JP2015081835A - Method for measuring birefringence, method for manufacturing mask blank substrate, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device - Google Patents

Method for measuring birefringence, method for manufacturing mask blank substrate, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2015081835A
JP2015081835A JP2013219695A JP2013219695A JP2015081835A JP 2015081835 A JP2015081835 A JP 2015081835A JP 2013219695 A JP2013219695 A JP 2013219695A JP 2013219695 A JP2013219695 A JP 2013219695A JP 2015081835 A JP2015081835 A JP 2015081835A
Authority
JP
Japan
Prior art keywords
light
light quantity
correspondence
wave plate
quantity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013219695A
Other languages
Japanese (ja)
Other versions
JP6195777B2 (en
Inventor
勝 田辺
Masaru Tanabe
勝 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013219695A priority Critical patent/JP6195777B2/en
Publication of JP2015081835A publication Critical patent/JP2015081835A/en
Application granted granted Critical
Publication of JP6195777B2 publication Critical patent/JP6195777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a birefringence value of a material showing a tendency of low birefringence with high accuracy.SOLUTION: A method for measuring birefringence is provided, which includes a step of acquiring a first correspondence relation between a rotation angle of a half-wave plate and a luminous energy ratio through: steps of transmitting an inspection beam, which is emitted from a light source unit 101 and transmitted through a light-transmitting article 10, through a half-wave plate 104, then separating the inspection beam by an optical separator 108 into two linearly polarized beams orthogonal to each other, measuring luminous energy of the beams with respective two luminous energy measurement devices 106a, 106b, and calculating a luminous energy ratio by dividing one of the two measurement values by the sum of the two measurement values; and a step of repeating several times the above described steps by rotating the half-wave plate to change angles of the polarization planes. The method further includes: a step of acquiring a reference correspondence relation under the same conditions in the above step of acquiring the first correspondence relation without disposing the light-transmitting article; a step of calculating a relative luminous quantity ratio in the first correspondence relation and the reference correspondence relation at the same rotation angle of the half-wave plate; and a step of acquiring a birefringent value at the measurement position by using the relative luminous quantity ratio of the first correspondence relation, based on a preliminarily acquired correspondence relation between a relative luminous quantity ratio and a birefringent value.

Description

本発明は、透光性物品における複屈折の測定方法に関する。また、本発明は、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法に関する。   The present invention relates to a method for measuring birefringence in a translucent article. The present invention also relates to a mask blank substrate manufacturing method, a mask blank manufacturing method, a transfer mask manufacturing method, and a semiconductor device manufacturing method.

半導体デバイスの製造工程の1つであるリソグラフィ工程では、露光装置を用いて、転写対象物(例えば、ウェハ上のレジスト膜)に露光転写している。具体的に、露光装置では、露光光源から照明光学系を経由した露光光を転写用マスクに照射して透過させ、縮小光学系を経て、転写対象物に縮小された転写パターン像を露光することで、パターンを転写することを行っている。   In a lithography process, which is one of semiconductor device manufacturing processes, an exposure apparatus is used to perform exposure transfer on a transfer object (for example, a resist film on a wafer). Specifically, the exposure apparatus irradiates and transmits the exposure light from the exposure light source via the illumination optical system to the transfer mask, and exposes the transfer pattern image reduced to the transfer object through the reduction optical system. The pattern is transferred.

また、この露光光の光源は、短波長化が進んでおり、近年の半導体デバイスを製造する工程では、ArFエキシマレーザー(波長193nm)が露光光として主に使用されている。近年の半導体デバイスは、パターンの微細化が進んだ結果、転写対象物に転写されるパターン像の解像度向上トレンドが停滞してきていた。   Further, the light source of this exposure light has been shortened in wavelength, and ArF excimer laser (wavelength 193 nm) is mainly used as exposure light in the process of manufacturing semiconductor devices in recent years. In recent semiconductor devices, as a result of the progress of pattern miniaturization, the trend of improving the resolution of a pattern image transferred to a transfer object has been stagnant.

この問題を解消するために、ArFエキシマレーザー露光光の偏光状態を照明光学系で直線偏光等に制御してから、転写用マスクに入射させる偏光照明技術が開発された。しかし、この偏光照明技術を用いた場合、使用される転写用マスクによっては、所望の転写像が得られない場合がある。   In order to solve this problem, a polarization illumination technique has been developed in which the polarization state of ArF excimer laser exposure light is controlled to linearly polarized light or the like by an illumination optical system and then incident on a transfer mask. However, when this polarized illumination technique is used, a desired transfer image may not be obtained depending on the transfer mask used.

例えば、偏光照明技術が開発される以前から、転写用マスクに使用されている基板としては、合成石英ガラス基板が主に用いられている。そして、それまでの合成石英ガラス基板では、複屈折について、特に考慮されていなかった。しかし、露光光に偏光照明が用いられる場合、基板の複屈折量が大きい部分が存在すると、その部分を透過した露光光の偏光状態が、その他の正常部分を透過した露光光の偏光状態とは変わってしまい、縮小光学系で結像したときに焦点位置が合わなくなったり、結像した像が本来転写すべき像から変わってしまったりする問題が生じる。   For example, since the development of polarized illumination technology, synthetic quartz glass substrates have been mainly used as substrates used for transfer masks. And in the synthetic quartz glass substrate until then, birefringence was not considered in particular. However, when polarized illumination is used for exposure light, if there is a part with a large amount of birefringence on the substrate, the polarization state of the exposure light transmitted through that part is the polarization state of the exposure light transmitted through the other normal part. There arises a problem that the focal position is not aligned when the image is formed by the reduction optical system, or the image formed is changed from the image to be transferred.

このため、従来、偏光照明技術が用いられる転写用マスクの基板については、複屈折測定装置によって、基板の複屈折量を測定し、所定値以下(例えば、4nm/cm)のものを選定して使用することで対応していた(例えば、特許文献1、参照)。また、従来、基板の複屈折量を測定する装置としては、例えば、特許文献2に記載されているような装置が知られている。   For this reason, with regard to a transfer mask substrate that conventionally uses the polarization illumination technique, the birefringence amount of the substrate is measured by a birefringence measuring device, and a substrate having a predetermined value or less (for example, 4 nm / cm) is selected. It has been supported by use (for example, see Patent Document 1). Conventionally, as an apparatus for measuring the birefringence amount of a substrate, for example, an apparatus described in Patent Document 2 is known.

この複屈折測定装置は、基準軸から所定角度の偏光した状態の検査光を測定対象物(基板)の一方の面(主表面)に照射する。そして、対向するもう一方の面(対向する主表面)から出射してきた検査光をビームスプリッターで2つに分離する。そして、分離した2つの検査光を、基準軸からの偏光の角度がそれぞれ異なる光を分析する2つの分析器にそれぞれ入射させ、各分析結果を基に、測定箇所の複屈折量とその複屈折量が最大となる角度を算出するようになっている。   This birefringence measuring apparatus irradiates one surface (main surface) of a measurement object (substrate) with polarized inspection light at a predetermined angle from a reference axis. Then, the inspection light emitted from the other opposing surface (opposing main surface) is separated into two by a beam splitter. Then, the two separated inspection lights are respectively incident on two analyzers that analyze lights having different polarization angles from the reference axis, and based on the results of each analysis, the birefringence amount and the birefringence at the measurement location. The angle that maximizes the amount is calculated.

また、従来、マスクブランクを用いて作製した転写用マスクに対しては、その形成したパターンが基準を満たしているかを、マスク検査装置を用いて検査している。しかし、転写用マスクのパターンの微細化が進んだ結果、マスク検査の場合においても、解像性向上が停滞し、検査精度向上が停滞する問題が生じていた。このため、近年、マスク検査に用いる検査光についても、偏光された光(円偏光等)の適用が始まっている(例えば、特許文献3、参照)。   Conventionally, a transfer mask manufactured using a mask blank is inspected by using a mask inspection apparatus to check whether the formed pattern satisfies the standard. However, as a result of the miniaturization of the pattern of the transfer mask, even in the case of mask inspection, there has been a problem that improvement in resolution is stagnant and improvement in inspection accuracy is stagnant. For this reason, in recent years, application of polarized light (such as circularly polarized light) has also begun to be used for inspection light used for mask inspection (see, for example, Patent Document 3).

特開2006−267997号公報JP 2006-267997 A 特表2002−504673号公報Japanese translation of PCT publication No. 2002-504673 特開2009−003172号公報JP 2009-003172 A

上記背景の下、本発明者は、円偏光を用いた検査手法を開発している(特願2013−081860号)。具体的には、円偏光の検査光を透光性基板に対して照射し、透過した検査光を互いに波面が直交する2つの直線偏光に分離し、分離した2つの直線偏光から光量比率を算出することを行う。その光量比率を基準(波長193nmの検査光を用いるマスク検査装置で測定したときの相対透過率が95%以上、複屈折が20nm/cmに相当、となる光量比率を基準値とする。)に、マスクブランク用基板として適する透光性基板を選定する発明である。   Under the above background, the present inventor has developed an inspection method using circularly polarized light (Japanese Patent Application No. 2013-081860). Specifically, circularly polarized inspection light is irradiated onto a transparent substrate, the transmitted inspection light is separated into two linearly polarized lights whose wavefronts are orthogonal to each other, and a light quantity ratio is calculated from the two separated linearly polarized lights. To do. Based on the light quantity ratio as a reference (the light quantity ratio at which the relative transmittance when measured by a mask inspection apparatus using inspection light having a wavelength of 193 nm is 95% or more and the birefringence is equivalent to 20 nm / cm is used as a reference value). It is an invention for selecting a translucent substrate suitable as a mask blank substrate.

本発明者は、鋭意検討した結果、以下のことがわかった。すなわち、上記発明で導き出される光量比率を用いて、複屈折が5nm/cm以下、さらには、2nm/cm以下の透光性基板を選定することは、光量比率の測定精度が低すぎて困難であることが判明した。
上記発明では、検査光の光源の光量が、測定箇所ごと、あるいは枚葉ごとで変動することを技術的課題としており、光量比率の概念を導入することである一定の解決を図ることはできている。しかし、光量比率を導入しても、2つの光量測定器(受光器)の精度、検査光源(レーザー光源)から照射される光(直線偏光)を円偏光に変換する1/4波長板の精度、透光性基板を透過した検査光を2つの直線偏光に分離するウォラストンプリズムや偏光ビームスプリッターの精度等の誤差が存在するため、より低い複屈折の基準値で透光性基板を選定することは、困難であることがわかった。
As a result of intensive studies, the present inventor has found the following. That is, it is difficult to select a translucent substrate having a birefringence of 5 nm / cm or less, more preferably 2 nm / cm or less, using the light amount ratio derived in the above invention, because the measurement accuracy of the light amount ratio is too low. It turned out to be.
In the above invention, the technical problem is that the light quantity of the light source of the inspection light varies from one measurement location to another or from one sheet to another, and it is possible to achieve a certain solution by introducing the concept of the light quantity ratio. Yes. However, even if the light quantity ratio is introduced, the accuracy of the two light quantity measuring devices (light receivers) and the accuracy of the quarter wavelength plate that converts the light (linearly polarized light) emitted from the inspection light source (laser light source) into circularly polarized light Since there is an error such as the accuracy of the Wollaston prism and the polarization beam splitter that separates the inspection light transmitted through the translucent substrate into two linearly polarized light, the translucent substrate is selected with a lower reference value of birefringence. It turned out to be difficult.

また、上記発明では、透光性基板を透過した検査光をウォラストンプリズム等に入射させる際、検査光の偏光面とウォラストンプリズム等の相対位置が常に同じ状態にしかならない。よって、透光性基板を透過して楕円偏光に偏光した検査光を、ウォラストンプリズム等で最大の振幅の直線偏光と最小の振幅の直線偏光に分離できるとは限らない。上記発明では、2つの直線偏光から算出される光量比率の最大値と最小値が算出されているとは限らないため、正確な複屈折値を算出することが困難であった。   In the above invention, when the inspection light transmitted through the translucent substrate is incident on the Wollaston prism or the like, the relative positions of the polarization plane of the inspection light and the Wollaston prism or the like are always in the same state. Therefore, the inspection light that has been transmitted through the light-transmitting substrate and polarized into elliptically polarized light cannot always be separated into linearly polarized light having the maximum amplitude and linearly polarized light having the minimum amplitude by a Wollaston prism or the like. In the above invention, since the maximum value and the minimum value of the light amount ratio calculated from the two linearly polarized light are not always calculated, it is difficult to calculate an accurate birefringence value.

本発明の目的は、複屈折が低い傾向を有する透光性物品(透光性基板等)の複屈折値をより高い精度で測定することにある。   An object of the present invention is to measure a birefringence value of a translucent article (such as a translucent substrate) having a tendency of low birefringence with higher accuracy.

上記の課題を解決するために、本発明は、以下の構成を有する。
(構成1)
対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度の条件を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記第1対応関係の相対光量比率を用い、予め取得して置いた相対光量比率と複屈折値との対応関係から前記測定箇所の複屈折値を取得する工程と
を有することを特徴とする複屈折の測定方法。
In order to solve the above problems, the present invention has the following configuration.
(Configuration 1)
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. Is performed a plurality of times while changing the angle condition of the polarization plane of the inspection light incident on the light separator to obtain a first correspondence relationship that is a correspondence relationship between the rotation angle of the half-wave plate and the light amount ratio. Process,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Obtaining a birefringence value at the measurement location from the correspondence between the relative light quantity ratio acquired in advance and the birefringence value using the relative light quantity ratio of the first correspondence relation. Refraction measurement method.

(構成2)
対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記透光性物品と検査光とを、前記検査光の進行方向を回転軸として相対的に90度回転させたことを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第2対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第2対応関係の光量比率と前記基準対応関係の光量比率との差である第2対応関係の相対光量比率を算出する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の相対光量比率と前記第2対応関係の相対光量比率で平均値を算出する工程と、
前記第1対応関係の相対光量比率と前記平均値との差から、または前記第2対応関係の相対光量比率と前記平均値との差から補正相対光量比率を算出する工程と、
前記補正相対光量比率を用い、予め取得して置いた補正相対光量比率と複屈折値との対応関係から前記測定箇所の複屈折値を取得する工程と
を有することを特徴とする複屈折の測定方法。
(Configuration 2)
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. To obtain a first correspondence that is a correspondence between the rotation angle of the half-wave plate and the light quantity ratio, a plurality of times by changing the angle of the polarization plane of the inspection light incident on the light separator. ,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Except for the fact that the translucent article and the inspection light are rotated by 90 degrees relative to the traveling direction of the inspection light as a rotation axis, under the same conditions as the step of obtaining the first correspondence relationship, A step of acquiring a second correspondence relationship that is a correspondence relationship between the rotation angle of the two-wavelength plate and the light amount ratio;
Calculating a relative light quantity ratio of a second correspondence relationship that is a difference between the light quantity ratio of the second correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating an average value with the relative light quantity ratio of the first correspondence and the relative light quantity ratio of the second correspondence with the same rotation angle of the half-wave plate;
Calculating a corrected relative light amount ratio from a difference between the relative light amount ratio of the first correspondence relationship and the average value, or from a difference between the relative light amount ratio of the second correspondence relationship and the average value;
Using the corrected relative light amount ratio, and obtaining a birefringence value at the measurement location from a correspondence relationship between the corrected relative light amount ratio and the birefringence value acquired and set in advance. Method.

(構成3)
前記第1対応関係の相対光量比率または前記第2対応関係の相対光量比率から算出された補正相対光量比率と前記1/2波長板の回転角度の対応関係からフィッティング関数を取得する工程をさらに有し、前記複屈折値を取得する工程は、前記フィッティング関数から算出される補正相対光量比率を用いて前記測定箇所の複屈折値を取得する工程であることを特徴とする構成2記載の複屈折の測定方法。
(構成4)
前記フッティング関数は、三角関数の項を含む関数であることを特徴とする構成3記載の複屈折の測定方法。
(Configuration 3)
The method further includes a step of obtaining a fitting function from the correspondence relationship between the corrected relative light amount ratio calculated from the first correspondence relative light amount ratio or the second correspondence relative light amount ratio and the rotation angle of the half-wave plate. The step of obtaining the birefringence value is a step of obtaining a birefringence value at the measurement location using a corrected relative light quantity ratio calculated from the fitting function. Measuring method.
(Configuration 4)
4. The birefringence measurement method according to Configuration 3, wherein the footing function is a function including a trigonometric function term.

(構成5)
前記第1対応関係、第2対応関係および基準対応関係は、同じ前記1/2波長板の回転角度に対応する光量比率を3方位以上の角度でともに取得していることを特徴とする構成3または4に記載の複屈折の測定方法。
(構成6)
前記フィッティング関数の取得は、最小2乗法を用いて行われることを特徴とする構成3から5のいずれかに記載の複屈折の測定方法。
(Configuration 5)
In the first correspondence relationship, the second correspondence relationship, and the reference correspondence relationship, the light quantity ratios corresponding to the same rotation angle of the half-wave plate are acquired together at three or more angles. Or the birefringence measuring method according to 4;
(Configuration 6)
6. The birefringence measurement method according to any one of configurations 3 to 5, wherein the fitting function is acquired using a least square method.

(構成7)
対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記透光性物品と検査光とを、前記検査光の進行方向を回転軸として相対的に90度回転させたことを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第2対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第2対応関係の光量比率と前記基準対応関係の光量比率との差である第2対応関係の相対光量比率を算出する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の相対光量比率と前記第2対応関係の相対光量比率で平均値を算出する工程と、
前記透光性物品における別の測定箇所または別の透光性物品における測定箇所に対し、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第3対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第3対応関係の光量比率と前記基準対応関係の光量比率との差である前記第3対応関係の相対光量比率を算出する工程と、
前記第3対応関係の相対光量比率と前記平均値との差から、前記第3対応関係の補正相対光量比率を算出する工程と、
前記補正相対光量比率を用い、予め取得して置いた補正相対光量比率と複屈折値との対応関係から、前記透光性物品における別の測定箇所または前記別の透光性物品における測定箇所の複屈折値を取得する複屈折値取得工程と
を有することを特徴とする複屈折の測定方法。
(Configuration 7)
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. To obtain a first correspondence that is a correspondence between the rotation angle of the half-wave plate and the light quantity ratio, a plurality of times by changing the angle of the polarization plane of the inspection light incident on the light separator. ,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Except for the fact that the translucent article and the inspection light are rotated by 90 degrees relative to the traveling direction of the inspection light as a rotation axis, under the same conditions as the step of obtaining the first correspondence relationship, A step of acquiring a second correspondence relationship that is a correspondence relationship between the rotation angle of the two-wavelength plate and the light amount ratio;
Calculating a relative light quantity ratio of a second correspondence relationship that is a difference between the light quantity ratio of the second correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating an average value with the relative light quantity ratio of the first correspondence and the relative light quantity ratio of the second correspondence with the same rotation angle of the half-wave plate;
With respect to another measurement location in the translucent article or a measurement location in another translucent article, under the same conditions as the step of obtaining the first correspondence, Obtaining a third correspondence which is the correspondence of
Calculating a relative light quantity ratio of the third correspondence which is a difference between the light quantity ratio of the third correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating a corrected relative light amount ratio of the third correspondence from a difference between the relative light amount ratio of the third correspondence and the average value;
Using the corrected relative light quantity ratio, from the correspondence between the corrected relative light quantity ratio and the birefringence value acquired and set in advance, another measurement location in the translucent article or measurement location in the other translucent article And a birefringence value obtaining step for obtaining a birefringence value.

(構成8)
前記第3対応関係の相対光量比率から算出された補正相対光量比率と前記1/2波長板の回転角度の対応関係からフィッティング関数を取得する工程をさらに有し、前記複屈折値を取得する工程は、前記フィッティング関数から算出される補正相対光量比率を用いて前記測定箇所の複屈折値を取得する工程であることを特徴とする構成6記載の複屈折の測定方法。
(構成9)
前記フッティング関数は、三角関数の項を含む関数であることを特徴とする構成8記載の複屈折の測定方法。
(Configuration 8)
A step of obtaining a fitting function from the correspondence relationship between the corrected relative light amount ratio calculated from the relative light amount ratio of the third correspondence and the rotation angle of the half-wave plate, and obtaining the birefringence value Is a step of obtaining a birefringence value at the measurement location using a corrected relative light quantity ratio calculated from the fitting function.
(Configuration 9)
9. The birefringence measurement method according to Configuration 8, wherein the footing function is a function including a trigonometric function term.

(構成10)
前記第1対応関係、第2対応関係、第3対応関係および基準対応関係は、同じ前記1/2波長板の回転角度に対応する光量比率を3方位以上の角度でともに取得していることを特徴とする構成8または9に記載の複屈折の測定方法。
(Configuration 10)
The first correspondence relationship, the second correspondence relationship, the third correspondence relationship, and the reference correspondence relationship indicate that the light quantity ratio corresponding to the same rotation angle of the half-wave plate is acquired at an angle of three or more directions. 10. The birefringence measurement method according to Configuration 8 or 9, which is characterized.

(構成11)
前記フィッティング関数の取得は、最小2乗法を用いて行われることを特徴とする構成8から10のいずれかに記載の複屈折の測定方法。
(構成12)
前記光源ユニットは、レーザー光源と1/4波長板を備え、前記円偏光の検査光は、レーザー光源から射出された直線偏光を、1/4波長板を透過させて得られたものであることを特徴とする構成1から11のいずれかに記載の複屈折の測定方法。
(Configuration 11)
The birefringence measurement method according to any one of Structures 8 to 10, wherein the fitting function is acquired using a least square method.
(Configuration 12)
The light source unit includes a laser light source and a quarter-wave plate, and the circularly polarized inspection light is obtained by transmitting linearly polarized light emitted from the laser light source through the quarter-wave plate. The birefringence measurement method according to any one of configurations 1 to 11, wherein:

(構成13)
前記透光性物品は、透光性基板であり、前記透光性基板に対して、構成1から12のいずれかに記載の複屈折の測定方法を適用して取得した複屈折値が所定値以下の透光性基板をマスクブランク用基板として選定する工程を有することを特徴とするマスクブランク用基板の製造方法。
(構成14)
構成13記載のマスクブランク用基板の製造方法で製造されたマスクブランク用基板の主表面に、パターン形成用薄膜を形成する工程を有することを特徴とするマスクブランクの製造方法。
(Configuration 13)
The translucent article is a translucent substrate, and the birefringence value obtained by applying the birefringence measuring method according to any one of configurations 1 to 12 to the translucent substrate is a predetermined value. The manufacturing method of the mask blank board | substrate characterized by including the process of selecting the following translucent board | substrates as a mask blank board | substrate.
(Configuration 14)
A method for producing a mask blank, comprising a step of forming a pattern forming thin film on a main surface of a mask blank substrate produced by the method for producing a mask blank substrate according to Structure 13.

