JP2015080100A - Connection structure of wave guide - Google Patents
Connection structure of wave guide Download PDFInfo
- Publication number
- JP2015080100A JP2015080100A JP2013216471A JP2013216471A JP2015080100A JP 2015080100 A JP2015080100 A JP 2015080100A JP 2013216471 A JP2013216471 A JP 2013216471A JP 2013216471 A JP2013216471 A JP 2013216471A JP 2015080100 A JP2015080100 A JP 2015080100A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- post
- dielectric substrate
- transmission line
- post wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Waveguides (AREA)
Abstract
Description
本発明は、平面回路からなる伝送線路に対して、導波管を平行に連結することが可能な、導波管との接続構造に関する。 The present invention relates to a connection structure with a waveguide capable of connecting a waveguide in parallel to a transmission line composed of a planar circuit.
近年、ミリ波帯を利用した数Gbpsの高速大容量通信が提案され、その一部が実現されつつある。特に、60GHz帯で動作する無線通信機器は、より重要性を増している。国内においては、59〜66GHzの広い周波数帯域を、無免許で利用可能であることから、民生分野への普及が期待されており、安価で小型のミリ波通信モジュールの実現が急務となっている。 In recent years, high-speed and large-capacity communication of several Gbps using the millimeter wave band has been proposed, and a part thereof is being realized. In particular, wireless communication devices operating in the 60 GHz band are becoming more important. In Japan, a wide frequency band from 59 to 66 GHz can be used without a license, so that it is expected to be widely used in the consumer field, and there is an urgent need to realize an inexpensive and small millimeter-wave communication module. .
平面回路による伝送線路(マイクロストリップ線路やコプレーナ線路等)を中空の導波管と接続するため、平面回路の基板に対して直交する方向に導波管を配置した数々の構造が提案されている(特許文献1〜4、非特許文献1参照)。 In order to connect a transmission line (such as a microstrip line or a coplanar line) using a planar circuit to a hollow waveguide, various structures have been proposed in which the waveguide is arranged in a direction perpendicular to the substrate of the planar circuit. (See Patent Documents 1 to 4 and Non-Patent Document 1).
また、基板加工技術に基づく導波路形成技術として、ポスト壁導波路(PWW:Post−wall Waveguide)が知られている(特許文献5参照)。ポスト壁導波路は、従来の方形導波管の広壁と狭壁を、それぞれ基板両面の接地導体層と基板を貫通するスルーホール群(ポスト群)で置き換えたものと理解することができる。 As a waveguide formation technique based on the substrate processing technique, a post-wall waveguide (PWW) is known (see Patent Document 5). A post-wall waveguide can be understood as a replacement of the wide and narrow walls of a conventional rectangular waveguide with ground conductor layers on both sides of the substrate and through-hole groups (post groups) penetrating the substrate, respectively.
しかしながら、従来の伝送線路と導波管との接続構造は、構造が複雑で、かつ、平面回路と導波管が直交する(すなわち信号の伝搬方向が直交する)形態でしか実現できないという制約があった。また、伝送線路と導波管との間で信号を変換するとき、一般的な変換損失が1dB程度と大きいという問題があった。 However, the conventional connection structure between the transmission line and the waveguide has a complicated structure and has a limitation that it can be realized only in a form in which the planar circuit and the waveguide are orthogonal (that is, the signal propagation direction is orthogonal). there were. In addition, when a signal is converted between the transmission line and the waveguide, there is a problem that a general conversion loss is as large as about 1 dB.
本発明は、上記事情に鑑みてなされたものであり、平面回路からなる伝送線路に対して、導波管を平行に連結することが可能な、導波管との接続構造を提供することを課題とする。 This invention is made | formed in view of the said situation, and provides the connection structure with a waveguide which can connect a waveguide in parallel with respect to the transmission line which consists of a planar circuit. Let it be an issue.
