JP2015079936A - Low-temperature manufacturing method of polycrystalline silicon thin-film transistor - Google Patents

Low-temperature manufacturing method of polycrystalline silicon thin-film transistor Download PDF

Info

Publication number
JP2015079936A
JP2015079936A JP2014144951A JP2014144951A JP2015079936A JP 2015079936 A JP2015079936 A JP 2015079936A JP 2014144951 A JP2014144951 A JP 2014144951A JP 2014144951 A JP2014144951 A JP 2014144951A JP 2015079936 A JP2015079936 A JP 2015079936A
Authority
JP
Japan
Prior art keywords
gate
etching
layer
film transistor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014144951A
Other languages
Japanese (ja)
Inventor
聖 佑 顏
Shengyou Yan
聖 佑 顏
家 ▲チ▼ 黄
Chia-Chi Huang
家 ▲チ▼ 黄
原 欣 李
Yuanhsin Lee
原 欣 李
承 賢 王
Chenghsien Wang
承 賢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EverDisplay Optronics Shanghai Co Ltd
Original Assignee
EverDisplay Optronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EverDisplay Optronics Shanghai Co Ltd filed Critical EverDisplay Optronics Shanghai Co Ltd
Publication of JP2015079936A publication Critical patent/JP2015079936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-temperature manufacturing method of a polycrystalline silicon thin-film transistor.SOLUTION: A low-temperature manufacturing method of a polycrystalline silicon thin-film transistor comprises the steps of: forming a polycrystalline silicon layer on a substrate; forming, on the polycrystalline silicon layer, a gate insulator layer having laminate structure of silicon oxide and silicon nitride, and a gate layer in turn; forming a patterned photoresist on the gate layer; removing parts of the silicon nitride and the gate layer which are not covered with the photoresist by performing plasma etching and reactive ion etching on the substrate; forming a gate foot and a gate by partially removing the gate layer; and forming a source/drain and a low-doped drain by removing the photoresist and performing high-concentration doping while using, as a mask, the gate and the gate foot. According to the manufacturing method of the present invention, the loss of silicon nitride when etching a gate layer and SiNx can be reduced.

Description

本発明は、薄膜トランジスタ分野の技術に関し、特に低温ポリシリコン薄膜トランジスタ(Low Temperature Poly Silicon Thin Film Transistor, LTPS TFT)の製造方法に関する。   The present invention relates to a technique in the field of thin film transistors, and more particularly, to a method for manufacturing a low temperature polysilicon thin film transistor (LTPS TFT).

LTPSプロセスにおいて、低ドープドレイン(Lightly Doped Drain, LDD)の存在がリーク電流(Ioff)の抑制にとって非常に重要である。LDD製造方法の一つとして、酸化シリコンと窒化シリコンの積層構造(SiO/SiN)を有するゲート絶縁層を形成し、このゲート絶縁層の上にゲート層を形成した後、ドライエッチングよってゲートフート、すなわち、SiNフートを形成する。 In the LTPS process, the presence of a lightly doped drain (LDD) is very important for suppressing leakage current (Ioff). As one of the LDD manufacturing methods, a gate insulating layer having a stacked structure of silicon oxide and silicon nitride (SiO x / SiN x ) is formed, a gate layer is formed on the gate insulating layer, and then gate etching is performed by dry etching. That is, a SiN x foot is formed.

図1〜図4は従来技術のLTPSプロセスのTFT構造を示す。
図1に示すように、ドライエッチングの前に、ポリシリコン層13の上方に、SiOとSiNが積層されてなるゲート絶縁層14を形成する。その後、図2が示すように、物理的なエッチングや化学的なエッチングによって、フォトレジストPRによって覆われていないゲート層15とゲート絶縁層14のSiNをエッチングして除去した。続いて、図3が示すように、ゲート層15を更にエッチングして、SiNフート14aを形成した。その後、フォトレジストを除き、ドーピングによってLDD構造を形成した。
1 to 4 show a TFT structure of a prior art LTPS process.
As shown in FIG. 1, before dry etching, a gate insulating layer 14 in which SiO x and SiN x are laminated is formed above the polysilicon layer 13. Thereafter, as shown in FIG. 2, the SiN x of the gate layer 15 and the gate insulating layer 14 not covered with the photoresist PR was removed by physical etching or chemical etching. Subsequently, as shown in FIG. 3, the gate layer 15 was further etched to form a SiN x foot 14a. Thereafter, the photoresist was removed and an LDD structure was formed by doping.