(構成15)
構成14記載のマスクブランクの製造方法で製造されたマスクブランクのパターン形成用薄膜に転写パターンを形成する工程を有することを特徴とする転写用マスクの製造方法。
(構成16)
構成15記載の転写用マスクの製造方法で製造された転写用マスクを用い、半導体ウェハ上に回路パターンを形成する工程を有することを特徴とする半導体デバイスの製造方法。
(Configuration 15)
A method for producing a transfer mask, comprising a step of forming a transfer pattern on a thin film for pattern formation of a mask blank produced by the method for producing a mask blank according to Configuration 14.
(Configuration 16)
A method for manufacturing a semiconductor device, comprising a step of forming a circuit pattern on a semiconductor wafer using the transfer mask manufactured by the method for manufacturing a transfer mask according to Configuration 15.

本発明によれば、複屈折が低い傾向を有する透光性物品(透光性基板等)の複屈折値をより高い精度で測定することができる。   According to the present invention, the birefringence value of a translucent article (such as a translucent substrate) having a tendency of low birefringence can be measured with higher accuracy.

測定装置100の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a measurement apparatus 100. 透光性基板10を用いて製造されるマスクブランク20及び転写用マスク30の一例を示す図である。図2(a)は、マスクブランク20の構成の一例を示す。図2(b)は、転写用マスク30の構成の一例を示す。FIG. 3 is a diagram illustrating an example of a mask blank 20 and a transfer mask 30 that are manufactured using a translucent substrate 10. FIG. 2A shows an example of the configuration of the mask blank 20. FIG. 2B shows an example of the configuration of the transfer mask 30. 1/2波長板104の回転角度θと、光量比率R10,R190,R1aとの各対応関係を示す図である。It is a figure which shows each corresponding | compatible relationship between rotation angle (theta) of the half-wave plate 104, and light quantity ratio R10, R190, R1a. 1/2波長板104の回転角度θと、相対光量比率R10s,R190sおよび平均値R1avとの各対応関係を示す図である。It is a figure which shows each correspondence of rotation angle (theta) of the half-wave plate 104, relative light quantity ratio R10s, R190s, and average value R1av. 相対光量比率R10s,R190sに対して、近似関数でフィッティングを行った結果を示す図である。It is a figure which shows the result of having fitted with the approximate function with respect to relative light quantity ratio R10s, R190s. 補正相対光量比率R10sc,R190scに対して、近似関数でフィッティングを行った結果を示す図である。It is a figure which shows the result of having fitted with the approximate function with respect to correction | amendment relative light quantity ratio R10sc, R190sc. 相対光量比率R10sまたは補正相対光量比率R10scの最大値と、相対光量比率R190sまたは補正相対光量比率R190scの最大値を、種々の条件で取得し、比較した図である。It is the figure which acquired and compared the maximum value of relative light quantity ratio R10s or correction | amendment relative light quantity ratio R10sc, and the maximum value of relative light quantity ratio R190s or correction | amendment relative light quantity ratio R190sc on various conditions. 種々の回転角度θの測定数(方位数)で取得した1/2波長板104の回転角度θと相対光量比率R10sまたは補正相対光量比率R10scとの各対応関係から取得した各近似関数からそれぞれ算出した相対光量比率R190sまたは補正相対光量比率R190scの最大値を比較した図である。Calculated from each approximate function acquired from each correspondence relationship between the rotation angle θ of the half-wave plate 104 acquired with the number of measured rotation angles θ (the number of orientations) and the relative light quantity ratio R10s or the corrected relative light quantity ratio R10sc. It is the figure which compared the maximum value of the relative light quantity ratio R190s and correction | amendment relative light quantity ratio R190sc which were performed. 複屈折値と相対光量比率または補正相対光量比率との相関を示す図である。It is a figure which shows the correlation with a birefringence value, a relative light quantity ratio, or a correction | amendment relative light quantity ratio.

以下、本発明に係る実施形態を、図面を参照しながら説明する。
[測定装置]
図1は、本発明の実施の形態にかかる測定装置の装置構成を説明する図である。
図1に示すように、測定装置100は、検査光のルート順に、検査光の光源であるレーザー光源102と1/4波長板(λ/4板)103とを備えた光源ユニット101、複屈折の測定対象物である透光性物品(透光性基板等)10、1/2波長板(λ/2板)104、偏光ビームスプリッター(光分離器)108、2つのパワーメーター(光量測定器)106a,106bで構成される。
詳しい説明は、後述する[測定装置]と同様である。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
[measuring device]
FIG. 1 is a diagram for explaining the apparatus configuration of a measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, a measuring apparatus 100 includes a light source unit 101 including a laser light source 102 that is a light source of inspection light and a quarter-wave plate (λ / 4 plate) 103, birefringence in the order of the inspection light route. Translucent article (translucent substrate, etc.) 10, half-wave plate (λ / 2 plate) 104, polarizing beam splitter (light separator) 108, two power meters (light quantity measuring device) ) 106a and 106b.
Detailed description is the same as [Measuring device] described later.

光源ユニット101は、検査光を発生する光源を有し、透光性物品(透光性基板)10の一方の表面(主表面)の測定箇所へ向けて、円偏光に偏光された単一波長の光を発生する。本例において、光源ユニット101は、主に、レーザー光源102と、1/4波長板(円偏光変換器)103とからなる。レーザー光源102から発生したレーザー光(直線偏光)は1/4波長板(円偏光変換器)103で円偏光に変換され、検査光として、支持部材(基板ホルダー)に載置された透光性物品(透光性基板)10の表面(主表面)の測定箇所へ垂直に入射する。   The light source unit 101 has a light source that generates inspection light, and is a single wavelength that is polarized in a circularly polarized light toward a measurement location on one surface (main surface) of the light transmissive article (translucent substrate) 10. Generating light. In this example, the light source unit 101 mainly includes a laser light source 102 and a quarter wavelength plate (circular polarization converter) 103. Laser light (linearly polarized light) generated from the laser light source 102 is converted into circularly polarized light by a quarter-wave plate (circular polarization converter) 103, and is placed on a support member (substrate holder) as inspection light. The light is incident perpendicularly to the measurement location on the surface (main surface) of the article (translucent substrate) 10.

レーザー光源102から発せられるレーザー光の波長は、特に制限されない。測定対象物である透光性物品が、転写用マスクに用いられる透光性基板の場合であっても、その転写用マスクが適用される露光光の波長と同じである必要はない。また、転写用マスクのパターン検査の際に使用される検査光の波長と同じである必要もない。レーザー光源の波長は、可視光域(波長360nm〜830nm)の範囲であると好ましく、波長450nm〜750nmの範囲であるとより好ましい。レーザー光源に、ArFエキシマレーザーやKrFエキシマレーザー等のDUV光を適用すると、1/4波長板103、1/2波長板104、パワーメーター106a,106b等、全ての機材をそれに対応したものにする必要があり、測定装置100の製造コストが高くなる。また、DUV光用の機材は、一般に、可視光用の機材に比べて比較的寿命が短い。   The wavelength of the laser light emitted from the laser light source 102 is not particularly limited. Even if the translucent article which is a measurement object is a translucent substrate used for a transfer mask, it does not have to be the same as the wavelength of exposure light to which the transfer mask is applied. Further, it does not have to be the same as the wavelength of the inspection light used for pattern inspection of the transfer mask. The wavelength of the laser light source is preferably in the visible light range (wavelength 360 nm to 830 nm), and more preferably in the wavelength range 450 nm to 750 nm. When DUV light such as ArF excimer laser or KrF excimer laser is applied to the laser light source, all the equipment such as the quarter-wave plate 103, the half-wave plate 104, and the power meters 106a and 106b are made compatible with it. This is necessary, and the manufacturing cost of the measuring apparatus 100 increases. In addition, equipment for DUV light generally has a relatively short life compared to equipment for visible light.

光源ユニット101と透光性物品10とは相対的に移動できる。これにより、検査光の入射位置を透光性物品10の表面内で走査できる。これにより、光源ユニット101は、透光性物品10の表面の各位置を、順次検査対象位置(測定箇所)とすることができる。   The light source unit 101 and the translucent article 10 can move relatively. Thereby, the incident position of the inspection light can be scanned within the surface of the translucent article 10. Accordingly, the light source unit 101 can sequentially set each position on the surface of the translucent article 10 as an inspection target position (measurement location).

偏光ビームスプリッター108は、透光性物品10から出射する検査光を2つの直線偏光に分離する光学部材の一例であり、支持部材に載置された透光性物品10を挟んで光源ユニット101と反対側に設けられ、透光性基板10を透過し、さらに1/2波長板104を透過した検査光を波面が互いに直交する2つの直線偏光(直線偏光ビーム)に分割して取り出す。また、複数のパワーメーター106a,106bは、偏光ビームスプリッター108により分割された各直線偏光の光量をそれぞれ測定(計測)する光量測定器である。2つのパワーメーター106a,106bは、偏光ビームスプリッター108から出射するP偏光及びS偏光の光のそれぞれの方向に設けられている。   The polarizing beam splitter 108 is an example of an optical member that separates the inspection light emitted from the translucent article 10 into two linearly polarized light. The polarizing beam splitter 108 is connected to the light source unit 101 with the translucent article 10 placed on the support member interposed therebetween. The inspection light provided on the opposite side and transmitted through the translucent substrate 10 and further transmitted through the half-wave plate 104 is extracted by dividing it into two linearly polarized lights (linearly polarized beams) whose wavefronts are orthogonal to each other. The plurality of power meters 106 a and 106 b are light amount measuring devices that measure (measure) the amount of each linearly polarized light divided by the polarization beam splitter 108. The two power meters 106a and 106b are provided in the respective directions of P-polarized light and S-polarized light emitted from the polarization beam splitter 108.

このように構成した場合、光源ユニット101から照射された円偏光の検査光は、偏光ビームスプリッター108に入射するまでの間に、透光性物品10内で光学的特性が不均一な領域が存在するとその影響を受けることとなる。より具体的には、例えば、検査光の経路において、透光性物品10内に複屈折が大きい領域が存在し、その影響を受けた場合、透光性物品10を透過した後の検査光は楕円偏光になる。この場合、偏光ビームスプリッター108により分割される2つの直線偏光の光量に差が生じる。また、パワーメーター106a,106bの光量測定値に差が生じる。そして、2つのパワーメーター106a,106bの光量測定値に基づいて、透光性物品10内の複屈折を適切に検出できる。   When configured in this way, there is a region in which the optical characteristics are not uniform in the translucent article 10 before the circularly polarized inspection light emitted from the light source unit 101 enters the polarization beam splitter 108. Then it will be affected. More specifically, for example, in the inspection light path, there is a region having a large birefringence in the translucent article 10, and when affected, the inspection light after passing through the translucent article 10 is It becomes elliptically polarized light. In this case, a difference occurs in the amount of light of the two linearly polarized lights divided by the polarization beam splitter 108. Further, a difference occurs in the light quantity measurement values of the power meters 106a and 106b. And the birefringence in the translucent article | item 10 can be detected appropriately based on the light quantity measurement value of the two power meters 106a and 106b.

円偏光の検査光が透光性物品10内で複屈折の影響を受けていない場合、理論上、円偏光の状態のままで偏光ビームスプリッター108に入射する。そして、偏光ビームスプリッター108により分割される2つの直線偏光の光量は等しくなる。また、パワーメーター106a,106bの光量測定値も等しくなる。光学ユニット101では、レーザー光源102から発せられるレーザー光(直線偏光)が円偏光に変換されるように、それに適した1/4波長板103が選定され、レーザー光の入射角度等も調整されている。しかし、実際には、1/4波長板104自体にも公差が存在し、調整角度等にも微小な誤差が生じることが避けられない。このため、1/4波長板103を透過したレーザー光は、完全な円偏光でなくわずかに楕円偏光となっている。   When the circularly polarized inspection light is not affected by birefringence in the translucent article 10, the light is theoretically incident on the polarization beam splitter 108 while remaining in a circularly polarized state. The light amounts of the two linearly polarized lights divided by the polarization beam splitter 108 are equal. Further, the light quantity measurement values of the power meters 106a and 106b are also equal. In the optical unit 101, a suitable quarter-wave plate 103 is selected so that laser light (linearly polarized light) emitted from the laser light source 102 is converted into circularly polarized light, and the incident angle of the laser light is adjusted. Yes. However, in reality, there is a tolerance in the quarter-wave plate 104 itself, and it is inevitable that a minute error occurs in the adjustment angle and the like. For this reason, the laser light transmitted through the quarter-wave plate 103 is not completely circularly polarized but slightly elliptically polarized.

本発明では、このような1/4波長板103の公差や調整の誤差に基づく影響を効果的に補正できる。このため、1/4波長板103の公差(直線偏光の位相を90[deg]だけシフトさせる機能に対する公差)の許容範囲に特に制約はないが、公差が±3[deg]の範囲であると好ましく、±2[deg]の範囲であるとより好ましい。   In the present invention, the influence based on the tolerance of the quarter-wave plate 103 and the adjustment error can be effectively corrected. For this reason, there is no particular limitation on the allowable range of the tolerance of the quarter wavelength plate 103 (tolerance for the function of shifting the phase of linearly polarized light by 90 [deg]), but the tolerance is within a range of ± 3 [deg]. The range is preferably ± 2 [deg].

1/2波長板104においても、それ自体に公差が存在し、調整角度等にも微小な誤差が生じることも避けられない。本発明では、このような1/2波長板104の公差や調整の誤差に基づく影響を効果的に補正できる。このため、1/2波長板104の公差(円偏光の位相を180[deg]だけシフトさせる機能に対する公差)の許容範囲に特に制約はないが、公差が±3[deg]の範囲であると好ましく、±2[deg]の範囲であるとより好ましい。   Even in the half-wave plate 104, there is a tolerance in itself, and it is inevitable that a minute error occurs in the adjustment angle or the like. In the present invention, the influence based on the tolerance of the half-wave plate 104 and the adjustment error can be effectively corrected. For this reason, there is no particular limitation on the allowable range of the tolerance of the half-wave plate 104 (tolerance for the function of shifting the phase of circularly polarized light by 180 [deg]), but the tolerance is within a range of ± 3 [deg]. The range is preferably ± 2 [deg].

完全な円偏光の検査光が偏光ビームスプリッター108に入射した場合であっても、その偏光ビームスプリッター108で分割された2つの直線偏光の光量が完全に同じとすることは難しい。偏光ビームスプリッター109自体に公差が存在し、調整角度等にも微小な誤差が生じることが避けられないためである。本発明では、このような偏光ビームスプリッター108の公差や調整の誤差に基づく影響を効果的に補正できる。   Even when completely circularly polarized inspection light is incident on the polarization beam splitter 108, it is difficult to make the light amounts of the two linearly polarized lights divided by the polarization beam splitter 108 completely the same. This is because there is a tolerance in the polarization beam splitter 109 itself, and it is inevitable that a minute error occurs in the adjustment angle or the like. In the present invention, the influence based on the tolerance of the polarization beam splitter 108 and the adjustment error can be effectively corrected.

また、2つの直線偏光の光量を測定する2つのパワーメーター106a,106bにおいて、機器間の公差が存在することは避けられない。本発明では、2つのパワーメーター106a,106bで2つの直線偏光の光量を測定する工程と、その工程で測定された2つの直線偏光の各光量測定値から、例えばコンピュータによって、光量比率を算出する工程を備えている。より具体的には、例えば、パワーメーター106aの光量測定値をM1、パワーメーター106aの光量測定値をM2とした場合、光量比率R1=M1/(M1+M2)、光量比率R2=M2/(M1+M2)の少なくともいずれか一方の計算を行う。この光量比率を算出する工程を適用することで、パワーメーター106a,106bにおける機器間の公差の問題は軽減できる。一方、1/4波長板103の公差や調整の誤差に基づく影響を効果的に補正できる。   In addition, in the two power meters 106a and 106b that measure the amount of light of the two linearly polarized lights, it is inevitable that there is a tolerance between the devices. In the present invention, the light amount ratio is calculated by, for example, a computer from the step of measuring the light amount of the two linearly polarized light by the two power meters 106a and 106b and the light amount measurement values of the two linearly polarized light measured in the step. It has a process. More specifically, for example, when the light quantity measurement value of the power meter 106a is M1, and the light quantity measurement value of the power meter 106a is M2, the light quantity ratio R1 = M1 / (M1 + M2) and the light quantity ratio R2 = M2 / (M1 + M2). Perform at least one of the calculations. By applying this process of calculating the light quantity ratio, the problem of tolerance between devices in the power meters 106a and 106b can be reduced. On the other hand, the influence based on the tolerance of the quarter-wave plate 103 and the adjustment error can be effectively corrected.

なお、測定装置100の構成については、上記図1を用いて説明した構成以外に、各種変更が可能である。図1では、光分離器108として偏光ビームスプリッターを適用しているが、これに代えて、ウォラストンプリズムを用いることができる。1/2波長板104は、1/4波長板を2枚、光学軸の向きを揃えて重ね合わせたものとしてもよい。このように、1/2波長板104は、直交する偏光成分の間に180[deg]の位相差を生じさせる複屈折素子であればよい。   In addition, about the structure of the measuring apparatus 100, various changes are possible besides the structure demonstrated using the said FIG. In FIG. 1, a polarization beam splitter is applied as the light separator 108, but a Wollaston prism can be used instead. The half-wave plate 104 may be a stack of two quarter-wave plates with the orientation of the optical axis aligned. Thus, the half-wave plate 104 may be a birefringent element that generates a phase difference of 180 [deg] between orthogonal polarization components.

光分離器108は、偏光ビームスプリッターやウォラストンプリズムと同等の光学的作用が得られる構成を用いることも考えられる。例えば、ビームスプリッターまたはハーフミラー等を用い、透光性物品10を透過した検査光を、偏光状態を維持したまま分割することも考えられる。この場合、分割した光の一方から1/4波長板等でP偏光の光を取り出し、他方から1/4波長板等でS偏光の光を取り出せばよい。この場合も、P偏光及びS偏光のそれぞれの光量をパワーメーター106a,106bで測定することにより、光量比率を算出することができる。   The optical separator 108 may be configured to have an optical action equivalent to that of a polarizing beam splitter or a Wollaston prism. For example, it is possible to divide the inspection light transmitted through the translucent article 10 using a beam splitter or a half mirror while maintaining the polarization state. In this case, P-polarized light may be extracted from one of the divided lights with a quarter-wave plate or the like, and S-polarized light may be extracted from the other with a quarter-wave plate or the like. Also in this case, the light quantity ratio can be calculated by measuring the respective light quantities of P-polarized light and S-polarized light with the power meters 106a and 106b.

レーザー光源102から出射された段階でのレーザー光は、その拡がり角は小さいが拡散光の状態である。このレーザー光を本発明の透光性物品における複屈折の測定方法で使用するには、検査光として適用可能な範囲の平行性を有する平行光にする処理が望まれる。このため、レーザー光源102と1/4波長板(円偏光変換器)103の間にコリメータレンズ等の平行光変換器を配置することが好ましい。   The laser light at the stage of being emitted from the laser light source 102 is in the state of diffuse light although its divergence angle is small. In order to use this laser beam in the method for measuring birefringence in the translucent article of the present invention, it is desirable to perform a process for converting the laser beam into parallel light having a parallelism that can be applied as inspection light. For this reason, it is preferable to arrange a parallel light converter such as a collimator lens between the laser light source 102 and the quarter wavelength plate (circular polarization converter) 103.

一方、パワーメーター106a,106bによる2つの直線偏光の光量を測定する工程時、レーザー光源102から安定した光量でレーザー光が出射されることが望まれる。しかし、レーザー光の反射光がレーザー光源102に戻るような状態になっていると、その反射光(戻り光)によってレーザー光源102からのレーザー光の発振が不安定になる傾向がある。このため、レーザー光源102に対し、いずれかで反射されたレーザー光が戻らないような手段を講じることが望ましい。   On the other hand, it is desirable that the laser light is emitted from the laser light source 102 with a stable light amount during the process of measuring the light amounts of the two linearly polarized lights by the power meters 106a and 106b. However, when the reflected light of the laser light returns to the laser light source 102, the oscillation of the laser light from the laser light source 102 tends to become unstable due to the reflected light (return light). For this reason, it is desirable to take measures to prevent the laser light reflected by any of the laser light sources 102 from returning.

レーザー光源102から出射したレーザー光がコリメータレンズの表面に当たった時に、そのレーザー光の一部が反射し、それが戻り光となる場合がある。この場合の解決手段としては、例えば、レーザー光源102とコリメータレンズを、レーザー光の光軸からコリメータレンズの中心を平行に微小にシフトさせた位置関係とすることが考えられる。そのような位置関係にあると、コリメータレンズに入射したレーザー光はその光軸から傾斜した角度で反射され、レーザー光源に戻ることはない。また、1/4波長板等の円偏光変換器103からの反射光が戻り光になる場合がある。この場合の解決手段としては、例えば、1/4波長板103の入射面を、その表面に対して入射するレーザー光の光軸に対して垂直な位置から微小に傾斜させた位置に配置することが考えられる。   When the laser light emitted from the laser light source 102 hits the surface of the collimator lens, a part of the laser light may be reflected to be returned light. As a solution in this case, for example, it is conceivable that the laser light source 102 and the collimator lens have a positional relationship in which the center of the collimator lens is slightly shifted in parallel from the optical axis of the laser beam. In such a positional relationship, the laser light incident on the collimator lens is reflected at an angle inclined from the optical axis and does not return to the laser light source. In addition, reflected light from the circular polarization converter 103 such as a quarter-wave plate may become return light. As a solution in this case, for example, the incident surface of the quarter-wave plate 103 is disposed at a position slightly inclined from a position perpendicular to the optical axis of the laser beam incident on the surface. Can be considered.

測定対象物である透光性物品10の表面からのレーザー光の反射光が戻り光になる場合がある。この場合の解決手段としては、例えば、透光性物品10の表面を、その表面に対して入射するレーザー光の光軸に対して垂直な位置から微小に傾斜させた位置に配置することが考えられる。偏光ビームスプリッターやウォラストンプリズム等の光分離器108からのレーザー光の反射光が戻り光になる場合がある。この場合の解決手段としては、例えば、偏光ビームスプリッターやウォラストンプリズム等の表面を、その表面に対して入射するレーザー光の光軸に対して垂直な位置から微小に傾斜させた位置に配置することが考えられる。   The reflected light of the laser light from the surface of the translucent article 10 that is the measurement object may be returned light. As a solution in this case, for example, the surface of the translucent article 10 may be arranged at a position slightly inclined from a position perpendicular to the optical axis of the laser light incident on the surface. It is done. The reflected light of the laser light from the light separator 108 such as a polarizing beam splitter or a Wollaston prism may be returned light. As a solution in this case, for example, the surface of a polarizing beam splitter, a Wollaston prism or the like is arranged at a position slightly inclined from a position perpendicular to the optical axis of the laser beam incident on the surface. It is possible.