前記課題を解決するため、本発明は、平面回路からなる伝送線路と導波管との接続構造であって、平面回路からなる伝送線路が設けられた誘電体基板にポスト壁導波路が形成され、前記ポスト壁導波路は、前記誘電体基板の対向する両面に形成された一対の接地導体層と、前記一対の接地導体層を接続するように前記誘電体基板を貫通するポストからなる一対のポスト壁とから構成され、前記伝送線路と前記ポスト壁導波路との間は、前記誘電体基板に形成されたモード変換器により接続され、導波管の中空部が前記ポスト壁導波路の端部に対向して、前記ポスト壁導波路と前記導波管とが伝搬方向を互いに平行にして連結され、前記ポスト壁導波路と前記導波管との隙間が導体により閉鎖されていることを特徴とする、導波管との接続構造を提供する。 In order to solve the above-described problems, the present invention provides a connection structure between a transmission line made of a planar circuit and a waveguide, and a post-wall waveguide is formed on a dielectric substrate provided with the transmission line made of a planar circuit. The post wall waveguide includes a pair of ground conductor layers formed on opposite surfaces of the dielectric substrate and a pair of posts penetrating the dielectric substrate so as to connect the pair of ground conductor layers. The transmission line and the post wall waveguide are connected by a mode converter formed in the dielectric substrate, and the hollow portion of the waveguide is the end of the post wall waveguide. The post wall waveguide and the waveguide are connected to each other with their propagation directions parallel to each other, and the gap between the post wall waveguide and the waveguide is closed by a conductor. Characteristic connection structure with waveguide To provide.
前記一対のポスト壁の間隔は、前記導波管の狭壁の間隔よりも狭く、前記誘電体基板の内部又は前記ポスト壁と平行な外面には、前記一対のポスト壁の間隔と前記導波管の狭壁の間隔との間を埋める導体が設けられていてもよい。
前記誘電体基板は、前記ポスト壁導波路の伝搬方向においては前記導波管の中空部に対向する前記ポスト壁導波路の端部と前記モード変換器との間であって、前記ポスト壁導波路における前記一対の接地導体層と前記一対のポスト壁で囲まれる内部に、ポストを有してもよい。
前記誘電体基板の上には、前記伝送線路に接続された半導体素子が実装されていてもよい。
前記ポスト壁導波路の周囲には、少なくとも前記ポスト壁導波路の底面と両側面を覆う金属製の治具が設けられ、前記金属製の治具と前記導波管が連結されていることが好ましい。
The interval between the pair of post walls is narrower than the interval between the narrow walls of the waveguide, and the interval between the pair of post walls and the waveguide are provided inside the dielectric substrate or on an outer surface parallel to the post wall. A conductor that fills the space between the narrow walls of the tube may be provided.
The dielectric substrate is between the mode converter and the end of the post wall waveguide facing the hollow portion of the waveguide in the propagation direction of the post wall waveguide, and the post wall guide. A post may be provided inside the waveguide surrounded by the pair of ground conductor layers and the pair of post walls.
A semiconductor element connected to the transmission line may be mounted on the dielectric substrate.
A metal jig that covers at least the bottom surface and both side surfaces of the post wall waveguide is provided around the post wall waveguide, and the metal jig and the waveguide are connected to each other. preferable.
前記モード変換器は、前記伝送線路から前記誘電体基板の内部に向けて形成されたピン構造を有してもよい。
前記伝送線路と前記誘電体基板との間に、前記一対の接地導体層に対して前記伝送線路を電気的に絶縁する誘電体層が設けられていてもよい。
前記一対の接地導体層のうち一方の接地導体層は、前記誘電体基板において前記伝送線路と同一の面に形成され、他方の接地導体層は、前記誘電体基板において前記伝送線路と反対の面に形成され、前記モード変換器は、前記伝送線路と前記一方の接地導体層とが連続した導体パターンとして形成されることにより構成されていてもよい。
The mode converter may have a pin structure formed from the transmission line toward the inside of the dielectric substrate.
A dielectric layer that electrically insulates the transmission line from the pair of ground conductor layers may be provided between the transmission line and the dielectric substrate.
One ground conductor layer of the pair of ground conductor layers is formed on the same surface as the transmission line in the dielectric substrate, and the other ground conductor layer is a surface opposite to the transmission line in the dielectric substrate. The mode converter may be configured by forming the transmission line and the one ground conductor layer as a continuous conductor pattern.
本発明によれば、平面回路からなる伝送線路と導波管との間にポスト壁導波路を配置し、伝送線路とポスト壁導波路を同一の誘電体基板に形成したので、伝送線路に対して導波管を平行に連結することが可能である。誘電体基板と導波管との隙間を導体で閉鎖することにより、ポスト壁導波路と導波管との間の損失を抑制することができる。 According to the present invention, the post wall waveguide is disposed between the transmission line composed of a planar circuit and the waveguide, and the transmission line and the post wall waveguide are formed on the same dielectric substrate. It is possible to connect the waveguides in parallel. By closing the gap between the dielectric substrate and the waveguide with a conductor, the loss between the post wall waveguide and the waveguide can be suppressed.