図1〜図3に示した従来技術のLTPSプロセスは次のような問題点がある。即ち、ゲート層15とゲート絶縁層14のSiNをエッチングする過程において、物理的エッチングが過度に行なわれ、ゲート絶縁層14のSiOの損失を引き起こす(図4)。その結果、閾値電圧がシフトされ、リーク電流の経路が短くなり、リーク電流が増加することがある。なお、SiOの損失の不均一により、ムラが発生することがある。 The prior art LTPS process shown in FIGS. 1 to 3 has the following problems. In other words, in the process of etching the SiN x of the gate layer 15 and the gate insulating layer 14, physical etching is excessively performed, causing a loss of SiO x of the gate insulating layer 14 (FIG. 4). As a result, the threshold voltage is shifted, the leakage current path is shortened, and the leakage current may increase. Note that unevenness may occur due to non-uniformity of SiO x loss.

上記のような従来技術の問題点を解決するために、本発明はSiOの損失を避けることができるLTPS TFTの製造方法を提供する。 In order to solve the problems of the prior art as described above, the present invention provides an LTPS TFT manufacturing method capable of avoiding loss of SiO x .

本発明は
基板の上にポリシリコン層を形成するステップと、
前記ポリシリコン層の上に、酸化シリコンと窒化シリコンの積層構造を有するゲート絶縁層と、ゲート層とを順に形成するステップと、
前記ゲート層の上にパターニングされたフォトレジストを形成するステップと、
前記基板に対してプラズマエッチングと反応性イオンエッチングを行うことにより、前記フォトレジストにより覆われていない窒化シリコンとゲート層を除去するステップと、
前記ゲート層を部分除去することにより、ゲートフートとゲートを形成するステップと、
フォトレジストを除去すると共に、前記ゲートと前記ゲートフートをマスクとして高濃度ドーピングを行うことによりソース/ドレインと低ドープドレインを形成するステップと
を含むことを特徴とLTPS TFTの製造方法を提供する。
The present invention includes forming a polysilicon layer on a substrate;
Forming a gate insulating layer having a laminated structure of silicon oxide and silicon nitride, and a gate layer in order on the polysilicon layer;
Forming a patterned photoresist on the gate layer;
Removing the silicon nitride and the gate layer not covered by the photoresist by performing plasma etching and reactive ion etching on the substrate;
Forming a gate foot and a gate by partially removing the gate layer;
And a step of forming a source / drain and a low-doped drain by performing high-concentration doping using the gate and the gate foot as a mask, and providing a method of manufacturing an LTPS TFT.

本発明のLTPS TFTの製造方法によれば、ゲート層とSiNをエッチングするステップにおいて、プラズマエッチング(Plasma Etching, PE)と反応性イオンエッチング(Reactive Ion Eching, RIE)との二種類のエッチングを行うと共に、RIEのパワーを減少させることができる。つまり、エッチングのステップにおけるRIEの割合を減少することにより、物理的なエッチングの影響を減少でき、ゲート層とSiNをエッチングするときのSiOの損失を避けることができる。従って、SiO損失による閾値のシフトやリーク電流の増加などの欠点を避けることができる。 According to the LTPS TFT manufacturing method of the present invention, in the step of etching the gate layer and SiN x , two types of etching, that is, plasma etching (Plasma Etching, PE) and reactive ion etching (Reactive Ion Etching, RIE) are performed. While doing so, the power of RIE can be reduced. That is, by reducing the ratio of RIE in the etching step, the influence of physical etching can be reduced, and loss of SiO x when the gate layer and SiN x are etched can be avoided. Accordingly, it is possible to avoid disadvantages such as a threshold shift due to SiO x loss and an increase in leakage current.

従来技術のLTPSプロセスにおけるTFT構造を模式的に示す図である。It is a figure which shows typically the TFT structure in the LTPS process of a prior art. 従来技術のLTPSプロセスにおけるTFT構造を模式的に示す図である。It is a figure which shows typically the TFT structure in the LTPS process of a prior art. 従来技術のLTPSプロセスにおけるTFT構造を模式的に示す図である。It is a figure which shows typically the TFT structure in the LTPS process of a prior art. 従来技術のLTPSプロセスにおけるTFT構造を模式的に示す図である。It is a figure which shows typically the TFT structure in the LTPS process of a prior art. 本発明のLTPS TFTの製造方法の実施例のフローチャートを模式的に示す。The flowchart of the Example of the manufacturing method of LTPS TFT of this invention is shown typically. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. 本発明のLTPS TFTの製造方法の実施例によって製造されたTFTを模式的に示す断面図である。It is sectional drawing which shows typically the TFT manufactured by the Example of the manufacturing method of LTPS TFT of this invention. のパーセント数と相対的エッチングレシオの関係を示すグラフである。Is a graph showing the relationship between the percentage number relative etching ratio of O 2.

