JP2015081320A - Perfluoro sulfonic acid polymer-azole blend membrane and production method thereof as well as solid polymer-type fuel cell - Google Patents

Perfluoro sulfonic acid polymer-azole blend membrane and production method thereof as well as solid polymer-type fuel cell Download PDF

Info

Publication number
JP2015081320A
JP2015081320A JP2013220763A JP2013220763A JP2015081320A JP 2015081320 A JP2015081320 A JP 2015081320A JP 2013220763 A JP2013220763 A JP 2013220763A JP 2013220763 A JP2013220763 A JP 2013220763A JP 2015081320 A JP2015081320 A JP 2015081320A
Authority
JP
Japan
Prior art keywords
azole
membrane
acid polymer
perfluorosulfonic acid
blend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220763A
Other languages
Japanese (ja)
Other versions
JP6415807B2 (en
Inventor
済徳 金
Zumitoku Kin
済徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013220763A priority Critical patent/JP6415807B2/en
Publication of JP2015081320A publication Critical patent/JP2015081320A/en
Application granted granted Critical
Publication of JP6415807B2 publication Critical patent/JP6415807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a proton exchange membrane in which perfluoro sulfonic acid polymer is used and that has a good high-temperature stability.SOLUTION: There is provided a proton exchange membrane that is obtained by preparing a perfluoro sulfonic acid polymer-azole blend membrane, followed by heat treating the membrane at a 130°C to 200°C range; the membrane has an improved high-temperature stability as compared to those without the heat treatment, and also the membrane has a small swelling ratio even for a solvent such as methanol; and also, a solid polymer-type fuel cell in which this heat-treated membrane is used as the polymer electrolyte, is stably worked for a long duration in a durability cycle characteristic run at cell temperature of 70°C and 100°C.

Description

本発明は高温PEMFC(proton exchange membrane fuel cell、固体高分子型燃料電池)用電解質膜等に適するパーフルオロスルホン酸ポリマー−アゾールブレンド膜、これらのブレンド膜の製造方法、及びこれらのブレンド膜を電解質膜として使用したPEMFCに関する。   The present invention relates to a perfluorosulfonic acid polymer-azole blend membrane suitable for an electrolyte membrane for high-temperature PEMFC (proton exchange membrane fuel cell), a method for producing these blend membranes, and the blend membrane as an electrolyte. It relates to PEMFC used as a membrane.

水素ガスと酸素ガスを使用するPEMFCは、クリーンなエネルギーシステムであり、高いエネルギー密度を有するとともに、変換効率が高いことから、次世代の電力発生機器として注目を浴びてきた。過去数10年間に亘ってナフィオン(イー アイ デュポン ドゥ ヌムール アンド カンパニーの登録商標)などのパーフルオロスルホン酸(perfluorosulfonic)イオン交換ポリマー(疎水性のパーフルオロカーボン骨格とスルホン酸基を持つパーフルオロ側鎖とから構成されるパーフルオロカーボン材料であり、tetrafluoroethyleneとperfluoro[2-(fluorosulfonylethoxy)propylvinyl ether]の共重合体である。本願ではこの共重合体を「パーフルオロスルホン酸ポリマー」と称する。)がPEMFCの電解質として使用されてきた。   PEMFC using hydrogen gas and oxygen gas is a clean energy system, has high energy density and high conversion efficiency, and has attracted attention as a next-generation power generation device. Perfluorosulfonic acid ion exchange polymers (hydrophobic perfluorocarbon skeleton and perfluoro side chain with sulfonic acid groups) such as Nafion (registered trademark of Ei Dupont de Nemours and Company) over the past decades A perfluorocarbon material composed of tetrafluoroethylene and perfluoro [2- (fluorosulfonylethoxy) propylvinyl ether] (this copolymer is referred to as “perfluorosulfonic acid polymer” in this application). It has been used as an electrolyte.

これらの膜のプロトン輸送性はそれらの含水量によって強く規定されるが、実際問題としては、これらはほぼ大気圧の反応物質圧力を利用する場合には90℃よりも低い動作温度に限定される。燃料電池を100℃よりも低温で動作させると、電極に関わる速度(electrode kinetics)が遅くなるのと、CO耐性が低くなることにより、性能が落ちる。100℃よりも高温で動作させることにより、Pt電極の一酸化炭素耐性が向上するという利点がもたらされ、また水、熱及び電気の併給効率を改善しながら、システム全体の熱管理が簡略化される。従って、高温(100〜200℃)に耐えるその代替の化学物質を使用した電解質膜が検討されてきた。このような代替の電解質膜としては、パーフルオロアイオノマー及びその複合材料(HPO、ヘテロポリ酸、シリカ、リン酸ジルコニウム、TiO、イミダゾール/HPO、ベンズイミダゾール、1,2,4−トリアゾール、及び1,2,3−トリアゾール)(非特許文献1〜9)、スルホン化ポリ(エーテル・エーテル・ケトン)(SPEEK)(非特許文献10〜13)及びポリベンズイミダゾール(PBI)(非特許文献14〜20)のような炭化水素ポリマー膜、並びに有機−無機ブレンド膜(非特許文献21〜25)等がある。通常、これらの膜のプロトン交換伝導性の試験は、加湿した、あるいはやや加湿した条件下で行われる。しかしながら、高温PEFCのためには、高いプロトン伝導度を示しながら無水条件下、あるいはできるだけ低湿度の条件下で動作することが重要である。 Although the proton transport properties of these membranes are strongly defined by their water content, in practice they are limited to operating temperatures below 90 ° C. when using reactant pressures of approximately atmospheric pressure. . When the fuel cell is operated at a temperature lower than 100 ° C., the electrode kinetics are lowered, and the CO resistance is lowered, so that the performance is lowered. Operating at temperatures above 100 ° C provides the advantage of increased carbon monoxide resistance to Pt electrodes and simplifies overall system thermal management while improving the combined efficiency of water, heat and electricity. Is done. Thus, electrolyte membranes using alternative chemicals that can withstand high temperatures (100-200 ° C.) have been investigated. Such alternative electrolyte membranes include perfluoroionomers and composites thereof (H 3 PO 4 , heteropolyacid, silica, zirconium phosphate, TiO 2 , imidazole / H 3 PO 4 , benzimidazole, 1,2,4 -Triazole and 1,2,3-triazole) (non-patent documents 1 to 9), sulfonated poly (ether ether ketone) (SPEEK) (non-patent documents 10 to 13) and polybenzimidazole (PBI) ( Non-patent documents 14 to 20), hydrocarbon polymer films, and organic-inorganic blend films (non-patent documents 21 to 25). Usually, the proton exchange conductivity test of these membranes is performed under humidified or slightly humidified conditions. However, for high temperature PEFC, it is important to operate under anhydrous conditions or as low a humidity as possible while exhibiting high proton conductivity.

無水電解質が幾つか報告されている。その中には酸塩基材料(acid-base material)(イミダゾール、ピラゾール、トリアゾール、ベンズイミダゾール)(非特許文献7、25〜29)及びポリベンズイミダゾール(PBI)−HPO(HSO)膜(非特許文献14〜20)がある。PBI−HPO電解質は、低いガス透過率を持つとともに100℃よりも高温で熱的に安定であるという良好な機械的特性を持つことが報告されている(非特許文献15)。しかしながら、PBI−HPOは炭化水素ポリマーを使用しているために可燃性が高いなど、実用化に当たって問題があるため、高温PEMFC用の電解質として使用可能な代替材料を見出すことが求められている。 Several anhydrous electrolytes have been reported. Among them, acid-base materials (imidazole, pyrazole, triazole, benzimidazole) (Non-patent Documents 7, 25-29) and polybenzimidazole (PBI) -H 3 PO 4 (H 2 SO 4). ) Film (Non-Patent Documents 14 to 20). PBI-H 3 PO 4 electrolyte has been reported to have good mechanical properties such as low gas permeability and being thermally stable at a temperature higher than 100 ° C. (Non-patent Document 15). However, PBI-H 3 PO 4 uses a hydrocarbon polymer and has problems in practical use such as high flammability. Therefore, it is required to find an alternative material that can be used as an electrolyte for high-temperature PEMFC. ing.

