JP2015078851A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2015078851A
JP2015078851A JP2013214713A JP2013214713A JP2015078851A JP 2015078851 A JP2015078851 A JP 2015078851A JP 2013214713 A JP2013214713 A JP 2013214713A JP 2013214713 A JP2013214713 A JP 2013214713A JP 2015078851 A JP2015078851 A JP 2015078851A
Authority
JP
Japan
Prior art keywords
copper foil
elastic body
temperature sensor
foil pattern
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013214713A
Other languages
Japanese (ja)
Other versions
JP6314413B2 (en
Inventor
健太郎 潮田
Kentaro Ushioda
健太郎 潮田
小林 浩
Hiroshi Kobayashi
浩 小林
清悟 在間
Seigo Zaima
清悟 在間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013214713A priority Critical patent/JP6314413B2/en
Publication of JP2015078851A publication Critical patent/JP2015078851A/en
Application granted granted Critical
Publication of JP6314413B2 publication Critical patent/JP6314413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature sensor which maintains a stable contact even if minute fluctuation is generated on a position of a detection object surface and to realize the temperature sensor hardly affected by an external atmospheric temperature.SOLUTION: A temperature sensor includes: a film including: a first end part fixed to a first support part; a first belt-like part continuing to the first end part and extending from the first end part to a first direction in a state of having sagging; and a width wide part continuing to the first belt-like part and having the width wider than that of the first belt-like part in a second direction orthogonal to the first direction; a thermo sensitive element fixed substantially to a center part in the second direction of a top surface of the film in the width wide part; and an elastic body surrounding a thermo sensitive element and arranged on the top surface of the film and pressing a back surface of the film to a detection object surface by repulsive force of the deformation and brought into contact with the top surface of the film.

Description

本発明は、感温素子を用いた温度センサに関する。   The present invention relates to a temperature sensor using a temperature sensitive element.

検出対象物の表面温度を検知する手段として、感温素子を検知対象物の表面に接触させる方法は一般的である。更に接着剤などで固定する方法もとられるが、接着工程が生じること、表面の材質によっては接着力が不十分であったり、温度サイクルによって経年変化して接着剤が変質して剥離するなどの問題を生じる可能性がある。接着を用いず単に押し当てるだけの押し当て型温度センサは、接着工程も必要なく、組立てやすく、また接着剤の変質なども問題もない。   As a means for detecting the surface temperature of the detection object, a method of bringing a temperature sensing element into contact with the surface of the detection object is common. In addition, it can be fixed with an adhesive, etc., but the adhesive process may occur, the adhesive strength may be insufficient depending on the material of the surface, or the adhesive may change over time due to the temperature cycle and peel off. May cause problems. A pressing-type temperature sensor that simply presses without using an adhesive does not require a bonding process, is easy to assemble, and has no problem with deterioration of the adhesive.

例えば、押し当て型温度センサとして、特許文献1には、FPC(フレキシブル回路基板)を環状に屈曲させ、その内側に感温素子を固定し、環状に屈曲したFPCの外周面を検知対象に押し当てることにより、検知対象の温度を検出する温度センサが示されている。
また、別の押し当て型温度センサとして、特許文献2には、FPCの帯を検出対象方向に屈曲させ、屈曲の頂点において屈曲の外側のFPCの面の検出対象に押し当て、屈曲の頂点であり屈曲の内側のFPCの面上に配置した感温素子で検知対象の温度を検知する温度センサが示されている。また、感熱素子は弾性体によって覆われている。
For example, as a pressing type temperature sensor, Patent Document 1 discloses that an FPC (flexible circuit board) is bent in an annular shape, a temperature sensitive element is fixed on the inner side, and the outer peripheral surface of the annular bent FPC is pressed against a detection target. A temperature sensor for detecting the temperature of a detection target by applying is shown.
As another pressing-type temperature sensor, Patent Document 2 discloses that an FPC band is bent in the direction of a detection target, pressed against the detection target on the surface of the FPC outside the bending at the top of the bending, and at the top of the bending. A temperature sensor is shown that detects the temperature of a detection target with a temperature sensing element arranged on the surface of the FPC inside the bend. The thermal element is covered with an elastic body.

特開2009−231003号公報JP 2009-23003 A 特開2010−175494号公報JP 2010-175494 A

従来の接触型温度センサにおいては検出対象物の位置ずれ、振動などが加わった場合、安定して押し当て条件が保たれない可能性があり、検知対象物との接触状況が変動すると検知対象物表面から感熱素子への熱の伝達状況が変動し、検出精度が低下する。特許文献1に示された温度センサにおいては、感温素子は底面だけがFPCを通じて検知対象からの熱を受けるが、感温素子の上面および側面は自由空間の雰囲気に接しており、雰囲気温度の影響や気流、対流の影響を受ける。感温素子の6面のうち底面の1つの面だけが検知温度に接するが、他の5つの面は雰囲気に晒されている。特に検知対象温度と雰囲気温度との間に大きな差がある場合、感温素子は雰囲気温度の影響が支配的となる。従って検出精度が低下する。また、環状に屈曲したFPCは垂直方向には変形が容易であるので、検知対象との垂直方向の距離の誤差や振動などによる距離の変化には追従できるが、検知対象物が円筒面に沿って円筒の軸と平行に微小なずれを生じたときは、FPCはそのずれに対応して動くことは出来ない。従ってその方向に振動などによりずれが生じたときはそのずれに追従できず、FPCと検知対象物表面との間に擦れが生じる。これは検知対象が硬いものである場合は、FPC表面の傷や磨耗となり、検知対象が柔かいものである場合は、検知対象物表面の傷や磨耗となる。また特許文献2に示された温度センサにおいては、第2の弾性体がFPCの上に乗っているだけで、固定部に結合していないので、検知対象物の位置ずれに対して弾性体の位置が不安定になり、検知対象とFPCとの接触条件が変動し、感度が不安定になる。従って検出精度が低下する。また、感温素子の電極に接続される銅箔パターンは単純に直線的なものであるので、銅箔パターンを通じて外部の雰囲気との熱伝導が生じるため、検知温度は外部雰囲気温度の影響を受けやすいものとなる。   In the conventional contact-type temperature sensor, if the detection object is misaligned or vibrated, the pressing condition may not be maintained stably. The state of heat transfer from the surface to the thermosensitive element fluctuates, and the detection accuracy decreases. In the temperature sensor shown in Patent Document 1, only the bottom surface of the temperature sensing element receives heat from the detection target through the FPC, but the top surface and the side surface of the temperature sensing element are in contact with the free space atmosphere, Influenced by influence, airflow and convection. Of the six surfaces of the temperature sensitive element, only one of the bottom surfaces is in contact with the detected temperature, while the other five surfaces are exposed to the atmosphere. In particular, when there is a large difference between the detection target temperature and the ambient temperature, the influence of the ambient temperature is dominant in the temperature sensitive element. Accordingly, the detection accuracy is lowered. In addition, since the FPC bent in an annular shape can be easily deformed in the vertical direction, it can follow a change in distance due to an error in the vertical distance from the detection target or vibration, but the detection target moves along the cylindrical surface. Thus, when a slight deviation occurs in parallel with the axis of the cylinder, the FPC cannot move corresponding to the deviation. Therefore, when a deviation occurs in the direction due to vibration or the like, the deviation cannot be followed and rubbing occurs between the FPC and the surface of the detection target. When the detection target is a hard object, the FPC surface is scratched or worn. When the detection object is a soft object, the detection target surface is scratched or worn. Further, in the temperature sensor disclosed in Patent Document 2, the second elastic body is only on the FPC and is not coupled to the fixed portion. The position becomes unstable, the contact condition between the detection target and the FPC changes, and the sensitivity becomes unstable. Accordingly, the detection accuracy is lowered. In addition, since the copper foil pattern connected to the electrode of the temperature sensing element is simply linear, heat conduction with the external atmosphere occurs through the copper foil pattern, so the detected temperature is affected by the external ambient temperature. It will be easy.

本発明は、この問題を鑑みてなされたもので、検知対象物表面の位置の微小な変動があっても安定した接触を保ち、かつ外部雰囲気温度の影響を受けにくい温度センサを実現することを目的とする。   The present invention has been made in view of this problem, and realizes a temperature sensor that maintains stable contact even when there is a minute change in the position of the surface of the detection target and is less susceptible to the influence of the external ambient temperature. Objective.

上記目的を達成するために、本発明による温度センサは、第1の支持部に固定される第1の端部と、第1の端部と連続するとともにたるみを持った状態で第1の端部から第1の方向に延在する第1の帯状部と、第1の帯状部と連続するとともに第1の方向とは直交する第2の方向において第1の帯状部より大きな幅を有する幅広部と、を有するフィルムと、幅広部において、フィルムのおもて面の第2の方向における概ね中央部に固定された感温素子と、幅広部において、感温素子を囲むともに、フィルムのおもて面上に配置され、変形の反発力によりフィルムの裏面を検知対象物表面に押付けるとともに、フィルムのおもて面と接する弾性体と、を有する。   In order to achieve the above object, a temperature sensor according to the present invention includes a first end fixed to the first support portion, a first end that is continuous with the first end and has a slack. A first belt-like portion extending from the first portion in a first direction, and a wide width that is larger than the first belt-like portion in a second direction that is continuous with the first belt-like portion and orthogonal to the first direction A film having a portion, a temperature-sensitive element fixed at a substantially central portion in the second direction of the front surface of the film in the wide portion, and the temperature-sensitive element in the wide portion and surrounding the temperature-sensitive element. And an elastic body that is disposed on the front surface and presses the back surface of the film against the surface of the object to be detected by the repulsive force of deformation and is in contact with the front surface of the film.