図5は本発明のLTPS TFTの製造方法の実施例のフローチャートを模式的に示す。図6〜図10は本発明のLTPS TFT製造方法の実施例によって製造されたTFTを模式的に示す断面図である。   FIG. 5 schematically shows a flowchart of an embodiment of a method for producing an LTPS TFT of the present invention. 6 to 10 are cross-sectional views schematically showing TFTs manufactured by the embodiment of the LTPS TFT manufacturing method of the present invention.

ステップS101では、図6に示すように、基板21の上にポリシリコン層23を形成する。この基板は、ガラス基板またはディスプレイに適用できる他の基板である。ポリシリコン層は、チャネル部23a、低ドープドレイン形成部23bおよびソース/ドレイン形成部23cを含んでよい。本発明は、ポリシリコン層23の形成方法に対して特に限定するものではない。たとえば、該ポリシリコン層23の形成方法として、基板21の上にアモルファスシリコン層を形成した後、アモルファスシリコン層がポリシリコン層になるように該アモルファスシリコン層に対しエキシマレーザアニールまたは熱処理を行うものであってもよい。   In step S101, a polysilicon layer 23 is formed on the substrate 21 as shown in FIG. This substrate is a glass substrate or other substrate applicable to a display. The polysilicon layer may include a channel portion 23a, a lightly doped drain formation portion 23b, and a source / drain formation portion 23c. The present invention is not particularly limited to the method for forming the polysilicon layer 23. For example, as a method of forming the polysilicon layer 23, after an amorphous silicon layer is formed on the substrate 21, excimer laser annealing or heat treatment is performed on the amorphous silicon layer so that the amorphous silicon layer becomes a polysilicon layer. It may be.

基板21とポリシリコン層23の間にもバッファ層22を形成してもよい。該バッファ層22は、SiOとSiNで形成された積層構造であってもよい。 A buffer layer 22 may also be formed between the substrate 21 and the polysilicon layer 23. The buffer layer 22 may have a stacked structure formed of SiO x and SiN x .

ステップS102では、図7に示すように、ポリシリコン層23の上に、SiOとSiNの積層構造を有するゲート絶縁層24と、ゲート層25とを順に形成する。該ゲート層25の材料として、たとえば、モリブデン(Mo)などの金属であってもよい。該ステップでは、ゲート絶縁層24とゲート層25の形成方法は特に限定されるものではなく、たとえば、化学気相成長、スパッタリング、蒸着などの方法を使ってもよい。 In step S102, a gate insulating layer 24 having a stacked structure of SiO x and SiN x and a gate layer 25 are sequentially formed on the polysilicon layer 23 as shown in FIG. The material of the gate layer 25 may be a metal such as molybdenum (Mo), for example. In this step, the formation method of the gate insulating layer 24 and the gate layer 25 is not particularly limited, and for example, a chemical vapor deposition method, a sputtering method, a vapor deposition method, or the like may be used.

ステップS103では、図8に示すように、ゲート層25の上にパターニングされたフォトレジストPRを形成する。具体的には、ゲート層25の上にフォトレジストPR層を形成した後、パターニングされたマスクを利用して、フォトリソグラフィー技術により該フォトレジストPR層に対して露光、現像などの処理を行い、これにより、パターニングされたフォトレジストPRを形成する。該フォトレジストPRのパターンは、形成するゲートの寸法とゲートフートの寸法によって決められる。   In step S103, a patterned photoresist PR is formed on the gate layer 25 as shown in FIG. Specifically, after forming a photoresist PR layer on the gate layer 25, using the patterned mask, the photoresist PR layer is subjected to processing such as exposure and development by a photolithography technique, Thereby, a patterned photoresist PR is formed. The pattern of the photoresist PR is determined by the size of the gate to be formed and the size of the gate foot.