以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1は、伝送線路と導波管との接続構造の一例を示す概念的な斜視図である。図2はE面における断面図、図3は伝搬方向に垂直な面における断面図、図4はH面における断面図である。図1に示すように、導波管30は、誘電体基板24の片面に形成された伝送線路11に対し、それぞれの伝搬方向と平行な軸方向(X軸方向)に沿って対向している。伝送線路11は、平面回路により、例えばマイクロストリップ線路、コプレーナ線路、ストリップ線路等から構成されている。導波管30のE面は狭壁31,31に平行であり、H面は広壁32,33に平行である。
Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual perspective view showing an example of a connection structure between a transmission line and a waveguide. 2 is a cross-sectional view on the E plane, FIG. 3 is a cross-sectional view on a plane perpendicular to the propagation direction, and FIG. 4 is a cross-sectional view on the H plane. As shown in FIG. 1, the
ポスト壁導波路基板26は、誘電体基板24にポスト壁導波路20が形成された基板である。ポスト壁導波路20は、誘電体基板24の対向する両面に形成された一対の接地導体層22,23と、一対の接地導体層22,23を接続するように誘電体基板24を貫通する多数のポスト21a,21a,・・からなる一対のポスト壁21,21を備える。接地導体層22,23は、図示しないが、接地(グランド)電位となるように外部に接続されている。ポスト壁導波路20は、導波管30に対向する端部とは反対の側に、ポスト壁21に直交するショート壁を有する。ショート壁は、接地導体層22,23を接続するように誘電体基板24を貫通する1又は2以上のポスト21bから構成されている。
The post
誘電体基板24は、特に限定されないが、樹脂、ガラス、セラミックスやこれらの複合体等の誘電体から構成することができる。誘電体基板24と接地導体層22,23は、特に限定されないが、プリント回路基板用の両面銅張積層板を加工して作製することもできる。各ポスト21aは、誘電体基板24に形成した貫通孔の内面に導体を積層したり、貫通孔に導体を充填したりして柱状の導体となるように形成される。貫通孔の断面形状は円形に限らず、四角形、多角形、その他の形状であってもよい。隣接するポスト21a,21aの配列や間隔は、高周波信号がポスト壁導波路20の外部に漏洩しないように設定される。例えば、隣接するポスト21a,21a間の中心間距離をポスト21aの直径の2倍以下とすることが挙げられる。
The
図2に示すように、伝送線路11とポスト壁導波路20との間は、誘電体基板24に形成されたモード変換器12により接続されている。図2のモード変換器12は、伝送線路11から誘電体基板24の内部に向けて挿入されたピン構造の導体により構成されている。接地導体層22には開口部22aが設けられ、ピン構造の導体と接地導体層22との間は誘電体で絶縁される。伝送線路11と誘電体基板24との間には、接地導体層22,23に対して伝送線路11を電気的に絶縁する誘電体層13が設けられていてもよい。伝送線路11を構成する平面回路が、GSG(接地−信号−接地)構造のグランド(GND)端子のように接地を要する部分を要する場合は、誘電体基板24に対して伝送線路11と同じ側に設けられた接地導体層22に接続するため、誘電体層13を貫通するグランド(GND)ビア(図示せず)を設けることができる。
As shown in FIG. 2, the
ピン構造は、誘電体基板24に形成される下部導体12bと、誘電体層13を貫通する上部導体12aの二体から構成してもよい。ピンが1種類の導体で形成されてもよく、2種類以上の導体を積層した構成でもよい。ピンの内部は空洞でもよく、導体が充填されてもよく、誘電体が充填されてもよい。ピンの先端形状は丸みを帯びた形状でも尖った形状でもよい。
The pin structure may be composed of two bodies: a
図3に示すように、導波管30は、一対の狭壁31,31と一対の広壁32,33を有する方形導波管である。広壁は、上部広壁32と下部広壁33からなる。広壁の幅は狭壁の幅より広い。すなわち、一対の狭壁31,31が対向する方向の間隔は、一対の広壁32,33が対向する方向の間隔よりも広い。図2及び図4に示すように、狭壁31,31と広壁32,33で囲まれる内部は中空部34となっている。
As shown in FIG. 3, the