このような構成の温度センサを検知対象物に押し当てると、そのフィルムの幅広部は検知対象面に柔かく押し当てられ、検知対象面が取付位置のばらつきや振動により微小に変動しても、弾性体の反発力により安定した接触を保つため、幅広部おもて面の第2の方向における中央部にある感温素子は安定して検知対象物表面の温度を検出できる。また、感温素子を囲む弾性体により、外部雰囲気温度の影響を受けにくくなっている。   When the temperature sensor with such a configuration is pressed against the object to be detected, the wide part of the film is softly pressed against the surface to be detected, and even if the surface to be detected fluctuates slightly due to variations in mounting position or vibrations, it is elastic. In order to maintain a stable contact due to the repulsive force of the body, the temperature sensing element in the center portion in the second direction of the wide portion front surface can stably detect the temperature of the surface of the detection object. In addition, the elastic body surrounding the temperature sensing element is less susceptible to the influence of the external ambient temperature.

また、本発明において、弾性体の底面は、底面の内周側から外周側へ向かう下に凸の凸面であることが望ましい。   In the present invention, the bottom surface of the elastic body is preferably a convex surface that protrudes downward from the inner peripheral side to the outer peripheral side.

また、本発明において、フィルムは、第2の支持部に固定される第2の端部と、幅広部および第2の端部と連続するとともにたるみを持った状態で第2の端部から第1の方向とは逆向きに延在するとともに、第2の方向において幅広部より小さな幅を有する第2の帯状部を有していてもよい。   In the present invention, the film is continuous from the second end portion fixed to the second support portion, the wide portion and the second end portion, and has a slack from the second end portion. You may have the 2nd strip | belt-shaped part which has a width | variety smaller than the wide part in a 2nd direction while extending in the direction opposite to 1 direction.

また、本発明において、弾性体および感温素子は、ケースの内壁とケース内に収納された検知対象物との間に配置されるとともに、弾性体の底面と対向するフィルムの裏面が検知対象である検知対象物表面と接し、弾性体の上部において、第3の支持部から押さえられることにより弾性体が変形し、変形の反発力によりフィルムの裏面を検知対象物表面に押付け、第3の支持部において弾性体がケース内壁に固定されてもよい。   In the present invention, the elastic body and the temperature sensitive element are disposed between the inner wall of the case and the detection target housed in the case, and the back surface of the film facing the bottom surface of the elastic body is the detection target. The elastic body is deformed by being in contact with the surface of a certain detection object and being pressed from the third support portion at the upper part of the elastic body, and the back surface of the film is pressed against the surface of the detection object by the repulsive force of the deformation, and the third support The elastic body may be fixed to the inner wall of the case at the portion.

また、本発明において、感温素子と弾性体との接触を避けるための空間が設けられていてもよい。あるいは、発泡性樹脂により感温素子が被覆されるとともに、発泡性樹脂と弾性体とが接していてもよい。   In the present invention, a space for avoiding contact between the temperature sensitive element and the elastic body may be provided. Alternatively, the temperature sensitive element may be covered with the foamable resin, and the foamable resin and the elastic body may be in contact with each other.

また、本発明において、フィルムのおもて面に形成された感温素子の電極と接合するためのランドパターンと、幅広部および第1の帯状部において、ランドパターンに連結するフィルムのおもて面にフィルムと一体に形成された信号用銅箔パターンまたはフィルムのおもて面に配置された信号用ワイヤーと、を有してもよい。また、感温素子からの信号用銅箔パターンまたは信号用ワイヤーが蛇行する部分を持っていても良い。さらに、信号用銅箔パターンまたは信号用ワイヤーは、感温素子の周囲においては折り返して引き回される、あるいは渦巻状に引き回されていてもよい。   Further, in the present invention, the land pattern for joining to the electrode of the temperature sensitive element formed on the front surface of the film, and the front of the film connected to the land pattern in the wide portion and the first strip-shaped portion. A signal copper foil pattern formed integrally with the film on the surface or a signal wire disposed on the front surface of the film may be included. Further, the signal copper foil pattern or the signal wire from the temperature sensitive element may have a meandering portion. Further, the signal copper foil pattern or the signal wire may be folded around the temperature sensing element or may be drawn in a spiral shape.

また、本発明において、感温素子周囲の近傍領域にランドパターンに連結している集熱用銅箔パターンを持っていてもよい。集熱用銅箔パターンは向かい合った一対の半円形であり、その中心に感温素子が設けられていても良い。あるいは、集熱用銅箔パターンは電極を中心に放射状に伸びていてもよい。さらに、その集熱用銅箔パターンは放射状に伸びかつ枝分れしていてもよい。さらに、集熱用銅箔パターンがフィルム裏面にも設けられていてもよい。   Moreover, in this invention, you may have the copper foil pattern for heat collection connected with the land pattern in the vicinity area | region around a temperature sensing element. The heat-collecting copper foil pattern is a pair of facing semicircles, and a temperature sensitive element may be provided at the center thereof. Alternatively, the heat-collecting copper foil pattern may extend radially around the electrode. Furthermore, the copper foil pattern for heat collection may extend radially and branch. Furthermore, the copper foil pattern for heat collection may be provided also on the film back surface.

また、本発明において、弾性体は、信号用銅箔パターンまたは信号用ワイヤーに対向する部分に窪みを有し、信号用銅箔パターンまたは信号用銅箔パターン上のフィルムと一体に形成された保護層または信号用ワイヤーに、弾性体の表面が接触しないようにすることが望ましい。さらに、第1および/または第2の帯状部は弾性体側面からたるみを持った状態で離れて保持されていることが望ましい。さらに、第1および第2の帯状部は、幅広部および感熱素子を挟んで対抗して設けられ、第1および第2の帯状部の中心線同士が段違いであるであってもよい。   In the present invention, the elastic body has a depression in a portion facing the signal copper foil pattern or the signal wire, and is a protection formed integrally with the film on the signal copper foil pattern or the signal copper foil pattern. It is desirable that the surface of the elastic body does not contact the layer or the signal wire. Furthermore, it is desirable that the first and / or second belt-like portions are held apart from each other with a slack from the side surface of the elastic body. Furthermore, the first and second belt-shaped portions may be provided to face each other with the wide portion and the thermal element interposed therebetween, and the center lines of the first and second belt-shaped portions may be uneven.

また、本発明において、弾性体全体が発泡性樹脂であってもよい。   In the present invention, the entire elastic body may be a foamable resin.

本発明によれば、検知対象物表面の位置の微小な変動あっても安定した接触を保ち、かつ外部雰囲気温度の影響を受けにくい温度センサを実現できる。   According to the present invention, it is possible to realize a temperature sensor that maintains stable contact even when there is a minute change in the position of the surface of the detection object and is less susceptible to the influence of the external ambient temperature.

(a)実施形態1の外形を示す図である。(b)実施形態1の断面を示す図である。(c)実施形態1のFPCを示す図である。(A) It is a figure which shows the external shape of Embodiment 1. FIG. (B) It is a figure which shows the cross section of Embodiment 1. FIG. (C) It is a figure which shows FPC of Embodiment 1. FIG. (a)実施形態2の外形を示す図である。(b)実施形態2の断面を示す図である。(c)実施形態2のFPCを示す図である。(A) It is a figure which shows the external shape of Embodiment 2. FIG. (B) It is a figure which shows the cross section of Embodiment 2. FIG. (C) It is a figure which shows FPC of Embodiment 2. FIG. 実施形態3を示す図である。FIG. 6 is a diagram showing a third embodiment. (a)実施形態4の外形を示す図である。(b)実施形態4の断面を示す図である。(c)実施形態4のFPCを示す図である。(A) It is a figure which shows the external shape of Embodiment 4. FIG. (B) It is a figure which shows the cross section of Embodiment 4. FIG. (C) It is a figure which shows FPC of Embodiment 4. FIG. (a)実施形態5の外形を示す図である。(b)実施形態5の断面を示す図である。(c)実施形態5のFPCを示す図である。(A) It is a figure which shows the external shape of Embodiment 5. FIG. (B) It is a figure which shows the cross section of Embodiment 5. FIG. (C) It is a figure which shows FPC of Embodiment 5. FIG. 実施形態6を示す図である。It is a figure which shows Embodiment 6. FIG. 実施形態7を示す図である。FIG. 10 is a diagram showing a seventh embodiment. (a)実施形態8の銅箔を折り返す方式を示す図である。(b)実施形態8の銅箔を複数回折り返す方式を示す図である。(c)実施形態8の銅箔を渦巻状にする方式を示す図である。(A) It is a figure which shows the system which returns the copper foil of Embodiment 8. FIG. (B) It is a figure which shows the system which folds back the copper foil of Embodiment 8 two or more times. (C) It is a figure which shows the system which makes the copper foil of Embodiment 8 spiral. 実施形態9を示す図である。FIG. 10 is a diagram illustrating a ninth embodiment. 実施形態10を示す図である。It is a figure which shows Embodiment 10. FIG. 実施形態11を示す図である。It is a figure which shows Embodiment 11. FIG. (a)実施形態12のFPCのおもて面を示す図である。(b)実施形態12のFPCの裏面を示す図である。(A) It is a figure which shows the front surface of FPC of Embodiment 12. FIG. (B) It is a figure which shows the back surface of FPC of Embodiment 12. FIG. (a)実施形態13、14の外形を示す図である。(b)実施形態13、14の断面を示す図である。(A) It is a figure which shows the external shape of Embodiment 13,14. (B) It is a figure which shows the cross section of Embodiment 13,14. (a)実施形態15のFPCのおもて面を示す図である。(b)実施形態15の断面を示す図である。(A) It is a figure which shows the front surface of FPC of Embodiment 15. (B) It is a figure which shows the cross section of Embodiment 15. FIG.