ステップS104では、図9に示すように、図8に示すような基板に対してプラズマエッチングと反応性イオンエッチングを行うことにより、フォトレジストPRにより覆われていないSiNとゲート層25を除去する。たとえば、このステップは、プラズマエッチングと反応性イオンエッチングを同時に行うことができる装置(たとえば、誘導結合プラズマ装置)において行われてもよい。この過程において、反応性イオンエッチングのパワーを減少させることによって、イオン衝撃を減少させることができる。イオン衝撃を減少させるので、エッチングにおけるSiOのエッチングを減少でき、SiOの損失を減少させる。 In step S104, as shown in FIG. 9, plasma etching and reactive ion etching are performed on the substrate as shown in FIG. 8, thereby removing SiN x and the gate layer 25 that are not covered with the photoresist PR. . For example, this step may be performed in an apparatus (eg, an inductively coupled plasma apparatus) that can perform plasma etching and reactive ion etching simultaneously. In this process, ion bombardment can be reduced by reducing the power of reactive ion etching. Since the ion bombardment is reduced, the etching of SiO x in the etching can be reduced, and the loss of SiO x is reduced.

ステップS104で、導入される反応性ガスは、フッ化硫黄(SF)と酸素(O)の混合ガスであってもよい。ここで、酸素の割合は膜のエッチングレシオと薄膜トランジスタの歩留まり(Yield)によって決められる。図12はOのパーセント数と相対的エッチングレシオの関係を示すグラフである。該図から分かるように、Oの割合が約25%であれば、SiOのエッチングレシオが最も大きい。該図にTFTの歩留まりも加味すれば、SFとOの混合ガスに対する酸素の割合を適当に確定することができる。その原則として、決して高いエッチングレシオだけを追求するためにTFTの歩留まりを無視することはできなく、エッチングレシオとTFTの歩留まりの両者を考慮する必要がある。 In step S104, the reactive gas introduced may be a mixed gas of sulfur fluoride (SF 6 ) and oxygen (O 2 ). Here, the ratio of oxygen is determined by the etching ratio of the film and the yield of the thin film transistor. FIG. 12 is a graph showing the relationship between the percentage number of O 2 and the relative etching ratio. As can be seen from the figure, when the proportion of O 2 is about 25%, the etching ratio of SiO x is the largest. If the TFT yield is also taken into consideration in this figure, the ratio of oxygen to the mixed gas of SF 6 and O 2 can be determined appropriately. In principle, the TFT yield cannot be ignored in order to pursue only a high etching ratio, and both the etching ratio and the TFT yield must be considered.

勿論、たとえばフッ化カーボン(CF)などのほかの反応性ガスを使用してもよい。
ステップS104では、均一性(TFT品質に関わるキーポイント)に基づいて、エッチング時に使用される温度を設定することができる。たとえば、約60℃以下の温度でエッチングを行ってもよく、更に、室温(約25℃)でエッチングを行うことが好ましい。また、反応性ガスの量および温度に基づいてエッチング時に使用される圧力を設定することができる。
Of course, other reactive gases such as carbon fluoride (CF 4 ) may be used.
In step S104, the temperature used during etching can be set based on uniformity (a key point related to TFT quality). For example, etching may be performed at a temperature of about 60 ° C. or lower, and it is preferable to perform etching at room temperature (about 25 ° C.). Moreover, the pressure used at the time of an etching can be set based on the quantity and temperature of reactive gas.

ステップS105では、図10に示すように、ゲート層25を部分除去することにより、ゲートフートを形成すると共にゲート25aを形成する。このステップで使用されるガスは塩素ガス(Cl)とOの混合ガスであってもよい。 In step S105, as shown in FIG. 10, the gate layer 25 is partially removed to form a gate foot and a gate 25a. The gas used in this step may be a mixed gas of chlorine gas (Cl 2 ) and O 2 .

ステップS106では、図11に示すように、フォトレジストPRを除去した後、ゲート25aとゲートフート24aをマスクとして高濃度ドーピングを行なうことにより、ソース/ドレインと低ドープドレインを形成する。具体的には、ゲートフート24aにより覆われていないソース/ドレイン形成部23cが高濃度ドーピングされるように高濃度ドーピングを行うことにより、ソース/ドレインを形成する。これに対し、LLD形成部23bは、ゲートフート24aの遮蔽作用で低濃度ドーピングの領域となる。   In step S106, as shown in FIG. 11, after removing the photoresist PR, high concentration doping is performed using the gate 25a and the gate foot 24a as a mask, thereby forming a source / drain and a lightly doped drain. Specifically, the source / drain is formed by performing high concentration doping so that the source / drain formation portion 23c not covered with the gate foot 24a is highly doped. On the other hand, the LLD forming portion 23b becomes a low-concentration doping region by the shielding action of the gate foot 24a.