本願発明者らは以前にベンズイミダゾール及び1,2,4−トリアゾールモノマーを組み込んだナフィオン−塩基ブレンド膜を報告した(非特許文献9、26、30)。この塩基モノマーはパーフルオロ化アイオノマーモノマー(perflurorinated ionomer monomer)内でプロトン受容体として水を置換するために使用することができる。このブレンド膜は非加湿条件下で、100℃を越える温度領域において高いプロトン伝導率を示した。ナフィオン−1,2,4−トリアゾール及びナフィオン−ベンズイミダゾールブレンド膜は中間温度領域PEFC用として100℃を超える温度で使用できると考えられた。しかしながら、これらの膜は容易に損傷し、また高い電池性能を得るのは簡単ではない。従って、高度の柔軟性を有する、高温に耐える無水性のプロトン伝導性膜が必要とされる。柔軟性を有する無水性の膜を得るため、本願発明者等は1,2,3−トリアゾール(C)を見出し、室温(RT)及びオートクレーブ(AC)溶液処理を使用することによってナフィオン−1,2,3−トリアゾールブレンド膜を合成した。AC溶液処理を使用したナフィオン−1,2,3−トリアゾールブレンド膜は非常に安定であった(非特許文献7、8)。しかしながら、ブレンド膜の無水状態での伝送率は極めて高いというわけではなかった(200℃で1mS/cm)。 The present inventors have previously reported a Nafion-base blend membrane incorporating benzimidazole and 1,2,4-triazole monomer (Non-patent Documents 9, 26, 30). This base monomer can be used to displace water as a proton acceptor within a perfluorinated ionomer monomer. This blend membrane exhibited high proton conductivity in a temperature range exceeding 100 ° C. under non-humidified conditions. It was thought that Nafion-1,2,4-triazole and Nafion-benzimidazole blend membranes could be used at temperatures in excess of 100 ° C. for intermediate temperature range PEFC. However, these membranes are easily damaged and it is not easy to obtain high battery performance. Accordingly, there is a need for an anhydrous proton conducting membrane that has a high degree of flexibility and can withstand high temperatures. In order to obtain a flexible anhydrous membrane, the inventors find 1,2,3-triazole (C 2 H 3 N 3 ) and use room temperature (RT) and autoclave (AC) solution processing. The Nafion-1,2,3-triazole blend membrane was synthesized by The Nafion-1,2,3-triazole blend film using AC solution treatment was very stable (Non-patent Documents 7 and 8). However, the transmission rate of the blend membrane in the anhydrous state was not very high (1 mS / cm at 200 ° C.).

また、スルホン化ポリ(エーテル・エーテル・ケトン)(SPEEK)電解質膜を活性化処理することが報告されている(非特許文献31)。溶媒に溶解した材料を流し込むことによって形成されたSPEEK膜では、当該膜のナノ構造内に溶媒が残留している。当該非特許文献では、SPEEK膜を1M HSOで処理することによってこの残留溶媒を除去した。その結果、活性化処理前のSPEEK電解質膜に比較して、活性化処理後の膜は吸水性、プロトン伝導性、更には燃料電池に使用した際の電池性能の点で優れていた。しかし、この報告はSPEEK電解質膜のみについてのものであり、それ以外の電解質膜に適用することについては示唆がなかった。
また、PEEK(polyetheretherketone)、PES(polyphenylenesulfide)、PPSU(polyphenyl sulfone)を用いてポリマーの繰り返し単位にスルホン基を高濃度で付加した後、有機溶媒であるDMSO(dimethyl sulfoxide)を用いて膜化し、これらを熱処理することで熱的に安定な電解質膜を開発した報告もある(非特許文献32〜34)。しかし、これらの報告は炭化水素系ポリマーをスルホン化したものについてのものであり、パーフルオロスルホン酸ポリマーへの適用可能性については検討されていなかった。更には、これらの報告では有機溶媒はこの反応過程に必須な物資であるとされている。しかし、有機溶媒は人体に有害であるため、これを用いることは作業者の安全管理や環境汚染の面で問題を引き起こす可能性があり、また法的規制がかけられているため、産業上の応用の面からは好ましくない。
In addition, it has been reported that a sulfonated poly (ether ether ketone) (SPEEK) electrolyte membrane is activated (Non-patent Document 31). In a SPEEK film formed by pouring a material dissolved in a solvent, the solvent remains in the nanostructure of the film. In this non-patent document, this residual solvent was removed by treating the SPEEK membrane with 1M H 2 SO 4 . As a result, compared with the SPEEK electrolyte membrane before the activation treatment, the membrane after the activation treatment was superior in terms of water absorption, proton conductivity, and battery performance when used in a fuel cell. However, this report is only for the SPEEK electrolyte membrane, and there was no suggestion of applying to other electrolyte membranes.
Moreover, after adding a sulfo group to a polymer repeating unit at a high concentration using PEEK (polyetheretherketone), PES (polyphenylenesulfide), PPSU (polyphenyl sulfone), it is formed into a film using DMSO (dimethyl sulfoxide) which is an organic solvent, There are also reports of developing thermally stable electrolyte membranes by heat-treating them (Non-Patent Documents 32-34). However, these reports relate to a sulfonated hydrocarbon-based polymer, and the applicability to a perfluorosulfonic acid polymer has not been studied. Furthermore, in these reports, the organic solvent is regarded as an essential material for this reaction process. However, organic solvents are harmful to the human body, so their use can cause problems in terms of worker safety management and environmental pollution, and are subject to legal restrictions, so that It is not preferable in terms of application.

本発明の課題は、上述した従来技術の問題点を解消し、パーフルオロスルホン酸ポリマー−アゾールブレンド膜を熱処理することで、その熱的な安定を大きく向上させることにある。   An object of the present invention is to eliminate the above-mentioned problems of the prior art and to greatly improve the thermal stability of the perfluorosulfonic acid polymer-azole blend film by heat treatment.