以下、本発明の実施形態について説明するが、まず、本実施形態の原理について説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described. First, the principle of the present embodiment will be described. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

(実施形態1)
図1は本実施形態の温度センサの原理図である。本実施形態の温度センサ装置100はFPC(Flexible Print Circuit)104、感温素子105、弾性体106、固定部107、リード線108より構成される。ここで、温度センサ10は、FPC(Flexible Print Circuit)104、感温素子105、弾性体106を備えている。FPC104はポリイミドフィルムなどのしなやかな屈曲性をもつフィルムを基材とするので、図1(a)、(b)に示すように、屈曲して温度センサ装置100に組み込むことが可能である。ここで、FPC104が伸展された形は、図1(c)のような形状であり、第1の端部となる端子部103から第1の方向に延在する第1の帯状部101と、第1の帯状部101に連なり、第1の方向と直交する第2の方向において、第1の帯状部101より幅の広い幅広部102と、第1の帯状部101を間に挟んで、幅広部102の反対側に連なる第1の端部となる端子部103とからなる。第1の帯状部101は、幅広部102より第2の方向における幅が狭い場所が存在すればよく、狭い幅が同一の幅であってもよく、幅広部102より第2の方向における幅が狭い異なる複数の幅が存在してもよい。ここで、第1の方向とは、屈曲して組み込む場合は、伸展された場合の伸展された方向を屈曲した方向を指すものとする。幅広部102の第1および第2の方向におけるおもて面中央には感温素子105が実装されており、感温素子105の信号は、FPC104のおもて面上に形成または配置された信号線150を通じてFPC104の第1の端部となる端子部103に形成された端子151に出力される。信号線150は、感温素子105の電極と端子151をつなぐFPC104のおもて面上に配置された細くしなやかなワイヤー、あるいはFPC104に形成された銅箔パターンである。第1の端部となる端子部103に形成された端子151にリード線108を接続することにより、感温素子105の信号を外部に取出すことができる。端子151はリード線108と接続可能な金属部分であり、FPC104のおもて面上に銅箔パターンで形成することも出来る。屈曲して組み込む場合、FPC104の第1の端部となる端子部103が、固定部107に設けられた第1の支持部171に固定され、第1の帯状部101がたるみを持った状態で屈曲されて、幅広部102の第1および第2の方向における中心が弾性体106の中心と一致するように組み込まれる。端子部103の支持部171への固定は接着、あるいは熱カシメなどにより行われる。本実施形態では、感温素子105は温度に応じて抵抗値が変化するサーミスタであるとして説明を行うが、金属測温体、あるいは温度に応じた起電力を生じる熱電対でもよい。
(Embodiment 1)
FIG. 1 is a principle diagram of the temperature sensor of the present embodiment. The temperature sensor device 100 according to the present embodiment includes an FPC (Flexible Print Circuit) 104, a temperature sensitive element 105, an elastic body 106, a fixing portion 107, and a lead wire 108. Here, the temperature sensor 10 includes an FPC (Flexible Print Circuit) 104, a temperature sensitive element 105, and an elastic body 106. Since the FPC 104 is based on a flexible film such as a polyimide film, it can be bent and incorporated into the temperature sensor device 100 as shown in FIGS. Here, the shape in which the FPC 104 is extended is a shape as shown in FIG. 1C, and the first belt-like portion 101 extending in the first direction from the terminal portion 103 serving as the first end portion; In a second direction that is continuous with the first strip 101 and is orthogonal to the first direction, the wide portion 102 that is wider than the first strip 101 and the first strip 101 are sandwiched between them. The terminal portion 103 is a first end portion connected to the opposite side of the portion 102. The first strip 101 need only have a location where the width in the second direction is narrower than that of the wide portion 102, the narrow width may be the same width, and the width in the second direction of the wide portion 102 may be the same. There may be a plurality of narrow different widths. Here, the first direction refers to the direction in which the stretched direction when bent is bent when it is bent and incorporated. A temperature sensing element 105 is mounted at the center of the front surface in the first and second directions of the wide portion 102, and the signal of the temperature sensing element 105 is formed or arranged on the front surface of the FPC 104. The signal is output to the terminal 151 formed in the terminal portion 103 which is the first end portion of the FPC 104 through the signal line 150. The signal line 150 is a thin and flexible wire disposed on the front surface of the FPC 104 that connects the electrode of the temperature sensing element 105 and the terminal 151, or a copper foil pattern formed on the FPC 104. By connecting the lead wire 108 to the terminal 151 formed in the terminal portion 103 serving as the first end portion, the signal of the temperature sensing element 105 can be taken out. The terminal 151 is a metal portion that can be connected to the lead wire 108, and can be formed on the front surface of the FPC 104 with a copper foil pattern. When bent and assembled, the terminal portion 103 which is the first end portion of the FPC 104 is fixed to the first support portion 171 provided in the fixing portion 107, and the first belt-like portion 101 has a slack. It is bent and incorporated so that the centers in the first and second directions of the wide portion 102 coincide with the center of the elastic body 106. The terminal portion 103 is fixed to the support portion 171 by adhesion or heat caulking. In the present embodiment, the temperature sensing element 105 is described as a thermistor whose resistance value changes according to the temperature. However, a metal thermometer or a thermocouple that generates an electromotive force according to the temperature may be used.

図1(b)に示すように、感温素子105を囲む弾性体106の底面はFPC104の幅広部102のおもて面に接しているので、弾性体106に接する固定部107が検知対象物表面120方向に押付けられると、第3の支持部173に接する弾性体106は圧縮されて弾性変形しその反発力によりFPC104の幅広部102の裏面を検知対象物表面120に押付ける。つまり、弾性体106の変形の反発力によりFPC104の裏面を検知対象物表面120に押付けるとともに弾性体106の底面がFPC104のおもて面と接することになる。従って、感温素子105が実装された幅広部102は、検知対象物表面120と密着性を保つことが出来る。FPC104の裏面は検知対象物表面120に圧接して熱結合するので、その温度はFPC104に伝導する。FPC104は厚さが10〜50μm程度の薄いフィルムであるので、FPC104の裏面の熱はFPC104のおもて面に容易に伝導しさらに感温素子105に伝わる。従って、感温素子105は検知対象物表面120の温度に応じた信号を出力することになる。また、感温素子105は弾性体106によって囲まれているので、外部雰囲気温度の影響が低減された状態で検知対象物表面120の温度に応じた信号を出力することが可能となっている。   As shown in FIG. 1B, since the bottom surface of the elastic body 106 surrounding the temperature sensing element 105 is in contact with the front surface of the wide portion 102 of the FPC 104, the fixing portion 107 in contact with the elastic body 106 is the object to be detected. When pressed in the direction of the front surface 120, the elastic body 106 in contact with the third support portion 173 is compressed and elastically deformed, and the repulsive force presses the back surface of the wide portion 102 of the FPC 104 against the detection target surface 120. That is, the back surface of the FPC 104 is pressed against the detection target surface 120 by the repulsive force of the deformation of the elastic body 106, and the bottom surface of the elastic body 106 is in contact with the front surface of the FPC 104. Therefore, the wide portion 102 on which the temperature sensitive element 105 is mounted can maintain adhesion with the detection target object surface 120. Since the back surface of the FPC 104 is in pressure contact with the detection object surface 120 and thermally coupled, the temperature is conducted to the FPC 104. Since the FPC 104 is a thin film having a thickness of about 10 to 50 μm, the heat on the back surface of the FPC 104 is easily conducted to the front surface of the FPC 104 and further transmitted to the temperature sensing element 105. Therefore, the temperature sensing element 105 outputs a signal corresponding to the temperature of the detection target object surface 120. Further, since the temperature sensing element 105 is surrounded by the elastic body 106, it is possible to output a signal corresponding to the temperature of the detection target object surface 120 in a state where the influence of the external ambient temperature is reduced.

ここで、FPC104の幅広部102の第1および第2の方向における中央部に感温素子105が位置するので、第1および第2の方向における中央部を確実に検知対象物表面120に押し当てる必要がある。そのためには弾性体106の底面の形状は、感温素子105を囲む底面の内周側から外周側へ向かう下に凸の凸面であることが望ましい。つまり、弾性体106の変形によって、弾性体106の底面は内周側からFPC104のおもて面に接し、最終的に外周側がFPC104のおもて面に接することが望ましい。こうすると弾性体106の底面の内周側が外周側より大きく圧縮されるのでFPC104の幅広部102の第1および第2の方向における中央部へ行くほど反発力が大きくなる。この弾性体106の底面が凸面でなく平面であると、外周側のエッジが検知対象物表面120に強く当たることになり、相対的に第1および第2の方向における中央部の検知対象物表面120との接触する当たりが弱まり、第1および第2の方向における中央部が検知対象物表面120から浮き上がる現象がおきる。そうなると、検知対象物表面120から感温素子105への熱伝導が不安定になる。また、弾性体106は変形して底面が広がっても幅広部102をはみ出さないことが望ましい。幅広部102をはみ出すと、弾性体106が直接、検知対象物表面120に接触するので、接触面積の異なりに起因して検知対象物表面120の温度に影響を与える。また、幅広部102周縁部の角が弾性体105に押さえつけられるので、検知対象物表面120に傷をつけるおそれもある。   Here, since the temperature-sensitive element 105 is positioned at the center portion in the first and second directions of the wide portion 102 of the FPC 104, the center portion in the first and second directions is reliably pressed against the detection target surface 120. There is a need. For this purpose, the shape of the bottom surface of the elastic body 106 is desirably a convex surface that protrudes downward from the inner peripheral side to the outer peripheral side of the bottom surface surrounding the temperature sensing element 105. In other words, it is desirable that the elastic body 106 is deformed so that the bottom surface of the elastic body 106 contacts the front surface of the FPC 104 from the inner peripheral side, and finally the outer peripheral side contacts the front surface of the FPC 104. As a result, the inner peripheral side of the bottom surface of the elastic body 106 is compressed more than the outer peripheral side, so that the repulsive force increases toward the center of the wide portion 102 of the FPC 104 in the first and second directions. If the bottom surface of the elastic body 106 is not a convex surface but a flat surface, the edge on the outer peripheral side strongly hits the detection target object surface 120, and the detection target object surface in the center in the first and second directions relatively. The contact with 120 is weakened, and the central part in the first and second directions rises from the detection object surface 120. As a result, heat conduction from the detection target object surface 120 to the temperature sensing element 105 becomes unstable. Further, it is desirable that the elastic body 106 does not protrude from the wide portion 102 even if the elastic body 106 is deformed and the bottom surface is expanded. When the wide portion 102 protrudes, the elastic body 106 directly contacts the detection target object surface 120, and thus affects the temperature of the detection target object surface 120 due to the difference in the contact area. Moreover, since the corner | angular part of the wide part 102 periphery is pressed down by the elastic body 105, there exists a possibility that the detection target object surface 120 may be damaged.