ステップS106の後、更に、ソース/ドレインに接触する接触線および絶縁層などを形成してもよいが、これらは周知の技術により形成されることができるので、本発明では詳細的に説明しない。   After step S106, contact lines that contact the source / drain, an insulating layer, and the like may be further formed. However, since these can be formed by a well-known technique, they are not described in detail in the present invention.

本発明のLTPS TFTの製造方法は、更に、形成されたシリコン薄膜トランジスタのゲートフートの傾斜角度を分析する(たとえば、走査型電子顕微鏡( Scanning Electron Microscope, SEM )の分析方法で分析する)ステップと、ゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーを確定する(具体的には、好ましいゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーを確定する)ステップと、ゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーによって、反応性イオンエッチングとプラズマエッチングを行うステップとを含んでもよい。   The manufacturing method of the LTPS TFT of the present invention further includes a step of analyzing the tilt angle of the gate foot of the formed silicon thin film transistor (for example, analyzing by an analysis method of a scanning electron microscope (SEM)), a gate foot A step of determining a reactive ion etching power and a plasma etching power corresponding to the inclination angle of the substrate (specifically, determining a reactive ion etching power and a plasma etching power corresponding to a preferable gate foot inclination angle) And reactive ion etching and plasma etching using reactive ion etching power and plasma etching power corresponding to the inclination angle of the gate foot.

LDD構造を有するTFTでは、ゲートフート(gate foot)の傾斜角度が小さいほど、すなわち、ゲートフートが緩やかであるほど、LDDの電気性能が良くなる。逆に、ゲートフートの傾斜角度が大きいほど、すなわち、ゲートフートが急峻であるほど、LDDの電気性能が悪くなる。   In a TFT having an LDD structure, the smaller the gate foot inclination angle, that is, the gentler the gate foot, the better the electrical performance of the LDD. Conversely, the greater the gate foot inclination angle, that is, the steeper the gate foot, the worse the electrical performance of the LDD.

LDD TFTの形成において、ゲートフートの傾斜角度をリアルタイムに監視することが難しい。従って、TFTの形成後に、SEM方法により、形成されたゲートフートの傾斜角度を分析し、更に、好ましいゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーを確定することができる。   In forming the LDD TFT, it is difficult to monitor the tilt angle of the gate foot in real time. Therefore, after the TFT is formed, the tilt angle of the formed gate foot can be analyzed by the SEM method, and the reactive ion etching power and the plasma etching power corresponding to the preferable gate foot tilt angle can be determined.

具体的には、RIEのパワーが大きい場合、すなわち、同時にRIEとPEでエッチングするステップでRIEに偏る場合、ゲートフートの傾斜角度が比較的に大きくなり、即ちゲートフートが比較的に急峻になる。逆に、PEのパワーが大きい場合、すなわち、同時にRIEとPEでエッチングするステップでPEに偏る場合、ゲートフートの傾斜角度が比較的に小さくなり、ゲートフートが比較的に緩やかになる。   Specifically, when the power of RIE is large, that is, when RIE and PE are simultaneously biased to RIE, the inclination angle of the gate foot becomes relatively large, that is, the gate foot becomes relatively steep. On the contrary, when the PE power is large, that is, when the PE is biased in the step of simultaneously etching with RIE and PE, the inclination angle of the gate foot becomes relatively small and the gate foot becomes relatively gentle.

したがって、SEM方法により分析して、形成されたゲートフートの傾斜角度が好ましいゲートフートの傾斜角度より大きいと確定する場合、その後の製造において、PEのパワーを増加すると共にRIEのパワーを減少することにより、その後に形成するゲートフートが緩やかになる。   Thus, if analyzed by SEM method and it is determined that the formed gate foot tilt angle is greater than the preferred gate foot tilt angle, in subsequent manufacturing, by increasing PE power and decreasing RIE power, The gate foot formed after that becomes loose.