ポスト壁導波路20と導波管30は、伝播モードにおける互いのH面を共有するように、伝搬方向に垂直な面で接続されている。ポスト壁21,21と接地導体層22,23の配置は、それぞれ導波管30の狭壁31,31と広壁32,33の位置に対応している。図3では、導波管30の内面30a(図2及び図4参照)の概略の位置を、方形の二点鎖線で表している。ポスト壁導波路20の伝搬方向に沿った誘電体基板24の端部は、導波管30の中空部34に対向している。これにより、信号が伝搬可能な領域である、ポスト壁導波路20の内部と導波管30の内部が整合する。ポスト壁導波路20における信号の伝搬方向は、導波管30における信号の伝搬方向に平行である。
The
ポスト壁導波路20の内部は、誘電体基板24を構成する誘電体で形成されているため、導波管30の内部空間である中空部34と比べると誘電率が大きく、内部を伝搬する信号の波長が短縮される。このため、ポスト壁導波路20の広壁に相当する接地導体層22,23の間隔は、導波管30の広壁32,33の間隔より狭い。つまり、ポスト壁導波路20は、伝搬方向に垂直な面における断面形状が、導波管30より小型である。そこで、この面の方向(Z軸方向)に生じる隙間を埋めるためのシャッターとして、接地導体層22と上部広壁32の間に、金属等の導体25(以下「閉鎖導体25」という。)が配置されている。これにより、隙間からの信号の漏洩を抑制し、損失を低減することができる。閉鎖導体25は、金属の加工物でもよく、金属箔であってもよい。閉鎖導体25は、接地導体層22及び上部広壁32に対して、隙間なく接触していることが好ましい。また、閉鎖導体25が、両方の狭壁31,31に対しても隙間なく接触していることが好ましい。隙間からの信号の漏洩を防止(遮蔽・シールド)できれば、閉鎖導体25が接地導体層22や導波管30との間に隙間を有していても構わない。
Since the inside of the
図4に示すように、ポスト壁導波路基板26の幅は、導波管30の狭壁31,31の間隔と同程度である。ここで、ポスト壁導波路基板26の幅は、誘電体基板24の幅であり、ポスト壁21,21の外側を含む。ポスト壁導波路20の幅(ポスト壁21,21の間隔に相当し、ポスト壁21,21の外側を含まない。)が導波管30の狭壁31,31の間隔よりも狭い場合、ポスト壁21の外側に導体を設けて、ポスト壁21と導波管30の狭壁31との隙間を埋めてもよい。図4の場合、ポスト壁21から外側に向けて1又は2以上のポスト21cが配置されている。金属などの導体からなるポスト21cを配置することにより、隙間からの信号の漏洩を抑制し、損失を低減することができる。
As shown in FIG. 4, the width of the
図1及び図4の場合、ポスト壁導波路20の伝搬方向(X軸方向)における、導波管30の中空部34に対向するポスト壁導波路20の端部とモード変換器12との間の区間においては、一対の接地導体層22,23と一対のポスト壁21,21で囲まれる内部に、他のポストがなく、誘電体基板24の誘電体のみが配されている。
In the case of FIG.1 and FIG.4, between the
伝送線路11からモード変換器12に信号を伝搬させると、信号がポスト壁導波路20を伝搬し、ポスト壁導波路20の端部から導波管30に向けて放射される。このように、伝送線路11の信号をモード変換器12によりポスト壁導波路20のTEモードに変換し、その後、ポスト壁導波路20のTEモードと導波管30のTEモードとを変換する。2回モードを変換することで、ポスト壁導波路20と導波管30の間の伝送をTEモード同士の変換により行うことができるため、信号中心周波数で損失を少なくことができる。
When a signal is propagated from the
ピン構造のモード変換器12の場合、ピンの長さを自在に調節することが可能となり、他の回路要素等による調節を行うことなく反射損を抑制することができる。ピン構造は銅(Cu)、銀(Ag)、金(Au)等の導体から形成することができる。ピン導体と誘電体基板の密着性を高めるため、間に密着層としてチタン(Ti)やクロム(Cr)等の膜を設けることが好ましい。密着層は、ピン導体と誘電体基板との密着が損なわれない範囲において、薄いほど望ましい。例えば、Cuの膜が300nm以上である場合には、TiまたはCrの膜は40nm程度であることが望ましい。
In the case of the
ミリ波のように、周波数の高い高周波信号を伝送する場合、スルーホールが長いとリアクタンスが増大し、安定的な接続が難しい。伝送線路11と接地導体層22の間の誘電体層13の厚さは、電気的絶縁が確保できる限り薄いことが好ましい。その厚さとしては、例えば10〜20μm程度が挙げられる。半導体素子のGND端子とPWWの接地導体層22の間をビアで接続する際に、リアクタンスを低く抑えることができ、半導体素子のGND端子を電気的に安定な状態で外部基板と接続できる。
When transmitting a high-frequency signal having a high frequency such as a millimeter wave, if the through-hole is long, the reactance increases and it is difficult to stably connect. The thickness of the