なお、幅広部102の第1および第2の方向における中央部に感熱素子105が実装されることが好ましく、第1および第2の方向における中央部を通る第1および第2の方向のそれぞれの直線に対して、幅広部102の外周線は線対称となることが好ましい。特に、幅広部102は円状であることが好ましい。同様に、弾性体106の底面の内周線および外周線は円状であることが好ましい。幅広部102、弾性体106の底面の内周線および外周線が円状であれば、FPC104の熱分布は感熱素子105を中心に概ね等方的な熱分布となるため、測定精度を特に上げることが可能となる。   The thermal element 105 is preferably mounted at the center of the wide portion 102 in the first and second directions, and each of the first and second directions passing through the center in the first and second directions. It is preferable that the outer peripheral line of the wide portion 102 is line symmetric with respect to the straight line. In particular, the wide portion 102 is preferably circular. Similarly, the inner peripheral line and the outer peripheral line on the bottom surface of the elastic body 106 are preferably circular. If the inner circumferential line and the outer circumferential line on the bottom surface of the wide portion 102 and the elastic body 106 are circular, the heat distribution of the FPC 104 becomes a substantially isotropic thermal distribution centering on the thermal element 105, so that the measurement accuracy is particularly improved. It becomes possible.

(実施形態2)
実施形態2においては、図2に示すように、温度センサ装置200では、FPC104が幅広部102を挟んで第1の帯状部101に対向してもうひとつの第2の帯状部140をもつ。ここで、第2の帯状部140は、幅広部102より第2の方向における幅が狭い場所が存在すればよく、狭い幅が同一の幅であってもよく、幅広部102より第2の方向における幅が狭い異なる複数の幅が存在してもよい。FPC104の使用面積は増えるが、幅広部102が両側から第1および第2の帯状部(101、140)により支持されるため、幅広部102の位置が安定する。FPC104を伸展した状態を図2(c)に示す。図2(c)においては、幅広部102の両側にそれぞれ第1および第2の帯状部(101、140)が幅広部102を挟んで対向して延在する。第2の帯状部140の、幅広部102と反対側の端には、第2の端部となる係止部141があり、固定部107に設けられた第2の支持部172にFPC104の係止部141を係止(固定)する。図2(b)に示すように、FPC104は第2の端部となる係止部141において第2の支持部172に係止され、弾性体106の底面を通って、第1の端部となる端子部103が第1の支持部171に固定されるように第1および第2の帯状部(101、140)が屈曲されてたるみを持った状態で固定部107に組み込まれ、温度センサ装置200として機能する。係止部141と第2の支持部172との係止および、端子部103の支持部171への固定は接着、あるいは熱カシメなどにより行われる。なお第1の支持部171と第2の支持部172は一致していても良い。この場合、第1の端部となる端子部103と第2の端部となる係止部141は同じ位置で固定される。なお、固定部107に第1の支持部171および第2の支持部172が存在するとして説明したが、固定部が2個存在するものであってもよく、第1の支持部171および第2の支持部172がそれぞれ別個の固定部(図示せず)に存在してもよい。
(Embodiment 2)
In the second embodiment, as shown in FIG. 2, in the temperature sensor device 200, the FPC 104 has another second strip 140 that faces the first strip 101 across the wide portion 102. Here, it is sufficient that the second belt-shaped portion 140 has a place where the width in the second direction is narrower than that of the wide portion 102, the narrow width may be the same width, and the second direction from the wide portion 102. There may be a plurality of different widths with a narrow width. Although the use area of the FPC 104 increases, the wide portion 102 is supported by the first and second belt-like portions (101, 140) from both sides, so that the position of the wide portion 102 is stabilized. A state where the FPC 104 is extended is shown in FIG. In FIG. 2C, the first and second strips (101, 140) extend opposite to each other on both sides of the wide portion 102 with the wide portion 102 interposed therebetween. At the end of the second strip 140 opposite to the wide portion 102, there is a locking portion 141 serving as a second end, and the FPC 104 is engaged with the second support portion 172 provided on the fixed portion 107. The stop 141 is locked (fixed). As shown in FIG. 2B, the FPC 104 is locked to the second support portion 172 at the locking portion 141 serving as the second end portion, passes through the bottom surface of the elastic body 106, and the first end portion. The first and second belt-like portions (101, 140) are bent and have a slack so that the terminal portion 103 to be fixed to the first support portion 171 is incorporated in the fixing portion 107, and the temperature sensor device It functions as 200. The locking of the locking portion 141 and the second support portion 172 and the fixing of the terminal portion 103 to the support portion 171 are performed by adhesion or heat caulking. In addition, the 1st support part 171 and the 2nd support part 172 may correspond. In this case, the terminal portion 103 serving as the first end portion and the locking portion 141 serving as the second end portion are fixed at the same position. In addition, although it demonstrated as the 1st support part 171 and the 2nd support part 172 exist in the fixing | fixed part 107, two fixing | fixed parts may exist, and the 1st support part 171 and the 2nd support part 172 may exist. The support portions 172 may be provided in separate fixing portions (not shown).