本発明のLTPS TFTの製造方法によれば、ゲート層とSiNをエッチングするステップにおいて、PEとRIEの二種類のエッチング(例えば、PEとRIEの二種類のエッチングを行うことができる装置において、エッチングしてもよい)を行うと共に、RIEのパワーを減少させることができる。つまり、エッチングのプロセスにおけるRIEの割合を減少することにより、物理的なエッチングの影響を減少でき、ゲート層とSiNをエッチングするときのSiOの損失を避けることができる。従って、SiO損失による閾値のシフト、リーク電流パスの減少やリーク電流の増加などの欠点を避け、LTPS素子の信頼性が向上することができる。 According to the LTPS TFT manufacturing method of the present invention, in the step of etching the gate layer and SiN x , two types of etching of PE and RIE (for example, in an apparatus capable of performing two types of etching of PE and RIE, Etching may be performed) and the RIE power may be reduced. That is, by reducing the ratio of RIE in the etching process, the influence of physical etching can be reduced, and loss of SiO x when the gate layer and SiN x are etched can be avoided. Therefore, it is possible to avoid defects such as a threshold shift due to SiO x loss, a decrease in leakage current path, and an increase in leakage current, and the reliability of the LTPS element can be improved.

また、本発明のLTPS TFTの製造方法によれば、SEM分析方法で、形成されたゲートフートの傾斜角度を分析することにより、PEとRIEのパワーを確定する。そして、PEのパワーを増加させることによって、ゲートフートの傾斜角度を減少させ、即ち、ゲートフートが緩やかになり、電気性能が優れたLDDを作成することができる。   Further, according to the LTPS TFT manufacturing method of the present invention, the power of PE and RIE is determined by analyzing the tilt angle of the formed gate foot by the SEM analysis method. And by increasing the power of PE, the inclination angle of the gate foot is decreased, that is, the gate foot becomes gentle and an LDD having excellent electrical performance can be produced.

上記のように、本発明のLTPS TFTの製造方法によれば、最大限にLDDの性能を発揮できるように要求に応じるSiNフートを形成することができると共に、SiO損失による一連の問題を避けるようにSiO損失を避けることができる。 As described above, according to the LTPS TFT manufacturing method of the present invention, it is possible to form a SiN x foot that meets the requirements so that the LDD performance can be maximized, and to solve a series of problems due to SiO x loss. SiO x loss can be avoided to avoid.

本発明の図6〜図10は、主にPチャネル型TFTを例として説明したが、該TFTはNチャネル型TFTであってもよい。その場合の具体的な製造プロセスもPチャネルTFTとほぼ同様であるので、ここでその説明を省略する。   6 to 10 of the present invention have been described mainly using a P-channel TFT as an example, but the TFT may be an N-channel TFT. Since the specific manufacturing process in that case is almost the same as that of the P-channel TFT, the description thereof is omitted here.

発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。従って、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。   Although the invention has been illustrated and described in detail, the foregoing description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.

21 基板、23 ポリシリコン層、23a チャネル部、23b 低ドープドレイン形成部、23c ソース/ドレイン形成部。   21 substrate, 23 polysilicon layer, 23a channel part, 23b lightly doped drain forming part, 23c source / drain forming part.

Claims (6)

基板の上にポリシリコン層を形成するステップと、
前記ポリシリコン層の上に、酸化シリコンと窒化シリコンの積層構造を有するゲート絶縁層と、ゲート層とを順に形成するステップと、
前記ゲート層の上にパターニングされたフォトレジストを形成するステップと、
前記基板に対してプラズマエッチングと反応性イオンエッチングを行うことにより、前記フォトレジストにより覆われていない窒化シリコンとゲート層を除去するステップと、
前記ゲート層を部分除去することにより、ゲートフートとゲートを形成するステップと、
フォトレジストを除去すると共に、前記ゲートと前記ゲートフートをマスクとして高濃度ドーピングを行なうことによりソース/ドレインと低ドープドレインを形成するステップと
を含むことを特徴とする低温ポリシリコン薄膜トランジスタの製造方法。
Forming a polysilicon layer on the substrate;
Forming a gate insulating layer having a laminated structure of silicon oxide and silicon nitride, and a gate layer in order on the polysilicon layer;
Forming a patterned photoresist on the gate layer;
Removing the silicon nitride and the gate layer not covered by the photoresist by performing plasma etching and reactive ion etching on the substrate;
Forming a gate foot and a gate by partially removing the gate layer;
And a step of forming a source / drain and a low-doped drain by performing high-concentration doping using the gate and the gate foot as a mask while removing the photoresist.
前記基板に対してプラズマエッチングと反応性イオンエッチングを行う過程において、フッ化硫黄と酸素の混合ガスを反応性ガスとすることを特徴とする請求項1に記載の低温ポリシリコン薄膜トランジスタの製造方法。   2. The method of manufacturing a low-temperature polysilicon thin film transistor according to claim 1, wherein a mixed gas of sulfur fluoride and oxygen is used as a reactive gas in a process of performing plasma etching and reactive ion etching on the substrate. 前記フッ化硫黄と酸素の割合はエッチングレシオと薄膜トランジスタの歩留まりによって決められることを特徴とする請求項2に記載の低温ポリシリコン薄膜トランジスタの製造方法。   3. The method of manufacturing a low-temperature polysilicon thin film transistor according to claim 2, wherein the ratio of sulfur fluoride and oxygen is determined by an etching ratio and a yield of the thin film transistor. 前記基板に対してエッチングを行う過程において、使用される温度は60℃より低いことを特徴とする請求項1に記載の低温ポリシリコン薄膜トランジスタの製造方法。   2. The method of manufacturing a low-temperature polysilicon thin film transistor according to claim 1, wherein the temperature used in the process of etching the substrate is lower than 60.degree. 前記基板に対してエッチングを行う過程において、使用される温度は25℃であることを特徴とする請求項4に記載の低温ポリシリコン薄膜トランジスタの製造方法。   5. The method of manufacturing a low-temperature polysilicon thin film transistor according to claim 4, wherein the temperature used in the process of etching the substrate is 25.degree. 形成されたシリコン薄膜トランジスタのゲートフートの傾斜角度を分析するステップと、
ゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーを確定するステップと、
ゲートフートの傾斜角度に対応する反応性イオンエッチングのパワーとプラズマエッチングのパワーで、反応性イオンエッチングとプラズマエッチングを行うステップと
を更に含むことを特徴とする請求項1に記載の低温ポリシリコン薄膜トランジスタの製造方法。
Analyzing the tilt angle of the gate foot of the formed silicon thin film transistor;
Determining the reactive ion etching power and the plasma etching power corresponding to the gate foot tilt angle;
2. The low-temperature polysilicon thin film transistor according to claim 1, further comprising: performing reactive ion etching and plasma etching with reactive ion etching power and plasma etching power corresponding to the inclination angle of the gate foot. Production method.
JP2014144951A 2013-10-14 2014-07-15 Low-temperature manufacturing method of polycrystalline silicon thin-film transistor Pending JP2015079936A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310479753.0A CN104576387B (en) 2013-10-14 2013-10-14 Low-temperature polysilicon film transistor manufacture method
CN201310479753.0 2013-10-14

Publications (1)

Publication Number Publication Date
JP2015079936A true JP2015079936A (en) 2015-04-23

Family

ID=53011106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014144951A Pending JP2015079936A (en) 2013-10-14 2014-07-15 Low-temperature manufacturing method of polycrystalline silicon thin-film transistor

Country Status (3)

Country Link
JP (1) JP2015079936A (en)
CN (1) CN104576387B (en)
TW (1) TWI528464B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509603A (en) * 2017-03-30 2020-03-26 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacturing method of TFT backplane and TFT backplane
US10957712B2 (en) 2017-08-02 2021-03-23 Sharp Kabushiki Kaisha Substrate and method for producing substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527819B (en) * 2017-08-07 2019-08-30 武汉华星光电半导体显示技术有限公司 The preparation method of bottom gate type low-temperature polycrystalline silicon transistor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174073A (en) * 1985-12-26 1987-07-30 Sagami Chem Res Center 4-(6-(4,5-dihydro-4-methyl-3-methylene-3h-2-furanon-5-yl)-1, 3-dioxan-4-yl)-2, 6-piperidinedione derivative
JPH07211912A (en) * 1994-01-21 1995-08-11 Fuji Xerox Co Ltd Thin film transistor and its manufacture
JPH11154704A (en) * 1997-11-20 1999-06-08 Sony Corp Manufacture of semiconductor device
JPH11297675A (en) * 1998-04-16 1999-10-29 Sony Corp Semiconductor manufacturing apparatus
JP2001308076A (en) * 2000-04-27 2001-11-02 Nec Corp Method of manufacturing semiconductor device
JP2002533925A (en) * 1998-12-18 2002-10-08 タレス Method for manufacturing CMOS transistor and related elements
US20040004220A1 (en) * 2002-06-21 2004-01-08 Koji Suzuki Thin film transistor
JP2004031409A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Method of manufacturing thin film transistor
JP2005129906A (en) * 2003-10-21 2005-05-19 Applied Materials Inc Apparatus and method for controlling accuracy and repeatability of etch process
JP2012044157A (en) * 2010-07-23 2012-03-01 Semiconductor Energy Lab Co Ltd Manufacturing method of silicon on insulator (soi) substrate and manufacturing method of semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933241B2 (en) * 2002-06-06 2005-08-23 Nec Corporation Method for forming pattern of stacked film
US7145209B2 (en) * 2003-05-20 2006-12-05 Tpo Displays Corp. Thin film transistor and fabrication method thereof
US7592628B2 (en) * 2006-07-21 2009-09-22 Tpo Displays Corp. Display with thin film transistor devices having different electrical characteristics in pixel and driving regions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174073A (en) * 1985-12-26 1987-07-30 Sagami Chem Res Center 4-(6-(4,5-dihydro-4-methyl-3-methylene-3h-2-furanon-5-yl)-1, 3-dioxan-4-yl)-2, 6-piperidinedione derivative
JPH07211912A (en) * 1994-01-21 1995-08-11 Fuji Xerox Co Ltd Thin film transistor and its manufacture
JPH11154704A (en) * 1997-11-20 1999-06-08 Sony Corp Manufacture of semiconductor device
JPH11297675A (en) * 1998-04-16 1999-10-29 Sony Corp Semiconductor manufacturing apparatus
JP2002533925A (en) * 1998-12-18 2002-10-08 タレス Method for manufacturing CMOS transistor and related elements
JP2001308076A (en) * 2000-04-27 2001-11-02 Nec Corp Method of manufacturing semiconductor device
US20040004220A1 (en) * 2002-06-21 2004-01-08 Koji Suzuki Thin film transistor
JP2004031409A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Method of manufacturing thin film transistor
JP2005129906A (en) * 2003-10-21 2005-05-19 Applied Materials Inc Apparatus and method for controlling accuracy and repeatability of etch process
JP2012044157A (en) * 2010-07-23 2012-03-01 Semiconductor Energy Lab Co Ltd Manufacturing method of silicon on insulator (soi) substrate and manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509603A (en) * 2017-03-30 2020-03-26 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacturing method of TFT backplane and TFT backplane
US10957712B2 (en) 2017-08-02 2021-03-23 Sharp Kabushiki Kaisha Substrate and method for producing substrate

Also Published As

Publication number Publication date
TWI528464B (en) 2016-04-01
CN104576387B (en) 2017-07-25
CN104576387A (en) 2015-04-29
TW201515112A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US8450166B2 (en) Method of fabricating semiconductor devices
US9117915B2 (en) Thin film transistor, pixel structure and method for fabricating the same
WO2017016023A1 (en) Low-temperature polycrystalline silicon thin-film transistor and manufacturing method therefor
CN104616980B (en) The forming method of metal gates
TW200903655A (en) Method of fabricating high-voltage MOS having doubled-diffused drain
US20120292673A1 (en) Semiconductor Device and Manufacturing Method Thereof
US9891501B2 (en) Polycrystalline silicon thin film transistor device and method of fabricating the same
US20150380565A1 (en) Thin film transistor and method for manufacturing the same, array substrate and display device
CN106935635A (en) The forming method of semiconductor structure
JP2015079936A (en) Low-temperature manufacturing method of polycrystalline silicon thin-film transistor
CN104716092B (en) The manufacture method and manufacture device of array base palte
CN105226022B (en) The forming method of semiconductor structure
CN102376645B (en) Forming method of CMOS (Complementary Metal-Oxide-Semiconductor Transistor) device stress film
CN102117773B (en) Semiconductor device and method for manufacturing same with stress memorization technology process
US20170221723A1 (en) Method of fabricating semiconductor structure using planarization process and cleaning process
TW201810433A (en) A graphene field effect transistor with dual gates and the manufacturing method thereof
JP2010103296A (en) Method of manufacturing germanium oxide, and method of manufacturing semiconductor device using the same
CN104979288B (en) The forming method of semiconductor devices
US9269827B2 (en) Oxidizing the source and doping the drain of a thin-film transistor
CN108878354B (en) CMOS thin film transistor and manufacturing method of LTPS array substrate
US9059092B2 (en) Chemical dielectric formation for semiconductor device fabrication
CN102487017B (en) Manufacturing method of strain CMOS device
CN107706242B (en) Transistor and method of manufacturing the same
JP6829775B2 (en) Thin film transistor and its manufacturing method, display panel
US20130109186A1 (en) Method of forming semiconductor devices using smt

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510