[第1の実施形態に係る測定方法]
次に、本発明の第1の実施形態にかかる複屈折の測定方法について説明する。
上記測定装置を用いたこの第1の実施形態に係る複屈折の測定方法(算出方法)の手順は、以下のようになる。
(1−1) レーザー光源102から照射された検査光は、1/4波長板103を透過する際に円偏光に偏光される。
(1−2) 円偏光の検査光を、測定対象物10の対向する2つの表面のうちの一方の表面における測定箇所から入射し、他方の表面から出射させる。
(1−3) 他方の表面から出射した検査光は、1/2波長板104を透過した後、偏光ビームスプリッター108で互いに波面が直交する2つの直線偏光に分離される。
(1−4) 分離された2つの直線偏光は、それぞれパワーメーター106a,106bで受光され、各光量値M10,M20が計測される。
(1−5) 計測された直線偏光の光量値M10,M20から、光量比率R10[%]=M10/(M10+M20)、または光量比率R20[%]=M20/(M10+M20)を算出する。
(1−6) 1/2波長板104を所定角度Δθで回転させることで、他方の表面から出射した検査光の偏光方位(偏光面の角度)を所定角度Δ2θだけ回転させた状態での光量比率が取得できる。この工程を1つの測定箇所で繰り返し行うことで、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と光量比率R10またはR20との対応関係(第1対応関係)を取得する。
[Measurement Method According to First Embodiment]
Next, a method for measuring birefringence according to the first embodiment of the present invention will be described.
The procedure of the birefringence measurement method (calculation method) according to the first embodiment using the measurement apparatus is as follows.
(1-1) The inspection light emitted from the laser light source 102 is polarized into circularly polarized light when passing through the quarter-wave plate 103.
(1-2) Circularly polarized inspection light is incident from a measurement point on one of the two opposing surfaces of the measurement object 10 and is emitted from the other surface.
(1-3) The inspection light emitted from the other surface is transmitted through the half-wave plate 104 and then separated into two linearly polarized lights whose wavefronts are orthogonal to each other by the polarization beam splitter 108.
(1-4) The two separated linearly polarized lights are received by the power meters 106a and 106b, respectively, and the light quantity values M10 and M20 are measured.
(1-5) The light quantity ratio R10 [%] = M10 / (M10 + M20) or the light quantity ratio R20 [%] = M20 / (M10 + M20) is calculated from the measured linearly polarized light quantity values M10 and M20.
(1-6) By rotating the half-wave plate 104 at a predetermined angle Δθ, the amount of light in a state where the polarization direction (polarization plane angle) of the inspection light emitted from the other surface is rotated by the predetermined angle Δ2θ. The ratio can be acquired. By repeating this process at one measurement location, the correspondence between the rotation angle θ of the half-wave plate 104 (polarization direction of the inspection light, the angle 2θ of the polarization plane) and the light quantity ratio R10 or R20 (first correspondence) Relationship).

(1−7) 光源ユニット101(1/4波長板103)と1/2波長板104との間に測定対象物10を配置しない状態とすることを除いて同じ条件で、(1−1)〜(1−6)の工程を行う。この場合、1/4波長板103を透過した円偏光の検査光は、空気中のみを通過した状態のままで1/2波長板104に入射することになる。これにより、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と空気中のみを通過した光量比率である基準光量比率R1a[%]=M1a/(M1a+M2a)またはR2a[%]=M2a/(M1a+M2a)との対応関係を取得する。理論上では、基準光量比率R1a,R2aはともに50[%]になるはずであるが、実際には後述の理由で50[%]にはならない。 (1-7) Under the same conditions except that the measurement object 10 is not disposed between the light source unit 101 (¼ wavelength plate 103) and the half wavelength plate 104, (1-1) Steps (1-6) are performed. In this case, the circularly polarized inspection light transmitted through the quarter-wave plate 103 is incident on the half-wave plate 104 while passing through only air. Thus, the reference light quantity ratio R1a [%] = M1a / (M1a + M2a), which is the ratio of the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light, the angle 2θ of the polarization plane) and the light quantity that has passed through the air only. Alternatively, the correspondence relationship with R2a [%] = M2a / (M1a + M2a) is acquired. Theoretically, the reference light quantity ratios R1a and R2a should both be 50 [%], but in reality, they are not 50 [%] for reasons described later.

(1−8) 各対応関係から、同じ1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)に対応する、測定対象物10を透過した検査光から算出された光量比率(第1対応関係の光量比率)R10またはR20と、空気中のみを透過した検査光から算出された光量比率である基準光量比率R1aまたはR2aとの差を算出し、これを相対光量比率R10s[%](R10s=R10−R1a、またはR1a−R10)またはR20s[%](R20s=R20−R2a、またはR2a−R20)とし、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と対応付けする(第1対応関係と対応付けする。)。 (1-8) From each correspondence, it is calculated from the inspection light transmitted through the measuring object 10 corresponding to the rotation angle θ (polarization direction of the inspection light, angle 2θ of the polarization plane) of the same half-wave plate 104. The difference between the light quantity ratio (light quantity ratio of the first correspondence relationship) R10 or R20 and the reference light quantity ratio R1a or R2a, which is the light quantity ratio calculated from the inspection light transmitted only in the air, is calculated as the relative light quantity. The ratio R10s [%] (R10s = R10-R1a, or R1a-R10) or R20s [%] (R20s = R20-R2a, or R2a-R20), and the rotation angle θ of the half-wave plate 104 (inspection light) (Corresponding to the first correspondence relationship).

(1−9) 上記本発明の測定装置自体では、複屈折の数値を直接測定することはできない。そこで、本発明の第1の実施形態にかかる測定方法では、複屈折値(複屈折量)を測定できる複屈折測定装置(例えば、HINDS社製 HINDS Exicor(R) 193 DUV等)で測定して複屈折値が既知の透光性物品の特定箇所に対し、本発明の測定装置で相対光量比率R10sb[%]またはR20sb[%]を取得する作業を行い、複屈折値と相対光量比率R10sbまたはR20sbとの対応関係を予め取得しておく。そして、測定対象物10の測定箇所に対して上記本発明の測定装置で取得した相対光量比率R10sまたはR20sを、その対応関係にあてはめることで、複屈折値を取得する。 (1-9) The measurement device itself of the present invention cannot directly measure the value of birefringence. Therefore, in the measurement method according to the first embodiment of the present invention, measurement is performed with a birefringence measuring apparatus (for example, HINDS Exicor (R) 193 DUV manufactured by HINDS) that can measure the birefringence value (birefringence amount). An operation for obtaining the relative light amount ratio R10 sb [%] or R20 sb [%] with the measuring device of the present invention is performed on a specific portion of the translucent article whose birefringence value is known, and the birefringence value and the relative light amount ratio R10 sb or The correspondence with R20sb is acquired in advance. Then, the birefringence value is acquired by fitting the relative light quantity ratio R10s or R20s acquired by the measuring apparatus of the present invention to the measurement location of the measurement object 10 to the corresponding relationship.

測定箇所に複屈折が全くない場合を除き、相対光量比率R10sまたはR20sの数値は、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)の数値の変化に連動して上下に振動する。複屈折値と相対光量比率R10sbまたはR20sbとの対応関係にあてはめる相対光量比率R10sまたはR20sの数値は、取得した1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と相対光量比率R10sまたはR20sとの対応関係(第1対応関係)の最大値(振動の最大および最小ピーク値の絶対値の中で最大値)とすることが好ましい。また、相対光量比率R10sまたはR20sの振幅における各ピークの絶対値の平均値を複屈折値の取得に用いてもよい。   Except when there is no birefringence at the measurement location, the numerical value of the relative light quantity ratio R10s or R20s is a change in the numerical value of the rotation angle θ of the half-wave plate 104 (polarization direction of the inspection light, angle 2θ of the polarization plane). It vibrates up and down in conjunction. The numerical value of the relative light amount ratio R10s or R20s applied to the correspondence relationship between the birefringence value and the relative light amount ratio R10sb or R20sb is the rotation angle θ of the acquired half-wave plate 104 (the polarization direction of the inspection light, the angle 2θ of the polarization plane) ) And the relative light quantity ratio R10s or R20s (first correspondence) is preferably the maximum value (the maximum value among the absolute values of the maximum and minimum peak values of vibration). Moreover, you may use the average value of the absolute value of each peak in the amplitude of relative light quantity ratio R10s or R20s for acquisition of a birefringence value.

(1−10) さらに、マスクブランク用基板の製造方法に適用する場合は、マスクブランク用基板の形状に加工され、表面が研磨された透光性基板(ガラス基板)に対して上記測定方法を適用して取得した複屈折値(あるいは相対光量比率R10sまたはR20s)が所定値以下の透光性基板をマスクブランク用基板として選定する工程を含める。この場合、円偏光の検査光が透光性基板における一方の主表面の所定測定箇所から入射し、他方の主表面から出射するように、透光性基板を配置することが好ましい。 (1-10) Furthermore, when applying to the manufacturing method of the substrate for mask blanks, the said measuring method is processed with respect to the translucent substrate (glass substrate) by which it processed into the shape of the substrate for mask blanks, and the surface was grind | polished. A step of selecting a translucent substrate having a birefringence value (or relative light quantity ratio R10s or R20s) acquired by application as a predetermined value or less as a mask blank substrate is included. In this case, it is preferable to arrange the translucent substrate so that the circularly polarized inspection light enters from a predetermined measurement location on one main surface of the translucent substrate and exits from the other main surface.

本発明の複屈折の測定方法で測定対象とする透光性物品は、複屈折が小さい(例えば、5nm/cm以下)材料で形成されたものである。この測定対象となる透光性物品としては、ガラス材料で形成されていることが好ましく、合成石英ガラスで形成されているとより好ましい。偏光照明技術が適用される転写用マスクに用いられる透光性基板においても、同様に複屈折が小さい材料(例えば、5nm/cm以下)で形成されている。本発明は、このような複屈折が小さい材料で形成されている透光性物品や透光性基板の複屈折値をより高い精度で測ろうとする発明である。   The translucent article to be measured by the birefringence measuring method of the present invention is made of a material having a small birefringence (for example, 5 nm / cm or less). The translucent article to be measured is preferably made of a glass material, more preferably synthetic quartz glass. Similarly, a translucent substrate used for a transfer mask to which the polarized illumination technique is applied is also formed of a material having a small birefringence (for example, 5 nm / cm or less). The present invention is an invention for measuring the birefringence value of a translucent article or translucent substrate formed of a material having a small birefringence with higher accuracy.

本発明で測定する複屈折値の領域では、その複屈折値の領域内にある透光性物品に対して、上記の測定装置100で光量比率R10,R20を取得した場合、その透光性物品の複屈折に起因する光量比率R10,R20の変化量よりも、測定装置100自体の公差に起因する光量比率R10,R20への影響の方が大きくなる傾向がある。このため、光量比率R10,R20と複屈折測定装置での複屈折値との対応関係を用いて、透光性物品の複屈折値を取得してもその精度は低くなってしまう。この測定装置100自体の公差には、例えば、1/4波長板103や1/2波長板104の部品自体のリタデーションに起因する公差や、部品を装置に設置した際の回転角に起因する公差などがあり、これらをゼロにすることは困難である。   In the region of the birefringence value measured in the present invention, when the light quantity ratios R10 and R20 are obtained with the measuring device 100 for the translucent article in the birefringence value region, the translucent article There is a tendency that the influence on the light amount ratios R10 and R20 due to the tolerance of the measuring apparatus 100 itself is larger than the amount of change in the light amount ratios R10 and R20 due to the birefringence of the light. For this reason, even if the birefringence value of the translucent article is acquired using the correspondence relationship between the light quantity ratios R10 and R20 and the birefringence value in the birefringence measuring apparatus, the accuracy is lowered. The tolerance of the measuring device 100 itself includes, for example, a tolerance caused by retardation of the components of the quarter wavelength plate 103 and the half wavelength plate 104, and a tolerance caused by a rotation angle when the components are installed in the device. It is difficult to make these zero.

図3は、複屈折が低い透光性基板において、その主表面の複屈折値が既知(1.5nm/cm)である測定箇所に対し、測定装置100を用い、この第1の実施形態の測定方法における(1−1)〜(1−6)までの工程を行って取得した1/2波長板104の回転角度θ[deg]と光量比率R10[%]との対応関係をプロット(図中のR10)したものである(詳細については、[実験例]で後述する。)。また、図3には、(1−7)の工程を行って取得した、1/2波長板104の回転角度θ[deg]と空気中のみを通過した光量比率である基準光量比率R1a[%]との対応関係もプロット(図3中のR1a)されている。   FIG. 3 shows a translucent substrate having a low birefringence, in which the measurement apparatus 100 is used for a measurement location where the birefringence value of the main surface is known (1.5 nm / cm). A plot of the correspondence between the rotation angle θ [deg] of the half-wave plate 104 and the light amount ratio R10 [%] obtained by performing the steps (1-1) to (1-6) in the measurement method (FIG. (Details will be described later in [Experimental example]). FIG. 3 also shows the reference light amount ratio R1a [%], which is the light amount ratio obtained by performing the step (1-7) and the rotation angle θ [deg] of the half-wave plate 104 and the light amount that has passed only in the air. ] Is also plotted (R1a in FIG. 3).

基準光量比率R1aは、空気中のみを通過した検査光から算出された光量比率であるので、理論上は、1/2波長板104を回転させても光量比率は50%で一定となるはずである。2つのパワーメーター106a,106bの間の機差があったとしても、1/2波長板104の回転角θにかかわらず光量比率は一定値となるはずである。しかし、実際には、図3のR1aのプロットで示されているように、装置100自体の公差の影響を受けて、1/2波長板104の回転角θによって大きく振動してしまっている。   Since the reference light quantity ratio R1a is a light quantity ratio calculated from the inspection light that has passed only in the air, the light quantity ratio should theoretically be constant at 50% even if the half-wave plate 104 is rotated. is there. Even if there is a machine difference between the two power meters 106a and 106b, the light amount ratio should be a constant value regardless of the rotation angle θ of the half-wave plate 104. However, in actuality, as shown in the plot of R1a in FIG. 3, due to the influence of the tolerance of the device 100 itself, the device vibrates greatly due to the rotation angle θ of the half-wave plate 104.

図3における光量比率R10のプロットは、1/2波長板104の回転角θによって54%台〜47%台の間で大きく振動している。しかし、この振動は、測定装置100自体の公差によって生じている基準光量比率R1aの振動の影響を大きく受けたものであり、この光量比率R10を用いて複屈折値を取得しても正確な値にはならない。透光性基板の複屈折に起因する光量比率R10の変動は、基準光量比率R1aの振動の影響を除去した、同じ1/2波長板104の回転角θにおける光量比率R10と基準光量比率R1aとの差になる。この光量比率R10と基準光量比率R1aとの差は、基準光量比率R1aの振動の振幅に比べて大幅に小さい。   The plot of the light quantity ratio R10 in FIG. 3 greatly oscillates between the 54% and 47% levels depending on the rotation angle θ of the half-wave plate 104. However, this vibration is greatly influenced by the vibration of the reference light quantity ratio R1a caused by the tolerance of the measuring apparatus 100 itself. Even if a birefringence value is obtained using this light quantity ratio R10, an accurate value is obtained. It will not be. The fluctuation of the light quantity ratio R10 caused by the birefringence of the translucent substrate is obtained by removing the influence of the vibration of the reference light quantity ratio R1a and the light quantity ratio R10 and the reference light quantity ratio R1a at the same rotation angle θ of the half-wave plate 104. It becomes the difference. The difference between the light quantity ratio R10 and the reference light quantity ratio R1a is significantly smaller than the vibration amplitude of the reference light quantity ratio R1a.

これらのことから、本発明の第1の実施形態に係る複屈折の測定方法では、測定対象物である透光性物品の測定箇所における光量比率R10またはR20と、空気中のみを透過した検査光から算出された光量比率である基準光量比率R1aまたはR2aとの差である相対光量比率R10sまたはR20sを算出し、これと1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と対応付けしている。そして、複屈折値が既知の透光性物品に対して、測定装置100を用いて相対光量比率R10sbまたはR20sbを算出し、相対光量比率R10sbまたはR20sbと複屈折値との対応関係を予め取得しておく。さらに、この相対光量比率R10sbまたはR20sbと複屈折値との対応関係から、算出した測定対象物の透光性物品の相対光量比率R10sまたはR20sの最大値(振動のピーク値、複数ピークの平均値等)に対応する複屈折値を取得し、これをその測定対象物である透光性物品の測定箇所における複屈折値としている。   For these reasons, in the birefringence measurement method according to the first embodiment of the present invention, the light quantity ratio R10 or R20 at the measurement location of the translucent article that is the measurement object, and the inspection light transmitted only in the air. The relative light quantity ratio R10s or R20s, which is the difference from the reference light quantity ratio R1a or R2a, which is the light quantity ratio calculated from the above, is calculated, and the rotation angle θ of this and the half-wave plate 104 (the polarization direction of the inspection light, the polarization plane) Is associated with the angle 2θ). Then, the relative light quantity ratio R10sb or R20sb is calculated for the translucent article having a known birefringence value using the measuring apparatus 100, and the correspondence between the relative light quantity ratio R10sb or R20sb and the birefringence value is acquired in advance. Keep it. Further, from the correspondence between the relative light quantity ratio R10sb or R20sb and the birefringence value, the calculated maximum relative light quantity ratio R10s or R20s of the translucent article of the measurement object (vibration peak value, average value of plural peaks). Etc.) is obtained, and this is used as the birefringence value at the measurement location of the translucent article that is the measurement object.

図4は、図3で示した1/2波長板104の回転角度θ[deg]と光量比率R10[%]との対応関係と、1/2波長板104の回転角度θ[deg]と基準光量比率R1a[%]との対応関係とから、(1−8)の工程を行って取得した1/2波長板104の回転角度θ[deg]と相対光量比率R10s[%]との対応関係をプロット(図中のR10s)したものである(詳細については、[実験例]で後述する。)。図4における相対光量比率R10sのプロットは、1/2波長板104の回転角θによって−0.3%台〜+0.3%台の間で振動している。振動の振幅に多少の差はあるが、この振動成分のほとんどは、測定対象物の透光性物品の複屈折に起因するものである。相対光量比率の概念を導入したことで、装置100自体の公差による影響を大幅に低減できている。これにより、測定対象物の透光性物品の測定箇所における複屈折値を高い精度で取得できる。例えば、複屈折値が5nm/cm以下の透光性物品(透光性物品)を合格品(マスクブランク用基板)として選定する製法などに適用できる。   4 shows the correspondence between the rotation angle θ [deg] of the half-wave plate 104 shown in FIG. 3 and the light amount ratio R10 [%], and the rotation angle θ [deg] of the half-wave plate 104 and the reference. Based on the correspondence with the light quantity ratio R1a [%], the correspondence relation between the rotation angle θ [deg] of the half-wave plate 104 and the relative light quantity ratio R10 s [%] obtained by performing the step (1-8). Is plotted (R10s in the figure) (details will be described later in [Experimental example]). The plot of the relative light quantity ratio R10s in FIG. 4 oscillates between the −0.3% and + 0.3% levels depending on the rotation angle θ of the half-wave plate 104. Although there are some differences in the amplitude of vibration, most of the vibration components are caused by the birefringence of the translucent article of the measurement object. By introducing the concept of the relative light quantity ratio, the influence of the tolerance of the device 100 itself can be greatly reduced. Thereby, the birefringence value in the measurement location of the translucent article of a measuring object can be acquired with high accuracy. For example, the present invention can be applied to a production method of selecting a translucent article (translucent article) having a birefringence value of 5 nm / cm or less as an acceptable product (mask blank substrate).

本発明では、測定対象物10を透過した検査光から算出された光量比率から空気中のみを透過した検査光から算出される光量比率である基準光量比率を差し引いて相対光量比率を算出することを行うため、測定装置100自体の公差に起因する影響の大部分をキャンセルできる。このため、測定装置100の内部で使用される部品(1/4波長板103,1/2波長板104等)の精度が過剰に高いものとしなくても、透光性物品の複屈折を高い精度で導出できる。   In the present invention, the relative light amount ratio is calculated by subtracting the reference light amount ratio, which is the light amount ratio calculated from the inspection light transmitted only in the air, from the light amount ratio calculated from the inspection light transmitted through the measurement object 10. Therefore, most of the influence caused by the tolerance of the measuring apparatus 100 itself can be canceled. For this reason, the birefringence of the translucent article is high even if the precision of the components (such as the quarter-wave plate 103 and the half-wave plate 104) used in the measuring apparatus 100 is not excessively high. Derived with accuracy.

上記の本発明の第1の実施形態に係る複屈折の測定方法では、先に(1−1)〜(1−6)の工程を行って測定対象物10を透過した検査光から算出された光量比率を取得してから、(1−7)の工程を行って空気中のみを透過した検査光から算出される光量比率である基準光量比率を取得している。しかし、これに限らず、先に(1−7)の工程を行って空気中のみを透過した検査光から算出される光量比率である基準光量比率を取得してから、(1−1)〜(1−6)の工程を行って測定対象物10を透過した検査光から算出された光量比率を取得するようにしてもよい。また、測定装置100で複数の透光性物品に対して複屈折の測定をする場合や、透光性物品の表面の複数箇所で複屈折を測定する場合、(1−7)の空気中のみを透過した検査光から算出される光量比率である基準光量比率を取得する工程は一度行うだけでもよい。検査光から算出される光量比率である基準光量比率は、測定毎の取得値の差が非常に小さいためである。   In the birefringence measuring method according to the first embodiment of the present invention described above, the steps (1-1) to (1-6) were first performed and calculated from the inspection light transmitted through the measuring object 10. After acquiring the light amount ratio, the step (1-7) is performed to acquire the reference light amount ratio that is the light amount ratio calculated from the inspection light transmitted only through the air. However, the present invention is not limited to this, and after obtaining the reference light amount ratio, which is the light amount ratio calculated from the inspection light that has passed through the air only by performing the step (1-7) first, You may make it acquire the light quantity ratio computed from the test | inspection light which permeate | transmitted the measuring object 10 by performing the process of (1-6). Further, when birefringence is measured for a plurality of translucent articles with the measuring apparatus 100, or when birefringence is measured at a plurality of locations on the surface of the translucent article, only in the air of (1-7). The step of acquiring the reference light amount ratio, which is the light amount ratio calculated from the inspection light that has passed through, may be performed only once. This is because the reference light amount ratio, which is the light amount ratio calculated from the inspection light, has a very small difference in acquired values for each measurement.