(実施形態3)
図3は、本温度センサ装置200を、ケース300に内蔵された検知対象物301の温度検出において適用した例である。ここで、検知対象物301はバッテリ、集積回路などの発熱を伴う電子部品あるいは電気機器などが挙げられるが、その形態は特に問われるものではない。温度センサ装置200の固定部107はケース300の壁に開けられた穴304に挿入されて固定される。第3の支持部173は、固定部107に設けられ、弾性体106の上部を支持するので、FPC104の幅広部102は弾性体106が僅かに変形する程度の反発力を受け、検知対象物301の検知対象物表面120に軽く押付けられる。弾性体106の底面は、内周側から外周側へ向かう下に凸の凸面であるため、弾性体106の反発力はFPC104の幅広部102の第1および第2の方向における中央部が一番強く、周辺(外周側)に向かって軽減する。従って、検知対象物301の検知対象物表面120の位置が微小に変動しても、弾性体106の変形が保たれている限りは、その反発力により、幅広部102の第1および第2の方向における中央部と検出対象物301の検知対象物表面120とは安定した密着状態が保たれる。検知対象物301の検知対象物表面120の微小な変動とは、垂直方向(幅広部102の垂線方向)においては、固定部107が固定されたケース300の壁に開けられた穴304を有する壁面と検知対象物301の検知対象物表面120との距離の変動であり、検知対象物301とケース300との取付位置公差などの静的なばらつきのほか、検知対象物301の温度による膨張、ケース300に振動が加わった場合のケース300と検知対象物301との相対的位置関係の変動などの動的変動などがある。これらの変動に応じて弾性体106が変形して幅広部102と検知対象物301の検知対象物表面120との密着状態を保つ。FPC104の第1および第2の帯状部(101、140)は、たるみを持っており、固定部107から検知対象物301の検知対象物表面120までの垂直距離の変化に応じて屈曲する。また、これら第1および第2の帯状部(101、140)は、第2の方向における幅が狭いため、検知対象物301の検知対象物表面120の表面に沿った方向(水平方向)の変位に対しても、第1および第2の帯状部(101、140)がねじれを伴い変位するので、幅広部102を屈曲させることなく、検知対象物301の検知対象物表面120の水平方向の変位に応じてしなやかに屈曲する。つまり、第1および第2の帯状部(101、140)のみがねじれを伴い変位し、幅広部102は第1および第2の帯状部(101、140)のねじれを伴う変位の影響が低減された状態で検知対象物301の検知対象物表面120への密着状態を保つことになる。なお、弾性体106は垂直方向の変形だけでなく、底部の水平方向の移動に応じてずれて変形することも可能である。弾性体106が水平方向にも変形可能であり、かつ第1および第2の帯状部(101、140)がたるみを持つため、検知対象物301の水平方向の微小な移動に対し、検知対象物301の検知対象物表面120に幅広部102が密着したまま一緒に移動することが出来る。つまり、幅広部102は検知対象300の垂直方向の微小変位にも水平方向の微小変位にも検知対象物301の検知対象物表面120に密着性を保つことが出来る。例えば、ケース300に入れられた検知対象物301であるバッテリを車載した場合、車両の振動によりこの様な微小変位が起きるが、本実施形態によれば、検知対象物301の検知対象物表面120であるバッテリの表面の温度を安定して検出することが出来る。なお、実施形態1に示す幅広部102と第1の帯状部101が連なる構成であっても、同様な効果を得ることが可能である。
(Embodiment 3)
FIG. 3 is an example in which the present temperature sensor device 200 is applied in temperature detection of the detection target 301 built in the case 300. Here, the detection target 301 may be an electronic component or an electric device that generates heat such as a battery or an integrated circuit, but the form is not particularly limited. The fixing part 107 of the temperature sensor device 200 is inserted and fixed in a hole 304 formed in the wall of the case 300. Since the third support portion 173 is provided on the fixed portion 107 and supports the upper portion of the elastic body 106, the wide portion 102 of the FPC 104 receives a repulsive force that slightly deforms the elastic body 106, and the detection target 301 Are lightly pressed against the surface 120 of the object to be detected. Since the bottom surface of the elastic body 106 is a convex surface that protrudes downward from the inner peripheral side toward the outer peripheral side, the repulsive force of the elastic body 106 is most at the center in the first and second directions of the wide portion 102 of the FPC 104. Strongly reduced toward the periphery (outside). Therefore, even if the position of the detection target surface 120 of the detection target 301 fluctuates slightly, as long as the deformation of the elastic body 106 is maintained, the repulsive force causes the first and second of the wide portion 102. A stable contact state is maintained between the central portion in the direction and the detection target surface 120 of the detection target 301. In the vertical direction (perpendicular direction of the wide portion 102), the minute fluctuation of the detection target surface 120 of the detection target 301 is a wall surface having a hole 304 formed in the wall of the case 300 to which the fixing portion 107 is fixed. Variation of the distance between the detection object 301 and the detection object surface 120, in addition to static variation such as a mounting position tolerance between the detection object 301 and the case 300, expansion due to the temperature of the detection object 301, and the case There are dynamic fluctuations such as fluctuations in the relative positional relationship between the case 300 and the detection object 301 when vibration is applied to 300. In accordance with these fluctuations, the elastic body 106 is deformed to keep the wide portion 102 and the detection target object surface 120 of the detection target object 301 in close contact. The first and second strips (101, 140) of the FPC 104 have a slack and bend according to a change in the vertical distance from the fixing unit 107 to the detection target surface 120 of the detection target 301. Further, since the first and second strips (101, 140) are narrow in the second direction, the displacement of the detection target 301 in the direction along the surface of the detection target surface 120 (horizontal direction). However, since the first and second belt-like portions (101, 140) are displaced with twisting, the horizontal displacement of the detection target surface 120 of the detection target 301 without bending the wide portion 102. Bends flexibly according to. That is, only the first and second belt-like portions (101, 140) are displaced with twisting, and the wide portion 102 is less affected by the displacement with twisting of the first and second belt-like portions (101, 140). In this state, the contact state of the detection target 301 to the detection target surface 120 is maintained. Note that the elastic body 106 can be deformed not only in the vertical direction but also shifted in accordance with the horizontal movement of the bottom. Since the elastic body 106 can be deformed also in the horizontal direction and the first and second strips (101, 140) have slack, the detection target object can be detected against a slight movement of the detection target object 301 in the horizontal direction. The wide portion 102 can be moved together with the surface 120 of the detection object 301 in close contact. That is, the wide portion 102 can maintain adhesion to the detection target surface 120 of the detection target 301 regardless of the vertical displacement or the horizontal displacement of the detection target 300. For example, when a battery that is the detection target 301 placed in the case 300 is mounted on a vehicle, such a minute displacement occurs due to the vibration of the vehicle. According to the present embodiment, the detection target surface 120 of the detection target 301 is used. It is possible to stably detect the temperature of the surface of the battery. Even if the wide portion 102 and the first belt-like portion 101 shown in the first embodiment are connected, the same effect can be obtained.

また、検知対象物301の検知対象物表面120の温度を正確に検知するには、それ以外の周囲の温度の影響を受けにくくする必要がある。感熱素子105を囲む弾性体106は一部がケース300外部に露出し、一部がケース300内に存在するので、ケース300の外部および内部の雰囲気(302、303)の影響を受ける。ここで、一般的に感温素子105を囲む弾性体106はゴムなどの材質であるので断熱性が高いので、ケース300外部の雰囲気303やケース300内部の雰囲気302の温度を感熱素子105に伝わりにくくする。このように、感熱素子105は薄いFPC104を通じて検出対象物301の検知対象物表面120と強く熱結合する一方、外部および内部の雰囲気(302、303)の温度の影響が低減された状態で検知対象物301の検知対象物表面120の温度を正確に検知できる。   Further, in order to accurately detect the temperature of the detection target object surface 120 of the detection target 301, it is necessary to make it less susceptible to the surrounding temperature. A part of the elastic body 106 surrounding the thermal element 105 is exposed to the outside of the case 300 and a part of the elastic body 106 exists in the case 300, so that it is affected by the atmosphere (302, 303) outside and inside the case 300. Here, since the elastic body 106 that generally surrounds the temperature sensing element 105 is made of a material such as rubber, it has high heat insulation properties. Therefore, the temperature of the atmosphere 303 outside the case 300 and the atmosphere 302 inside the case 300 is transmitted to the heat sensing element 105. Make it harder. As described above, the thermal element 105 is strongly thermally coupled to the detection target surface 120 of the detection target 301 through the thin FPC 104, while the influence of the temperature of the external and internal atmospheres (302, 303) is reduced. The temperature of the detection target object surface 120 of the object 301 can be accurately detected.

(実施形態4)
図4に示すように、実施形態4においては、温度センサ装置400では、幅広部102と弾性体106との間に、感温素子105と弾性体106との接触を避けるための空間401が設けられている。空間401のような狭い空間に閉じ込められた空気は対流や気流が起こりにくいため極めて断熱性が高く、ゴムなどの弾性体106よりも更に断熱性が高い。従って、より外部および内部の雰囲気(302、303)の温度の影響を受けにくくなり、感温素子105の検知温度の精度が向上する。また、弾性体106が感温素子105に接していると、感温素子105の応答性は弾性体106の熱応答性に近いものとなる。弾性体106は感温素子105よりもはるかに熱容量が大きいので感温素子105単独よりも熱応答が遅い。例えば、検知対象物表面120の温度が上昇した場合、その熱が弾性体106に伝わって弾性体106の温度が安定するまで感温素子105の温度も安定しない。その後、検知対象物表面120の温度が下がっても、弾性体106が放熱してゆっくり温度が下がるのに合わせて感温素子105の温度もさがる。これに対し、空間401があると、弾性体106の温度変化に殆ど関係なく、熱容量の小さいFPC104の幅広部102の中央部および感温素子105の温度変化で応答性が決まる。このように、感温素子105の周囲に小さな空間401を設けて弾性体106との熱結合を遮断すると、検知精度が向上するとともに、応答性の上でも好ましい。
(Embodiment 4)
As shown in FIG. 4, in the fourth embodiment, in the temperature sensor device 400, a space 401 for avoiding contact between the temperature sensing element 105 and the elastic body 106 is provided between the wide portion 102 and the elastic body 106. It has been. Since air confined in a narrow space such as the space 401 is less likely to cause convection or airflow, it has extremely high heat insulating properties, and has higher heat insulating properties than an elastic body 106 such as rubber. Accordingly, the temperature of the atmosphere (302, 303) outside and inside is less affected by the temperature, and the accuracy of the temperature detected by the temperature sensing element 105 is improved. When the elastic body 106 is in contact with the temperature sensing element 105, the response of the temperature sensing element 105 is close to the thermal response of the elastic body 106. Since the elastic body 106 has a much larger heat capacity than the temperature sensing element 105, the thermal response is slower than the temperature sensing element 105 alone. For example, when the temperature of the detection object surface 120 rises, the temperature of the temperature sensing element 105 is not stabilized until the heat is transferred to the elastic body 106 and the temperature of the elastic body 106 is stabilized. Thereafter, even if the temperature of the detection object surface 120 decreases, the temperature of the temperature sensing element 105 decreases as the elastic body 106 dissipates heat and the temperature decreases slowly. On the other hand, when there is the space 401, the responsiveness is determined by the temperature change of the center portion of the wide portion 102 of the FPC 104 and the temperature sensing element 105 having a small heat capacity, regardless of the temperature change of the elastic body 106. As described above, it is preferable to provide a small space 401 around the temperature sensing element 105 to block the thermal coupling with the elastic body 106 in order to improve detection accuracy and responsiveness.

また、第1および第2の帯状部(101、140)は幅広部102より第2の方向における幅が狭いので、幅広部102から第1および第2の帯状部(101、140)への熱放出あるいは第1および第2の帯状部(101、140)から幅広部102への熱流入を低減することも可能となっている。従って、感温素子105検知精度が向上するとともに、応答性の上でも好ましい。なお、実施形態1に示す幅広部102と第1の帯状部101が連なる構成であっても、同様な効果を得ることが可能である。   In addition, since the first and second strip portions (101, 140) are narrower in the second direction than the wide portion 102, heat from the wide portion 102 to the first and second strip portions (101, 140). It is also possible to reduce discharge or heat inflow from the first and second strips (101, 140) to the wide portion 102. Therefore, the detection accuracy of the temperature sensitive element 105 is improved and it is preferable in terms of responsiveness. Even if the wide portion 102 and the first belt-like portion 101 shown in the first embodiment are connected, the same effect can be obtained.