ポスト壁導波路基板26と導波管30との位置合わせのため、ポスト壁導波路基板26の周囲には、ポスト壁導波路基板26を支持する支持部材40を設けることができる。図2及び図4の場合、ポスト壁21,21に沿った壁面(側面)と、伝送線路11の反対側の接地導体層23に沿った壁面(底面)を覆うように支持部材40が配されている。支持部材40としては、例えば、ポスト壁導波路基板26の幅と厚さに合わせて溝を形成した金属製の治具を用いることができる。溝の幅と深さはポスト壁導波路の幅と厚さと同じにしてもよい。
In order to align the post
以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
高周波信号としては、ミリ波が挙げられるが、導波管構造による伝搬が可能であれば、テラヘルツ波(サブミリ波)等の更に高い周波数を有する信号でもよい。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
As a high-frequency signal, a millimeter wave can be cited, but a signal having a higher frequency such as a terahertz wave (sub-millimeter wave) may be used as long as propagation by a waveguide structure is possible.
伝送線路11の設けられた側では、図5に示すように、誘電体基板24の上に半導体素子16が実装されていてもよい。半導体素子16は、例えば集積回路(IC)であり、バンプ15を介して伝送線路11の端部14に接続されている。ポスト壁導波路20の支持部材が、導波管30の狭壁31,31及び広壁32,33と同様に、四方に壁部42を有する筐体41(図6参照)であってもよい。この筐体41も、ポスト壁導波路20の底面と両側面を覆う金属製治具の一例である。導波管30と筐体41との継ぎ目では、それぞれの端部にフランジ35,43を設け、フランジ35,43同士を対向させて連結することが好ましい。これにより、導波管30とポスト壁導波路20の伝搬方向のずれを低減して、両者を連結することができる。フランジ35,43の連結手段は特に限定されないが、ねじ36、リベット、クリップ等が挙げられる。
On the side where the
ポスト壁導波路20の端部においては、導波管30に対する整合のため、ポスト等の導体を設けることもできる。ポスト壁導波路20の伝搬方向(X軸方向)における、導波管30の中空部34に対向するポスト壁導波路20の端部とモード変換器12との間の区間において、一対の接地導体層22,23と一対のポスト壁21,21で囲まれる内部に、1又は2以上のポスト(図示せず)を設けることにより、ポスト壁導波路20と導波管30の間で反射損を低減することができる。
A conductor such as a post can be provided at the end of the
図7に示すように、ポスト壁導波路基板26の幅は、導波管30の狭壁31,31の間隔より狭くすることができる。この場合、ポスト壁導波路20の幅と導波管30の狭壁31,31の間隔との差(幅方向におけるポスト壁21と狭壁31の間)を埋める導体として、ポスト壁導波路基板26におけるポスト壁21と平行な外面には、金属などの導体からなる部材40を設けてもよい。これにより、隙間からの信号の漏洩を抑制し、損失を低減することができる。部材40は、ポスト壁導波路基板26を支持する支持部材であると同時に、上述の閉鎖導体25と同様の機能を有してもよい。
As shown in FIG. 7, the width of the
図8に示すように、ポスト壁導波路20の底面は、導波管30の下部広壁33と接触しておらず、導波管30の中空部34に対し、ポスト壁導波路20がZ軸方向の中間程度に位置してもよい。この場合、ポスト壁導波路20の下部の接地導体層22と導波管30の下部広壁33との隙間は、金属などの導体からなる部材40を設けてもよい。これにより、隙間からの信号の漏洩を抑制し、損失を低減することができる。
As shown in FIG. 8, the bottom surface of the
閉鎖導体の全体が導波管の外側に配されてもよい。閉鎖導体の全体が導波管の内側に配されてもよい。閉鎖導体の一部が導波管の外側に配されて、閉鎖導体の一部が導波管の内側に配されてもよい。 The entire closing conductor may be disposed outside the waveguide. The entire closing conductor may be disposed inside the waveguide. A part of the closed conductor may be arranged outside the waveguide, and a part of the closed conductor may be arranged inside the waveguide.