第1の実施形態に係る複屈折の測定方法において、1/2波長板104の回転角θと光量比率R10との各対応関係は、回転角θの数値が所定角度Δθ刻みで取得され、対応する光量比率R10等も取得されている。(1−6)の工程等で行われる1/2波長板104を回転させる所定角度Δθは、2[deg]以下であることが好ましく、1[deg]以下であるとより好ましく、0.5[deg]以下であるとさらに好ましい。1/2波長板104をΔθ回転させると、この1/2波長板104を透過した検査光の方位はΔ2θだけ回転することになる。よって、検査光の偏光方位(偏光面の角度)の刻みΔ2θは、それぞれ、4[deg]以下(Δθ=2[deg]以下のとき)、2[deg]以下(Δθ=1[deg]以下のとき)、1[deg]以下(Δθ=0.5[deg]以下のとき)となる。   In the birefringence measurement method according to the first embodiment, the correspondence relationship between the rotation angle θ of the half-wave plate 104 and the light quantity ratio R10 is obtained by acquiring the numerical value of the rotation angle θ in increments of a predetermined angle Δθ. The light amount ratio R10 to be acquired is also acquired. The predetermined angle Δθ for rotating the half-wave plate 104 performed in the step (1-6) is preferably 2 [deg] or less, more preferably 1 [deg] or less, and 0.5 [Deg] or less is more preferable. When the half-wave plate 104 is rotated by Δθ, the direction of the inspection light transmitted through the half-wave plate 104 is rotated by Δ2θ. Accordingly, the increment Δ2θ of the polarization direction (polarization plane angle) of the inspection light is 4 [deg] or less (when Δθ = 2 [deg] or less), 2 [deg] or less (Δθ = 1 [deg] or less, respectively) ) 1 [deg] or less (when Δθ = 0.5 [deg] or less).

また、第1の実施形態に係る複屈折の測定方法において、1/2波長板104の回転角θと光量比率R10との各対応関係は、最初に光量比率R10を取得したとき(最初に光量値M10,M20を取得したとき)の1/2波長板104の回転角θを0[deg]とした場合、回転角θが45[deg]以上になるまで取得することが好ましく、90[deg]以上になるまで取得するとより好ましく、180[deg]以上になるまで取得するとさらに好ましい。   Further, in the birefringence measurement method according to the first embodiment, the correspondence between the rotation angle θ of the half-wave plate 104 and the light amount ratio R10 is obtained when the light amount ratio R10 is first acquired (initially, the light amount When the rotation angle θ of the half-wave plate 104 (when the values M10 and M20 are acquired) is 0 [deg], it is preferable to acquire until the rotation angle θ is 45 [deg] or more. ] It is more preferable to acquire until it becomes above, and it is further more preferable to acquire until it becomes above 180 [deg].

1/2波長板104の回転角θの範囲を0〜45[deg]とした場合、1/2波長板104を透過した検査光の偏光方位(偏光面の角度)2θは、0〜90[deg]となる。第1の形態に係る複屈折の測定方法では、透光性物品を透過した検査光は楕円偏光になっており、この楕円偏光を波面が互いに直交する2つの直線偏光に分離し、その2つの直線偏光の光量値M10,M20を測定している。分離される楕円偏光の検査光の偏光方位(偏光面の角度)2θを0〜90[deg]の範囲で回転させ、光量値M10,M20を測定すると、各光量値M10,M20で振幅の最大ピークあるいは最小ピークのいずれかは測定することができる。そして、この光量値M10,M20の最大ピークあるいは最小ピークから最終的に取得できる相対光量比率R10またはR20を用いれば、高い精度で複屈折値を取得することができる。   When the range of the rotation angle θ of the half-wave plate 104 is 0 to 45 [deg], the polarization direction (polarization plane angle) 2θ of the inspection light transmitted through the half-wave plate 104 is 0 to 90 [ deg]. In the birefringence measuring method according to the first embodiment, the inspection light transmitted through the translucent article is elliptically polarized light, and the elliptically polarized light is separated into two linearly polarized lights whose wavefronts are orthogonal to each other. The light quantity values M10 and M20 of linearly polarized light are measured. When the polarization azimuth (angle of polarization plane) 2θ of the separated elliptically polarized inspection light is rotated in the range of 0 to 90 [deg] and the light quantity values M10 and M20 are measured, the maximum amplitude is obtained at each of the light quantity values M10 and M20. Either the peak or the minimum peak can be measured. The birefringence value can be obtained with high accuracy by using the relative light quantity ratio R10 or R20 that can be finally obtained from the maximum peak or the minimum peak of the light quantity values M10 and M20.

また、1/2波長板104の回転角θの範囲を0〜90[deg]とした場合、1/2波長板104を透過した検査光の偏光方位(偏光面の角度)2θは、0〜180[deg]となる。楕円偏光の検査光の偏光方位(偏光面の角度)2θを0〜180[deg]の範囲で回転させ、光量値M10,M20を測定すると、各光量値M10,M20ともに振幅の最大ピークと最小ピークの両方を測定することができる。このため、さらに高い精度で複屈折値を取得することができる。   When the range of the rotation angle θ of the half-wave plate 104 is 0 to 90 [deg], the polarization direction (polarization plane angle) 2θ of the inspection light transmitted through the half-wave plate 104 is 0 to 180 [deg]. When the polarization direction (angle of polarization plane) 2θ of the elliptically polarized inspection light is rotated in the range of 0 to 180 [deg] and the light quantity values M10 and M20 are measured, the maximum peak and minimum amplitude of each of the light quantity values M10 and M20 are measured. Both peaks can be measured. For this reason, the birefringence value can be acquired with higher accuracy.

[第2の実施形態に係る測定方法]
次に、本発明の第2の実施形態にかかる複屈折の測定方法について説明する。
上記測定装置を用いたこの第2の実施形態に係る複屈折の測定方法(算出方法)の手順は、以下のようになる。
(2−1)〜(2−8) 第1の実施形態に係る複屈折の測定方法における(1−1)〜(1−8)の工程を行い、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と光量比率R10またはR20との対応関係(第1対応関係)、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と空気中のみを通過した光量比率である基準光量比率R1aまたはR2aとの対応関係、波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と相対光量比率R10sまたはR20sとの対応関係をそれぞれ取得する。
[Measurement Method According to Second Embodiment]
Next, a birefringence measuring method according to the second embodiment of the present invention will be described.
The procedure of the birefringence measurement method (calculation method) according to the second embodiment using the measurement apparatus is as follows.
(2-1) to (2-8) Steps (1-1) to (1-8) in the birefringence measurement method according to the first embodiment are performed, and the rotation angle θ of the half-wave plate 104 is determined. Correspondence (first correspondence) between the light beam ratio R10 or R20 (polarization orientation of the inspection light, polarization plane angle 2θ), rotation angle θ of the half-wave plate 104 (polarization orientation of the inspection light, polarization plane Angle 2θ) and the reference light quantity ratio R1a or R2a, which is the light quantity ratio that has passed only in the air, the rotation angle θ of the wave plate 104 (the polarization direction of the inspection light, the angle 2θ of the polarization plane) and the relative light quantity ratio R10s. Alternatively, the correspondence relationship with R20s is acquired.

(2−9) 透光性物品10と検査光(光源ユニット101)とを、検査光の進行方向を回転軸として相対的に90度回転させた(透光性物品10を検査光の進行方向を回転軸に90回転させた位置に設置した、あるいは、光源ユニット101を検査光の進行方向を回転軸に90回転させた)ことを除いて同じ条件で、(2−1)〜(2−6)の工程を行い、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と光量比率R190またはR290との対応関係(第2対応関係)を取得する。 (2-9) The translucent article 10 and the inspection light (light source unit 101) are rotated by 90 degrees relative to the traveling direction of the inspection light (the traveling direction of the inspection light). (2-1) to (2-) under the same conditions except that the light source unit 101 is installed at a position rotated 90 around the rotation axis, or the light source unit 101 is rotated 90 rotations about the traveling direction of the inspection light. Step 6) is performed to obtain the correspondence (second correspondence) between the rotation angle θ of the half-wave plate 104 (polarization direction of the inspection light, the angle 2θ of the polarization plane) and the light amount ratio R190 or R290.

(2−10) 各対応関係から、同じ1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)に対応する、測定対象物10を透過した検査光から算出された光量比率(第1対応関係の光量比率)R190またはR290と、空気中のみを透過した検査光から算出された光量比率である基準光量比率R1aまたはR2aとの差を算出し、これを相対光量比率R190s[%](R190s=R190−R1a、またはR1a−R190)またはR290s[%](R290s=R290−R2a、またはR2a−R290)とし、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と対応付けする(第2対応関係と対応付けする。)。 (2-10) Calculated from the inspection light transmitted through the measuring object 10 corresponding to the rotation angle θ of the same half-wave plate 104 (polarization azimuth of inspection light, angle 2θ of polarization plane) of each corresponding relationship. The difference between the light quantity ratio (light quantity ratio of the first correspondence relationship) R190 or R290 and the reference light quantity ratio R1a or R2a, which is the light quantity ratio calculated from the inspection light transmitted only in the air, is calculated as the relative light quantity. The ratio R190s [%] (R190s = R190-R1a or R1a-R190) or R290s [%] (R290s = R290-R2a or R2a-R290) is used, and the rotation angle θ of the half-wave plate 104 (inspection light) (Corresponding to the second correspondence relationship).

(2−11) 各対応関係から、同じ1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)に対応する、第1対応関係の相対光量比率R10sまたはR20sと、第1対応関係の相対光量比率R190sまたはR290sとの間で平均値R1av(R1av=(R10s+R190s)/2)またはR2av(R2av=(R20s+R290s)/2)を算出する。 (2-11) From each correspondence relationship, the relative light quantity ratio R10s or R20s of the first correspondence relationship corresponding to the rotation angle θ of the same half-wave plate 104 (polarization direction of inspection light, angle 2θ of the polarization plane) The average value R1av (R1av = (R10s + R190s) / 2) or R2av (R2av = (R20s + R290s) / 2) is calculated between the relative light quantity ratios R190s or R290s of the first correspondence relationship.

(2−12) 第1対応関係の相対光量比率R10sまたはR20sと平均値R1avまたはR2avとの差から、補正相対光量比率R10sc(R10sc=R10s−R1av)またはR20sc(R20sc=R20s−R2av)を算出する。または、第2対応関係の相対光量比率R190sまたはR290sと平均値R1avまたはR2avとの差から、補正相対光量比率R190sc(R190sc=R190s−R1av)またはR290sc(R290sc=R290s−R2av)を算出する。 (2-12) The corrected relative light amount ratio R10sc (R10sc = R10s−R1av) or R20sc (R20sc = R20s−R2av) is calculated from the difference between the relative light amount ratio R10s or R20s of the first correspondence relationship and the average value R1av or R2av. To do. Alternatively, the corrected relative light amount ratio R190sc (R190sc = R190s−R1av) or R290sc (R290sc = R290s−R2av) is calculated from the difference between the relative light amount ratio R190s or R290s in the second correspondence relationship and the average value R1av or R2av.

(2−13) 上記本発明の測定装置自体では、複屈折の数値を直接測定することはできない。そこで、本発明の第2の実施形態にかかる測定方法では、複屈折値(複屈折量)を測定できる複屈折測定装置(例えば、HINDS社製 HINDS Exicor(R) 193 DUV等)で測定して複屈折値が既知の透光性物品の特定箇所に対し、本発明の測定装置で補正相対光量比率R1sbc[%]またはR2sbc[%]を取得する作業を行い、複屈折値と補正相対光量比率R1sbcまたはR2sbcとの対応関係を予め取得しておく。そして、測定対象物10の測定箇所に対して上記本発明の測定装置で取得した補正相対光量比率R10scまたはR20scを、その対応関係にあてはめることで、複屈折値を取得する。または、複屈折値と補正相対光量比率R190sbcまたはR290sbcとの対応関係を予め取得しておく。そして、測定対象物10の測定箇所に対して上記本発明の測定装置で取得した補正相対光量比率R190scまたはR290scを、その対応関係にあてはめることで、複屈折値を取得する。 (2-13) The measurement device itself of the present invention cannot directly measure the value of birefringence. Therefore, in the measurement method according to the second embodiment of the present invention, measurement is performed with a birefringence measuring apparatus (for example, HINDS Exicor (R) 193 DUV manufactured by HINDS) that can measure the birefringence value (birefringence amount). An operation for obtaining the corrected relative light amount ratio R1sbc [%] or R2sbc [%] with the measuring apparatus of the present invention is performed on a specific portion of the translucent article whose birefringence value is known, and the birefringence value and the corrected relative light amount ratio are obtained. The correspondence with R1sbc or R2sbc is acquired in advance. Then, the birefringence value is obtained by applying the corrected relative light amount ratio R10sc or R20sc obtained by the measurement apparatus of the present invention to the measurement location of the measurement object 10 to the corresponding relationship. Alternatively, the correspondence relationship between the birefringence value and the corrected relative light amount ratio R190sbc or R290sbc is acquired in advance. Then, the birefringence value is acquired by applying the corrected relative light quantity ratio R190sc or R290sc acquired by the measurement apparatus of the present invention to the measurement location of the measurement object 10 to the corresponding relationship.

(2−14)さらに、マスクブランク用基板の製造方法に適用する場合は、マスクブランク用基板の形状に加工され、表面が研磨された透光性基板(ガラス基板)に対して上記測定方法を適用して取得した複屈折値(あるいは補正相対光量比率R10sc,R20sc,R190sc,またはR290sc)が所定値以下の透光性基板をマスクブランク用基板として選定する工程を含める。この場合、円偏光の検査光が透光性基板における一方の主表面の所定測定箇所から入射し、他方の主表面から出射するように、透光性基板を配置することが好ましい。 (2-14) Furthermore, when applying to the manufacturing method of the substrate for mask blanks, the said measuring method is processed with respect to the translucent substrate (glass substrate) by which it processed into the shape of the substrate for mask blanks, and the surface was grind | polished. A step of selecting a translucent substrate having a birefringence value (or corrected relative light quantity ratio R10sc, R20sc, R190sc, or R290sc) obtained by application as a predetermined value or less as a mask blank substrate is included. In this case, it is preferable to arrange the translucent substrate so that the circularly polarized inspection light enters from a predetermined measurement location on one main surface of the translucent substrate and exits from the other main surface.

図3のプロットR190は、複屈折が低い透光性基板において、その主表面の複屈折値が既知(1.5nm/cm)である測定箇所に対し、測定装置100を用い、この第2の実施形態における測定方法の(2−1)〜(2−10)までの工程を行って取得した1/2波長板104の回転角度θ[deg]と光量比率R190[%]との対応関係をプロットしたものである(詳細については、[実験例]で後述する。)。プロットR190は、プロットR10と同様、1/2波長板104の回転角θによって54%台〜47%台の間で大きく振動している。この振動の理由は、プロットR10の場合と同様である。   Plot R190 in FIG. 3 shows a second example in which the measurement apparatus 100 is used for a measurement location where the birefringence value of the main surface is known (1.5 nm / cm) in a translucent substrate having low birefringence. The correspondence relationship between the rotation angle θ [deg] of the half-wave plate 104 and the light amount ratio R190 [%] obtained by performing the steps (2-1) to (2-10) of the measurement method in the embodiment. (The details will be described later in [Experimental example]). The plot R190 oscillates greatly between the 54% and 47% levels depending on the rotation angle θ of the half-wave plate 104, as with the plot R10. The reason for this vibration is the same as in the case of plot R10.

図4のプロットR190Sは、図3で示した1/2波長板104の回転角度θ[deg]と光量比率R190[%]との対応関係と、1/2波長板104の回転角度θ[deg]と基準光量比率R1a[%]との対応関係とから、(2−10)の工程を行って取得した1/2波長板104の回転角度θ[deg]と相対光量比率R190s[%]との対応関係をプロットしたものである(詳細については、[実験例]で後述する。)。図4における相対光量比率R190sのプロットは、1/2波長板104の回転角θによって−0.3%台〜+0.3%台の間で振動している。この振動の理由は、プロットR10sの場合と同様である。   The plot R190S in FIG. 4 shows the correspondence between the rotation angle θ [deg] of the half-wave plate 104 and the light amount ratio R190 [%] shown in FIG. 3 and the rotation angle θ [deg] of the half-wave plate 104. ] And the reference light quantity ratio R1a [%], the rotation angle θ [deg] of the half-wave plate 104 and the relative light quantity ratio R190 s [%] obtained by performing the step (2-10) (The details will be described later in [Experimental example]). The plot of the relative light quantity ratio R190s in FIG. 4 oscillates between the −0.3% level and the + 0.3% level depending on the rotation angle θ of the half-wave plate 104. The reason for this vibration is the same as in the case of plot R10s.

プロットR10sとR190sは、ともに同じ透光性基板の主表面における同じ測定箇所に対して検査光を入射させている。しかし、プロットR10sを取得したときの透光性基板の位置とR190sを取得したときの透光性基板の位置とでは、検査光の進行方向を回転軸にφ=90度回転した関係にある。透光性基板の他方の主表面から出射した検査光は、1/2波長板104を透過するため、プロットR10sを取得したときの検査光とR190sを取得したときの検査光とは2φ=180度の位相差が生じることになる。   In plots R10s and R190s, the inspection light is incident on the same measurement location on the main surface of the same translucent substrate. However, the position of the translucent substrate when the plot R10s is acquired and the position of the translucent substrate when the R190s is acquired have a relationship of φ = 90 degrees rotated about the traveling direction of the inspection light as the rotation axis. Since the inspection light emitted from the other main surface of the translucent substrate passes through the half-wave plate 104, the inspection light when the plot R10s is acquired and the inspection light when the R190s are acquired are 2φ = 180. A phase difference of degrees will occur.

図4をみると、プロットR10sとR190sは、両者間の振動の位相がほぼ180度シフトしている。しかし、プロットR10s、R190sともに各振幅の上下ピークに小さな差がある。また、プロットR10sとR190sは、互いに交わる点がグラフ縦軸の相対光量比率でゼロの位置にない場合が多い。プロットR10sとR190sは、1/4波長板103、1/2波長板104と透光性物品10の測定箇所との相対位置を90回転させた関係となっている。光源ユニット101ではレーザー光を1/4波長板103で円偏光に変換しているが、1/4波長板103の精度上の限界や測定装置内での設計上の設置位置との間における微小な誤差などの影響からレーザー光(検査光)を完全な円偏光にすることは難しい。完全な円偏光ではない検査光を透光性物品10に入射するため、1/2波長板104と透光性物品10の測定箇所との相対位置を90回転させるとそれに起因する誤差が生じることが避けがたい。   As can be seen from FIG. 4, in the plots R10s and R190s, the phase of vibration between them is shifted by approximately 180 degrees. However, the plots R10s and R190s have small differences in the upper and lower peaks of each amplitude. In many cases, the plots R10s and R190s do not have a point where they intersect each other at the zero position in the relative light quantity ratio of the vertical axis of the graph. The plots R10s and R190s have a relationship in which the relative positions of the quarter-wave plate 103, the half-wave plate 104 and the measurement location of the translucent article 10 are rotated 90 times. In the light source unit 101, the laser light is converted into circularly polarized light by the quarter wavelength plate 103. However, there is a slight difference between the accuracy limit of the quarter wavelength plate 103 and the design installation position in the measuring apparatus. It is difficult to make laser light (inspection light) completely circularly polarized due to the effects of various errors. Since inspection light that is not completely circularly polarized light enters the translucent article 10, if the relative position between the half-wave plate 104 and the measurement location of the translucent article 10 is rotated 90 times, an error due to the rotation occurs. Is inevitable.

また、透光性物品の対向する表面から出射した楕円偏光の検査光は、1/2波長板を透過して検査光の位相がシフトするが、1/2波長板104の精度上の限界や測定装置内での設計上の設置位置との間における微小な誤差などの影響を受け、設計通り位相角でシフトさせることは難しい。プロットR10sを取得したときとR190を取得したときとでは、1/2波長板104と透光性物品10の測定箇所との相対位置をφ=90回転させた関係となっているが、プロットR10sとR190sとが2φ=180度の位相差から全くずれていない関係にはなり難い。   The elliptically polarized inspection light emitted from the opposing surface of the translucent article is transmitted through the half-wave plate and the phase of the inspection light is shifted. It is difficult to shift the phase angle as designed due to the influence of a minute error between the design installation position in the measuring device. When the plot R10s is acquired and when the R190 is acquired, the relative position between the half-wave plate 104 and the measurement location of the translucent article 10 is rotated by φ = 90, but the plot R10s. And R190s are unlikely to deviate from the phase difference of 2φ = 180 degrees at all.

これらのことから、本発明の第2の実施形態に係る複屈折の測定方法では、第1の実施形態と同様の手順で1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と相対光量比率R10sまたはR20sとの対応関係(第1対応関係)を取得することに加え、測定対象物である透光性物品10と検査光(光源ユニット101)とを、検査光の進行方向を回転軸として相対的に90度回転させたことを除いて同じ条件で、透光性物品10の測定箇所に検査光を入射し、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と相対光量比率R190sまたはR290sとの対応関係(第2対応関係)を取得している。その上で、同じ1/2波長板104の回転角度θにおける相対光量比率R10sとR190sとの平均値R1av(または相対光量比率R20sとR290sとの平均値R2av)を算出する。さらに、相対光量比率R10sまたはR190sから平均値R1avを差し引く補正を行い(相対光量比率R20sまたはR290sから平均値R2avを差し引く補正を行い)、補正相対光量比率R10scまたはR190sc(補正相対光量比率R20scまたはR290sc)を算出する。そして、予め取得しておいた複屈折値と補正相対光量比率R1sbcまたはR2sbcとの対応関係に、補正相対光量比率R10scまたはR190sc(補正相対光量比率R20scまたはR290sc)を、その対応関係にあてはめることで、複屈折値を取得している。   From these facts, in the birefringence measurement method according to the second embodiment of the present invention, the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light, the polarization) is performed in the same procedure as in the first embodiment. In addition to obtaining the correspondence (first correspondence) between the surface angle 2θ) and the relative light quantity ratio R10s or R20s, the translucent article 10 and the inspection light (light source unit 101), which are measurement objects, Under the same conditions except that the traveling direction of the inspection light is rotated by 90 degrees relative to the rotation axis, the inspection light is incident on the measurement location of the translucent article 10 and the rotation angle θ of the half-wave plate 104 A correspondence relationship (second correspondence relationship) between (the polarization direction of the inspection light, the angle 2θ of the polarization plane) and the relative light quantity ratio R190s or R290s is acquired. After that, the average value R1av of the relative light quantity ratios R10s and R190s (or the average value R2av of the relative light quantity ratios R20s and R290s) at the rotation angle θ of the same half-wave plate 104 is calculated. Further, correction is performed by subtracting the average value R1av from the relative light quantity ratio R10s or R190s (correction by subtracting the average value R2av from the relative light quantity ratio R20s or R290s), and the corrected relative light quantity ratio R10sc or R190sc (corrected relative light quantity ratio R20sc or R290sc). ) Is calculated. Then, the corrected relative light amount ratio R10sc or R190sc (corrected relative light amount ratio R20sc or R290sc) is applied to the correspondence relationship between the birefringence value acquired in advance and the corrected relative light amount ratio R1sbc or R2sbc. The birefringence value is acquired.