(実施形態5)
図5に示すように、実施形態5においては、温度センサ装置500では、実施形態4とは異なり感熱素子105周囲に空間を設ける代わりに、発泡性樹脂501で感温素子105の底面を除いて被覆し、発泡性樹脂501が弾性体106に接している。発泡性樹脂501は多数の気泡を有しており、多数の気泡の中に空気を蓄えている。しかも気泡一つ一つに空気が分断されて移動しにくいので、単なる空間よりさらに対流が起こりにくいため、より高い断熱性が実現できる。あるいは、弾性体の一部を変性させ、弾性体106と感熱素子105が接する面または弾性体106の底面であって感温素子105周辺のみが細かい気泡が分布する構造で有ってもよい。また、信号線150と対向する領域に細かい気泡が分布する構造とすることで、信号線150を弾性体106からの熱的影響を受けにくくする点で望ましい。また、弾性体106全体が発泡性樹脂501であっても同様な効果が得られる。
(Embodiment 5)
As shown in FIG. 5, in the fifth embodiment, unlike the fourth embodiment, in the temperature sensor device 500, instead of providing a space around the thermal element 105, the bottom surface of the thermal element 105 is removed with a foamable resin 501. The foamable resin 501 is in contact with the elastic body 106. The foamable resin 501 has a large number of bubbles, and air is stored in the large number of bubbles. In addition, since the air is divided into individual bubbles and hardly moves, convection is less likely to occur than in a simple space, and thus higher heat insulation can be realized. Alternatively, a part of the elastic body may be modified to have a structure in which fine bubbles are distributed only on the surface where the elastic body 106 and the thermal element 105 are in contact with each other or on the bottom surface of the elastic body 106 and around the temperature sensitive element 105. In addition, the structure in which fine bubbles are distributed in a region facing the signal line 150 is desirable in that the signal line 150 is less susceptible to thermal influence from the elastic body 106. The same effect can be obtained even if the entire elastic body 106 is the foamable resin 501.

(実施形態6)
図6は、信号線150や端子151を銅箔(111、112)で形成した例である。幅広部102のおもて面の第1および第2の方向における中央部には感温素子105が実装されており、感温素子105の両端の電極はFPC104のおもて面上に形成されたランドパターン110とハンダリフロー(図示せず)などで接合されるので、感温素子105の信号はFPC104に形成された信号用銅箔パターン111を通じてFPC104に形成された端子銅箔パターン112に出力される。端子銅箔パターン112にリード線108を接続することにより、感温素子105の信号を外部に取出すことができる。
(Embodiment 6)
FIG. 6 shows an example in which the signal line 150 and the terminal 151 are formed of copper foil (111, 112). A temperature sensing element 105 is mounted at the center of the front surface of the wide portion 102 in the first and second directions, and electrodes at both ends of the temperature sensing element 105 are formed on the front surface of the FPC 104. Since the land pattern 110 is bonded to the land pattern 110 by solder reflow (not shown), the signal of the temperature sensing element 105 is output to the terminal copper foil pattern 112 formed on the FPC 104 through the signal copper foil pattern 111 formed on the FPC 104. Is done. By connecting the lead wire 108 to the terminal copper foil pattern 112, the signal of the temperature sensitive element 105 can be taken out to the outside.

(実施形態7)
さらに、図7に示すように、FPC104に形成された信号用銅箔パターン111に工夫を加えることにより、検出精度の性能を向上させる方法について述べる。先の図6では、感温素子105周辺においてFPC104に形成された信号用銅箔パターン111を直近のFPC104のおもて面上に形成されたランドパターン110に最短距離(直線)でつなげている。FPC104に形成された信号用銅箔パターン111を第1の帯状部101の区間601と幅広部102の区間602に分けて考えると、図6において図7の区間602に相当する区間はランドパターン110近傍を除き直線的であり最短の距離となっている。電気的な接続だけを考えればそれでよいが、熱的性質を考慮してこの部分を長くする工夫について説明する。感温素子105は幅広部102の第1および第2の方向における中央部にあり検知対象物表面120の温度ともっとも近くなる位置にあるが、端子銅箔パターン112には外部に繋がるリード線108が接続されるので、第1の帯状部101分の信号用銅箔パターン601を通じて外部への熱の移動が起きる。つまり外部の雰囲気温度の影響は端子銅箔パターン112から信号用銅箔パターン(601、602)を通じて感温素子105の温度に影響を与えることになる。ここで、信号用銅箔パターン(601、602)の熱抵抗を上げて熱の移動を抑えるとこの影響を軽減できるが、とくに検知対象物表面120の温度から近い部分の熱抵抗を上げることが望ましい。信号用銅箔パターンの区間602の部分は幅広部102から第1の帯状部101に連なる部分であるので、図7に示すようにこの区間を蛇行させることにより熱伝導経路を長くすることが出来る。たとえば、信号用銅箔パターン602を最短距離で接続した場合に比べて、2倍以上の長さにすることができる。つまり、この区間602の熱抵抗が大きくなり外部との熱の移動が幅広部102中心部周辺で抑えられるため感熱素子105近傍の熱の移動が低減されるので、温度センサ装置(100、200、400、500)の感度を大きくできる。
(Embodiment 7)
Furthermore, as shown in FIG. 7, a method for improving the detection accuracy performance by devising the signal copper foil pattern 111 formed on the FPC 104 will be described. In FIG. 6, the signal copper foil pattern 111 formed on the FPC 104 around the temperature sensing element 105 is connected to the land pattern 110 formed on the front surface of the nearest FPC 104 at the shortest distance (straight line). . When the signal copper foil pattern 111 formed on the FPC 104 is divided into the section 601 of the first strip 101 and the section 602 of the wide section 102, the section corresponding to the section 602 in FIG. Except for the vicinity, it is straight and has the shortest distance. Although it is sufficient if only the electrical connection is considered, a device for lengthening this portion in consideration of thermal properties will be described. The temperature sensing element 105 is located at the center of the wide portion 102 in the first and second directions and is closest to the temperature of the surface 120 of the object to be detected, but the lead wire 108 connected to the outside is connected to the terminal copper foil pattern 112. Therefore, heat is transferred to the outside through the signal copper foil pattern 601 corresponding to the first strip 101. That is, the influence of the external ambient temperature affects the temperature of the temperature sensing element 105 from the terminal copper foil pattern 112 through the signal copper foil patterns (601, 602). Here, if the heat resistance of the signal copper foil patterns (601, 602) is increased to suppress the movement of heat, this influence can be reduced, but in particular, the heat resistance of the portion near the temperature of the detection object surface 120 can be increased. desirable. Since the section 602 of the signal copper foil pattern is a section that continues from the wide section 102 to the first strip section 101, the heat conduction path can be lengthened by meandering the section as shown in FIG. . For example, the signal copper foil pattern 602 can be made twice or more longer than the case where the signal copper foil patterns 602 are connected at the shortest distance. That is, since the heat resistance of the section 602 increases and heat transfer to the outside is suppressed around the center of the wide portion 102, heat transfer near the thermal element 105 is reduced, so that the temperature sensor device (100, 200, 400, 500) can be increased.

(実施形態8)
次に、幅広部102の第1および第2の方向における中央部で、より熱抵抗を上げる工夫について述べる。図8(a)(b)(c)に示すように、信号用銅箔パターン111を感温素子105周辺において折り返すあるいは渦巻状にするなどして引き回す信号用銅箔パタンの引回し部802を設けると、最短の場合(直線)の倍以上の長さとすることが出来る。つまり電気的な伝導に必要な長さの倍以上にして熱的な伝導条件を有利にする工夫ができる。熱分布が高温となる感温素子105周辺領域において信号用銅箔パターン111の長さが増加するので、その領域では信号用銅箔パターン111が熱を受け、その熱が感熱素子105の電極を通じて感熱素子105に伝達する。また、感温素子105から端子銅箔パターン112を通じて外部に流出する熱経路の総合長も増加するため、この経路の熱抵抗が増加し、外部へ流出する熱量を減少させることが出来る。この様な効果により感温素子105の温度の低下を低減することが出来、温度センサ装置(100、200、400、500)の感度を向上する。この様な効果を生むために、図8(a)においては、感温素子105周辺の信号用銅箔パターン111を半円弧状に折り返して信号用銅箔パターンの引回し部802としている。ここで、信号用銅箔パターンの引回し部802の最外周部は、幅広部102の中心を中心として同心円状となっていることが好ましい。信号用銅箔パターンの引回し部802最外周部が同心円状となっているので、感熱素子105近傍の熱量が概ね等方的に均等に移動することになるので、検出バラツキを低減できることになる。
(Embodiment 8)
Next, a device for further increasing the thermal resistance at the central portion of the wide portion 102 in the first and second directions will be described. As shown in FIGS. 8A, 8B, and 8C, a routing portion 802 of the signaling copper foil pattern for routing the signaling copper foil pattern 111 around the temperature sensing element 105 or by winding it around the temperature sensing element 105 is provided. When provided, the length can be more than double the shortest case (straight line). In other words, it is possible to devise an advantageous thermal conduction condition by making it more than twice the length necessary for electrical conduction. Since the length of the signal copper foil pattern 111 increases in the region around the temperature sensitive element 105 where the heat distribution becomes high, the signal copper foil pattern 111 receives heat in that region, and the heat passes through the electrode of the heat sensitive element 105. This is transmitted to the thermal element 105. Further, since the total length of the heat path flowing out from the temperature sensing element 105 through the terminal copper foil pattern 112 is increased, the thermal resistance of this path is increased, and the amount of heat flowing out can be reduced. By such an effect, the temperature drop of the temperature sensing element 105 can be reduced, and the sensitivity of the temperature sensor device (100, 200, 400, 500) is improved. In order to produce such an effect, in FIG. 8A, the signal copper foil pattern 111 around the temperature sensing element 105 is folded back into a semicircular arc shape to form a signal copper foil pattern lead-out portion 802. Here, the outermost peripheral portion of the routing portion 802 of the signal copper foil pattern is preferably concentric with the center of the wide portion 102 as the center. Since the outermost peripheral portion of the routing portion 802 of the signal copper foil pattern is concentric, the amount of heat in the vicinity of the thermal element 105 moves substantially isotropically, so that detection variation can be reduced. .

図8(b)は、半円形の信号用銅箔パターン111の半円弧状の折り返しを更に増やし信号用銅箔パターンの引回し部802としたもので、さらに熱流出経路の熱抵抗を上げることが出来る。   FIG. 8B shows a case where the semicircular folding of the semicircular signal copper foil pattern 111 is further increased to form a routing portion 802 of the signal copper foil pattern, which further increases the thermal resistance of the heat outflow path. I can do it.

また、図8(c)のように、感温素子105周辺において、渦巻状の信号用銅箔パターン111を信号用銅箔パターンの引回し部802として設けても良い。   Further, as shown in FIG. 8C, a spiral signal copper foil pattern 111 may be provided around the temperature sensitive element 105 as the signal copper foil pattern routing portion 802.

(実施形態9)
信号用銅箔パターン111を熱的に引き回す工夫だけでなく、集熱用銅箔パターン800を設ける実施形態について、説明する。実施形態9においては、図9に示すように、感温素子105周囲の近傍領域に半円形の面状に広がる集熱用銅箔パターン800を有する。集熱用銅箔パターン800は熱伝導性のよい銅箔であり、またランドパターン110を兼ねているため、感熱素子105周辺の熱を集め感温素子105に伝導する働きをする。また、集熱用銅箔パターン800の最外周部が同心円状となっているので、感熱素子105近傍の熱量が概ね等方的に均等に感熱素子105に移動することになるので、検出バラツキを低減できることになる。また、信号用銅箔パターン111も感温素子105周辺においては、集熱用銅箔パターン800の周囲を引き出し側(端子銅箔パターン112の方向)とは逆側にまで回りこんで信号用銅箔パターンの引回し部802として、熱流出経路の長さを稼ぎ、熱抵抗を大きくしている。このように、集熱用銅箔パターン800と信号用銅箔パターンの引回し部802を併用することで、感温素子105の温度を高く保ち、温度センサ装置(100、200、400、500)の感度を高く保つ。
(Embodiment 9)
An embodiment in which not only a device for thermally routing the signal copper foil pattern 111 but also a heat collecting copper foil pattern 800 will be described. In the ninth embodiment, as shown in FIG. 9, a heat collecting copper foil pattern 800 spreading in a semicircular surface shape is provided in the vicinity of the temperature sensitive element 105. The heat-collecting copper foil pattern 800 is a copper foil having good thermal conductivity and also serves as the land pattern 110, and therefore functions to collect heat around the thermal element 105 and conduct it to the temperature-sensitive element 105. Further, since the outermost peripheral portion of the heat collecting copper foil pattern 800 is concentric, the amount of heat in the vicinity of the thermal element 105 moves to the thermal element 105 approximately isotropically. It can be reduced. Further, the signal copper foil pattern 111 also surrounds the heat-collecting copper foil pattern 800 around the temperature sensing element 105 to the side opposite to the lead-out side (direction of the terminal copper foil pattern 112). As the foil pattern routing portion 802, the length of the heat outflow path is increased and the thermal resistance is increased. In this way, by using the heat collecting copper foil pattern 800 and the signal copper foil pattern routing portion 802 in combination, the temperature of the temperature sensing element 105 is kept high, and the temperature sensor device (100, 200, 400, 500). Keep the sensitivity high.

(実施形態10)
集熱用銅箔パターンは面的な広がりではなく、放射状の線的な広がりであってよい。図10において、ランドパターン110から放射状に集熱用銅箔パターン900が伸びている。集熱用銅箔パターン900は放射状であるので、感温素子105周辺の熱を短距離で感温素子105に伝える。少ない熱抵抗で感温素子105周辺の熱を感温素子105に伝え、かつ線状であるため面的に広がるよりも熱容量が少ないため、温度センサ装置(100、200、400、500)の感度の向上に貢献するとともに、応答性の上でも好ましい。集熱用銅箔パターン900の先端の一対であるランドパターン110に接続される銅箔パターン901は、信号用銅箔パターン111に連結するので、感温素子105の出力が端子銅箔パターン112に出力される。
(Embodiment 10)
The heat-collecting copper foil pattern may be a radial linear spread instead of a planar spread. In FIG. 10, heat-collecting copper foil patterns 900 extend radially from the land pattern 110. Since the heat collecting copper foil pattern 900 is radial, the heat around the temperature sensing element 105 is transmitted to the temperature sensing element 105 over a short distance. Since the heat around the temperature sensing element 105 is transmitted to the temperature sensing element 105 with a small heat resistance and is linear, the heat capacity is less than the surface spread, and therefore the sensitivity of the temperature sensor device (100, 200, 400, 500). It is preferable in terms of responsiveness. Since the copper foil pattern 901 connected to the land pattern 110 which is a pair of tips at the tip of the heat collecting copper foil pattern 900 is connected to the signal copper foil pattern 111, the output of the temperature sensing element 105 is connected to the terminal copper foil pattern 112. Is output.

(実施形態11)
放射状に広がる集熱用銅箔パターンは、枝分れするものであっても良い。図11に示す集熱用銅箔パターンは、ランドパターン110から発する太い幹部から細い枝部が枝分れしている。枝分れした集熱用銅箔パターン1101により、感温素子105近傍領域をきめ細かく覆う、つまり集熱する面積が増える。しかし、枝は先端に行くに従って細くなるため、集熱用銅箔パターン全体の熱容量の増加は抑えられる。従って、温度センサ装置(100、200、400、500)の感度の向上に貢献するとともに、応答性の上でも好ましい。
(Embodiment 11)
The heat collecting copper foil pattern that spreads radially may be branched. In the heat-collecting copper foil pattern shown in FIG. 11, a thin branch portion is branched from a thick trunk portion originating from the land pattern 110. The branched heat collecting copper foil pattern 1101 finely covers a region near the temperature sensing element 105, that is, an area for collecting heat increases. However, since the branches become thinner toward the tip, an increase in the heat capacity of the entire heat collecting copper foil pattern can be suppressed. Therefore, it contributes to the improvement of the sensitivity of the temperature sensor device (100, 200, 400, 500) and is preferable in terms of responsiveness.

(実施形態12)
これまでは、FPC104のおもて面のランドパターン110、信号用銅箔パターン111について説明してきたが、ランドパターン110、信号用銅箔パターン111とは異なる銅箔パターンがFPC104の裏面にあってもよい。図12(a)はFPC104のおもて面であり実施形態8の図8(b)と同じ銅箔パターンつまり、ランドパターン110、信号用銅箔パターン111を持つが、図12(b)はFPC104の裏面であり、感温素子105の周辺近傍に対応する領域に接触用銅箔パターン1100を持つ。熱伝導性の良い銅箔が検知対象物表面120に接触するため検知対象物表面120の熱がまず接触用銅箔パターン1100に伝導する。接触用銅箔パターン1100はFPC104と密接に熱結合しているため、接触用銅箔パターン1100の熱は効率よくFPC104に伝えられる。FPC104は薄いのでその熱はおもて面の銅箔に伝わり、感温素子105に至る。なお、接触用銅箔パターン1100の熱量をバラツキなく伝熱するためには接触用銅箔パターン1100の最外周部は、信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)の最外周部より大きく形成されることが好ましい。また、接触用銅箔パターン1100の熱量のロスを低減して伝熱するためには接触用銅箔パターン1100直上のFPC104は弾性体106と接触しないことが好ましい。図12では、おもて面の銅箔パターンつまり、ランドパターン110、信号用銅箔パターン111は実施形態8の図8(b)と同じものであるが、それ以外の銅箔パターン、例えば実施形態6、7、8の図8(a)(c)、9、10、11のようなものであっても良い。
Embodiment 12
So far, the land pattern 110 and the signal copper foil pattern 111 on the front surface of the FPC 104 have been described. However, a copper foil pattern different from the land pattern 110 and the signal copper foil pattern 111 exists on the back surface of the FPC 104. Also good. FIG. 12A shows the front surface of the FPC 104, which has the same copper foil pattern as that of FIG. 8B of the eighth embodiment, that is, the land pattern 110 and the signal copper foil pattern 111. FIG. A contact copper foil pattern 1100 is provided on the back surface of the FPC 104 and in a region corresponding to the vicinity of the periphery of the temperature sensitive element 105. Since the copper foil having good thermal conductivity comes into contact with the detection object surface 120, the heat of the detection object surface 120 is first conducted to the contact copper foil pattern 1100. Since the contact copper foil pattern 1100 is in close thermal contact with the FPC 104, the heat of the contact copper foil pattern 1100 is efficiently transferred to the FPC 104. Since the FPC 104 is thin, the heat is transferred to the copper foil on the front surface and reaches the temperature sensitive element 105. In order to transfer the heat quantity of the contact copper foil pattern 1100 without variation, the outermost peripheral portion of the contact copper foil pattern 1100 includes a lead portion 802 of the signal copper foil pattern, a copper foil pattern for heat collection (800 , 900, 1101) is preferably formed larger than the outermost peripheral portion. In order to reduce heat loss of the contact copper foil pattern 1100 and transfer heat, it is preferable that the FPC 104 immediately above the contact copper foil pattern 1100 does not contact the elastic body 106. In FIG. 12, the copper foil pattern on the front surface, that is, the land pattern 110 and the signal copper foil pattern 111 are the same as those in FIG. 8B of the eighth embodiment. 8 (a), (c), 9, 10, and 11 in the sixth, seventh, and eighth aspects may be used.