導波管に対するポスト壁導波路の固定は、ポスト壁導波路を支持する治具を導波管に対して固定する方法に限らず、導波管に対し、ポスト壁導波路を直接固定してもよい。固定手段は、溶接、接着、半田、ねじ、リベット、クリップ等が挙げられる。固定箇所に応じて、異なる固定手段を使い分けてもよい。
ポスト壁導波路の全部が導波管の外にあっても、一部が導波管の中にあってもよい。ポスト壁導波路の外面と導波管の内面との間に、金属などの導体からなる治具や閉鎖導体を介在させることもできる。
The fixing of the post wall waveguide to the waveguide is not limited to the method of fixing the jig supporting the post wall waveguide to the waveguide, and the post wall waveguide is directly fixed to the waveguide. Also good. Examples of the fixing means include welding, adhesion, solder, screws, rivets, and clips. Different fixing means may be used depending on the fixing location.
The entire post wall waveguide may be outside the waveguide or a portion may be inside the waveguide. A jig made of a conductor such as metal or a closed conductor may be interposed between the outer surface of the post wall waveguide and the inner surface of the waveguide.
伝送線路とポスト壁導波路の間でモードを変換するモード変換部としては、図示したピン構造に限らず、任意の構造を採用可能である。例えば、特許文献5に開示されるように、一対の接地導体層のうち一方の接地導体層は、誘電体基板において伝送線路と同一の面に形成され、他方の接地導体層は、誘電体基板において伝送線路と反対の面に形成され、伝送線路と前記一方の接地導体層とが連続した導体パターンとして形成されることにより、モード変換器が構成されていてもよい。
The mode conversion unit that converts the mode between the transmission line and the post wall waveguide is not limited to the pin structure illustrated, and any structure can be employed. For example, as disclosed in
導波管は、少なくともポスト壁導波路に連結される部分の近傍がポスト壁導波路の伝搬方向と平行であればよい。ポスト壁導波路から離れた箇所では、導波管が90°ベンド構造など曲がった構造であってもよい。 The waveguide only needs to have at least the vicinity of the portion connected to the post wall waveguide parallel to the propagation direction of the post wall waveguide. The waveguide may have a bent structure such as a 90 ° bend structure at a location away from the post wall waveguide.
(実施例1)
導波管としてWR−15(内側寸法が広壁側で3.76mm、狭壁側で1.88mmの方形導波管)を想定し、ポスト壁導波路の誘電体基板として厚さ0.85mm、幅3.76mmの石英を想定し、ポスト壁導波路の幅を2.0mmと想定して、ポスト壁導波路と導波管の間のモード変換に関し、電磁界シミュレーションを行った。ポスト壁導波路と導波管の隙間(約0.85mmと1.88mmとの差で、Z軸方向に約1mm)は、金属の部材で閉鎖した。
(Example 1)
Assuming a waveguide WR-15 (a rectangular waveguide with an inner dimension of 3.76 mm on the wide wall side and 1.88 mm on the narrow wall side), a thickness of 0.85 mm as the dielectric substrate of the post wall waveguide Assuming quartz having a width of 3.76 mm and assuming the width of the post wall waveguide to be 2.0 mm, an electromagnetic field simulation was performed on mode conversion between the post wall waveguide and the waveguide. The gap between the post-wall waveguide and the waveguide (about 1 mm in the Z-axis direction due to the difference between about 0.85 mm and 1.88 mm) was closed with a metal member.
周波数(Frequency)に対する反射係数S11のシミュレーション結果を図9に示す。また、周波数に対する透過係数S21のシミュレーション結果を図10に示す。図9より、おおよそ5GHzの帯域にわたって、−10dBより小さい反射損が実現できる。また、図10より、設計中心(60GHz)で透過係数S21が0となることが確認できる。 FIG. 9 shows a simulation result of the reflection coefficient S11 with respect to the frequency (Frequency). Moreover, the simulation result of the transmission coefficient S21 with respect to the frequency is shown in FIG. From FIG. 9, a reflection loss smaller than −10 dB can be realized over a band of about 5 GHz. Further, from FIG. 10, it can be confirmed that the transmission coefficient S21 is 0 at the design center (60 GHz).