本発明の一側面によれば、パーフルオロスルホン酸ポリマー及びアゾールを含む混合溶液を反応させ、反応後の溶液から膜を形成し、前記形成された膜を130℃から200℃の範囲で熱処理することによる、パーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法が与えられる。
ここで、前記熱処理は1時間から12時間の範囲で行ってよい。
また、前記混合液の反応は室温から200℃の範囲で行ってよい。
また、前記混合液の反応は3時間から24時間の範囲で行ってよい。
また、前記膜の形成は反応後の前記混合溶液を乾燥することによって行ってよい。
また、前記混合溶液は更にアルコール及び水を含んでよい。
また、前記アルコールは1−及び2−プロパノールであってよい。
また、前記アゾールはピロール、テトラゾール、及びペンタゾールからなる群から選択されてよい。
あるいは、前記アゾールは1,2,3−トリアゾール、ベンズイミダゾール、ピラゾール、イミダゾール及び1,2,4−トリアゾールからなる群から選択されてよい。
また、前記パーフルオロスルホン酸ポリマーはナフィオン、フレミオン及びアシプレックスからなる群から選択されてよい。
本発明の他の側面によれば、上記何れかの方法によって製造されたパーフルオロスルホン酸ポリマー−アゾールブレンド膜が与えられる。
本発明の更に他の側面によれば、上記パーフルオロスルホン酸ポリマー−アゾールブレンド膜を電解質膜として使用した固体高分子燃料電池が与えられる。
本発明の更に他の側面によれば、上記パーフルオロスルホン酸ポリマー−アゾールブレンド膜を電解質膜として使用した直接メタノール型燃料電池が与えられる。
According to one aspect of the present invention, a mixed solution containing a perfluorosulfonic acid polymer and an azole is reacted, a film is formed from the solution after the reaction, and the formed film is heat-treated in a range of 130 ° C. to 200 ° C. Thus, a method for producing a perfluorosulfonic acid polymer-azole blend membrane is provided.
Here, the heat treatment may be performed in a range of 1 hour to 12 hours.
In addition, the reaction of the mixed solution may be performed in the range of room temperature to 200 ° C.
The reaction of the mixed solution may be performed in the range of 3 hours to 24 hours.
The film may be formed by drying the mixed solution after the reaction.
The mixed solution may further contain alcohol and water.
The alcohol may be 1- and 2-propanol.
The azole may be selected from the group consisting of pyrrole, tetrazole, and pentazole.
Alternatively, the azole may be selected from the group consisting of 1,2,3-triazole, benzimidazole, pyrazole, imidazole and 1,2,4-triazole.
The perfluorosulfonic acid polymer may be selected from the group consisting of Nafion, Flemion and Aciplex.
According to another aspect of the present invention, a perfluorosulfonic acid polymer-azole blend membrane produced by any of the above methods is provided.
According to still another aspect of the present invention, there is provided a solid polymer fuel cell using the perfluorosulfonic acid polymer-azole blend membrane as an electrolyte membrane.
According to still another aspect of the present invention, there is provided a direct methanol fuel cell using the perfluorosulfonic acid polymer-azole blend membrane as an electrolyte membrane.

本発明によれば、パーフルオロスルホン酸ポリマー−アゾールブレンド膜の熱的な安定を大きく向上させることができる。   According to the present invention, the thermal stability of the perfluorosulfonic acid polymer-azole blend film can be greatly improved.

熱処理前後のナフィオン−1,2,3−トリアゾールブレンド膜の構造変化を示す。The structural change of the Nafion-1,2,3-triazole blend film | membrane before and behind heat processing is shown. 熱処理なし及び熱処理済ナフィオン−1,2,3−トリアゾールブレンド膜のFTIRを示す図。The figure which shows FTIR of the heat-treated Nafion-1,2,3-triazole blend film | membrane without heat processing. 本発明の一実施例の熱処理済み膜の電気伝導度を示す図。The figure which shows the electrical conductivity of the heat-processed film | membrane of one Example of this invention. 本発明の電池セルの特性測定結果を示す図。The figure which shows the characteristic measurement result of the battery cell of this invention. 本発明の電池セルの耐久性の評価結果を示す図。The figure which shows the durability evaluation result of the battery cell of this invention.

本願発明者は、上述したナフィオン−1,2,3−トリアゾールブレンド膜等のパーフルオロスルホン酸ポリマー−アゾールブレンド膜を熱処理することにより、その熱的安定性が大きく改善されることを見出し、本願発明を完成させるに至った。   The inventor of the present application has found that the thermal stability of the perfluorosulfonic acid polymer-azole blend film such as the Nafion-1,2,3-triazole blend film described above is greatly improved by heat treatment. The invention has been completed.

以下の実施例では特定の条件下でパーフルオロスルホン酸ポリマー−アゾールブレンド膜を作製してそれを熱処理したが、これらの条件は当該実施例に示したものに限定されない。例えば、熱処理の温度範囲及び処理時間範囲はそれぞれ130℃から200℃の範囲及び1時間から12時間の範囲で変化させて良い。また熱処理すべき膜を作製するために原料のパーフルオロスルホン酸ポリマーとアゾールとを反応させるが、この際の反応温度及び反応時間はそれぞれ室温から200℃の範囲及び3時間から24時間の範囲で変化させて良い。また、アゾールとして1,2,3−トリアゾール(1,2,3-triazole)を使用した場合の例を以下で説明するが、他のアゾール類も使用することができる。また、以下ではパーフルオロスルホン酸ポリマーとしてナフィオンを例に挙げて説明するが、他のパーフルオロスルホン酸ポリマー、例えばフレミオン(Flemion)(旭硝子株式会社の登録商標)、アシプレックス(Aciplex)(旭化成株式会社の登録商標)も使用することができる(以前はThe Dow Chemical Companyからも同種の物質が提供されていた)。なお、以下にパーフルオロスルホン酸ポリマーの一般的な構造、及び上に例示したパーフルオロスルホン酸ポリマーの例の構造を示す。   In the following examples, a perfluorosulfonic acid polymer-azole blend membrane was prepared and heat-treated under specific conditions, but these conditions are not limited to those shown in the examples. For example, the heat treatment temperature range and treatment time range may be changed in the range of 130 ° C. to 200 ° C. and in the range of 1 hour to 12 hours, respectively. In order to prepare a film to be heat-treated, the raw material perfluorosulfonic acid polymer and azole are reacted, and the reaction temperature and reaction time are in the range of room temperature to 200 ° C. and in the range of 3 hours to 24 hours, respectively. You can change it. Moreover, although the example at the time of using 1,2,3-triazole (1,2,3-triazole) as an azole is demonstrated below, other azoles can also be used. In the following, Nafion will be described as an example of the perfluorosulfonic acid polymer, but other perfluorosulfonic acid polymers such as Flemion (registered trademark of Asahi Glass Co., Ltd.), Aciplex (Asahi Kasei Co., Ltd.) (Registered trademark of the company) can also be used (previously the same material was also provided by The Dow Chemical Company). In addition, the general structure of a perfluorosulfonic acid polymer and the structure of the example of the perfluorosulfonic acid polymer illustrated above are shown below.

以下では本発明の一実施例である熱処理済みナフィオン−1,2,3−トリアゾール膜を説明する。   The heat-treated Nafion-1,2,3-triazole film, which is an embodiment of the present invention, will be described below.

[熱処理済みナフィオン−1,2,3−トリアゾール膜の作製]
先ず、市販のナフィオン5%溶液(Electrochem製。ナフィオンを5重量%、HOを10〜20重量%、1−及び2−プロパノールを75〜85重量%含有)6gと1,2,3−トリアゾール(Aldrich製、純度97%)5%(0.016g)とを混合し、25℃で1時間攪拌した。その後、オートクレーブ中で180℃において6時間処理し、ガラス板に流し出して60℃で24時間乾燥させた。その後、180℃の大気中で3時間アニール(熱処理)してから、水を用いてガラス板から剥がし、80℃の1M HSO中で2時間活性化処理を行った。活性化処理後の膜を80℃の脱イオン水にて2時間洗浄して水中に保管した。
[Preparation of heat-treated Nafion-1,2,3-triazole film]
First, 6 g of a commercially available Nafion 5% solution (manufactured by Electrochem, containing 5% by weight of Nafion, 10 to 20% by weight of H 2 O, and 75 to 85% by weight of 1- and 2-propanol) and 1,2,3- Triazole (Aldrich, purity 97%) 5% (0.016 g) was mixed and stirred at 25 ° C. for 1 hour. Thereafter, it was treated in an autoclave at 180 ° C. for 6 hours, poured out on a glass plate and dried at 60 ° C. for 24 hours. Then, after annealing (heat treatment) in the atmosphere at 180 ° C. for 3 hours, it was peeled off from the glass plate using water and subjected to activation treatment in 1 MH 2 SO 4 at 80 ° C. for 2 hours. The membrane after the activation treatment was washed with deionized water at 80 ° C. for 2 hours and stored in water.

熱処理前の膜は無色透明であったが、熱処理後は淡褐色に変色していた。図1の左上に示すように、熱処理前の膜はナフィオン1−、2−プロピル−1,2,3−トリアゾール(Nafion-1-, 2-propyl-1,2,3-triazole)ブレンド膜であり、これを熱処理することによって、図1の右上に示すように、過剰な1,2,3−トリアゾールが失われるとともに、膜中での熱重合が起こると考えられる。更に、図1の右下に示すように、イソプロピル−1,2,3−トリアゾールや1−プロピル−1,2,3−トリアゾールがナフィオンのナノ構造中に導入され、安定な電解質膜ができていると考えられる。   The film before the heat treatment was colorless and transparent, but was changed to light brown after the heat treatment. As shown in the upper left of FIG. 1, the membrane before the heat treatment is a Nafion-1-, 2-propyl-1,2,3-triazole blend membrane. It is considered that by heat-treating this, as shown in the upper right of FIG. 1, excess 1,2,3-triazole is lost and thermal polymerization in the film occurs. Furthermore, as shown in the lower right of FIG. 1, isopropyl-1,2,3-triazole or 1-propyl-1,2,3-triazole is introduced into the nanostructure of Nafion, and a stable electrolyte membrane is formed. It is thought that there is.

以下では、上述のようにして作製した本発明の一実施例である熱処理済みナフィオン−1,2,3−トリアゾール膜の特性を、以下に示す熱処理なしナフィオン−1,2,3−トリアゾール膜(以下、それぞれ熱処理済み膜、熱処理なし膜と称する)と比較して、熱処理済膜の各種の特性を示す。   In the following, the characteristics of the heat-treated Nafion-1,2,3-triazole film, which is one embodiment of the present invention produced as described above, are shown in the following heat-treated Nafion-1,2,3-triazole film ( Hereinafter, various characteristics of the heat-treated film are shown in comparison with the heat-treated film and the non-heat-treated film, respectively.

[熱処理なしナフィオン−1,2,3−トリアゾール膜の作製]
比較例としての熱処理なし膜を以下のように作製した。なお、使用した薬品は明記しない限り、上記実施例と同じものであった。
[Preparation of Nafion-1,2,3-triazole film without heat treatment]
A film without heat treatment as a comparative example was prepared as follows. The chemicals used were the same as in the above examples unless otherwise specified.

[FTIR]
先ず、上と同じ市販のナフィオン溶液6gと1,2,3−トリアゾール5%(0.016g)とを混合し、25℃で1時間攪拌した。その後、オートクレーブ中で180℃で6時間処理し、ガラス板に流し出して60℃で24時間乾燥させた。このようにして形成された膜を水を用いてガラス板から剥がし、80℃の1モルHSO中で2時間活性化処理を行った。活性化処理後の膜を80℃の脱イオン水にて2時間洗浄して、水中に保管した。
[FTIR]
First, 6 g of the same commercially available Nafion solution as above and 5% of 1,2,3-triazole (0.016 g) were mixed and stirred at 25 ° C. for 1 hour. Then, it processed at 180 degreeC for 6 hours in the autoclave, poured out to the glass plate, and was dried at 60 degreeC for 24 hours. The film thus formed was peeled off from the glass plate using water, and an activation treatment was performed in 1 mol H 2 SO 4 at 80 ° C. for 2 hours. The membrane after the activation treatment was washed with deionized water at 80 ° C. for 2 hours and stored in water.

図2に熱処理なし膜と熱処理済み膜とのFTIR特性(図2中のそれぞれ(i)及び(ii)で示すグラフ)の比較を示す。図2の(a)には4000〜2500cm−1の波数範囲の、また(b)には2000〜500cm−1の波数範囲のスペクトルを示す。これらのスペクトルから、熱処理の有無による膜構造の大きな相違は認められなかった。ここで、3500cm−1のピークは水によるOHの吸収スペクトルであると考えられる。その他、両スペクトル中には以下の吸収スペクトルが観察された:
・1−プロピル基、2−プロピル基によるCH(2988cm−1)及びCH(2946,1467,727cm−1)の吸収スペクトル
・1,2,3−トリアゾールによるN−H(3135,790cm−1)及びCH(3016,2876cm−1)の吸収スペクトル
FIG. 2 shows a comparison of FTIR characteristics (graphs indicated by (i) and (ii) in FIG. 2) of the unheated film and the heat-treated film, respectively. Wave number range of 4000~2500Cm -1 to the (a) 2, also in (b) shows the spectrum of a wave number range of 2000~500cm -1. From these spectra, there was no significant difference in film structure depending on the presence or absence of heat treatment. Here, the peak at 3500 cm −1 is considered to be an absorption spectrum of OH by water. In addition, the following absorption spectra were observed in both spectra:
Absorption spectra of CH 3 (2988 cm −1 ) and CH 2 (2946, 1467, 727 cm −1 ) due to 1-propyl group and 2-propyl group • NH (3135, 790 cm ) due to 1,2,3-triazole 1) Absorption spectra of CH (3016, 2876 cm −1 )

[溶媒安定性]
熱処理なし膜と熱処理済み膜、更に参考としてナフィオン115膜の各種溶媒(水、メタノール、エタノール、イソプロパノール、DMSO)に対する安定性を評価した結果を表1に示す。
[Solvent stability]
Table 1 shows the results of evaluating the stability of the non-heat-treated film and the heat-treated film with respect to various solvents (water, methanol, ethanol, isopropanol, DMSO) of the Nafion 115 film as a reference.

ここで、
・IPA:イソプロパノール
・膨潤率(%)=[(Wwet−Wdry)/Wdry]×100%
・Wwet:膨潤時の膜の重量
・Wdry:100℃で乾燥させたときの膜の重量
注1:熱処理なし膜とメタノールとの組み合わせでは、膜は溶解しなかったが、膨潤が極めて大きいために膨潤率を測定できなかった。
注2:ナフィオン115膜と水との組み合わせでは、膨潤することは確認したが膨潤率の正確な値は未測定であった。
here,
IPA: Isopropanol Swelling rate (%) = [(Wwet−Wdry) / Wdry] × 100%
・ Wwet: Weight of membrane during swelling ・ Wdry: Weight of membrane when dried at 100 ° C. Note 1: In the combination of the membrane without heat treatment and methanol, the membrane did not dissolve, but the swelling was extremely large The swelling rate could not be measured.
Note 2: The combination of Nafion 115 membrane and water was confirmed to swell, but the exact value of the swelling ratio was not measured.

表1からわかるように、熱処理なし膜はエタノール及びイソプロパノールに溶解したが、熱処理済み膜は全ての溶媒(水、メタノール、エタノール、イソプロパノール、DMSO)に対して、膨潤するものの、安定していた。さらに、ナフィオン115膜と比較しても膨潤率が小さい。更に、熱処理なし膜と熱処理済み膜の何れもFentone試薬(3% H+50ppm Fe)への耐性も有していることが分かった。 As can be seen from Table 1, the membrane without heat treatment was dissolved in ethanol and isopropanol, but the membrane after heat treatment was stable although it swelled in all solvents (water, methanol, ethanol, isopropanol, DMSO). Furthermore, the swelling rate is small even compared with the Nafion 115 membrane. Furthermore, it was found that both the non-heat-treated film and the heat-treated film were also resistant to the Fentone reagent (3% H 2 O 2 +50 ppm Fe).

上記溶媒安定性の評価結果のうちで、熱処理済み膜のメタノール耐性が高いことは注目される。このメタノール耐性により、本発明の膜は通常の固体高分子型燃料電池だけではなく、メタノールを燃料とするDMFC(direct methanol fuel cell;直接メタノール型燃料電池)用電解質に適した特性を有していると言える。   Of the above solvent stability evaluation results, it is noted that the heat-treated film has high methanol resistance. Due to this methanol resistance, the membrane of the present invention has characteristics suitable not only for ordinary solid polymer fuel cells but also for DMFC (direct methanol fuel cell) electrolytes using methanol as fuel. I can say that.

[膜の物性:IEC、含水率(WU)、λ]
熱処理なし膜及び熱処理済み膜をオートクレーブ中で80℃、100℃、120℃、及び140℃で13日間処理した後のそれぞれの膜の含水率及びλ(スルホン酸1個当たりの水分子の個数)を調べた。その結果を以下の表2に示す。
[Physical properties of membrane: IEC, water content (WU), λ]
Moisture content and λ (number of water molecules per sulfonic acid) of each non-heat-treated film and heat-treated film after treatment in autoclave at 80 ° C, 100 ° C, 120 ° C, and 140 ° C for 13 days I investigated. The results are shown in Table 2 below.

ここで、
WU(%)=[(Wwet−Wdry)×100]/Wdry
IEC(イオン交換容量)(meq/g)=(pH7での量(ml)× NaOH濃度)/試料重量(g)
(「pH7での量 (ml)」、「 NaOH濃度」とは、ここではNaOH溶液を用いた滴定法によってIECを測定したのだが、その際にpHが7になった(中和した)時のNaOH溶液の量及び使用したNaOH溶液の濃度をそれぞれ表す)
λ=[(Wwet−Wdry)×1000]/[18×(HOの分子量)×IEC×Wdry]
=(含水率(%)×10)/[HOの分子量×IEC]
here,
WU (%) = [(Wwet−Wdry) × 100] / Wdry
IEC (ion exchange capacity) (meq / g) = (Amount at pH 7 (ml) × NaOH concentration) / Sample weight (g)
("Amount at pH 7 (ml)", "NaOH concentration" means that IEC was measured by a titration method using a NaOH solution, but when pH reached 7 (neutralized) Represents the amount of NaOH solution and the concentration of NaOH solution used)
λ = [(Wwet−Wdry) × 1000] / [18 × (H 2 O molecular weight) × IEC × Wdry]
= (Moisture content (%) × 10) / [molecular weight of H 2 O × IEC]

熱処理なし膜は、140℃における13日間のオートクレーブ処理によりすっかり溶解してしまった。一方、熱処理済みの膜は同じ140℃のオートクレーブ処理による高温・高圧の環境下でも膨潤しただけで安定していた。また、高温・高圧になるとともに膜の含水率は増加し、λも増加した。これらのことから、実施例の熱処理済みの膜は高加湿・高温・高圧の環境でも、また低加湿・高温・高圧の環境でも、安定していると考えられる。   The film without heat treatment was completely dissolved by the autoclave treatment at 140 ° C. for 13 days. On the other hand, the heat-treated film was stable only by swelling even under a high temperature and high pressure environment by the same 140 ° C. autoclave treatment. In addition, as the temperature and pressure increased, the moisture content of the membrane increased and λ also increased. From these facts, it is considered that the heat-treated film of the example is stable in a high humidification / high temperature / high pressure environment and also in a low humidification / high temperature / high pressure environment.

[伝導度]
熱処理なし膜、熱処理済み膜、更に参考としてナフィオンNR212膜も加えて、これらの電気伝導度を比較した。測定には米国Scribner社のMTS740型膜抵抗測定システムを使用し、膜温度120℃においてRH(相対湿度)40%、60%、80%、及び95%で測定を行った。その結果のグラフを図3に示す。
[Conductivity]
A film without heat treatment, a film with heat treatment, and a Nafion NR212 film as a reference were also added, and their electrical conductivities were compared. For measurement, an MTS740 type membrane resistance measurement system manufactured by Scribner, USA was used, and the measurement was performed at a film temperature of 120 ° C. at RH (relative humidity) of 40%, 60%, 80%, and 95%. The resulting graph is shown in FIG.

図3に示された結果から、熱処理なし膜と熱処理済み膜の両者は、ナフィオンNR212膜よりは低いものの、比較的高い伝導度を示した。また、熱処理済みの膜は熱処理なし膜よりも高い伝導度を示し、RH95%においてその伝導度は0.06S/cmであった。   From the results shown in FIG. 3, both the non-heat-treated film and the heat-treated film showed relatively high conductivity, although lower than the Nafion NR212 film. The heat-treated film showed higher conductivity than the non-heat-treated film, and the conductivity was 0.06 S / cm at RH 95%.

[固体高分子型燃料電池の電池特性]
実施例の熱処理済み膜、比較例の熱処理なし膜、及びナフィオン212膜を使用して固体高分子型燃料電池を構成し、これらの電池特性を比較した。
[Cell characteristics of polymer electrolyte fuel cells]
A polymer electrolyte fuel cell was constructed using the heat treated membrane of the example, the non-heat treated membrane of the comparative example, and the Nafion 212 membrane, and the cell characteristics were compared.

[電池の作製と試験の条件]
以下の条件で膜・電極接合体(MEA)を作製した。
・ホットプレス条件
温度:155℃
圧力:0.8MPa
時間:10分間
・使用した膜:ナフィオン212膜、熱処理なし膜、及び熱処理済み膜(厚さ=70μm)
・電極サイズ:2.2×2.2cm
[Battery fabrication and testing conditions]
A membrane / electrode assembly (MEA) was produced under the following conditions.
・ Hot press conditions Temperature: 155 ℃
Pressure: 0.8 MPa
Time: 10 minutes. Used film: Nafion 212 film, unheated film, and heat-treated film (thickness = 70 μm)
-Electrode size: 2.2 x 2.2 cm

上記3種類の膜で構成したMEAをそれぞれ使用し、電極触媒は20wt%Pt/C(JM)(Pt20wt%、カーボン80%)にナフィオン溶液を40wt%入れて作製した。これらのMEA及び電極触媒で構成した単一セルの試験を、以下の条件で行った。
・試験温度・湿度:70℃(RH100%)、100℃(RH30%)、130℃(RH11%)
・ガス流量:H 60ccm(アノード側)、O 100ccm(カソード側)
・加湿器温度:アノード側、カソード側とも70℃
Each of the MEAs composed of the above three types of membranes was used, and the electrode catalyst was prepared by adding 40 wt% of Nafion solution to 20 wt% Pt / C (JM) (Pt 20 wt%, carbon 80%). The test of the single cell comprised by these MEA and the electrode catalyst was done on the following conditions.
Test temperature / humidity: 70 ° C. (RH 100%), 100 ° C. (RH 30%), 130 ° C. (RH 11%)
Gas flow rate: H 2 60 ccm (anode side), O 2 100 ccm (cathode side)
-Humidifier temperature: 70 ° C for both anode and cathode

[電池特性(電流密度、開路電圧、電力密度)の比較]
上で説明したようにして作製・試験した電池セルの特性測定結果を図4に示す。電池セル特性を測定するに当たって、先ず3日間活性化を行い、4日目に図4に示すデータを取った。ここで、「3日間の活性化」は具体的には以下のようにして行った。1日目は70℃において電圧をOCV(open circuit voltage)から0.3Vまで掃引した後、0.7Vで3時間動作させた。2日目と3日目は温度を70℃、100℃、130℃の順で循環的に変化させながら電圧をOCVから0.3Vまで往復で掃引した。熱処理済み膜を使用した電池では、測定した全ての条件で0.9V以上の開路電圧(open circuit voltage;OCV)が得られた。しかし、電池セルの電流密度及び電力密度性能についてはナフィオン212膜及び熱処理なし膜よりも低かった。また、高温・低加湿下では性能が低下した。しかし、熱処理済み膜は温度が上がってもOCVが高い値に維持されることから、膜の高温安定性は他の膜よりも良好であることがわかった。
[Comparison of battery characteristics (current density, open circuit voltage, power density)]
FIG. 4 shows the measurement results of the characteristics of the battery cells fabricated and tested as described above. In measuring battery cell characteristics, activation was first performed for 3 days, and data shown in FIG. 4 was obtained on the 4th day. Here, the “3-day activation” was specifically performed as follows. On the first day, the voltage was swept from OCV (open circuit voltage) to 0.3 V at 70 ° C., and then operated at 0.7 V for 3 hours. On the second and third days, the voltage was swept back and forth from OCV to 0.3 V while cyclically changing the temperature in the order of 70 ° C., 100 ° C., and 130 ° C. In the battery using the heat-treated film, an open circuit voltage (OCV) of 0.9 V or higher was obtained under all measured conditions. However, the current density and power density performance of the battery cell was lower than the Nafion 212 film and the film without heat treatment. Moreover, the performance deteriorated under high temperature and low humidity. However, since the heat-treated film maintains a high OCV even when the temperature rises, it was found that the high-temperature stability of the film is better than other films.

[電池の耐久性評価]
熱処理なし膜及び熱処理済み膜を使用した電池の耐久性を評価した。先ず4日間電池を動作させた後でこの耐久性評価試験を行った。この試験に当たっては、熱処理なし膜を使用した電池ではセル温度70℃、RH100%、出力電圧0.65Vで動作させた。一方、熱処理済み膜を使用した電池では出力電圧を0.7Vとし、温度・湿度条件を変えた以下の3種類の試験を順番に行った:1回目はセル温度70℃、RH100%で約140時間、2回目はセル温度100℃、RH30%で約140時間、3回目は1回目と同じセル温度70℃、RH100%で約160時間。
[Battery durability evaluation]
The durability of the battery using the non-heat-treated film and the heat-treated film was evaluated. First, after the battery was operated for 4 days, this durability evaluation test was conducted. In this test, a battery using a film without heat treatment was operated at a cell temperature of 70 ° C., RH of 100%, and an output voltage of 0.65V. On the other hand, the battery using the heat-treated film was subjected to the following three types of tests in which the output voltage was 0.7 V and the temperature / humidity conditions were changed: the first time was about 140 ° C. at a cell temperature of 70 ° C. and RH of 100%. The second time is about 140 hours at a cell temperature of 100 ° C. and 30% RH, and the third time is about 160 hours at the same cell temperature of 70 ° C. and 100% RH.

図5からわかるように、熱処理なし膜を使用した電池セルは、約100時間で電池として機能しなくなった。一方、熱処理済み膜を使用した電池セルでは、上記3種類の試験を行った後(140時間+140時間+160時間=440時間後)でも安定しており、非常に良い耐久性を示した。   As can be seen from FIG. 5, the battery cell using the film without heat treatment stopped functioning as a battery in about 100 hours. On the other hand, the battery cell using the heat-treated film was stable even after the above three types of tests were performed (after 140 hours + 140 hours + 160 hours = 440 hours) and showed very good durability.

以上、詳細に説明したように、本発明により与えられる熱処理済み膜は熱処理なし膜に比較して熱安定性が高いだけではなく、溶媒に対する耐久性が非常に高いことから、プロトン交換を利用する分離膜や固体高分子燃料電池の電解質膜などへの応答が期待される。特に、本発明の膜はメタノールへの耐久性も高いことから、メタノールクロスオーバーが問題になっているDMFC用電解質への応用が大いに期待される。   As described above in detail, the heat-treated film provided by the present invention not only has higher thermal stability than a non-heat-treated film, but also has extremely high durability against solvents, and therefore uses proton exchange. Response to separation membranes and electrolyte membranes of polymer electrolyte fuel cells is expected. In particular, since the membrane of the present invention has high durability against methanol, it is highly expected to be applied to an electrolyte for DMFC in which methanol crossover is a problem.