図4には、1/2波長板104の回転角度θ[deg]に対する相対光量比率R10s[%]とR190s[%]との平均値R1a[%]の変化が示されている(図4中のR1aのプロット)。図5は、1/2波長板104の回転角度θ[rad]に対応する相対光量比率R10s[%]とR190s[%]の各プロットに対し、三角関数の項を含んだ関数のフィッティングをおこなった結果(図5中のF10s、F190sの各曲線)を示したものである。図6は、1/2波長板104の回転角度θ[rad]に対応する補正相対光量比率R10scとR190scの各プロットに対し、三角関数の項を含んだ関数のフィッティングをおこなった結果(図6中のF10sc、F190scの各曲線)を示したものである。   4 shows a change in the average value R1a [%] of the relative light quantity ratios R10s [%] and R190s [%] with respect to the rotation angle θ [deg] of the half-wave plate 104 (in FIG. 4). R1a plot). FIG. 5 shows fitting of a function including a trigonometric function term to each plot of the relative light quantity ratios R10s [%] and R190s [%] corresponding to the rotation angle θ [rad] of the half-wave plate 104. The results (F10s and F190s curves in FIG. 5) are shown. FIG. 6 shows a result of fitting a function including a trigonometric function term to each plot of the corrected relative light quantity ratios R10sc and R190sc corresponding to the rotation angle θ [rad] of the half-wave plate 104 (FIG. 6). Middle curves of F10sc and F190sc).

図5をみると、平均値R1avで補正を行っていない相対光量比率R10sやR190sに対して三角関数の項を含んだ近似関数で精度よくフィッティングすることは困難であることがわかる(三角関数の項を含まない他の近似関数に対しても精度よくフィッティングすることは困難。)。一方、図6をみると、平均値R1avで補正を行った補正相対光量比率R10scやR190scに対しては、三角関数の項を含んだ近似関数を精度よくフィッティングできることがわかる。以上のように、補正相対光量比率の概念を導入したことで、装置100自体の公差による影響をさらに低減できている。これにより、測定対象物の透光性物品の測定箇所における複屈折値をより高い精度で取得できる。例えば、複屈折値が2nm/cm以下の透光性物品(透光性物品)を合格品(マスクブランク用基板)として選定する製法などに適用できる。   As can be seen from FIG. 5, it is difficult to accurately fit the relative light quantity ratios R10s and R190s that have not been corrected with the average value R1av with an approximation function including a trigonometric term (trigonometric function). It is difficult to accurately fit other approximation functions that do not contain terms.) On the other hand, it can be seen from FIG. 6 that an approximate function including a trigonometric function can be accurately fitted to the corrected relative light quantity ratios R10sc and R190sc corrected with the average value R1av. As described above, by introducing the concept of the corrected relative light quantity ratio, the influence of the tolerance of the device 100 itself can be further reduced. Thereby, the birefringence value in the measurement location of the translucent article of the measuring object can be acquired with higher accuracy. For example, the present invention can be applied to a manufacturing method of selecting a translucent article (translucent article) having a birefringence value of 2 nm / cm or less as an acceptable product (mask blank substrate).

本発明の第2の実施形態に係る複屈折の測定方法におけるその他の事項については、上記の第1の実施形態に係る複屈折の測定方法の場合と同様である。本発明の第2の実施形態に係る複屈折の測定方法においても、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と空気中のみを通過した光量比率である基準光量比率R1aまたはR2aとの対応関係を取得する(2−7)の工程は、(2−1)〜(2−6)の工程よりも先に行ってもよい。   Other matters in the method for measuring birefringence according to the second embodiment of the present invention are the same as those in the method for measuring birefringence according to the first embodiment. Also in the birefringence measurement method according to the second embodiment of the present invention, the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light, the angle 2θ of the polarization plane) and the light amount ratio that has passed only in the air. The step (2-7) for acquiring the correspondence relationship with the reference light quantity ratio R1a or R2a may be performed before the steps (2-1) to (2-6).

[第3の実施形態に係る測定方法]
次に、本発明の第3の実施形態にかかる複屈折の測定方法について説明する。第2の実施形態に係る複屈折の測定方法とは、第1対応関係の補正相対光量比率R10scまたはR20sc、あるいは第2対応関係の補正相対光量比率R190scまたはR290scと1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)との対応関係から、フィッティング関数(近似関数)を取得する工程と、そのフィティング関数から算出された補正光量比率R10scf、R20scf、R190scfまたはR290scfを用いて、透光性物品の測定箇所における複屈折値を取得する工程を備える点が大きく異なる。
[Measurement Method According to Third Embodiment]
Next, a birefringence measuring method according to the third embodiment of the present invention will be described. The birefringence measurement method according to the second embodiment includes a correction relative light amount ratio R10sc or R20sc having a first correspondence relationship or a correction relative light amount ratio R190sc or R290sc having a second correspondence relationship and rotation of the half-wave plate 104. A step of obtaining a fitting function (approximate function) from the correspondence relationship with the angle θ (polarization direction of the inspection light, angle 2θ of the polarization plane), and corrected light quantity ratios R10scf, R20scf, R190scf calculated from the fitting function or The difference is that the method includes a step of obtaining a birefringence value at a measurement location of a translucent article using R290scf.

この第3の実施形態に係る複屈折の測定方法(算出方法)の手順は、以下のようになる。
(3−1)〜(3−12) (2−1)〜(2−12)と同様の工程を行い、第1対応関係の補正相対光量比率R10scまたはR20scを算出する。または、第2対応関係の補正相対光量比率R190scまたはR290scを算出する。
(3−13) 1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と補正相対光量比率R10scまたはR20sc(R190scまたはR290sc)における第1対応関係(第2対応関係)に対し、関数のフィッティングを行い、フィッティング関数F10scまたはF20sc(F190scまたはF290sc)を取得する。このフィッティング関数F10scまたはF20sc(F190sc,またはF290sc)は、回転角度θと補正光量比率R10scまたはR20sc(R190scまたはR290sc)を変数とする2変数関数である。
The procedure of the birefringence measurement method (calculation method) according to the third embodiment is as follows.
(3-1) to (3-12) The same process as (2-1) to (2-12) is performed to calculate the corrected relative light quantity ratio R10sc or R20sc of the first correspondence relationship. Alternatively, the corrected relative light quantity ratio R190sc or R290sc of the second correspondence relationship is calculated.
(3-13) The first correspondence relationship (second correspondence) in the rotation angle θ of the half-wave plate 104 (polarization direction of the inspection light, the angle 2θ of the polarization plane) and the corrected relative light quantity ratio R10sc or R20sc (R190sc or R290sc) (Relationship) is performed to fit a function to obtain a fitting function F10sc or F20sc (F190sc or F290sc). The fitting function F10sc or F20sc (F190sc or F290sc) is a two-variable function with the rotation angle θ and the correction light quantity ratio R10sc or R20sc (R190sc or R290sc) as variables.

(3−14) フィッティング関数F10scまたはF20sc(F190scまたはF290sc)から、振幅の最大値を算出し、これを補正光量比率R10scfまたはR20scf(R190scfまたはR290scf)とする。
(3−15) (2−13)と同様の工程で、予め取得しておいた複屈折値と補正相対光量比率R1sbcまたはR2sbcとの対応関係に、補正相対光量比率R10scfまたはR20scf(R190scfまたはR290scf)をあてはめることで、複屈折値を取得する。
(3-14) The maximum value of the amplitude is calculated from the fitting function F10sc or F20sc (F190sc or F290sc), and this is set as the corrected light quantity ratio R10scf or R20scf (R190scf or R290scf).
(3-15) In the same process as (2-13), the corrected relative light quantity ratio R10scf or R20scf (R190scf or R290scf) is added to the correspondence relationship between the birefringence value acquired in advance and the corrected relative light quantity ratio R1sbc or R2sbc. ) To obtain the birefringence value.

(3−16)さらに、マスクブランク用基板の製造方法に適用する場合は、マスクブランク用基板の形状に加工され、表面が研磨された透光性基板(ガラス基板)に対して上記測定方法を適用して取得した複屈折値(あるいは補正相対光量比率R10scf,R20scf,R190scf,またはR290scf)が所定値以下の透光性基板をマスクブランク用基板として選定する工程を含める。この場合、円偏光の検査光が透光性基板における一方の主表面の所定測定箇所から入射し、他方の主表面から出射するように、透光性基板を配置することが好ましい。 (3-16) Furthermore, when applying to the manufacturing method of the substrate for mask blanks, the said measuring method is processed with respect to the translucent substrate (glass substrate) by which it processed into the shape of the substrate for mask blanks, and the surface was grind | polished. A step of selecting a translucent substrate having a birefringence value (or corrected relative light quantity ratio R10scf, R20scf, R190scf, or R290scf) obtained by application as a predetermined value or less as a mask blank substrate is included. In this case, it is preferable to arrange the translucent substrate so that the circularly polarized inspection light enters from a predetermined measurement location on one main surface of the translucent substrate and exits from the other main surface.

第2の実施形態での説明や図6で示されているように、1/2波長板104の回転角度θ[rad]と補正相対光量比率R10sc[%](第1対応関係)やR190sc[%](第2対応関係)との対応関係に対して、フィッティング関数(近似関数)F10sc,F190scは高い精度でフィッティングできている。図6で示されている1/2波長板104の回転角度θ[rad]と補正相対光量比率R10sc[%]やR190sc[%]との対応関係は、回転角度θの刻みΔθが1[deg](検査光の偏光方位の刻みが2[deg]刻み)で取得されたものである。しかし、この第3の実施形態においては、補正相対光量比率を導出する工程を導入したことにより、1/2波長板104の回転角度θ[rad]と補正相対光量比率R10sc[%]やR190sc[%]との対応関係を取得する際に行う、1/2波長板104の回転角度θ[rad]の回転角度の刻みΔθを大きくすることができる。回転角度の刻みΔθを大きくすることによって、拡大する補正相対光量比率R10sc[%]やR190sc[%]の空白(補正相対光量比率R10sc等の振動における振幅の最大値や最小値)を前記のフィッティング関数で十分に補完できるからである。   As described in the second embodiment and as shown in FIG. 6, the rotation angle θ [rad] of the half-wave plate 104 and the corrected relative light quantity ratio R10sc [%] (first correspondence) and R190sc [ %] (Second correspondence), the fitting functions (approximate functions) F10sc and F190sc can be fitted with high accuracy. The correspondence relationship between the rotation angle θ [rad] of the half-wave plate 104 shown in FIG. 6 and the corrected relative light quantity ratios R10sc [%] and R190sc [%] indicates that the increment Δθ of the rotation angle θ is 1 [deg]. ] (The step of the polarization direction of the inspection light is 2 [deg] increments). However, in the third embodiment, the step of deriving the corrected relative light quantity ratio is introduced, so that the rotation angle θ [rad] of the half-wave plate 104 and the corrected relative light quantity ratio R10sc [%] and R190sc [ %], The step Δθ of the rotation angle of the rotation angle θ [rad] of the half-wave plate 104, which is performed when acquiring the correspondence relationship with the [%]. By increasing the increment Δθ of the rotation angle, the above-described fitting of the corrected relative light quantity ratio R10sc [%] and R190sc [%] (maximum or minimum value of the amplitude in the vibration of the corrected relative light quantity ratio R10sc) is performed as described above. This is because functions can be sufficiently complemented.

本発明では、第1対応関係や第2対応関係とのフィッティングに用いられるフィッティング関数(近似関数)は、1/2波長板104の回転角度θと補正相対光量比率R10sc等を変数とする2変数関数であれば、どのような項で表現されてもよい。回転角度θの変数が2次以上の項を有する2次以上の関数や、回転角度θを角度の項とする三角関数の項を含む関数などが挙げられる。フィッティング関数は、三角関数(特に、sin関数やcos関数であると好ましい。)の項を含む関数であることが好ましい。1/2波長板104の回転角度θと補正相対光量比率R10sc等の対応関係(第1対応関係や第2対応関係)は、いずれも1/2波長板104の回転角度θの増加に伴い、補正相対光量比率R10sc等はある一定範囲の振幅かつある一定範囲の周期で振動する関係を有しており、三角関数の項を含む関数が最もフィッティングしやすいためである。なお、フィティング関数の取得は、最小2乗法を用いて行うことが好ましい。   In the present invention, the fitting function (approximation function) used for fitting with the first correspondence relationship or the second correspondence relationship is a two-variable variable with the rotation angle θ of the half-wave plate 104 and the corrected relative light quantity ratio R10sc as variables. Any term can be used as long as it is a function. Examples of the function include a quadratic or higher-order function in which the variable of the rotation angle θ has a second-order or higher term, and a function including a trigonometric function having the rotation angle θ as an angle term. The fitting function is preferably a function including a term of a trigonometric function (particularly, a sine function or a cosine function). Corresponding relations (first correspondence relation and second correspondence relation) such as the rotation angle θ of the half-wave plate 104 and the corrected relative light quantity ratio R10sc are all increased as the rotation angle θ of the half-wave plate 104 increases. This is because the corrected relative light amount ratio R10sc and the like have a relationship of oscillating with a certain range of amplitude and a certain range of cycles, and a function including a trigonometric function term is most easily fitted. The fitting function is preferably obtained using the least square method.

上記のフィッティング関数を導き出すためには、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)が3方位以上の角度(好ましくは4方位以上の角度)で、補正光量比率R10sc(第1対応関係の場合)やR190sc(第2対応関係の場合)が少なくとも必要である。このため、補正光量比率を算出するために必要な、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)が同じ方位での第1対応関係の光量比率R10(またはR20)、第2対応関係の光量比率R190(またはR290)および基準光量比率R1a(またはR2a)のセットを、異なる1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)で3セット以上(好ましくは4セット以上)、取得されていることが求められる。   In order to derive the above fitting function, the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light, the angle 2θ of the polarization plane) is an angle of 3 or more (preferably an angle of 4 or more), At least the correction light quantity ratio R10sc (in the case of the first correspondence) and R190sc (in the case of the second correspondence) are necessary. For this reason, the light quantity ratio R10 of the first correspondence relationship in which the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light and the angle 2θ of the polarization plane) necessary for calculating the correction light quantity ratio is the same. (Or R20), a set of the second correspondence light quantity ratio R190 (or R290) and the reference light quantity ratio R1a (or R2a), and the rotation angle θ (polarization direction of the inspection light, polarization plane) of the different half-wave plates 104 At an angle 2θ) of 3 sets or more (preferably 4 sets or more).

以上のように、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と補正光量比率R10sc等との対応関係をフィッティング関数化することにより、同じ測定箇所に対して少ない測定回数で、装置100自体の公差による影響を低減できる。これにより、測定対象物の透光性物品の測定箇所における複屈折値をより高い精度で取得できる。例えば、複屈折値が2nm/cm以下の透光性物品(透光性物品)を合格品(マスクブランク用基板)として選定する製法などに適用できる。なお、本発明の第3の実施形態に係る複屈折の測定方法におけるその他の事項については、上記の第1の実施形態および第2の実施形態に係る複屈折の測定方法の場合と同様である。   As described above, the correspondence between the rotation angle θ of the half-wave plate 104 (the polarization direction of the inspection light and the polarization plane angle 2θ) and the correction light quantity ratio R10sc is converted into a fitting function so that the same measurement location can be obtained. On the other hand, the influence of the tolerance of the device 100 itself can be reduced with a small number of measurements. Thereby, the birefringence value in the measurement location of the translucent article of the measuring object can be acquired with higher accuracy. For example, the present invention can be applied to a manufacturing method of selecting a translucent article (translucent article) having a birefringence value of 2 nm / cm or less as an acceptable product (mask blank substrate). Other matters in the birefringence measurement method according to the third embodiment of the present invention are the same as those in the birefringence measurement method according to the first embodiment and the second embodiment. .

[第4の実施形態に係る測定方法]
次に、本発明の第4の実施形態にかかる複屈折の測定方法について説明する。
上記の第2の形態に係る複屈折の測定方法では、相対光量比率の平均値R1avまたはR2avを算出しているが、この平均値R1avまたはR2avは、同じ透光性物品の同じ測定箇所だけでしか適用できないものではなく、ほかの測定箇所(同じ透光性物品のほかの測定箇所だけでなく、ほかの透光性物品の測定箇所も)でも適用できるものである。この平均値R1av,R2avは、測定装置の微小な公差がほとんどを占める補正値であり、測定箇所や測定する透光性物品が変わってもほとんど変わらない数値であるためである。
[Measurement Method According to Fourth Embodiment]
Next, a birefringence measuring method according to the fourth embodiment of the present invention will be described.
In the birefringence measurement method according to the second embodiment, the average value R1av or R2av of the relative light quantity ratio is calculated. The average value R1av or R2av is calculated only at the same measurement location of the same translucent article. This is not only applicable, but can be applied to other measurement locations (not only other measurement locations of the same translucent article but also other measurement locations of translucent articles). This is because the average values R1av and R2av are correction values that occupy most of the tolerances of the measuring device, and are values that hardly change even if the measurement location or the translucent article to be measured changes.

この第4の実施形態に係る複屈折の測定方法は、平均値R1avまたはR2avをほかの測定箇所でもそのまま適用することを特徴としている。第4の実施形態に係る複屈折の測定方法は、以下のとおりである。
(4−1)〜(4−11) (2−1)〜(2−11)と同様の工程を行い、平均値R1avまたはR2avを算出する。
(4−12)〜(4−20) 同じ透光性物品の別の測定箇所、あるいは、別の透光性物品の測定箇所に対して、(2−1)〜(2−8)と同じ工程を行い、1/2波長板104の回転角度θ(検査光の偏光方位、偏光面の角度2θ)と相対光量比率R13sまたはR23sとの対応関係(第3対応関係)を取得する。
The birefringence measurement method according to the fourth embodiment is characterized in that the average value R1av or R2av is applied as it is to other measurement locations. The method for measuring birefringence according to the fourth embodiment is as follows.
(4-1) to (4-11) Steps similar to (2-1) to (2-11) are performed, and the average value R1av or R2av is calculated.
(4-12) to (4-20) Same as (2-1) to (2-8) with respect to another measurement location of the same translucent article or a measurement location of another translucent article. The process is performed, and the correspondence (third correspondence) between the rotation angle θ of the half-wave plate 104 (polarization azimuth of the inspection light, the angle 2θ of the polarization plane) and the relative light quantity ratio R13s or R23s is obtained.

(4−21) (2−12)と同様の工程で、第3対応関係の相対光量比率R13sまたはR23sとの差から、補正相対光量比率R13sc(R13sc=R13s−R1av)またはR23sc(R23sc=R23s−R2av)を算出する。
(4−22) (2−13)と同様の工程で、予め取得しておいた複屈折値と補正相対光量比率R1sbcまたはR2sbcとの対応関係に、補正相対光量比率R13scまたはR23scをあてはめることで、複屈折値を取得する。
(4-21) In the same process as (2-12), the corrected relative light amount ratio R13sc (R13sc = R13s−R1av) or R23sc (R23sc = R23s) is obtained from the difference from the relative light amount ratio R13s or R23s of the third correspondence relationship. -R2av) is calculated.
(4-22) By applying the corrected relative light quantity ratio R13sc or R23sc to the correspondence relationship between the birefringence value acquired in advance and the corrected relative light quantity ratio R1sbc or R2sbc in the same process as (2-13). Get birefringence value.

(4−23)さらに、マスクブランク用基板の製造方法に適用する場合は、マスクブランク用基板の形状に加工され、表面が研磨された透光性基板(ガラス基板)に対して上記測定方法を適用して取得した複屈折値(あるいは補正相対光量比率R13sc,R23sc)が所定値以下の透光性基板をマスクブランク用基板として選定する工程を含める。この場合、円偏光の検査光が透光性基板における一方の主表面の所定測定箇所から入射し、他方の主表面から出射するように、透光性基板を配置することが好ましい。 (4-23) Furthermore, when applying to the manufacturing method of the substrate for mask blanks, the said measuring method is processed with respect to the translucent substrate (glass substrate) by which it processed into the shape of the substrate for mask blanks, and the surface was grind | polished. A step of selecting a translucent substrate having a birefringence value (or corrected relative light quantity ratio R13sc, R23sc) obtained by application as a predetermined value or less as a mask blank substrate is included. In this case, it is preferable to arrange the translucent substrate so that the circularly polarized inspection light enters from a predetermined measurement location on one main surface of the translucent substrate and exits from the other main surface.

なお、本発明の第4の実施形態に係る複屈折の測定方法におけるその他の事項については、上記の第1の実施形態から第3の実施形態に係る複屈折の測定方法の場合と同様である。   Other matters in the birefringence measurement method according to the fourth embodiment of the present invention are the same as those in the birefringence measurement method according to the first to third embodiments. .

[マスクブランク用基板の製造方法]
本発明の一実施形態に係るマスクブランク用基板の製造方法は、基板準備工程、および基板検査工程を備える。
[Manufacturing method of mask blank substrate]
A manufacturing method of a mask blank substrate according to an embodiment of the present invention includes a substrate preparation step and a substrate inspection step.

基板準備工程は、対向する2つの主表面を有する透光性基板を準備する工程であり、マスクブランク用基板となるように加工された透光性基板を準備する。基板準備工程は、公知の方法と同一又は同様の方法により、マスクブランク用基板となる透光性基板を準備する工程であってよい。透光性基板は、ガラス基板が好ましく、合成石英ガラス基板がより好ましい。   The substrate preparation step is a step of preparing a translucent substrate having two opposing main surfaces, and prepares a translucent substrate that has been processed to become a mask blank substrate. The substrate preparation step may be a step of preparing a translucent substrate to be a mask blank substrate by the same or similar method as a known method. The translucent substrate is preferably a glass substrate, and more preferably a synthetic quartz glass substrate.

透光性基板の形状は、矩形形状の対向する2つの主表面と、両主表面に直交して、両主表面の各辺をつなぐ4つの端面(側面および面取り面)とを有する形状である。この透光性基板において、検査光を入射させる主表面と、透光性基板の内部を透過して出射する主表面は、少なくとも鏡面に研磨する必要がある。また、透光性基板の両主表面、各側面、及び各面取り面を全て鏡面に研磨するとより好ましい。鏡面研磨により、例えば、合成石英ガラス基板の両主表面の表面粗さRa(算術平均粗さ)を約0.5nm以下とし、各側面及び各面取り面の表面粗さRa(算術平均粗さ)を約2nm以下とする。また、主表面の表面粗さは、自乗平均平方根粗さ(Rq)で0.2nm以下とすることが好ましい。また、基板準備工程において、更に、主表面や端面に対し、精密研磨や超精密研磨を行ってもよい。尚、この鏡面研磨が行われた後における透光性基板の寸法は、例えば、約152.1mm×約152.1mm×約6.35mmである。   The shape of the translucent substrate is a shape having two main surfaces facing each other in a rectangular shape and four end surfaces (side surfaces and chamfered surfaces) that are orthogonal to both main surfaces and connect each side of both main surfaces. . In this translucent substrate, it is necessary to polish at least a main surface on which inspection light is incident and a main surface that transmits through the inside of the translucent substrate to a mirror surface. It is more preferable that both the main surface, each side surface, and each chamfered surface of the translucent substrate are polished to a mirror surface. By mirror polishing, for example, the surface roughness Ra (arithmetic average roughness) of both main surfaces of the synthetic quartz glass substrate is set to about 0.5 nm or less, and the surface roughness Ra (arithmetic average roughness) of each side surface and each chamfered surface. Is about 2 nm or less. The surface roughness of the main surface is preferably 0.2 nm or less in terms of root mean square roughness (Rq). In the substrate preparation step, the main surface and the end surface may be further subjected to precision polishing or ultraprecision polishing. In addition, the dimension of the translucent board | substrate after this mirror polishing is performed is about 152.1 mm x about 152.1 mm x about 6.35 mm, for example.