11…伝送線路、12…モード変換器、13…誘電体層、16…半導体素子、20…ポスト壁導波路、21…ポスト壁、21a,21b,21c…ポスト、22,23…接地導体層、24…誘電体基板、25…閉鎖導体、26…ポスト壁導波路基板、30…導波管、31…狭壁、34…中空部、35,43…フランジ、40…支持部材、41…筐体。
DESCRIPTION OF
Claims (8)
平面回路からなる伝送線路が設けられた誘電体基板にポスト壁導波路が形成され、
前記ポスト壁導波路は、前記誘電体基板の対向する両面に形成された一対の接地導体層と、前記一対の接地導体層を接続するように前記誘電体基板を貫通するポストからなる一対のポスト壁とから構成され、
前記伝送線路と前記ポスト壁導波路との間は、前記誘電体基板に形成されたモード変換器により接続され、
導波管の中空部が前記ポスト壁導波路の端部に対向して、前記ポスト壁導波路と前記導波管とが伝搬方向を互いに平行にして連結され、
前記ポスト壁導波路と前記導波管との隙間が導体により閉鎖されていることを特徴とする、導波管との接続構造。 A connection structure between a transmission line composed of a planar circuit and a waveguide,
A post wall waveguide is formed on a dielectric substrate provided with a transmission line composed of a planar circuit,
The post wall waveguide includes a pair of posts including a pair of ground conductor layers formed on opposite surfaces of the dielectric substrate and posts penetrating the dielectric substrate so as to connect the pair of ground conductor layers. Composed of walls and
The transmission line and the post wall waveguide are connected by a mode converter formed on the dielectric substrate,
The hollow portion of the waveguide is opposed to the end portion of the post wall waveguide, and the post wall waveguide and the waveguide are coupled with the propagation directions thereof being parallel to each other,
A connection structure with a waveguide, wherein a gap between the post wall waveguide and the waveguide is closed by a conductor.
前記モード変換器は、前記伝送線路と前記一方の接地導体層とが連続した導体パターンとして形成されることにより構成されていることを特徴とする、請求項1〜5のいずれか1項に記載の導波管との接続構造。 One ground conductor layer of the pair of ground conductor layers is formed on the same surface as the transmission line in the dielectric substrate, and the other ground conductor layer is a surface opposite to the transmission line in the dielectric substrate. Formed into
6. The mode converter according to claim 1, wherein the mode converter is configured by forming the transmission line and the one ground conductor layer as a continuous conductor pattern. 6. Connection structure with waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013216471A JP6167008B2 (en) | 2013-10-17 | 2013-10-17 | Connection structure with waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013216471A JP6167008B2 (en) | 2013-10-17 | 2013-10-17 | Connection structure with waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015080100A true JP2015080100A (en) | 2015-04-23 |
JP6167008B2 JP6167008B2 (en) | 2017-07-19 |
Family
ID=53011190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013216471A Active JP6167008B2 (en) | 2013-10-17 | 2013-10-17 | Connection structure with waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6167008B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017171360A3 (en) * | 2016-03-28 | 2018-08-02 | 한국과학기술원 | Microstrip-waveguide transition for transmitting electromagnetic wave signal |
WO2018221486A1 (en) | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | Filter device and filter |
WO2018221485A1 (en) | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | Transmission line and post-wall waveguide |
TWI678839B (en) * | 2016-03-28 | 2019-12-01 | 韓國科學技術院 | Microstrip-waveguide transition for transmitting electromagnetic signals |
US10992015B2 (en) | 2016-08-26 | 2021-04-27 | Fujikura Ltd. | Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide |
US11011814B2 (en) | 2016-08-26 | 2021-05-18 | Fujikura Ltd. | Coupling comprising a conductive wire embedded in a post-wall waveguide and extending into a hollow tube waveguide |
US11404759B2 (en) | 2018-06-04 | 2022-08-02 | Nec Corporation | Connection structure including a coupling window between a dielectric waveguide line in a substrate and a waveguide and having plural recesses formed in the connection structure |
WO2024177019A1 (en) * | 2023-02-22 | 2024-08-29 | パナソニックインダストリー株式会社 | Waveguide |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174701A (en) * | 1997-08-28 | 1999-03-16 | Kyocera Corp | Connection structure for dielectric waveguide line |
JP2010081486A (en) * | 2008-09-29 | 2010-04-08 | Kyocera Corp | Waveguide connecting structure, and front end using the same |
WO2011052694A1 (en) * | 2009-10-29 | 2011-05-05 | 京セラ株式会社 | Mode polarization converter |
-
2013
- 2013-10-17 JP JP2013216471A patent/JP6167008B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174701A (en) * | 1997-08-28 | 1999-03-16 | Kyocera Corp | Connection structure for dielectric waveguide line |