R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, and C. Rogers, J. Electrochem. Soc., 141, L46 (1994).R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, and C. Rogers, J. Electrochem. Soc., 141, L46 (1994) . S. Malhotra and R. Datta, J. Electrochem. Soc., 144, L23 (1997).S. Malhotra and R. Datta, J. Electrochem. Soc., 144, L23 (1997). P. Staiti, A.S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Solid State Ionics, 145, 101 (2001).P. Staiti, A.S.Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Solid State Ionics, 145, 101 (2001). P. Costamagna, C. Yang, A.B. Bocarsly, and S. Srinibasan, Electrochimica Acta, 47, 1023 (2002).P. Costamagna, C. Yang, A.B. Bocarsly, and S. Srinibasan, Electrochimica Acta, 47, 1023 (2002). V. Baglio, A.S. Arico, A.Di Blasi, V. Antonucci, P.L. Antonucci, S. Licoccia, E. Traversa, and F.Serraino Fiory, Electrochimica Acta, 50, 1241 (2005).V. Baglio, A.S. Arico, A. Di Blasi, V. Antonucci, P.L.Antonucci, S. Licoccia, E. Traversa, and F. Serraino Fiory, Electrochimica Acta, 50, 1241 (2005). Y.-Z. Fu and A. Manthiram, J. Electrochem. Soc., 154, B8 (2007).Y.-Z. Fu and A. Manthiram, J. Electrochem. Soc., 154, B8 (2007). J.-D. Kim, Y. Oba, M. Ohnuma, M.-S. Jun, Y. Tanaka, T. Mori, Y.-W. Choi, and Y.-G. Yoon, J. Electrochem. Soc., 157, B1872 (2010).J.-D. Kim, Y. Oba, M. Ohnuma, M.-S. Jun, Y. Tanaka, T. Mori, Y.-W. Choi, and Y.-G. Yoon, J. Electrochem. Soc ., 157, B1872 (2010). J.-D. Kim, M.-S. Jun, C. Nishimura, and Y.-W. Choi, ECS Transactions, 35, 241 (2011).J.-D. Kim, M.-S. Jun, C. Nishimura, and Y.-W. Choi, ECS Transactions, 35, 241 (2011). J.-D. Kim, Y. Oba, M. Ohnuma, T. Mori, C. Nishimura, and I. Honma, Solid State Ionics, 181, 1098 (2010).J.-D. Kim, Y. Oba, M. Ohnuma, T. Mori, C. Nishimura, and I. Honma, Solid State Ionics, 181, 1098 (2010). S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, J. Membrane Science, 233, 93 (2004).S.D.Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D.Giver, J. Membrane Science, 233, 93 (2004). P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membrane Science, 229, 95 (2004).P. Xing, G.P. Robertson, M.D.Giver, S.D.Mikhailenko, K. Wang, S. Kaliaguine, J. Membrane Science, 229, 95 (2004). S.L.N.H. Rhoden, C.A. Linkous, N. Mohajeri, D.J. Diaz, P. Brooker, D.K. Slattery, and J.M. Fenton, J. Electrochem. Soc., 157, B1095 (2010).S.L.N.H.Rhoden, C.A.Linkous, N. Mohajeri, D.J.Diaz, P. Brooker, D.K.Slattery, and J.M.Fenton, J. Electrochem. M.L. Di Vona, D. Marani, C. D’Ottavi, M. Trombetta, E. Traversa, I. Beurroies, P. Knauth, and S. Licoccia, Chem. Mater., 18, 69 (2006).M.L.Di Vona, D. Marani, C. D’ Ottavi, M. Trombetta, E. Traversa, I. Beurroies, P. Knauth, and S. Licoccia, Chem. Mater., 18, 69 (2006). J.-T. Wang, R.F. Savinell, J. Wainright, M. Litt, and H. Yu, Electrochimica Acta, 41, 193 (1996).J.-T. Wang, R.F.Savinell, J. Wainright, M. Litt, and H. Yu, Electrochimica Acta, 41, 193 (1996). L. Qingfeng, H.A. Hjuler, and N.J. Bjerrum, J. Appl. Electrochem., 31, 773 (2001).L. Qingfeng, H.A. Hjuler, and N.J.Bjerrum, J. Appl.Electrochem., 31, 773 (2001). D.J. Jones and J. Roziere, J. Membrane Science, 185, 41 (2001).D.J.Jones and J. Roziere, J. Membrane Science, 185, 41 (2001). Y.-L. Ma, J.S. Wainright, M.H. Litt, and R.F. Savinell, J. Electrochem. Soc., 151, A8 (2004).Y.-L.Ma, J.S.Wainright, M.H.Litt, and R.F.Savinell, J. Electrochem.Soc., 151, A8 (2004). J.A. Asensio and S. Borros, P. Gomez-Romero, J. Membrane Science, 241, 89 (2004).J.A.Asensio and S. Borros, P. Gomez-Romero, J. Membrane Science, 241, 89 (2004). F. Seland, T. Berning, B. Borresen, R. Tunold, J. Power Sources, 160, 27 (2006).F. Seland, T. Berning, B. Borresen, R. Tunold, J. Power Sources, 160, 27 (2006). Y.H. Cho, S.-K. Kim, T.-H. Kim, Y.-H. Cho, J.W. Lim, N.-G. Jung, W.-S. Yoon, J.-C. Lee, and Y.-E. Sung, Electrochemical and Solid-State Letters, 14, B38 (2011).YH Cho, S.-K. Kim, T.-H. Kim, Y.-H. Cho, JW Lim, N.-G. Jung, W.-S. Yoon, J.-C. Lee, and Y .-E. Sung, Electrochemical and Solid-State Letters, 14, B38 (2011). G. Lakshminarayana, R. Vijayaraghavan, M. Nogami, and I.V. Kityk, J. Electrochem. Soc., 158, B376 (2011).G. Lakshminarayana, R. Vijayaraghavan, M. Nogami, and I.V.Kityk, J. Electrochem. Soc., 158, B376 (2011). K. Tadanaga, Y. Michiwaki, T. Tezuka, A. Hayashi, and M. Tatsumisago, J. Membrane Science, 324, 188 (2008).K. Tadanaga, Y. Michiwaki, T. Tezuka, A. Hayashi, and M. Tatsumisago, J. Membrane Science, 324, 188 (2008). J.-D. Kim, T. Mori, and I.Honma, J. Membrane Science, 281, 735 (2006).J.-D. Kim, T. Mori, and I. Honma, J. Membrane Science, 281, 735 (2006). J.-D. Kim and I.Honma, J. Electrochem. Soc., 151, A1396 (2004).J.-D. Kim and I. Honma, J. Electrochem. Soc., 151, A1396 (2004). J.-D. Kim and I. Honma, Solid StateIonics, 176, 979 (2005).J.-D. Kim and I. Honma, Solid StateIonics, 176, 979 (2005). J.-D. Kim, T. Mori, S. Hayashi, and I. Honma, J. Electrochem. Soc., 154, A290 (2007).J.-D. Kim, T. Mori, S. Hayashi, and I. Honma, J. Electrochem. Soc., 154, A290 (2007). Z. Zhou, S. Li, Y. Zhang, M. Liu, W. Li, J. Ame. Chem. Soc., 127, 10824 (2005).Z. Zhou, S. Li, Y. Zhang, M. Liu, W. Li, J. Ame. Chem. Soc., 127, 10824 (2005). R. Subbaraman, H. Ghassemi, and T. Zawodzinski Jr., Solid State Ionics, 180, 1143 (2009).R. Subbaraman, H. Ghassemi, and T. Zawodzinski Jr., Solid State Ionics, 180, 1143 (2009). C. Nagamani, C. Versek, M. Thorn, M.T. Tuominen, S. Thayumanavan, J. Poly. Sci.: Part A: Poly. Chem., 48, 1851 (2010).C. Nagamani, C. Versek, M. Thorn, M.T. Tuominen, S. Thayumanavan, J. Poly. Sci .: Part A: Poly. Chem., 48, 1851 (2010). J.-D. Kim, M. Onhuma, C. Nishimura, T. Mori, and A. Kucernak, J. Electrochem. Soc., 156, B729 (2009).J.-D. Kim, M. Onhuma, C. Nishimura, T. Mori, and A. Kucernak, J. Electrochem. Soc., 156, B729 (2009). M.-S. Jun, Y.-W. Choi, J.-D. Kim, J. Membr. Sci. 396 (2012) 32-37.M.-S. Jun, Y.-W. Choi, J.-D. Kim, J. Membr. Sci. 396 (2012) 32-37. M.L. Di Vona, E. Sgreccia, M. Tamilbanan, M. Khadhraoui, C. Chassigneux, P. Knauth, J. Membr. Sci. 354 (2010) 134-141.M.L.Di Vona, E. Sgreccia, M. Tamilbanan, M. Khadhraoui, C. Chassigneux, P. Knauth, J. Membr. Sci. 354 (2010) 134-141. J.D. Kim, Anna Donnadio, M. S. Jun, M.L. Di Vona, International Journal of Hydrogen Energy, 38 (2013) 1517-1523.J.D.Kim, Anna Donnadio, M. S. Jun, M.L.Di Vona, International Journal of Hydrogen Energy, 38 (2013) 1517-1523. M. L. Di Vona, E. Sgreccia, S. Licoccia, G. Alberti, L. Tortet, P. Knauth, J. Phys. Chem. B, 113 (2009) 7505-7512.M. L. Di Vona, E. Sgreccia, S. Licoccia, G. Alberti, L. Tortet, P. Knauth, J. Phys. Chem. B, 113 (2009) 7505-7512.

Claims (13)

パーフルオロスルホン酸ポリマー及びアゾールを含む混合溶液を反応させ、
反応後の溶液から膜を形成し、
前記形成された膜を130℃から200℃の範囲で熱処理する
ことによる、パーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。
Reacting a mixed solution containing a perfluorosulfonic acid polymer and an azole;
Form a film from the solution after the reaction,
A method for producing a perfluorosulfonic acid polymer-azole blend film, wherein the formed film is heat-treated in a range of 130 ° C to 200 ° C.
前記熱処理は1時間から12時間の範囲で行う、請求項1に記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。 The method for producing a perfluorosulfonic acid polymer-azole blend film according to claim 1, wherein the heat treatment is performed in a range of 1 hour to 12 hours. 前記混合液の反応は室温から200℃の範囲で行う、請求項1または2に記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend film according to claim 1 or 2, wherein the reaction of the mixed solution is performed in a range of room temperature to 200 ° C. 前記混合液の反応は3時間から24時間の範囲で行う、請求項1から3の何れかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend membrane according to any one of claims 1 to 3, wherein the reaction of the mixed solution is performed in a range of 3 hours to 24 hours. 前記膜の形成は反応後の前記混合溶液を乾燥することによって行われる、請求項1から4のいずれかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend membrane according to any one of claims 1 to 4, wherein the membrane is formed by drying the mixed solution after the reaction. 前記混合溶液は更にアルコール及び水を含む、請求項1から5のいずれかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend film according to any one of claims 1 to 5, wherein the mixed solution further contains alcohol and water. 前記アルコールは1−及び2−プロパノールである、請求項1から6の何れかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend film according to any one of claims 1 to 6, wherein the alcohol is 1- and 2-propanol. 前記アゾールはピロール、テトラゾール、及びペンタゾールからなる群から選択される、請求項1から7の何れかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend film according to any one of claims 1 to 7, wherein the azole is selected from the group consisting of pyrrole, tetrazole, and pentazole. 前記アゾールは1,2,3−トリアゾール、ベンズイミダゾール、ピラゾール、イミダゾール及び1,2,4−トリアゾールからなる群から選択される、請求項1から7の何れかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The perfluorosulfonic acid polymer according to any one of claims 1 to 7, wherein the azole is selected from the group consisting of 1,2,3-triazole, benzimidazole, pyrazole, imidazole and 1,2,4-triazole. Method for producing an azole blend film. 前記パーフルオロスルホン酸ポリマーはナフィオン、フレミオン及びアシプレックスからなる群から選択される、請求項1から9の何れかに記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜の製造方法。   The method for producing a perfluorosulfonic acid polymer-azole blend film according to any one of claims 1 to 9, wherein the perfluorosulfonic acid polymer is selected from the group consisting of Nafion, Flemion and Aciplex. 請求項1から10のいずれかに記載の方法によって製造されたパーフルオロスルホン酸ポリマー−アゾールブレンド膜。   A perfluorosulfonic acid polymer-azole blend membrane produced by the method according to claim 1. 請求項11に記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜を電解質膜として使用した固体高分子燃料電池。   A solid polymer fuel cell using the perfluorosulfonic acid polymer-azole blend membrane according to claim 11 as an electrolyte membrane. 請求項11に記載のパーフルオロスルホン酸ポリマー−アゾールブレンド膜を電解質膜として使用した直接メタノール型燃料電池。   A direct methanol fuel cell using the perfluorosulfonic acid polymer-azole blend membrane according to claim 11 as an electrolyte membrane.
JP2013220763A 2013-10-24 2013-10-24 Perfluorosulfonic acid polymer-azole blend membrane, production method thereof, and solid polymer fuel cell Active JP6415807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220763A JP6415807B2 (en) 2013-10-24 2013-10-24 Perfluorosulfonic acid polymer-azole blend membrane, production method thereof, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220763A JP6415807B2 (en) 2013-10-24 2013-10-24 Perfluorosulfonic acid polymer-azole blend membrane, production method thereof, and solid polymer fuel cell

Publications (2)

Publication Number Publication Date
JP2015081320A true JP2015081320A (en) 2015-04-27
JP6415807B2 JP6415807B2 (en) 2018-10-31

Family

ID=53012115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220763A Active JP6415807B2 (en) 2013-10-24 2013-10-24 Perfluorosulfonic acid polymer-azole blend membrane, production method thereof, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP6415807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444794A (en) * 2019-08-19 2019-11-12 河南师范大学 The method of sulfonation organic polymer doped sulfonated inorganic matter preparation high-performance proton exchange membrane based on microorganism electrochemical technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028190A1 (en) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and method for producing same
JP2006244920A (en) * 2005-03-04 2006-09-14 Fujitsu Ltd Solid electrolyte composition and polymer electrolyte fuel cell
JP2006252845A (en) * 2005-03-09 2006-09-21 Bridgestone Corp Solid polyelectrolyte film and its manufacturing method
JP2009534831A (en) * 2006-04-18 2009-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High energy potential double layer composition
JP2013506234A (en) * 2009-09-24 2013-02-21 エーヴェーエー・フォルシュングスツェントルム・フュア・エネルギーテヒノロギー・エー・ファウ Proton exchange membranes containing polymer blends for use in high temperature proton exchange membrane fuel cells
WO2013100079A1 (en) * 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US20130244135A1 (en) * 2010-10-07 2013-09-19 Asahi Kasei E-Materials Corporation Fluorine-based polymer electrolyte membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028190A1 (en) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and method for producing same
JP2006244920A (en) * 2005-03-04 2006-09-14 Fujitsu Ltd Solid electrolyte composition and polymer electrolyte fuel cell
JP2006252845A (en) * 2005-03-09 2006-09-21 Bridgestone Corp Solid polyelectrolyte film and its manufacturing method
JP2009534831A (en) * 2006-04-18 2009-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High energy potential double layer composition
JP2013506234A (en) * 2009-09-24 2013-02-21 エーヴェーエー・フォルシュングスツェントルム・フュア・エネルギーテヒノロギー・エー・ファウ Proton exchange membranes containing polymer blends for use in high temperature proton exchange membrane fuel cells
US20130244135A1 (en) * 2010-10-07 2013-09-19 Asahi Kasei E-Materials Corporation Fluorine-based polymer electrolyte membrane
WO2013100079A1 (en) * 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444794A (en) * 2019-08-19 2019-11-12 河南师范大学 The method of sulfonation organic polymer doped sulfonated inorganic matter preparation high-performance proton exchange membrane based on microorganism electrochemical technology

Also Published As

Publication number Publication date
JP6415807B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
Park et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
Krishnan et al. Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells
Sahin The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells
Liu et al. Branched comb-shaped poly (arylene ether sulfone) s containing flexible alkyl imidazolium side chains as anion exchange membranes
Zhang et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application
Gao et al. Enhanced water transport in AEMs based on poly (styrene–ethylene–butylene–styrene) triblock copolymer for high fuel cell performance
Zarrin et al. High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells
Wang et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2. 2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells
He et al. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells
Zarrin et al. High performance porous polybenzimidazole membrane for alkaline fuel cells
Xia et al. Polybenzimidazoles with pendant quaternary ammonium groups as potential anion exchange membranes for fuel cells
EP3490043B1 (en) Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell
Hu et al. Preparation and characterization of fluorinated poly (aryl ether oxadiazole) s anion exchange membranes based on imidazolium salts
Tang et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly (sulfone) s high temperature proton exchange membranes for H2/O2 fuel cells
Meenakshi et al. Chitosan‐polyvinyl alcohol‐sulfonated polyethersulfone mixed‐matrix membranes as methanol‐barrier electrolytes for DMFCs
Hasani-Sadrabadi et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)
Haghighi et al. Direct methanol fuel cell performance of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)-polybenzimidazole blend proton exchange membranes
Feng et al. Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization
Liu et al. PEMs with high proton conductivity and excellent methanol resistance based on sulfonated poly (aryl ether ketone sulfone) containing comb-shaped structures for DMFCs applications
Yang et al. SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell
Lin et al. Novel hybrid polymer electrolyte membranes with high proton conductivity prepared by a silane-crosslinking technique for direct methanol fuel cells
Xu et al. Construction of ion transport channels by grafting flexible alkyl imidazolium chain into functional poly (arylene ether ketone sulfone) as anion exchange membranes
Jiang et al. Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane
WO2009125636A1 (en) Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
Wang et al. Low water swelling polyaromatic proton exchange membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250