基板検査工程は、基板準備工程で準備された透光性基板の検査を行う工程である。
本例において、基板検査工程は、測定対象物である透光性基板の複屈折を測定する工程とマスクブランク用基板を選定する工程を有する。透光性基板の複屈折を測定する工程に関しては、上記の透光性物品の複屈折の測定方法に係る各実施形態で記載した事項と同様の工程を行う。そして、その工程で得られた複屈折値が、予め定められた複屈折の基準値以下である透光性基板をマスクブランク用基板として選定する工程を行う。
A board | substrate inspection process is a process of inspecting the translucent board | substrate prepared at the board | substrate preparation process.
In this example, the substrate inspection step includes a step of measuring the birefringence of the translucent substrate that is a measurement object and a step of selecting a mask blank substrate. Regarding the step of measuring the birefringence of the translucent substrate, the same steps as those described in the respective embodiments relating to the above-described method for measuring the birefringence of the translucent article are performed. And the process of selecting the translucent board | substrate whose birefringence value obtained at the process is below the reference value of birefringence defined beforehand as a mask blank board | substrate is performed.

基板検査工程において、マスクブランク用基板として選定される透光性基板は、その基板の主表面の中心を基準とした一辺が132mmである四角形の内側領域における複屈折量が所定値以下であることが好ましい。これは、選定されたマスクブランク用基板から製造されたマスクブランクを用いて転写用マスクを作製する際、転写パターンが形成される可能性のある領域が、基板の主表面の中心を基準とした一辺が132mmである四角形の内側領域であることに理由がある。また、マスクブランク用基板として選定される透光性基板は、その基板の主表面の中心を基準とした一辺が142mmである四角形の内側領域における複屈折量が所定値以下であるとより好ましい。   In the substrate inspection process, the translucent substrate selected as the mask blank substrate has a birefringence amount equal to or less than a predetermined value in a rectangular inner region having a side of 132 mm with respect to the center of the main surface of the substrate. Is preferred. This is because, when a transfer mask is manufactured using a mask blank manufactured from the selected mask blank substrate, the region where the transfer pattern may be formed is based on the center of the main surface of the substrate. The reason is that it is a rectangular inner region having a side of 132 mm. The translucent substrate selected as the mask blank substrate is more preferably such that the birefringence amount in a rectangular inner region having a side of 142 mm with respect to the center of the main surface of the substrate is not more than a predetermined value.

本例において、複屈折値は、マスクブランク用基板から製造される転写マスクの使用時に用いられる露光波長(例えば、波長193nm)の光に対する複屈折値である。複屈折値は、例えば、透光性基板の各点において、進相軸に平行な方向の直線偏光と、その進相軸に直交する遅相軸に平行な方向の直線偏光とがその基板を通過する際に生じる光路長の差と定義できる。また、以下の説明において、複屈折値は、透光性基板における厚さ1cmあたりの複屈折値(nm)である。例えば、透光性基板の厚さが6.35mmの場合、透光性基板の各点において、厚さ6.35mmでの複屈折の大きさを求め、それを厚さ1cmあたりに換算することで、厚さ1cmあたりの複屈折値を算出できる。上記のマスクブランク用基板を選定するときに用いられる複屈折値の基準値は、5nm/cmであることが好ましく、2nm/cmであるとより好ましく、1nm/cmであるとより好ましい。   In this example, the birefringence value is a birefringence value for light having an exposure wavelength (for example, a wavelength of 193 nm) used when a transfer mask manufactured from a mask blank substrate is used. The birefringence value is determined, for example, at each point of the translucent substrate by linearly polarized light in a direction parallel to the fast axis and linearly polarized light in a direction parallel to the slow axis perpendicular to the fast axis. It can be defined as the difference in optical path length that occurs when passing through. In the following description, the birefringence value is a birefringence value (nm) per 1 cm thickness of the light-transmitting substrate. For example, when the thickness of the translucent substrate is 6.35 mm, the birefringence magnitude at the thickness of 6.35 mm is obtained at each point of the translucent substrate and converted to the thickness per 1 cm. Thus, the birefringence value per 1 cm thickness can be calculated. The reference value of the birefringence value used when selecting the mask blank substrate is preferably 5 nm / cm, more preferably 2 nm / cm, and even more preferably 1 nm / cm.

なお、上記のマスクブランク用基板の製造方法では、基板検査工程において、透光性基板の複屈折値を取得する工程を行い、複屈折値を選定基準としたマスクブランク用基板を選定する工程を行っている。しかし、基板検査工程はこれに限らず、透光性基板の補正相対光量比率の最大値または最小値を取得する工程を行い、その取得された透光性基板の補正相対光量比率の最大値または最小値と、予め定めた補正相対光量比率の選定基準値とを比較してマスクブランク用基板を選定する工程を行うようにしてもよい。選定されたマスクブランク用基板の複屈折値が必要な場合は、そのマスクブランク用基板の補正相対光量比率の最大値または最小値から、予め取得されていた補正相対光量比率と複屈折との対応関係から導き出せばよい。   In the mask blank substrate manufacturing method described above, in the substrate inspection step, a step of obtaining the birefringence value of the translucent substrate is performed, and a step of selecting the mask blank substrate based on the birefringence value as a selection criterion is performed. Is going. However, the substrate inspection step is not limited to this, and the step of obtaining the maximum or minimum value of the corrected relative light quantity ratio of the translucent substrate is performed, and the obtained maximum value of the corrected relative light quantity ratio of the translucent board or The step of selecting the mask blank substrate may be performed by comparing the minimum value with a predetermined reference value for the correction relative light quantity ratio. When the birefringence value of the selected mask blank substrate is required, the correspondence between the corrected relative light amount ratio and the birefringence obtained in advance from the maximum or minimum value of the corrected relative light amount ratio of the mask blank substrate. Derived from the relationship.

上記のように算出される補正相対光量比率は、透過率に換算することもできる。この場合、例えば、透光性材料の複屈折値が0nm/cmのときの補正相対光量比率である基準補正相対光量比率を予め算出しておく。また、基準補正相対光量比率における透過率を100%の透過率とする。これにより、例えば、各測定ポイントにおける補正相対光量比率を基準補正相対光量比率で除した値を、その補正相対光量比率に対応する透過率(規格化透過率)とすることができる。   The corrected relative light quantity ratio calculated as described above can also be converted into a transmittance. In this case, for example, a reference correction relative light amount ratio that is a correction relative light amount ratio when the birefringence value of the translucent material is 0 nm / cm is calculated in advance. The transmittance at the reference correction relative light amount ratio is set to 100%. Accordingly, for example, a value obtained by dividing the corrected relative light amount ratio at each measurement point by the reference corrected relative light amount ratio can be set as a transmittance (standardized transmittance) corresponding to the corrected relative light amount ratio.

図2は、透光性基板10を用いて製造されるマスクブランク20及び転写用マスク30の一例を示す。図2(a)は、マスクブランク20の構成の一例を示す。基板検査工程で合格品となり、マスクブランク用基板として選定された透光性基板10は、その後、マスクブランク20の製造に用いられる。マスクブランク20の製造工程では、マスクブランク用基板として選定された透光性基板10の主表面に、例えば公知の方法により、パターン形成用薄膜12を形成する。これにより、低複屈折の透光性基板上にパターン形成用薄膜を備えたマスクブランクを製造することができる。   FIG. 2 shows an example of a mask blank 20 and a transfer mask 30 that are manufactured using the translucent substrate 10. FIG. 2A shows an example of the configuration of the mask blank 20. The translucent substrate 10 that has been accepted in the substrate inspection process and selected as the mask blank substrate is then used for manufacturing the mask blank 20. In the manufacturing process of the mask blank 20, the pattern forming thin film 12 is formed on the main surface of the translucent substrate 10 selected as the mask blank substrate by, for example, a known method. Thereby, the mask blank provided with the thin film for pattern formation on the low birefringence translucent board | substrate can be manufactured.

前記のパターン形成用薄膜12は、単層構造、複数層の積層構造、組成傾斜した構造のいずれの構成でもよい。ここでいうマスクブランクは、パターン形成用薄膜12上に、パターン形成用薄膜12をパターニングする際にエッチングマスクとして使用されるハードマスク膜が形成されている構成も含まれる。また、ここでいうマスクブランクには、パターン形成用薄膜12上やハードマスク膜上に、有機系材料からなるレジスト膜が形成されている構成も含まれる。このように製造されたマスクブランク20は、転写用マスク30の製造に用いられる。   The pattern forming thin film 12 may have any structure of a single layer structure, a multi-layer laminated structure, or a composition-graded structure. The mask blank here includes a configuration in which a hard mask film used as an etching mask when the pattern forming thin film 12 is patterned is formed on the pattern forming thin film 12. The mask blank here includes a configuration in which a resist film made of an organic material is formed on the pattern forming thin film 12 or the hard mask film. The mask blank 20 manufactured in this way is used for manufacturing the transfer mask 30.

図2(b)は、転写用マスク30の構成の一例を示す。転写用マスク30の製造工程では、例えば公知の方法により、マスクブランク20のパターン形成用薄膜12をエッチングによりパターニングして、転写パターンを形成する。このようにすることで、低複屈折の透光性基板上に転写パターンを有する薄膜を備える転写用マスク30を適切に製造できる。   FIG. 2B shows an example of the configuration of the transfer mask 30. In the manufacturing process of the transfer mask 30, the pattern forming thin film 12 of the mask blank 20 is patterned by etching, for example, by a known method to form a transfer pattern. By doing in this way, the transfer mask 30 provided with the thin film which has a transfer pattern on the low birefringence translucent board | substrate can be manufactured appropriately.

また、これらの製造された転写用マスク30は、半導体デバイスの製造に用いられる。半導体デバイスの製造工程においては、例えば公知の方法により、転写用マスク30を用い、半導体ウェハ上に回路パターンを形成する。低複屈折の透光性基板上に転写パターンを有する薄膜を備える転写用マスク30を用いることにより、半導体ウェハ上に回路パターンを高い精度で形成できる。特に、露光光に偏光照明が適用される半導体デバイスの製造工程の場合、露光光が転写用マスク30の透光性基板を透過するときに、その露光光の偏光状態に影響を与えにくいため、半導体ウェハ上に回路パターンをより高い精度で形成できる。また、これにより、動作不良欠陥のない高品質の半導体デバイスを適切に製造できる。   These manufactured transfer masks 30 are used for manufacturing semiconductor devices. In the manufacturing process of a semiconductor device, a circuit pattern is formed on a semiconductor wafer using a transfer mask 30 by a known method, for example. By using the transfer mask 30 including a thin film having a transfer pattern on a low birefringence light-transmitting substrate, a circuit pattern can be formed on the semiconductor wafer with high accuracy. In particular, in the case of a semiconductor device manufacturing process in which polarized illumination is applied to exposure light, when the exposure light passes through the translucent substrate of the transfer mask 30, it is difficult to affect the polarization state of the exposure light. A circuit pattern can be formed on the semiconductor wafer with higher accuracy. This also makes it possible to appropriately manufacture a high-quality semiconductor device free from malfunction defects.

本発明は、例えば、露光転写において偏光照明が適用され、基板の複屈折の影響が比較的大きい転写用マスクを作製するためのマスクブランク用基板の製造方法(検査方法)、この基板を用いたマスクブランクの製造方法、このマスクブランクを用いた転写用マスクの製造方法、及びこの転写用を用いたマスク半導体デバイスの製造方法、に好適に適用できる。本発明は、例えば、上記以外のマスクブランク用基板(偏光していない露光光が適用される転写用マスクや、基板の複屈折の影響が比較的小さい偏光照明が適用される転写用マスクに用いられる基板)に対しても、適用できる。   The present invention uses, for example, a mask blank substrate manufacturing method (inspection method) for producing a transfer mask to which polarized illumination is applied in exposure transfer and the influence of birefringence of the substrate is relatively large. The present invention can be suitably applied to a mask blank manufacturing method, a transfer mask manufacturing method using the mask blank, and a mask semiconductor device manufacturing method using the transfer blank. The present invention is used, for example, for mask blank substrates other than those described above (transfer masks to which unpolarized exposure light is applied, and transfer masks to which polarized illumination with a relatively small influence of birefringence of the substrate is applied. It can also be applied to a substrate).

また、複屈折の影響は、マスク検査装置での検査時以外にも問題になる場合がある。例えば、偏光照明が適用されない場合であっても、複屈折値の大きな領域がマスクブランク用基板の内部に存在すると、転写への影響が生じる可能性がある。また、複屈折は、例えば熱履歴による残留熱応力が原因で生じることもある。この場合、複屈折値が大きいことは、残留熱応力が大きく、割れやすいことを意味する。そのため、これらの点でも、低コストの方法で検査ができるのであれば、偏光照明が適用されない転写用マスクに使用されるマスクブランク用基板についても、複屈折の影響の検査を行うことが好ましいと言える。
本発明によれば、簡便で低コストの方法で、複屈折の影響の検査を行うことができる。
In addition, the influence of birefringence may be a problem other than during inspection with a mask inspection apparatus. For example, even when polarized illumination is not applied, if a region having a large birefringence value is present inside the mask blank substrate, there is a possibility that transfer may be affected. Birefringence may also occur due to residual thermal stress due to thermal history, for example. In this case, a large birefringence value means that the residual thermal stress is large and is easily cracked. Therefore, it is preferable to inspect the influence of birefringence on a mask blank substrate used for a transfer mask to which polarized illumination is not applied, even if these points can be inspected by a low-cost method. I can say that.
According to the present invention, the influence of birefringence can be inspected by a simple and low-cost method.

[実験例]
本発明に係る複屈折の測定方法によって、透光性基板10内の複屈折の影響を検出できることを確認した実験結果について説明を行う。図3〜図9は、実験結果を説明する図である。なお、本実験例では、測定の便宜上、1枚の透光性基板10を用い、この透光性基板10内の複数箇所に対して、各種の測定を行った。しかし、複屈折の性質上、このようにして得られる実験結果は、複数枚の透光性基板10を用いた場合に得られる実験結果と同等のものであると考えることができる。
[Experimental example]
An experimental result confirming that the influence of birefringence in the translucent substrate 10 can be detected by the birefringence measuring method according to the present invention will be described. 3 to 9 are diagrams for explaining experimental results. In this experimental example, for the convenience of measurement, a single translucent substrate 10 was used, and various measurements were performed on a plurality of locations in the translucent substrate 10. However, it can be considered that the experimental result obtained in this way is equivalent to the experimental result obtained when a plurality of translucent substrates 10 are used due to the birefringence property.

この実験例では、複屈折が低く高品質な透光性基板10において、公知の複屈折測定装置(HINDS社製 HINDS Exicor(R) 193 DUV)で測定した複屈折値が1.5nm/cmである箇所(測定箇所)に対して、本発明の測定装置を用い、上記の本発明の第3の実施形態の測定方法を実際に行った。図3は、その結果のうち、1/2波長板104の回転角θ[deg]と、光量比率R10[%]との対応関係である第1対応関係、光量比率R190[%]との対応関係である第2対応関係、光量比率R1a[%]との対応関係である基準対応関係をグラフ化したものである。上記のとおり、光量比率R190は、光量比率R10を取得したときの測定条件に対し、検査光と透光性基板10とを相対的に90度回転させた状態で取得した光量比率であり、光量比率R1aは、空気中のみを通過した検査光から取得した光量比率である。 In this experimental example, the birefringence value measured with a known birefringence measuring apparatus (HINDS Exicor (R) 193 DUV manufactured by HINDS) is 1.5 nm / cm on a high-quality translucent substrate 10 with low birefringence. The measurement method of the third embodiment of the present invention described above was actually performed on a certain location (measurement location) using the measurement apparatus of the present invention. FIG. 3 shows the correspondence between the rotation angle θ [deg] of the half-wave plate 104 and the light quantity ratio R10 [%] and the light quantity ratio R190 [%]. This is a graph of the second correspondence relationship that is the relationship and the reference correspondence relationship that is the correspondence relationship with the light amount ratio R1a [%]. As described above, the light amount ratio R190 is a light amount ratio acquired in a state where the inspection light and the translucent substrate 10 are relatively rotated by 90 degrees with respect to the measurement conditions when the light amount ratio R10 is acquired. The ratio R1a is a light quantity ratio acquired from the inspection light that has passed only in the air.

基準光量比率は、理論上では1/2波長板104の回転角θの数値に関わらず50%の一定値となるはずである。しかし、図3から明らかであるが、基準光量比率R1aは、54%台〜47%台の間を振動している。そして、透光性基板10を透過した検査光から取得した光量比率R10,R190は、回転角θの数値に対して、ともに基準光量比率R1aと同じ傾向で振動している。これは、光量比率R10、R190は、基準光量比率R1aの理論値からのずれの影響を大きく受けていることを表している。   The reference light amount ratio should theoretically be a constant value of 50% regardless of the numerical value of the rotation angle θ of the half-wave plate 104. However, as is apparent from FIG. 3, the reference light quantity ratio R1a vibrates between the 54% and 47% levels. The light quantity ratios R10 and R190 acquired from the inspection light transmitted through the translucent substrate 10 both vibrate with the same tendency as the reference light quantity ratio R1a with respect to the numerical value of the rotation angle θ. This indicates that the light quantity ratios R10 and R190 are greatly affected by deviation from the theoretical value of the reference light quantity ratio R1a.

図4は、1/2波長板104の回転角θ[deg]と、相対光量比率R10s[%]との対応関係である第1対応関係と、相対光量比率R190s[%]との対応関係である第2対応関係と、2つの相対光量比率の平均値R1av[%]=(R10s[%]+R190s[%])/2との対応関係をグラフ化したものである。同じ回転角θに対応する光量比率R10,R190から基準光量比率R1aを差し引いた数値が、相対光量比率R10s、R190sである。図4から明らかであるが、相対光量比率R10s,R190sは、ともに回転角θの数値に対して+0.3%台〜−0.3%台の間を振動している。   FIG. 4 shows the correspondence between the rotation angle θ [deg] of the half-wave plate 104 and the relative light quantity ratio R10s [%], and the relative light quantity ratio R190s [%]. The correspondence relationship between a certain second correspondence relationship and the average value R1av [%] = (R10s [%] + R190s [%]) / 2 of the two relative light quantity ratios is graphed. The numerical values obtained by subtracting the reference light amount ratio R1a from the light amount ratios R10 and R190 corresponding to the same rotation angle θ are the relative light amount ratios R10s and R190s. As is apparent from FIG. 4, the relative light quantity ratios R10s and R190s both vibrate between + 0.3% and −0.3% with respect to the numerical value of the rotation angle θ.

相対光量比率R10s,R190sは、sinカーブやcosカーブに近い変動をしており、相対光量比率R10s,R190sは、各振動の複数のピーク間に若干の誤差はあるが、最大でも0.04%程度と比較的小さい。このため、相対光量比率と透光性基板の複屈折値との相関を予め取得しておき、取得した相対光量比率R10s,R190sから透光性基板10の測定箇所の複屈折量を算出することは可能である。   The relative light quantity ratios R10s and R190s fluctuate close to a sin curve and a cos curve, and the relative light quantity ratios R10s and R190s have a slight error between a plurality of peaks of each vibration, but 0.04% at the maximum. About relatively small. For this reason, the correlation between the relative light quantity ratio and the birefringence value of the translucent substrate is acquired in advance, and the birefringence amount at the measurement location of the translucent substrate 10 is calculated from the acquired relative light quantity ratios R10s and R190s. Is possible.

図5は、相対光量比率R10s,R190sの実数値に対して、sin関数を含む関数からなる近似曲線F10s,F190sをフィッティングした結果である。相対光量比率R10s,R190sの実数値は、各振動の複数のピーク間に誤差が存在するため、相対光量比率R10s,R190sの各近似曲線F10s,F190sはともに高い精度でフィッティングできているとはいえない。光量比率から複屈折量をより高い精度で算出するには、この近似曲線F10s,F190sがより高い精度でフィッティングできている必要がある。相対光量比率R10sとR190sとは、透光性基板10に入射する検査光における透光性基板10と検査光との位置関係を90度回転させた以外は同じ条件で取得している。透光性基板10を出射した検査光は1/2波長板を透過するため、偏光ビームスプリッター108に入射する段階での相対光量比率R10sを取得時の検査光とR190sを取得時の検査光とは、理論上、2θ=180度回転した関係にある。このため、理論上は、1/2波長板104の回転角θに対する相対光量比率R10sの実数値の振動と,R190sの実数値の振動とは、相対光量比率の数値の符号(正負)が正反対になる以外は同じとなるはずである。しかし、図5に示されているように、正反対の関係からずれている。   FIG. 5 shows the result of fitting approximate curves F10s and F190s made of functions including a sin function to the real values of the relative light quantity ratios R10s and R190s. Since the real values of the relative light quantity ratios R10s and R190s have an error between a plurality of peaks of each vibration, it can be said that the approximate curves F10s and F190s of the relative light quantity ratios R10s and R190s can be fitted with high accuracy. Absent. In order to calculate the birefringence amount from the light amount ratio with higher accuracy, the approximate curves F10s and F190s need to be fitted with higher accuracy. The relative light quantity ratios R10s and R190s are acquired under the same conditions except that the positional relationship between the light transmitting substrate 10 and the inspection light in the inspection light incident on the light transmitting substrate 10 is rotated by 90 degrees. Since the inspection light emitted from the translucent substrate 10 is transmitted through the half-wave plate, the inspection light at the time of acquiring the relative light quantity ratio R10s when entering the polarizing beam splitter 108 and the inspection light at the time of acquiring R190s Is theoretically rotated by 2θ = 180 degrees. Therefore, in theory, the sign of the relative light quantity ratio (positive or negative) is opposite to the real value vibration of the relative light quantity ratio R10s with respect to the rotation angle θ of the half-wave plate 104 and the real value vibration of R190s. Should be the same except. However, as shown in FIG. 5, there is a deviation from the opposite relationship.

図6は、同じ回転角θ[rad]における相対光量比率R10s[%]から2つの相対光量比率の平均値R1av[%]を差し引く補正を行って算出された補正相対光量比率R10sc[%]と1/2波長板104の回転角θ[rad]との対応関係をグラフ化したものである。図6では、同様にして算出された補正相対光量比率R190sc[%]と1/2波長板104の回転角θ[rad]との対応関係もプロットされている。さらに、図6には、補正相対光量比率R10sc,R190scの実数値に対して、sin関数を含む関数からなる近似曲線F10sc,F190scをフィッティングした結果も示した。この図6の結果から、1/2波長板104の回転角θに対する補正相対光量比率R10scの実数値の振動と,補正R190scの実数値の振動とは、相対光量比率の数値の符号(正負)が正反対になる以外は同じ関係にほぼなっていることがわかる。また、相対光量比率R10s,R190sの各近似曲線F10sc,F190scはともに非常に高い精度でフィッティングできていることもわかる。   FIG. 6 shows a corrected relative light quantity ratio R10sc [%] calculated by performing correction by subtracting the average value R1av [%] of two relative light quantity ratios from the relative light quantity ratio R10 s [%] at the same rotation angle θ [rad]. The correspondence relationship with the rotation angle θ [rad] of the half-wave plate 104 is graphed. In FIG. 6, the correspondence relationship between the corrected relative light amount ratio R190sc [%] calculated in the same manner and the rotation angle θ [rad] of the half-wave plate 104 is also plotted. Further, FIG. 6 also shows the result of fitting approximate curves F10sc and F190sc, which are functions including a sin function, to the real values of the corrected relative light quantity ratios R10sc and R190sc. From the results of FIG. 6, the real value vibration of the corrected relative light quantity ratio R10sc with respect to the rotation angle θ of the half-wave plate 104 and the real value vibration of the correction R190sc are signs of the relative light quantity ratio (positive or negative). It can be seen that the relationship is almost the same except that is opposite. It can also be seen that the approximate curves F10sc and F190sc of the relative light quantity ratios R10s and R190s can be fitted with very high accuracy.

図7は、透光性基板10と検査光との位置関係を90度回転させる前の状態(図7でいう0度配置)で取得した相対光量比率R10sまたは補正相対光量比率R10scの絶対値での最大値と、透光性基板10と検査光との位置関係を90度回転させた後の状態(図7でいう90度配置)で取得した相対光量比率R190sまたは補正相対光量比率R190scの絶対値での最大値を、種々の条件で取得し、比較したものである。グラフ横軸の「実測算出値(10度刻み)」に対応するプロットは、1/2波長板104をΔθ=10[deg]ずつ回転させ、それぞれ算出した各回転角度θの相対光量比率R10sまたはR190sの群から、絶対値で最大値のものである。グラフ横軸の「実測算出値(2度刻み)」に対応するプロットは、1/2波長板104をΔθ=2[deg]ずつ回転させ、それぞれ算出した各回転角度θの相対光量比率R10sまたはR190sの群から、絶対値で最大値のものである。グラフ横軸の「実測算出値(1度刻み)」に対応するプロットは、1/2波長板104をΔθ=1[deg]ずつ回転させ、それぞれ算出した各回転角度θの相対光量比率R10sまたはR190sの群から、絶対値で最大値のものである。   FIG. 7 shows the absolute value of the relative light quantity ratio R10s or the corrected relative light quantity ratio R10sc acquired in a state before the positional relationship between the translucent substrate 10 and the inspection light is rotated by 90 degrees (arrangement of 0 degrees in FIG. 7). The absolute value of the relative light quantity ratio R190s or the corrected relative light quantity ratio R190sc acquired in the state (90 degree arrangement in FIG. 7) after rotating the positional relationship between the maximum value of the transparent substrate 10 and the inspection light by 90 degrees. The maximum value is obtained and compared under various conditions. The plot corresponding to the “actually calculated value (in increments of 10 degrees)” on the horizontal axis of the graph is obtained by rotating the half-wave plate 104 by Δθ = 10 [deg] and calculating the relative light amount ratio R10s of each calculated rotation angle θ. From the group of R190s, the absolute value is the maximum value. The plot corresponding to the “actually calculated value (in increments of 2 degrees)” on the horizontal axis of the graph is obtained by rotating the half-wave plate 104 by Δθ = 2 [deg] and calculating the relative light quantity ratio R10s of each calculated rotation angle θ or From the group of R190s, the absolute value is the maximum value. The plot corresponding to the “actually calculated value (in 1 degree increments)” on the horizontal axis of the graph is obtained by rotating the half-wave plate 104 by Δθ = 1 [deg] and calculating the relative light quantity ratio R10s of each calculated rotation angle θ or From the group of R190s, the absolute value is the maximum value.

グラフ横軸の「簡易近似関数算出値(補正無)」に対応するプロットは、1/2波長板104をΔθ=1[deg]ずつ回転させ、それぞれ算出した回転角度θと相対光量比率R10sまたはR190sとの対応関係から簡易的な近似関数「R10s(またはR190s)=bsin[4θ−d](b,dは定数。また、θの単位は[rad]。)」でフィッティング関数を導出し、そのフィッティング関数で算出した相対光量比率R10sf,R190sfの最大値である。なお、この場合において、相対光量比率R10sのフィッティング関数の係数は、b=0.316816,d=0.99383であり、相対光量比率R190sのフィッティング関数の係数は、b=−0.336485,d=1.14642であった。   The plot corresponding to the “simple approximate function calculated value (without correction)” on the horizontal axis of the graph is obtained by rotating the half-wave plate 104 by Δθ = 1 [deg] and calculating the calculated rotation angle θ and the relative light quantity ratio R10s or From the correspondence relationship with R190s, a fitting function is derived with a simple approximation function “R10s (or R190s) = bsin [4θ−d] (b and d are constants, and the unit of θ is [rad].)” It is the maximum value of the relative light quantity ratios R10sf and R190sf calculated by the fitting function. In this case, the coefficient of the fitting function of the relative light quantity ratio R10s is b = 0.316816, d = 0.99383, and the coefficient of the fitting function of the relative light quantity ratio R190s is b = −0.336485, d. = 1.14642.

グラフ横軸の「通常近似関数算出値(補正無)」に対応するプロットは、1/2波長板104をΔθ=1[deg]ずつ回転させ、それぞれ算出した回転角度θと相対光量比率R10sまたはR190sとの対応関係から通常のサインカーブの近似関数「R10s(またはR190s)=a+bsin[cθ−d](a,b,c,dは定数。また、θの単位は[rad]。)」でフィッティング関数を導出し、そのフィッティング関数で算出した相対光量比率R10sf,R190sfの最大値である。なお、この場合において、相対光量比率R10sのフィッティング関数の係数は、a=0.0204372,b=0.307949,c=4.01438,d=1.07544であり、相対光量比率R190sのフィッティング関数の係数は、a=0.0150264,b=0.343755,c=−3.94074,d=−1.07621であった。   The plot corresponding to the “normal approximate function calculated value (without correction)” on the horizontal axis of the graph is obtained by rotating the half-wave plate 104 by Δθ = 1 [deg] and calculating the calculated rotation angle θ and the relative light quantity ratio R10s or From the correspondence with R190s, an approximate function of a normal sine curve “R10s (or R190s) = a + bsin [cθ−d] (a, b, c, d are constants, and the unit of θ is [rad])”. A fitting function is derived, and is the maximum value of the relative light quantity ratios R10sf and R190sf calculated by the fitting function. In this case, the coefficients of the fitting function of the relative light quantity ratio R10s are a = 0.0204372, b = 0.307949, c = 4.001438, d = 1.07544, and the fitting function of the relative light quantity ratio R190s. The coefficients of a = 0.0150264, b = 0.3437755, c = −3.99404, d = −1.07621.

グラフ横軸の「簡易近似関数算出値(補正有)」に対応するプロットは、1/2波長板104をΔθ=1[deg]ずつ回転させ、それぞれ算出した回転角度θと補正相対光量比率R10scまたはR190scとの対応関係から簡易的な近似関数「R10sc(またはR190sc)=bsin[4θ−d](b,dは定数。また、θの単位は[rad]。)」でフィッティング関数を導出し、そのフィッティング関数で算出した補正相対光量比率R10scf,R190scfの最大値である。なお、この場合において、補正相対光量比率R10scのフィッティング関数の係数は、b=0.325701,d=1.07243であり、補正相対光量比率R190scのフィッティング関数の係数は、b=−0.325701,d=1.07243であった。   The plot corresponding to the “simple approximate function calculated value (with correction)” on the horizontal axis of the graph rotates the half-wave plate 104 by Δθ = 1 [deg], and calculates the calculated rotation angle θ and the corrected relative light quantity ratio R10sc. Alternatively, a fitting function is derived from a correspondence relationship with R190sc by a simple approximation function “R10sc (or R190sc) = bsin [4θ−d] (b and d are constants, and the unit of θ is [rad].)”. , The maximum values of the corrected relative light quantity ratios R10scf and R190scf calculated by the fitting function. In this case, the coefficient of the fitting function of the corrected relative light quantity ratio R10sc is b = 0.325701, d = 1.07243, and the coefficient of the fitting function of the corrected relative light quantity ratio R190sc is b = −0.325701. , D = 1.07243.

グラフ横軸の「通常近似関数算出値(補正有)」に対応するプロットは、1/2波長板104をΔθ=1[deg]ずつ回転させ、それぞれ算出した回転角度θと補正相対光量比率R10scまたはR190scとの対応関係から通常のサインカーブの近似関数「R10sc(またはR190sc)=a+bsin[cθ−d](a,b,c,dは定数。また、θの単位は[rad]。)」でフィッティング関数を導出し、そのフィッティング関数で算出した補正相対光量比率R10scf,R190scfの最大値である。なお、この場合において、補正相対光量比率R10scのフィッティング関数の係数は、a=0.00264909,b=0.325806,c=3.97584,d=1.07576であり、補正相対光量比率R190scのフィッティング関数の係数は、a=0.00264909,b=0.325806,c=−3.97584,d=−1.07576であった。   The plot corresponding to “normal approximate function calculated value (with correction)” on the horizontal axis of the graph rotates the half-wave plate 104 by Δθ = 1 [deg], and calculates the calculated rotation angle θ and corrected relative light quantity ratio R10sc. Or, an approximate function of a normal sine curve “R10sc (or R190sc) = a + bsin [cθ−d] (a, b, c, d are constants, and the unit of θ is [rad])” from the corresponding relationship with R190sc. Is a maximum value of the corrected relative light quantity ratios R10scf and R190scf calculated by the fitting function. In this case, the coefficients of the fitting function of the corrected relative light quantity ratio R10sc are a = 0.264264909, b = 0.325806, c = 3.97584, d = 1.07576, and the corrected relative light quantity ratio R190sc is The coefficients of the fitting function were a = 0.264264909, b = 0.325806, c = −3.997584, d = −1.07576.

実測値から補正を行っていない相対光量比率R10s,R190sの絶対値での最大値の場合、相対光量比率R10s,R190sのデータ取得間隔(1/2波長板104を回転刻みΔθ)の大小にかかわらず、透光性基板が0度配置の場合と90度配置の場合で、若干の差(0.014[%]〜0.016[%]の差)が生じている。また、実測値から補正を行っていない相対光量比率R10s,R190sから導出したフィッティング関数で最大の相対光量比率R10sf,R190sfを算出した場合では、透光性基板が0度配置の場合と90度配置の場合での差が大きくなっている(0.020[%]〜0.036[%]の差)。   In the case of the maximum value of the absolute values of the relative light quantity ratios R10s and R190s that are not corrected from the actual measurement values, the relative light quantity ratios R10s and R190s depend on the data acquisition interval (the half-wave plate 104 is rotated by Δθ). However, there is a slight difference (difference of 0.014 [%] to 0.016 [%]) between the case where the translucent substrate is arranged at 0 degree and the case where it is arranged at 90 degrees. Further, when the maximum relative light quantity ratios R10sf and R190sf are calculated by the fitting function derived from the relative light quantity ratios R10s and R190s that are not corrected from the actual measurement values, the translucent substrates are arranged at 0 degrees and at 90 degrees. In this case, the difference is large (difference of 0.020 [%] to 0.036 [%]).

これに対して、また、実測値から補正を行った補正相対光量比率R10sc,R190scから導出したフィッティング関数で最大の相対光量比率R10scf,R190scfを算出した場合では、透光性基板10が0度配置の場合と90度配置の場合で差がない。これらの結果から、透光性基板が0度配置の状態で取得した相対光量比率R10sと透光性基板が90度配置の状態で取得した相対光量比率R190sとの平均値であるR1avを算出し、相対光量比率R10s,R190sからそれぞれ平均値R1avを差し引いて算出した補正相対光量比率R10sc,R190scは、非常に高い精度であることがわかった。   On the other hand, when the maximum relative light quantity ratios R10scf and R190scf are calculated by the fitting function derived from the corrected relative light quantity ratios R10sc and R190sc corrected from the actual measurement values, the translucent substrate 10 is arranged at 0 degree. There is no difference between the case of and the case of 90 degree arrangement. From these results, R1av, which is an average value of the relative light quantity ratio R10s acquired when the translucent substrate is arranged at 0 degree and the relative light quantity ratio R190s obtained when the translucent board is arranged at 90 degrees, is calculated. The corrected relative light quantity ratios R10sc and R190sc calculated by subtracting the average value R1av from the relative light quantity ratios R10s and R190s, respectively, were found to have very high accuracy.

また、この補正相対光量比率R10scf,R190scfを用いれば、取得していない補正相対光量比率のデータ(1/2波長板104の回転角度θと回転角度θ+Δθの間の補正相対光量比率)を近似関数で精度よく補完できるといえる。また、簡易的な近似関数「R10s(またはR190s)=bsin[4θ−d]」、通常の近似関数「R10s(またはR190s)=a+bsin[cθ−d]」のどちらを用いても、高い精度で補正相対光量比率のデータを近似関数で精度よく補完できるといえる。   If the corrected relative light quantity ratios R10scf and R190scf are used, the correction relative light quantity ratio data (corrected relative light quantity ratio between the rotation angle θ of the half-wave plate 104 and the rotation angle θ + Δθ) that has not been acquired is an approximate function. It can be said that it can be complemented with high accuracy. In addition, with either a simple approximation function “R10s (or R190s) = bsin [4θ−d]” or a normal approximation function “R10s (or R190s) = a + bsin [cθ−d]”, high accuracy is achieved. It can be said that the data of the corrected relative light quantity ratio can be complemented with an approximate function with high accuracy.

図8は、1/2波長板104の回転角度θの範囲を1[deg]〜40[deg]とし、種々の測定角度の数(方位数)で透光性基板を0度配置の状態で取得した1/2波長板104の回転角度θと相対光量比率R10sまたは補正相対光量比率R10scとの各対応関係からフッティングで取得した各近似関数からそれぞれ算出した相対光量比率R10sfまたは補正相対光量比率R10scfの最大値を比較したものである。また、同様に、透光性基板を90度配置の状態で取得した1/2波長板104の回転角度θと相対光量比率R190sまたは補正相対光量比率R190scとの各対応関係からフッティングで取得した各近似関数からそれぞれ算出した相対光量比率R190sfまたは補正相対光量比率R190scfの最大値を比較したものである。   In FIG. 8, the range of the rotation angle θ of the half-wave plate 104 is 1 [deg] to 40 [deg], and the translucent substrate is arranged at 0 degrees with various numbers of measurement angles (the number of orientations). Relative light quantity ratio R10sf or corrected relative light quantity ratio calculated from each approximate function obtained by footing from the corresponding relationship between the obtained rotation angle θ of half-wave plate 104 and relative light quantity ratio R10s or corrected relative light quantity ratio R10sc. This is a comparison of the maximum value of R10scf. Similarly, it was obtained by footing from the corresponding relationship between the rotation angle θ of the half-wave plate 104 obtained with the translucent substrate disposed at 90 degrees and the relative light quantity ratio R190s or the corrected relative light quantity ratio R190sc. This is a comparison of the maximum value of the relative light quantity ratio R190sf or the corrected relative light quantity ratio R190scf calculated from each approximate function.

図8のグラフ横軸の光量の測定方位数において、「40方位」とは、1/2波長板104の回転角度θを1[deg]〜40[deg]の範囲でΔθを1[deg]ずつ回転させて光量値M1,M2を取得したことを意味する。「9方位」とは、1/2波長板104の回転角度θを1,5,10,15,20,25,30,35,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。「7方位」とは、1/2波長板104の回転角度θを1,10,15,20,30,35,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。「5方位」とは、1/2波長板104の回転角度θを1,10,20,30,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。「4方位」とは、1/2波長板104の回転角度θを1,15,25,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。「3方位」とは、1/2波長板104の回転角度θを1,20,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。「2方位」とは、1/2波長板104の回転角度θを1,40[deg]のそれぞれで光量値M1,M2を取得したことを意味する。   In the measurement azimuth number of the light amount on the horizontal axis of the graph of FIG. 8, “40 azimuth” means that the rotation angle θ of the half-wave plate 104 is 1 [deg] to 40 [deg] and Δθ is 1 [deg]. It means that the light amount values M1 and M2 are acquired by rotating each one. “9 directions” means that the light amount values M1 and M2 were acquired with the rotation angle θ of the half-wave plate 104 being 1, 5, 10, 15, 20, 25, 30, 35, and 40 [deg], respectively. Means. “Seven azimuth” means that the light amount values M1 and M2 are acquired with the rotation angle θ of the half-wave plate 104 being 1, 10, 15, 20, 30, 35, and 40 [deg], respectively. “Five directions” means that the light amount values M1 and M2 are acquired with the rotation angle θ of the half-wave plate 104 being 1, 10, 20, 30, and 40 [deg], respectively. “Four azimuths” means that the light amount values M1 and M2 are acquired with the rotation angle θ of the half-wave plate 104 being 1, 15, 25, and 40 [deg], respectively. “Three orientations” means that the light amount values M1 and M2 are acquired with the rotation angle θ of the half-wave plate 104 being 1, 20, and 40 [deg], respectively. “Two azimuth” means that the light amount values M1 and M2 are acquired with the rotation angle θ of the half-wave plate 104 being 1,40 [deg], respectively.

また、図8において、「0度配置」、「90度配置」は、図7の場合と同様、透光性基板10と検査光との位置関係のことをいう。また、図8において、「簡易近似関数」、「通常近似関数」は、図7で適用したものと同じモデルの関数をそれぞれ適用して、各定数a,b,c,dを算出している。そして、導出された各近似関数で、相対光量比率R10sf,R190sfまたは補正光量比率R10scf,R190scfを算出した結果を、図8上にプロットしている。なお、通常近似関数は、定数が4つあるため、最小でも4方位の相対光量比率R10s,R190sまたは補正相対光量比率R10sc,R190scが必要である。このため、通常近似関数については、3方位以下の結果はない。   In FIG. 8, “0 degree arrangement” and “90 degree arrangement” refer to the positional relationship between the translucent substrate 10 and the inspection light, as in the case of FIG. In FIG. 8, “simple approximation function” and “normal approximation function” calculate the constants a, b, c, and d by applying functions of the same model as those applied in FIG. 7, respectively. . Then, the results of calculating the relative light quantity ratios R10sf and R190sf or the corrected light quantity ratios R10scf and R190scf with the derived approximate functions are plotted on FIG. Since the normal approximate function has four constants, the relative light quantity ratios R10s and R190s in four directions or the corrected relative light quantity ratios R10sc and R190sc are required at the minimum. For this reason, there is no result of three or less directions for the normal approximate function.

図8の結果から、相対光量比率R10s,R190sから導出された簡易近似関数および通常近似関数は、ともに、0度配置と90度配置との間でそれぞれ算出された相対光量比率R10sf,R190sfの最大値の差がどの方位数でも大きく、非常に高い精度で算出されているとは言い難い。これに対し、補正相対光量比率R10sc,R190scから導出された通常近似関数は、ともに測定方位数を最小の4方位まで減らしても、0度配置と90度配置との間でそれぞれ算出された相対光量比率R10scf,R190scfの最大値の差が非常に小さく(図8上で「通常近似関数0度配置、補正有」のプロットと「通常近似関数90度配置、補正有」のプロットがほとんど重なっている。)、非常に高い精度で算出されているといえる。   From the results of FIG. 8, the simple approximate function and the normal approximate function derived from the relative light quantity ratios R10s and R190s are both the maximum of the relative light quantity ratios R10sf and R190sf calculated respectively between the 0 degree arrangement and the 90 degree arrangement. It is hard to say that the difference in values is large for any number of orientations and is calculated with very high accuracy. On the other hand, the normal approximation functions derived from the corrected relative light quantity ratios R10sc and R190sc are both calculated relative to the 0 degree arrangement and the 90 degree arrangement even when the number of measurement azimuths is reduced to the minimum four azimuths. The difference between the maximum values of the light intensity ratios R10scf and R190scf is very small (the plot of “normal approximation function 0 degree arrangement, with correction” and the plot of “normal approximation function 90 degree arrangement, with correction” almost overlap in FIG. It can be said that it is calculated with very high accuracy.

また、補正相対光量比率から導出された簡易近似関数は、ともに測定方位数を3方位まで減らしても、0度配置と90度配置との間でそれぞれ算出された相対光量比率R10scf,R190scfの最大値の差が非常に小さく(図8上で「簡易近似関数0度配置、補正有」のプロットと「簡易近似関数90度配置、補正有」のプロットがほとんど重なっている。)、非常に高い精度で算出されているといえる。以上のように、補正相対光量比率R10scf,R190scfを適用することで、光量値M1,M2の測定方位数を大幅に削減しても、高い精度で補正相対光量比率の最大値を算出することができることがわかる。   Further, the simple approximation function derived from the corrected relative light quantity ratio shows that the maximum of the relative light quantity ratios R10scf and R190scf calculated respectively between the 0 degree arrangement and the 90 degree arrangement even when the number of measurement azimuths is reduced to three. The difference in values is very small (the plot of “simple approximation function 0 degree arrangement, with correction” and the plot of “simple approximation function 90 degree arrangement, with correction” almost overlap in FIG. 8) and very high. It can be said that it is calculated with accuracy. As described above, by applying the corrected relative light quantity ratios R10scf and R190scf, the maximum value of the corrected relative light quantity ratio can be calculated with high accuracy even if the number of measurement directions of the light quantity values M1 and M2 is significantly reduced. I understand that I can do it.

図9は、相対光量比率[%]または補正相対光量比率[%]と複屈折値[nm/cm]との相関を示す図である。これは、公知の複屈折測定装置(HINDS社製 HINDS Exicor(R) 193 DUV)で予め複屈折値を測定した複屈折値が既知である測定箇所に対し、測定装置100を用い、透光性基板10と検査光との位置関係を90度回転させる前の状態(0度配置)で取得した相対光量比率R10sまたは補正相対光量比率R10scの絶対値での最大値と、透光性基板10と検査光との位置関係を90度回転させた後の状態(90度配置)で取得した相対光量比率R190sまたは補正相対光量比率R190scの絶対値での最大値をそれぞれプロットしたものである。なお、複屈折値が既知である測定箇所の複屈折値は、それぞれ2.76,4.904,6.078[nm/cm]である。なお、図9中の複屈折値が0[nm/cm]のプロットは、空気のみの測定で取得した相対光量比率または補正相対光量比率である。 FIG. 9 is a diagram showing the correlation between the relative light quantity ratio [%] or the corrected relative light quantity ratio [%] and the birefringence value [nm / cm]. This is because the measuring device 100 is used to measure the birefringence value measured in advance with a known birefringence measuring device (HINDS Exicor (R) 193 DUV manufactured by HINDS). The absolute value of the relative light amount ratio R10s or the corrected relative light amount ratio R10sc acquired in the state before the positional relationship between the substrate 10 and the inspection light is rotated 90 degrees (0 degree arrangement), and the translucent substrate 10 The maximum values of the absolute values of the relative light quantity ratio R190s or the corrected relative light quantity ratio R190sc acquired in the state after being rotated by 90 degrees (positioned by 90 degrees) are plotted respectively. In addition, the birefringence value of the measurement location where the birefringence value is known is 2.76, 4.904, and 6.078 [nm / cm], respectively. In addition, the plot whose birefringence value is 0 [nm / cm] in FIG. 9 is the relative light quantity ratio or the corrected relative light quantity ratio acquired by measuring only air.