JP2010081486A (en) * | 2008-09-29 | 2010-04-08 | Kyocera Corp | Waveguide connecting structure, and front end using the same |
WO2011052694A1 (en) * | 2009-10-29 | 2011-05-05 | 京セラ株式会社 | Mode polarization converter |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10777868B2 (en) | 2016-03-28 | 2020-09-15 | Korea Advanced Institute Of Science And Technology | Waveguide comprising first and second dielectric parts, where the first dielectric part comprises two or more separate dielectric parts |
TWI678839B (en) * | 2016-03-28 | 2019-12-01 | 韓國科學技術院 | Microstrip-waveguide transition for transmitting electromagnetic signals |
US10770774B2 (en) | 2016-03-28 | 2020-09-08 | Korea Advanced Institute Of Science And Technology | Microstrip-waveguide transition for transmitting electromagnetic wave signal |
US10777865B2 (en) | 2016-03-28 | 2020-09-15 | Korea Advanced Institute Of Science And Technology | Chip-to-chip interface comprising a waveguide with a dielectric part and a conductive part, where the dielectric part transmits signals in a first frequency band and the conductive part transmits signals in a second frequency band |
WO2017171360A3 (en) * | 2016-03-28 | 2018-08-02 | 한국과학기술원 | Microstrip-waveguide transition for transmitting electromagnetic wave signal |
US10992015B2 (en) | 2016-08-26 | 2021-04-27 | Fujikura Ltd. | Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide |
US11011814B2 (en) | 2016-08-26 | 2021-05-18 | Fujikura Ltd. | Coupling comprising a conductive wire embedded in a post-wall waveguide and extending into a hollow tube waveguide |
WO2018221486A1 (en) | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | Filter device and filter |
WO2018221485A1 (en) | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | Transmission line and post-wall waveguide |
US11054572B2 (en) | 2017-05-30 | 2021-07-06 | Fujikura Ltd. | Filter device and filter |
US11342648B2 (en) | 2017-05-30 | 2022-05-24 | Fujikura Ltd. | Transmission line and post-wall waveguide |
US11404759B2 (en) | 2018-06-04 | 2022-08-02 | Nec Corporation | Connection structure including a coupling window between a dielectric waveguide line in a substrate and a waveguide and having plural recesses formed in the connection structure |
WO2024177019A1 (en) * | 2023-02-22 | 2024-08-29 | パナソニックインダストリー株式会社 | Waveguide |
Also Published As
Publication number | Publication date |
---|---|
JP6167008B2 (en) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6167008B2 (en) | Connection structure with waveguide | |
JP6182422B2 (en) | Connection structure with waveguide | |
JP5907297B2 (en) | Electronics | |
JP3828438B2 (en) | Waveguide / microstrip line converter | |
WO2015133454A1 (en) | Antenna module and method for mounting same | |
JP6356490B2 (en) | Transmission mode conversion device and planar antenna device | |
JP2009213050A (en) | High-frequency device | |
JP2011223203A (en) | Waveguide/planar line converter and high frequency circuit | |
WO2016186136A1 (en) | Coaxial microstrip line conversion circuit | |
JPWO2015064637A1 (en) | Circuit board, electronic component storage package, and electronic device | |
JP6211835B2 (en) | High frequency transmission line | |
US11394100B2 (en) | High-frequency connection structure for connecting a coaxial line to a planar line using adhesion layers | |
JP5720667B2 (en) | Waveguide / planar line converter | |
JP4677944B2 (en) | Microwave waveguide device | |
JP5964785B2 (en) | High frequency transmission line | |
JP5472552B2 (en) | High frequency signal lines and electronic equipment | |
JP5482663B2 (en) | Circuit module substrate and manufacturing method thereof | |
JP4794616B2 (en) | Waveguide / stripline converter | |
JP7077137B2 (en) | Transmission lines and connectors | |
JP4601573B2 (en) | Waveguide converter | |
JP4821391B2 (en) | Circuit board connection structure | |
WO2017033436A1 (en) | Millimeter wave semiconductor device | |
JP2010098609A (en) | Waveguide-microstrip line converter and method of manufacturing the same | |
JP2010118857A (en) | Transmission line using integrated waveguide | |
JP2016163065A (en) | Waveguide microstrip line converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170626 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6167008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |