biofilm itself is not formed and the function as a hole is maintained. The term “surface” with respect to the diaphragm means all surfaces constituting a solid.

ところで、正極に対向する負極面も微生物が付着可能となり、その微生物が生産するバイオフィルムが成長すると正極にそれが接触し、結果として短絡の可能性も出てくる。その接触を防ぐために、少なくともバイオフィルムの厚みより厚さのある隔膜が必要である。バイオフィルムの厚さは菌種にもよるが通常厚くても150μm程度である。そのため少なくても150μm以上の厚さが必要である。より好ましくは200μm以上、さらに好ましくは300μm以上である。隔膜厚みに関しては内部抵抗に非常に関係し、隔膜の距離(電極間距離)の二乗に比例する。そのため、先に記載した短絡を防止できる電極間距離が最小値を取るように設置するのが望ましい。必要に応じて、予備培養で使用微生物のバイオフィルム厚を事前に測定し、それに対応した厚みの隔膜を選択するのが好ましい。   By the way, microorganisms can also adhere to the negative electrode surface facing the positive electrode, and when the biofilm produced by the microorganisms grows, it comes into contact with the positive electrode, resulting in a possibility of short circuit. In order to prevent the contact, a diaphragm having a thickness at least larger than the thickness of the biofilm is required. The thickness of the biofilm depends on the bacterial species, but is usually about 150 μm even if it is thick. Therefore, a thickness of 150 μm or more is necessary at least. More preferably, it is 200 micrometers or more, More preferably, it is 300 micrometers or more. The diaphragm thickness is very related to the internal resistance and is proportional to the square of the distance of the diaphragm (distance between electrodes). Therefore, it is desirable to install so that the distance between electrodes which can prevent the short circuit described above takes a minimum value. If necessary, it is preferable to measure the biofilm thickness of the microorganism used in the preliminary culture in advance and select a diaphragm having a thickness corresponding to the thickness.

以下、平均孔径が150μm以上の三次元構造の絶縁性物質を有する隔膜材料としての三次元構造物について詳細に説明する。
三次元構造物としては、旭化成せんい株式会社のフュージョン(登録商標)を挙げることができる。フュージョン(登録商標)は、前記した平均孔径が150μm以上の三次元構造の絶縁性物質で構成される。通常フュージョン(登録商標)は電極間距離を少なくし、内部抵抗を少なくするため薄いものを用いるが、その厚みは菌種やできるバイオフィルムの状態、反応槽などに応じて変化させることができる。
Hereinafter, the three-dimensional structure as a diaphragm material having a three-dimensional insulating material having an average pore diameter of 150 μm or more will be described in detail.
An example of the three-dimensional structure is Fusion (registered trademark) of Asahi Kasei Fibers Corporation. Fusion (registered trademark) is composed of an insulating material having a three-dimensional structure with an average pore diameter of 150 μm or more. Usually, Fusion (registered trademark) is thin in order to reduce the distance between the electrodes and reduce the internal resistance, but the thickness can be changed according to the bacterial species, the state of the biofilm, the reaction tank, and the like.

本発明の微生物燃料電池用電池の隔膜としてのフュージョン(登録商標)は、セルロースなどからなる濾紙のように生物分解を受けなく、またイオン交換膜のように高価な材料ではないため、微生物燃料電池の製造コストを抑えることができる。このフュージョン(登録商標)はポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ナイロンなどの樹脂素材で構成される3次元立体織物である。
尚、生物分解を受けない他の素材としてポリプロピレン、ポリカーボネート、ポリ塩化ビニル、ポリエステル、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン等の樹脂、ガラス、マイカ、石綿、セラミックなどの無機物、イソプレンゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴムなどゴム状共重合体、そのほか複合素材などが上げられるが、生分解を受けない絶縁性物質であればこの限りでは無い。また、基材が生物分解を受ける物質で構成されていても、前記生物分解を受けない絶縁物質で表面を覆われていればその限りではない。
Fusion (registered trademark) as a diaphragm of a cell for a microbial fuel cell of the present invention does not undergo biodegradation unlike filter paper made of cellulose or the like, and is not an expensive material like an ion exchange membrane. The manufacturing cost can be reduced. This Fusion (registered trademark) is a three-dimensional three-dimensional fabric made of a resin material such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, or nylon.
Other materials that are not subject to biodegradation include polypropylene, polycarbonate, polyvinyl chloride, polyester, epoxy resin, melamine resin, phenol resin, polyurethane and other inorganic materials, glass, mica, asbestos, ceramics and other inorganic materials, isoprene rubber, ethylene Rubber-like copolymers such as propylene rubber, urethane rubber, silicone rubber, and other composite materials can be raised, but this is not limited as long as it is an insulating substance that does not undergo biodegradation. Further, even if the substrate is made of a material that undergoes biodegradation, this is not limited as long as the surface is covered with an insulating material that does not undergo biodegradation.

以下、本発明の実施形態を、実施例を挙げて具体的に説明する。
[微生物燃料電池用電極の作製]
隔膜にはフュージョン(登録商標)(AKE64606、旭化成せんい株式会社)を使用し70mm×30mm×3mmの大きさになる様に成形した。負極には70mm×30mm×5mmのカーボンフェルト(LFP−205、東京炭素工業株式会社)、正極には負極と同じ大きさの炭素繊維(E−TEK社製30%wet-proofed又はその類似品)の片面に60%4−ポリテトラフルオ口エチレン(PTFE)溶液を塗布し、加温・乾燥させたPTFE層を4層積層させ、反対面には20%白金/炭素粉末(田中貴金属販売株式会社)を5%Nafion溶液(シグマ社製)に懸濁したものを塗布し、風乾したものから成るエアー・カソードを用いた。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples.
[Production of electrodes for microbial fuel cells]
Fusion (registered trademark) (AKE64606, Asahi Kasei Fibers Co., Ltd.) was used for the diaphragm, and it was molded to a size of 70 mm × 30 mm × 3 mm. Carbon felt of 70 mm x 30 mm x 5 mm for the negative electrode (LFP-205, Tokyo Carbon Industry Co., Ltd.), carbon fiber of the same size as the negative electrode for the positive electrode (30% wet-proofed by E-TEK or similar) A 60% 4-polytetrafluoroethylene (PTFE) solution was applied to one side of the film, and four layers of PTFE layers that had been heated and dried were laminated. On the other side, 20% platinum / carbon powder (Tanaka Kikinzoku Sales Co., Ltd.) ) Was suspended in a 5% Nafion solution (manufactured by Sigma), and an air cathode made of air-dried was used.

[孔径測定]
隔膜孔径の測定においては、目視確認が可能な孔径であれば定規、ノギスなどの測定器で測定、光学顕微鏡(SZX16、オリンパス株式会社)、電子顕微鏡(S−3000N、日立製作所)で任意の表面1cm四方を撮影した。また、孔径が視野以上に大きい場合は倍率を落とし適宜測定した。その画像データから二次元画像解析ソフト(A像くん、旭化成エンジニアリング株式会社)により各開孔部の面積を算出した。求めた面積を真円とした場合の直径をそれぞれの孔径とした。
[Pore diameter measurement]
In the measurement of the pore diameter of the diaphragm, any surface with a ruler, caliper, etc., as long as it can be visually confirmed, any surface with an optical microscope (SZX16, Olympus Corporation), an electron microscope (S-3000N, Hitachi, Ltd.) A 1cm square was photographed. In addition, when the hole diameter was larger than the field of view, the magnification was reduced and measured appropriately. From the image data, the area of each aperture was calculated by two-dimensional image analysis software (A Image-kun, Asahi Kasei Engineering Co., Ltd.). The diameters when the obtained area was a perfect circle were taken as the respective hole diameters.

その求めた孔径とその孔径度数に先の面積をかけた面積総和との分布図から150μm以上の範囲に最大面積値を示す孔径を中心に、その前後±2μmの範囲における孔径を平均孔径とした。実施例に用いたフュージョン(登録商標)(AKE64606、旭化成せんい株式会社)は目視測定可能であるので、ノギスを用いて測定を行いその平均孔径は10.05mmであることを確認した。
比較対象として濾紙(No.101、ADVANTEC社)(比較例1)とNafion(117,Dupon社)(比較例2)用い、その平均孔径はそれぞれ4.8μmと54nmであった。
From the distribution diagram of the obtained pore diameter and the total area obtained by multiplying the area of the pore diameter by the area of the pore diameter, centering on the hole diameter showing the maximum area value in the range of 150 μm or more, the pore diameter in the range of ± 2 μm before and after that is the average pore diameter. . Since Fusion (registered trademark) (AKE64606, Asahi Kasei Fibers Co., Ltd.) used in the examples can be visually measured, measurement was performed using calipers, and it was confirmed that the average pore diameter was 10.05 mm.
For comparison, filter paper (No. 101, ADVANTEC) (Comparative Example 1) and Nafion (117, Dupont) (Comparative Example 2) were used, and the average pore sizes were 4.8 μm and 54 nm, respectively.

[反応槽]
アクリルで、内径100mm×60mm×30mmの反応槽を作製した。100mm×60mmの片面に66mm×26mmの貫通孔を設け、この位置の槽内側にカーボンフェルト電極、外側にエアー・カソード、それらで挟み込むように隔膜を設置した。
[Reaction tank]
A reaction vessel having an inner diameter of 100 mm × 60 mm × 30 mm was made of acrylic. A through hole of 66 mm × 26 mm was provided on one side of 100 mm × 60 mm, a carbon felt electrode inside the tank at this position, an air cathode on the outside, and a diaphragm so as to be sandwiched between them.

[発電微生物]
発電微生物として、Geobacter sulfurreducens(ジオバクター・サルフレドゥセンス)(ATCC寄託No.51573)を用いた。
[Power generation microorganisms]
Geobacter sulfurreducens (ATCC deposit No. 51573) was used as a power generation microorganism.

[電解質液の調製]
以下の組成の電解質液を、最終容量1.0Lになるように蒸留水で調製した。
NHCl 1.5g
NaHPO 0.6g
KCl 0.1g
NaHCO 2.5g
CHCOONa 0.82g
HOOCHC=CHCOONa 8.0g
調製した電解質液に、スターチ:ペプトン:フィッシュミールを3:1:1(289gCOD/L、COD=化学的酸素要求量)の割合の栄養基質を、該電解質液に対し1/100容量添加し、反応槽溶液とした。
[Preparation of electrolyte solution]
An electrolyte solution having the following composition was prepared with distilled water to a final volume of 1.0 L.
NH 4 Cl 1.5 g
NaH 2 PO 4 0.6 g
KCl 0.1g
NaHCO 3 2.5 g
CH 3 COONa 0.82g
HOOCHC = CHCOONa 8.0g
To the prepared electrolyte solution, a nutrient substrate at a ratio of starch: peptone: fishmeal of 3: 1: 1 (289 g COD / L, COD = chemical oxygen demand) is added to 1/100 volume of the electrolyte solution, A reaction vessel solution was obtained.

[出力測定]
一対の電極間にポテンショスタット(G300、Gamry社)とマルチプレクサ(ECM8、Gamry社)を結線し、発生電力をモニタリングした。
出力カーブは培養開始後菌数とともに上昇し、約一週間後に菌数が飽和状態に達し出力が安定した時点をそのサンプルの出力とした。出力測定時は外部抵抗を75Ωとし、電流値で示した。
結果を以下の表1に示す。
[Output measurement]
A potentiostat (G300, Gamry) and a multiplexer (ECM8, Gamry) were connected between a pair of electrodes, and the generated power was monitored.
The output curve increased with the number of bacteria after the start of culture, and the time when the number of bacteria reached a saturated state after about one week and the output stabilized was taken as the output of the sample. At the time of output measurement, the external resistance was set to 75Ω, and the current value was shown.
The results are shown in Table 1 below.

Figure 2015082394
Figure 2015082394

[負極電極所見]
実験後、それぞれの反応槽を解体し隔膜と接している負極表面を観察したところ、フュージョン(登録商標)を用いた電極の隔膜接触表面には微生物の存在が確認できたが、濾紙(比較例1)とNafion(比較例2)では、接触側電極表面には微生物を確認することができなかった。このことは、負極両面に微生物が付着したフュージョン(登録商標)と隔膜接触面側の電極表面に微生物が付着していない比較例1と2の出力差が約2倍であった出力結果と良く一致していた。
[Negative electrode findings]
After the experiment, each reaction tank was disassembled and the negative electrode surface in contact with the diaphragm was observed. The presence of microorganisms was confirmed on the diaphragm contact surface of the electrode using Fusion (registered trademark). In 1) and Nafion (Comparative Example 2), microorganisms could not be confirmed on the contact side electrode surface. This is a good output result when the difference in output between Fusion (registered trademark) with microorganisms attached to both sides of the negative electrode and Comparative Examples 1 and 2 without microorganisms attached to the electrode surface on the diaphragm contact surface side was approximately double. It was consistent.

本発明の微生物燃料電池用電極では、微生物の移動が可能な大きさの貫通孔を備える隔膜を有することで、微生物が隔膜に接触する電極面に微生物が付着することができ、さらに、微生物が必要な栄養物質の移動も十分に行われ電極単位体積あたりの微生物存在比率を増やし発電効率を高めることができる。また、隔膜の構成材もイオン交換膜のような高価な有機物材料は必要なく、樹脂のような生物分解されない材料であれば構わない。よって、本発明の微生物燃料電池用電極は、微生物燃料電池の電極として好適に利用可能である。   The electrode for a microbial fuel cell of the present invention has a diaphragm having a through-hole having a size that allows movement of microorganisms, so that microorganisms can adhere to the electrode surface in contact with the diaphragm. Necessary nutrients are sufficiently transferred to increase the ratio of microorganisms per unit volume of the electrode and increase the power generation efficiency. Further, the constituent material of the diaphragm is not required to be an expensive organic material such as an ion exchange membrane, and may be any material such as a resin that is not biodegradable. Therefore, the electrode for microbial fuel cells of the present invention can be suitably used as an electrode for microbial fuel cells.

1 反応槽
2 電解質液
3 負電極
4 隔膜
5 正電極
6 外部回路(ポテンショスタット、データロガー等)
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Electrolyte liquid 3 Negative electrode 4 Diaphragm 5 Positive electrode 6 External circuit (potentiostat, data logger, etc.)

Claims (4)

電極同士の接触を防ぐ三次元構造の絶縁性物質からなり、かつ、その内部又はその表面の少なくとも一部に、平均孔径が150μm以上5cm以下である複数の孔を持つ隔膜を有する微生物燃料電池用電極。   For a microbial fuel cell comprising a three-dimensional insulating material that prevents electrodes from contacting each other, and having a diaphragm having a plurality of pores having an average pore diameter of 150 μm or more and 5 cm or less inside or at least part of the surface thereof electrode. 前記複数の孔の少なくとも一部は貫通孔である、請求項1に記載の微生物燃料電池用電極。   The microbial fuel cell electrode according to claim 1, wherein at least some of the plurality of holes are through holes. 前記絶縁性物質が、生物分解を受けない物質である、請求項1又は2に記載の微生物燃料電池用電極。   The microbial fuel cell electrode according to claim 1 or 2, wherein the insulating substance is a substance that does not undergo biodegradation. 前記隔膜が、単層又は積層構造を有する、請求項1〜3のいずれか1項に記載の微生物燃料電池用電極。   The microbial fuel cell electrode according to any one of claims 1 to 3, wherein the diaphragm has a single layer or a laminated structure.
JP2013219464A 2013-10-22 2013-10-22 Electrode for microorganism fuel battery Pending JP2015082394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219464A JP2015082394A (en) 2013-10-22 2013-10-22 Electrode for microorganism fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219464A JP2015082394A (en) 2013-10-22 2013-10-22 Electrode for microorganism fuel battery

Publications (1)

Publication Number Publication Date
JP2015082394A true JP2015082394A (en) 2015-04-27

Family

ID=53012893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219464A Pending JP2015082394A (en) 2013-10-22 2013-10-22 Electrode for microorganism fuel battery

Country Status (1)

Country Link
JP (1) JP2015082394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656996B1 (en) * 2015-04-30 2016-09-12 서울대학교산학협력단 Real-time monitoring device for chromium and method for real-time monitoring for chromium using the same
CN108709489A (en) * 2018-05-12 2018-10-26 中国科学院南京地理与湖泊研究所 A kind of biosensor and monitoring method of monitoring deposit expansion height

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656996B1 (en) * 2015-04-30 2016-09-12 서울대학교산학협력단 Real-time monitoring device for chromium and method for real-time monitoring for chromium using the same
CN108709489A (en) * 2018-05-12 2018-10-26 中国科学院南京地理与湖泊研究所 A kind of biosensor and monitoring method of monitoring deposit expansion height
CN108709489B (en) * 2018-05-12 2023-07-25 中国科学院南京地理与湖泊研究所 Biosensor for monitoring expansion height of sediment and monitoring method

Similar Documents

Publication Publication Date Title
Pang et al. Flexible and stretchable biobatteries: monolithic integration of membrane‐free microbial fuel cells in a single textile layer
Tharali et al. Microbial fuel cells in bioelectricity production
Zhang et al. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells
Choi et al. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2, 5-benzimidazole](ABPBI) impregnated non-woven fabric filter
JP5494996B2 (en) Microbial fuel cell electrode and microbial fuel cell using the same
Fraiwan et al. Microbial power‐generating capabilities on Micro‐/Nano‐Structured anodes in micro‐sized microbial fuel cells
US8114544B1 (en) Methods and apparatus for increasing biofilm formation and power output in microbial fuel cells
EP3211698B1 (en) Electrode, fuel cell and water treatment device
JP2008288198A5 (en)
JP6386399B2 (en) Microbial fuel cell electrode, method for producing microbial fuel cell electrode, microbial fuel cell, and method for producing microbial fuel cell
WO2008057318A1 (en) Biological fuel cells with nanporous membranes
WO2011025021A1 (en) Electrode for microbial fuel cell, and microbial fuel cell using same
Suransh et al. Modification of clayware ceramic membrane for enhancing the performance of microbial fuel cell
Sayed et al. Critical issues in the performance of yeast based microbial fuel cell
US20240145750A1 (en) Microbial fuel cell cathode and method of making same
CN103972514A (en) Novel three-dimensional nano carbon/stainless steel mesh composite biological anode and preparation method and application thereof
JP6332793B2 (en) Microbial fuel cell and float
Mayer et al. Adsorption of Shewanella oneidensis MR‐1 to the electrode material activated carbon fabric
Hsu et al. Characteristics of Carbon Nanotubes/Graphene Coatings on Stainless Steel Meshes Used as Electrodes for Air‐Cathode Microbial Fuel Cells
JP2015082394A (en) Electrode for microorganism fuel battery
US20210280888A1 (en) Microbial fuel cell
JP2016157532A (en) Electrode laminate body for microorganism fuel battery and microorganism fuel battery
Scott Microbial fuel cells: transformation of wastes into clean energy
JP2015082396A (en) Electrode for microorganism fuel battery
US10396387B2 (en) Carbon nanotube based microbial fuel cells and methods for generating an electric current