0度配置での相対光量比率R10sと複屈折量との対応関係のプロット(図9中の「0度配置 補正無」)に対して、近似関数を算出したところ、近似関数y=5.1307x−0.0622が得られた。この近似関数とプロットの相関性は、決定係数R2が、0.9987であり、高い相関性を有していることがわかった。また、0度配置での補正相対光量比率R10scと複屈折量との対応関係のプロット(図9中の「0度配置 補正有」)に対して、近似関数を算出したところ、近似関数y=5.1939x−0.1528が得られた。この近似関数とプロットの相関性は、決定係数R2が、0.999であり、非常に高い相関性を有していることがわかった。   When an approximate function was calculated for a plot of the correspondence relationship between the relative light quantity ratio R10s and the birefringence amount at 0 degree arrangement ("0 degree arrangement without correction" in FIG. 9), the approximate function y = 5.1307x -0.0622 was obtained. The correlation between this approximate function and the plot has a coefficient of determination R2 of 0.9987, indicating that the correlation is high. Further, when an approximate function was calculated for a plot of the correspondence relationship between the corrected relative light quantity ratio R10sc and the birefringence amount in the 0 degree arrangement (“0 degree arrangement corrected” in FIG. 9), the approximate function y = 5.1939x-0.1528 was obtained. The correlation between the approximate function and the plot has a coefficient of determination R2 of 0.999, which indicates that the correlation is very high.

本発明では、検査光としてレーザー光を用いており、レーザー光の強度は強く、強度を安定させる技術が発達している(ばらつきが小さい)。光量を測定するアナログデジタルコンバーターの周波数を10KHzに選定したことで、1秒で1万回、0.1秒で1000回の測定を行うことができる。例えば、基板の1つの箇所について、1000回測定し、そのうちの中央の500回分のデータ使う(両端のばらつきの大きいデータを使用しない)ことで、再現性、測定精度が良い。
これに対し、例えば、公知の複屈折測定装置の場合、光源が重水素ランプであり光源のゆらぎがあり、光源の強度が弱く、ショットノイズ(光子のばらつき)がある。測定に時間がかかり、光源のドリフト(光量の経時シフト)の問題がある。測定データのばらつき範囲が本発明装置に比べ大きい。これらのことから精度を上げることが難しい。
In the present invention, laser light is used as inspection light, the intensity of the laser light is strong, and a technique for stabilizing the intensity has been developed (variation is small). By selecting the frequency of the analog-digital converter that measures the amount of light as 10 KHz, the measurement can be performed 10,000 times in 1 second and 1000 times in 0.1 second. For example, the measurement is performed 1000 times for one location on the substrate, and the data for 500 times in the center is used (data not having large variations at both ends is not used), so that reproducibility and measurement accuracy are good.
On the other hand, for example, in the case of a known birefringence measuring apparatus, the light source is a deuterium lamp, the light source fluctuates, the intensity of the light source is weak, and there is shot noise (photon variation). Measurement takes time, and there is a problem of light source drift (shift in the amount of light with time). The variation range of measurement data is larger than that of the device of the present invention. Therefore, it is difficult to improve accuracy.

上記において説明をしたような複屈折測定装置による基板の複屈折量の測定は、正確な複屈折量と角度を算出するため、測定に要する時間は長く、この工程を入れると、スループットが大幅に低下することとなる。また、この装置自体も構造が複雑かつ高価である。そのため、このような検査光に偏光した光を適用したマスク検査装置に対応することを目的とした基板の複屈折の影響を検査する方法について、より簡便で低コストの方法が望まれている。本発明によれば、簡便で低コストの方法で、基板全面の複屈折量を極めて正確に保証できる。   The measurement of the birefringence amount of the substrate by the birefringence measuring apparatus as described above calculates the accurate birefringence amount and angle, so the time required for the measurement is long. Will be reduced. The device itself is also complicated and expensive in structure. Therefore, a simpler and lower cost method is desired for a method of inspecting the influence of birefringence of a substrate for the purpose of corresponding to a mask inspection apparatus that applies polarized light to such inspection light. According to the present invention, it is possible to guarantee the amount of birefringence on the entire surface of the substrate extremely accurately by a simple and low-cost method.

以上、本発明に関して実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As described above, the present invention has been described using the embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

本発明は、例えばマスクブランク用基板の製造方法に好適に利用できる。   The present invention can be suitably used for, for example, a method for manufacturing a mask blank substrate.

10・・・透光性物品(透光性基板)、12・・・パターン形成用薄膜、20・・・マスクブランク、30・・・転写用マスク、100・・・測定装置、101・・・光源ユニット、102・・・レーザー光源、103・・・1/4波長板、104・・・1/2波長板、106a,106b・・・パワーメーター(光量測定器)、108・・・偏光ビームスプリッター(光分離器) DESCRIPTION OF SYMBOLS 10 ... Translucent article (translucent substrate), 12 ... Pattern forming thin film, 20 ... Mask blank, 30 ... Transfer mask, 100 ... Measuring apparatus, 101 ... Light source unit, 102 ... Laser light source, 103 ... 1/4 wavelength plate, 104 ... 1/2 wavelength plate, 106a, 106b ... Power meter (light quantity measuring device), 108 ... Polarized beam Splitter (light separator)

Claims (16)

対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度の条件を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記第1対応関係の相対光量比率を用い、予め取得して置いた相対光量比率と複屈折値との対応関係から前記測定箇所の複屈折値を取得する工程と
を有することを特徴とする複屈折の測定方法。
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. Is performed a plurality of times while changing the angle condition of the polarization plane of the inspection light incident on the light separator to obtain a first correspondence relationship that is a correspondence relationship between the rotation angle of the half-wave plate and the light amount ratio. Process,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Obtaining a birefringence value at the measurement location from the correspondence between the relative light quantity ratio acquired in advance and the birefringence value using the relative light quantity ratio of the first correspondence relation. Refraction measurement method.
対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記透光性物品と検査光とを、前記検査光の進行方向を回転軸として相対的に90度回転させたことを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第2対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第2対応関係の光量比率と前記基準対応関係の光量比率との差である第2対応関係の相対光量比率を算出する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の相対光量比率と前記第2対応関係の相対光量比率で平均値を算出する工程と、
前記第1対応関係の相対光量比率と前記平均値との差から、または前記第2対応関係の相対光量比率と前記平均値との差から補正相対光量比率を算出する工程と、
前記補正相対光量比率を用い、予め取得して置いた補正相対光量比率と複屈折値との対応関係から前記測定箇所の複屈折値を取得する工程と
を有することを特徴とする複屈折の測定方法。
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. To obtain a first correspondence that is a correspondence between the rotation angle of the half-wave plate and the light quantity ratio, a plurality of times by changing the angle of the polarization plane of the inspection light incident on the light separator. ,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Except for the fact that the translucent article and the inspection light are rotated by 90 degrees relative to the traveling direction of the inspection light as a rotation axis, under the same conditions as the step of obtaining the first correspondence relationship, A step of acquiring a second correspondence relationship that is a correspondence relationship between the rotation angle of the two-wavelength plate and the light amount ratio;
Calculating a relative light quantity ratio of a second correspondence relationship that is a difference between the light quantity ratio of the second correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating an average value with the relative light quantity ratio of the first correspondence and the relative light quantity ratio of the second correspondence with the same rotation angle of the half-wave plate;
Calculating a corrected relative light amount ratio from a difference between the relative light amount ratio of the first correspondence relationship and the average value, or from a difference between the relative light amount ratio of the second correspondence relationship and the average value;
Using the corrected relative light amount ratio, and obtaining a birefringence value at the measurement location from a correspondence relationship between the corrected relative light amount ratio and the birefringence value acquired and set in advance. Method.
前記第1対応関係の相対光量比率または前記第2対応関係の相対光量比率から算出された補正相対光量比率と前記1/2波長板の回転角度の対応関係からフィッティング関数を取得する工程をさらに有し、
前記複屈折値を取得する工程は、前記フィッティング関数から算出される補正相対光量比率を用いて前記測定箇所の複屈折値を取得する工程であることを特徴とする請求項2記載の複屈折の測定方法。
The method further includes a step of obtaining a fitting function from the correspondence relationship between the corrected relative light amount ratio calculated from the first correspondence relative light amount ratio or the second correspondence relative light amount ratio and the rotation angle of the half-wave plate. And
The birefringence value according to claim 2, wherein the step of obtaining the birefringence value is a step of obtaining a birefringence value at the measurement location using a corrected relative light quantity ratio calculated from the fitting function. Measuring method.
前記フッティング関数は、三角関数の項を含む関数であることを特徴とする請求項3記載の複屈折の測定方法。   4. The birefringence measuring method according to claim 3, wherein the footing function is a function including a trigonometric function term. 前記第1対応関係、第2対応関係および基準対応関係は、同じ前記1/2波長板の回転角度に対応する光量比率を3方位以上の角度でともに取得していることを特徴とする請求項3または4に記載の複屈折の測定方法。   The first correspondence relationship, the second correspondence relationship, and the reference correspondence relationship are obtained by acquiring light amount ratios corresponding to the same rotation angle of the half-wave plate at angles of three or more directions. 3. The method for measuring birefringence according to 3 or 4. 前記フィッティング関数の取得は、最小2乗法を用いて行われることを特徴とする請求項3から5のいずれかに記載の複屈折の測定方法。   6. The method of measuring birefringence according to claim 3, wherein the fitting function is acquired using a least square method. 対向する1組の表面を有する透光性物品における複屈折の測定方法であって、
光源ユニットから出射される円偏光の検査光を一方の前記表面の測定箇所から前記透光性物品の内部に入射し、他方の前記表面から出射した検査光を1/2波長板を透過させてから、光分離器によって波面が互いに直交する2つの直線偏光に分離し、2つの光量測定器で前記2つの直線偏光をそれぞれ受光して光量を測定し、前記2つの直線偏光の光量測定値のうち、いずれか一方の光量測定値を、前記2つの直線偏光の光量測定値の和で除して光量比率を算出する工程を、同じ前記測定箇所で、前記1/2波長板を回転させることにより前記光分離器に入射する検査光の偏光面の角度を変えて複数回行い、前記1/2波長板の回転角度と前記光量比率との対応関係である第1対応関係を取得する工程と、
前記光源ユニットと前記1/2波長板の間に前記透光性物品を配置しない状態とすることを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である基準対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の光量比率と前記基準対応関係の光量比率との差である前記第1対応関係の相対光量比率を算出する工程と、
前記透光性物品と検査光とを、前記検査光の進行方向を回転軸として相対的に90度回転させたことを除いて、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第2対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第2対応関係の光量比率と前記基準対応関係の光量比率との差である第2対応関係の相対光量比率を算出する工程と、
前記1/2波長板の回転角度が同一である前記第1対応関係の相対光量比率と前記第2対応関係の相対光量比率で平均値を算出する工程と、
前記透光性物品における別の測定箇所または別の透光性物品における測定箇所に対し、前記第1対応関係を取得する工程と同じ条件で、前記1/2波長板の回転角度と光量比率との対応関係である第3対応関係を取得する工程と、
前記1/2波長板の回転角度が同一である前記第3対応関係の光量比率と前記基準対応関係の光量比率との差である前記第3対応関係の相対光量比率を算出する工程と、
前記第3対応関係の相対光量比率と前記平均値との差から、前記第3対応関係の補正相対光量比率を算出する工程と、
前記補正相対光量比率を用い、予め取得して置いた補正相対光量比率と複屈折値との対応関係から、前記透光性物品における別の測定箇所または前記別の透光性物品における測定箇所の複屈折値を取得する複屈折値取得工程と
を有することを特徴とする複屈折の測定方法。
A method for measuring birefringence in a translucent article having a pair of opposing surfaces,
The circularly polarized inspection light emitted from the light source unit is incident on the inside of the translucent article from the measurement point on one surface, and the inspection light emitted from the other surface is transmitted through the half-wave plate. From the two linearly polarized lights whose wavefronts are orthogonal to each other by the light separator, and the two linearly polarized lights are respectively received by the two light quantity measuring devices to measure the light quantity, and the light quantity measurement values of the two linearly polarized lights are measured. The step of calculating the light amount ratio by dividing one of the light amount measurement values by the sum of the light amount measurement values of the two linearly polarized light is to rotate the half-wave plate at the same measurement location. To obtain a first correspondence that is a correspondence between the rotation angle of the half-wave plate and the light quantity ratio, a plurality of times by changing the angle of the polarization plane of the inspection light incident on the light separator. ,
The rotation angle of the half-wave plate under the same conditions as in the step of obtaining the first correspondence relationship, except that the translucent article is not disposed between the light source unit and the half-wave plate. Obtaining a standard correspondence relationship that is a correspondence relationship between the light intensity ratio and
Calculating a relative light quantity ratio of the first correspondence relationship that is a difference between the light quantity ratio of the first correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Except for the fact that the translucent article and the inspection light are rotated by 90 degrees relative to the traveling direction of the inspection light as a rotation axis, under the same conditions as the step of obtaining the first correspondence relationship, A step of acquiring a second correspondence relationship that is a correspondence relationship between the rotation angle of the two-wavelength plate and the light amount ratio;
Calculating a relative light quantity ratio of a second correspondence relationship that is a difference between the light quantity ratio of the second correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating an average value with the relative light quantity ratio of the first correspondence and the relative light quantity ratio of the second correspondence with the same rotation angle of the half-wave plate;
With respect to another measurement location in the translucent article or a measurement location in another translucent article, under the same conditions as the step of obtaining the first correspondence, Obtaining a third correspondence which is the correspondence of
Calculating a relative light quantity ratio of the third correspondence which is a difference between the light quantity ratio of the third correspondence relation and the light quantity ratio of the reference correspondence relation in which the rotation angles of the half-wave plates are the same;
Calculating a corrected relative light amount ratio of the third correspondence from a difference between the relative light amount ratio of the third correspondence and the average value;
Using the corrected relative light quantity ratio, from the correspondence between the corrected relative light quantity ratio and the birefringence value acquired and set in advance, another measurement location in the translucent article or measurement location in the other translucent article And a birefringence value obtaining step for obtaining a birefringence value.
前記第3対応関係の相対光量比率から算出された補正相対光量比率と前記1/2波長板の回転角度の対応関係からフィッティング関数を取得する工程をさらに有し、
前記複屈折値を取得する工程は、前記フィッティング関数から算出される補正相対光量比率を用いて前記測定箇所の複屈折値を取得する工程であることを特徴とする請求項7記載の複屈折の測定方法。
A step of obtaining a fitting function from the correspondence between the corrected relative light quantity ratio calculated from the relative light quantity ratio of the third correspondence and the rotation angle of the half-wave plate;
The birefringence value according to claim 7, wherein the step of obtaining the birefringence value is a step of obtaining a birefringence value of the measurement location using a corrected relative light quantity ratio calculated from the fitting function. Measuring method.
前記フッティング関数は、三角関数の項を含む関数であることを特徴とする請求項8記載の複屈折の測定方法。   9. The birefringence measurement method according to claim 8, wherein the footing function is a function including a trigonometric function term. 前記第1対応関係、第2対応関係、第3対応関係および基準対応関係は、同じ前記1/2波長板の回転角度に対応する光量比率を3方位以上の角度でともに取得していることを特徴とする請求項8または9に記載の複屈折の測定方法。   The first correspondence relationship, the second correspondence relationship, the third correspondence relationship, and the reference correspondence relationship indicate that the light quantity ratio corresponding to the same rotation angle of the half-wave plate is acquired at an angle of three or more directions. The birefringence measuring method according to claim 8 or 9, characterized in that 前記フィッティング関数の取得は、最小2乗法を用いて行われることを特徴とする請求項8から10のいずれかに記載の複屈折の測定方法。   The method of measuring birefringence according to any one of claims 8 to 10, wherein the fitting function is acquired using a least square method. 前記光源ユニットは、レーザー光源と1/4波長板を備え、前記円偏光の検査光は、レーザー光源から射出された直線偏光を、1/4波長板を透過させて得られたものであることを特徴とする請求項1から11のいずれかに記載の複屈折の測定方法。   The light source unit includes a laser light source and a quarter-wave plate, and the circularly polarized inspection light is obtained by transmitting linearly polarized light emitted from the laser light source through the quarter-wave plate. The method for measuring birefringence according to claim 1, wherein: 前記透光性物品は、透光性基板であり、
前記透光性基板に対して、請求項1から12のいずれかに記載の複屈折の測定方法を適用して取得した複屈折値が所定値以下の透光性基板をマスクブランク用基板として選定する工程を有することを特徴とするマスクブランク用基板の製造方法。
The translucent article is a translucent substrate,
A translucent substrate having a birefringence value obtained by applying the birefringence measuring method according to any one of claims 1 to 12 to the translucent substrate is selected as a mask blank substrate. The manufacturing method of the mask blank board | substrate characterized by having the process to do.
請求項13記載のマスクブランク用基板の製造方法で製造されたマスクブランク用基板の主表面に、パターン形成用薄膜を形成する工程を有することを特徴とするマスクブランクの製造方法。   A method for producing a mask blank, comprising a step of forming a thin film for pattern formation on a main surface of a mask blank substrate produced by the method for producing a mask blank substrate according to claim 13. 請求項14記載のマスクブランクの製造方法で製造されたマスクブランクのパターン形成用薄膜に転写パターンを形成する工程を有することを特徴とする転写用マスクの製造方法。   A method for producing a transfer mask, comprising a step of forming a transfer pattern on a thin film for pattern formation of a mask blank produced by the method for producing a mask blank according to claim 14. 請求項15記載の転写用マスクの製造方法で製造された転写用マスクを用い、半導体ウェハ上に回路パターンを形成する工程を有することを特徴とする半導体デバイスの製造方法。   A method for manufacturing a semiconductor device, comprising: forming a circuit pattern on a semiconductor wafer using the transfer mask manufactured by the method for manufacturing a transfer mask according to claim 15.
JP2013219695A 2013-10-22 2013-10-22 Birefringence measuring method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method Active JP6195777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219695A JP6195777B2 (en) 2013-10-22 2013-10-22 Birefringence measuring method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219695A JP6195777B2 (en) 2013-10-22 2013-10-22 Birefringence measuring method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2015081835A true JP2015081835A (en) 2015-04-27
JP6195777B2 JP6195777B2 (en) 2017-09-13

Family

ID=53012506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219695A Active JP6195777B2 (en) 2013-10-22 2013-10-22 Birefringence measuring method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP6195777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021132A (en) * 2015-06-30 2018-02-28 코닝 인코포레이티드 Interference roll-off measurements using static fringe patterns
JP2020008410A (en) * 2018-07-06 2020-01-16 浜松ホトニクス株式会社 Method for calibrating electric field vector measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863836A (en) * 1981-09-28 1983-04-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Optical device
JPH05281137A (en) * 1992-04-06 1993-10-29 Asahi Optical Co Ltd Double-refraction measuring apparatus
JP2003247934A (en) * 2002-02-25 2003-09-05 Sony Corp Birefringence measurement method and birefringence measurement device
JP2004205500A (en) * 2002-12-13 2004-07-22 Canon Inc Apparatus and method for measuring birefringence
JP2004212125A (en) * 2002-12-27 2004-07-29 Canon Inc Birefringence measuring device
JP2013140237A (en) * 2011-12-29 2013-07-18 Hoya Corp Method for determining birefringence specification for synthetic quartz glass substrate for mask blank, method for manufacturing synthetic quartz glass substrate for mask blank, method for manufacturing mask blank and method for manufacturing transfer mask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863836A (en) * 1981-09-28 1983-04-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Optical device
JPH05281137A (en) * 1992-04-06 1993-10-29 Asahi Optical Co Ltd Double-refraction measuring apparatus
JP2003247934A (en) * 2002-02-25 2003-09-05 Sony Corp Birefringence measurement method and birefringence measurement device
JP2004205500A (en) * 2002-12-13 2004-07-22 Canon Inc Apparatus and method for measuring birefringence
JP2004212125A (en) * 2002-12-27 2004-07-29 Canon Inc Birefringence measuring device
JP2013140237A (en) * 2011-12-29 2013-07-18 Hoya Corp Method for determining birefringence specification for synthetic quartz glass substrate for mask blank, method for manufacturing synthetic quartz glass substrate for mask blank, method for manufacturing mask blank and method for manufacturing transfer mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021132A (en) * 2015-06-30 2018-02-28 코닝 인코포레이티드 Interference roll-off measurements using static fringe patterns
KR102583096B1 (en) 2015-06-30 2023-09-27 코닝 인코포레이티드 Interference roll-off measurements using static fringe patterns
JP2020008410A (en) * 2018-07-06 2020-01-16 浜松ホトニクス株式会社 Method for calibrating electric field vector measurement
JP7041015B2 (en) 2018-07-06 2022-03-23 浜松ホトニクス株式会社 Calibration method of electric field vector measurement

Also Published As

Publication number Publication date
JP6195777B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
CN101251718B (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
CN1916603B (en) Method and apparatus for angular-resolved spectroscopic lithography characterisation
TWI480533B (en) Measurement method for measuring polarization property
JP4871943B2 (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US8792096B2 (en) Inspection apparatus for lithography
CN102804073A (en) Inspection for lithography
KR101509054B1 (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
US20110032500A1 (en) Inspection apparatus for lithography
JP4928897B2 (en) Polarization evaluation mask, polarization evaluation method, and polarization measurement device
TW201346213A (en) Calibration of an optical metrology system for critical dimension application matching
KR20140108651A (en) Spectral matching based calibration
US7777880B2 (en) Metrological characterisation of microelectronic circuits
TW201415009A (en) Pattern test apparatus
WO2013138066A1 (en) Dual angles of incidence and azimuth angles optical metrology
JP2005509153A (en) Accurate calibration of birefringence measurement system
JP6195777B2 (en) Birefringence measuring method, mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
CN110603492A (en) Metrology sensor, lithographic apparatus and method for manufacturing a device
JP6084507B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2002213930A (en) Method of measuring shape, and method of manufacturing highly precise lens
KR20040111091A (en) Method for producing a library
JP3927629B2 (en) Substrate processing process monitoring apparatus and device manufacturing method using the same
US20220350261A1 (en) Snapshot type overlay error measuring device and measuring method
CN114628300A (en) Wide-spectrum self-reference interference alignment system
CN116223391A (en) Ellipsometer-oriented measurement consistency optimization method and device
JP2023074579A (en) Ellipsometer and inspection device of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

R150 Certificate of patent or registration of utility model

Ref document number: 6195777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250