(実施形態13)
以上、銅箔パターンの熱的性質を利用する工夫について説明してきたが、信号用銅箔パターン111、信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)が形成されたFPC104は、検知対象物表面120に接する以外には、他のものと接しないことが望ましい。他のものと接するとその温度の影響を受けるからである。これまで説明してきたように、信号用銅箔パターン111、信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)に熱的な工夫をしても、他のものからの熱的影響を受けると所望の効果が発揮できないおそれがある。弾性体106の底面はFPC104に圧接するため、FPC104おもて面上にある信号用銅箔パターン111、信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)にも接触してしまう。弾性体106は熱容量が大きいため、温度変化の速度が遅い。従って、それに接している信号用銅箔パターン111、信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)も弾性体106の温度変化の影響を受け、応答性も遅くなってしまう。あるいは、検知対象物表面120の温度が急変しても追従できない。この現象を避けるには、図13に示すように、信号用銅箔パターン111に相当する部分だけに窪み1300を設け弾性体106と信号用銅箔パターン111との接触を避けるとよい。実施形態4において空洞401により、実施形態8から12で述べた感熱素子105周囲の信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)の弾性体106への接触を避けることが可能であり、さらに窪み1300があれば全ての信号用銅箔パターン111は弾性体106の底面に接触しない。実施形態2〜12においては、幅広部102の両側に第1および第2の帯状部(101、140)があるが、信号用銅箔パターン111は片方の第1の帯状部101にしか存在しない。従って、弾性体106の窪みも信号用銅箔パターン111がある側の窪み1300だけでよいが、検知対象物表面120への押付け力分布や弾性体106の変形の対象性を保つために、窪み1300と対象の位置にも窪み1301が設けることが好ましい。また、弾性体106を組立てる際にも、180度以内で回転対称位置となるため組立作業がしやすくなる。なお、信号線150が銅箔パターンではなく、ワイヤーの場合でも同様に、ワイヤーに相当する部分に窪み1300を設けて、ワイヤーと弾性体106との接触を避けることが可能である。なお、発泡性樹脂501で感温素子105の底面を除いて被覆し、発泡性樹脂501が弾性体106に接している場合、発泡性樹脂501が実施形態8から12で述べた感熱素子105周囲の信号用銅箔パターンの引回し部802、集熱用銅箔パターン(800、900、1101)と接する構造とすることでも、弾性体106との接触を避けることが可能である。なお、少なくとも窪み1300と対向するFPC104および信号線150上には発泡樹脂501が存在することが好ましい。発泡樹脂501が存在することにより、信号線150と弾性体106との接触を避けることが可能となる。また、弾性体106が発泡樹脂501と接することにより、外部からの空気の進入を確実に遮断することが可能となる。窪み1301が存在する場合も同様に窪み1301と対向するFPC104上には発泡樹脂501が存在することが好ましい。
(Embodiment 13)
As described above, the device utilizing the thermal properties of the copper foil pattern has been described. However, the signal copper foil pattern 111, the routing portion 802 of the signal copper foil pattern, the heat collecting copper foil pattern (800, 900, 1101). It is desirable that the FPC 104 formed with is not in contact with other objects other than in contact with the surface 120 to be detected. This is because contact with other objects is affected by the temperature. As described so far, even if a heat contrivance is applied to the signal copper foil pattern 111, the signal copper foil pattern routing portion 802, and the heat collecting copper foil pattern (800, 900, 1101), There is a possibility that the desired effect cannot be exerted if it is subjected to thermal influence from the product. Since the bottom surface of the elastic body 106 is in pressure contact with the FPC 104, the signal copper foil pattern 111 on the front surface of the FPC 104, the routing portion 802 of the signal copper foil pattern, and the heat collecting copper foil patterns (800, 900, 1101). ). Since the elastic body 106 has a large heat capacity, the speed of temperature change is slow. Therefore, the signal copper foil pattern 111 in contact therewith, the routing portion 802 of the signal copper foil pattern, and the copper foil pattern for heat collection (800, 900, 1101) are also affected by the temperature change of the elastic body 106, and the response. Sex will also be slow. Or it cannot follow even if the temperature of the detection target object surface 120 changes suddenly. In order to avoid this phenomenon, as shown in FIG. 13, it is preferable to provide a recess 1300 only in a portion corresponding to the signal copper foil pattern 111 to avoid contact between the elastic body 106 and the signal copper foil pattern 111. In the fourth embodiment, the cavity 401 leads to the signal copper foil pattern routing portion 802 around the thermal element 105 described in the eighth to twelfth embodiments and the elastic body 106 of the heat collecting copper foil pattern (800, 900, 1101). If there is a recess 1300, all the signal copper foil patterns 111 do not contact the bottom surface of the elastic body 106. In the second to twelfth embodiments, the first and second strip portions (101, 140) are provided on both sides of the wide portion 102, but the signal copper foil pattern 111 exists only in the first strip portion 101 on one side. . Accordingly, the depression of the elastic body 106 may be only the depression 1300 on the side where the signal copper foil pattern 111 is present. However, in order to maintain the distribution of the pressing force on the detection target surface 120 and the object of deformation of the elastic body 106, the depression It is preferable that a recess 1301 is provided at the position of 1300 and the target. Also, when assembling the elastic body 106, the assembly becomes easy because the position becomes rotationally symmetric within 180 degrees. Similarly, when the signal line 150 is not a copper foil pattern but a wire, it is possible to provide a recess 1300 in a portion corresponding to the wire to avoid contact between the wire and the elastic body 106. When the foamable resin 501 is coated except for the bottom surface of the temperature sensitive element 105, and the foamable resin 501 is in contact with the elastic body 106, the foamable resin 501 is surrounded by the thermal element 105 described in the eighth to twelfth embodiments. It is also possible to avoid contact with the elastic body 106 by adopting a structure in contact with the routing portion 802 of the signal copper foil pattern and the heat collecting copper foil pattern (800, 900, 1101). Note that it is preferable that the foamed resin 501 exists on at least the FPC 104 and the signal line 150 facing the recess 1300. The presence of the foamed resin 501 makes it possible to avoid contact between the signal line 150 and the elastic body 106. Further, since the elastic body 106 is in contact with the foamed resin 501, it is possible to reliably block the entry of air from the outside. Similarly, when the depression 1301 exists, it is preferable that the foamed resin 501 exists on the FPC 104 facing the depression 1301.

(実施形態14)
実施形態13において、信号用銅箔パターン111が弾性体106の底面に接触しないようにする構造について述べたが、底面以外でも信号用銅箔パターン111が弾性体106に接触しないことが望ましい。図13において、第1の帯状部101は弾性体106側面から離れて保持されており、かつ、たるみを持った状態となっているため弾性体106が変形しても、お互いが接触しない。実施形態14においては第1の帯状部101と対称位置にある第2の帯状部140も、第1の帯状部101と対称になっており、同様に弾性体106から離れて保持されており、かつ、たるみを持った状態となっている。これは弾性体106が変形すると、第1および第2の帯状部(101、140)も対称に変形することにより、対象変形の中心部にある幅広部102への影響を相殺し、幅広部102が検知対象物表面120に安定して接触するようにするためである。また第1および第2の帯状部(101、140)が弾性体106側面に接触しないため、弾性体106の変形の影響が第1および第2の帯状部(101、140)の変形に影響を与えない。弾性体106と第1および第2の帯状部(101、140)は独立して変形するため、変形の過程においてお互いの変形に影響を及ぼさない。もし、お互いが干渉するようなことがあると、例えば弾性体106の側面の膨らみが第1および第2の帯状部(101、140)に制限され、弾性体106の変形を抑える、あるいは第1および第2の帯状部(101、140)と擦れる、FPC104に張力がかかるなどの問題が発生するおそれがある。これを避けるために、第1および第2の帯状部(101、140)は弾性体106側面からたるみを持った状態で離れて保持されている。
(Embodiment 14)
In the thirteenth embodiment, the structure in which the signal copper foil pattern 111 is not in contact with the bottom surface of the elastic body 106 is described. However, it is desirable that the signal copper foil pattern 111 is not in contact with the elastic body 106 other than the bottom surface. In FIG. 13, the first belt-like portion 101 is held away from the side surface of the elastic body 106 and has a slack, so that even if the elastic body 106 is deformed, they do not contact each other. In the fourteenth embodiment, the second strip 140 that is symmetrical with the first strip 101 is also symmetric with the first strip 101, and is similarly held away from the elastic body 106. And it is in a state with slack. When the elastic body 106 is deformed, the first and second strips (101, 140) are also deformed symmetrically to cancel the influence on the wide portion 102 at the center of the target deformation, and the wide portion 102 This is to stably contact the surface 120 of the detection target. In addition, since the first and second strips (101, 140) do not contact the side surfaces of the elastic body 106, the influence of the deformation of the elastic body 106 affects the deformation of the first and second strips (101, 140). Don't give. Since the elastic body 106 and the first and second strips (101, 140) are deformed independently, they do not affect each other's deformation during the deformation process. If they interfere with each other, for example, the bulge of the side surface of the elastic body 106 is limited to the first and second strips (101, 140), and the deformation of the elastic body 106 is suppressed, or the first In addition, problems such as rubbing against the second belt-like portions (101, 140) and tension on the FPC 104 may occur. In order to avoid this, the first and second strips (101, 140) are held away from the side surface of the elastic body 106 with a slack.

(実施形態15)
実施例15においては図14(a)に示すように、左右の第1および第2の帯状部(101、140)の長手方向中心がずれて配置されている。これは、左右の第1および第2の帯状部(101、140)が撓んだことにより発生する幅広部102への圧迫力により幅広部102の第1および第2の方向における中央部が浮き上がることを防ぐためである。これまでの実施例のように左右の第1および第2の帯状部(101、140)の中心が揃っている場合、第1および第2の帯状部(101、140)の変形による反発力が、幅広部102に対し左右から発生し幅広部102の中心で拮抗する。この様子を図6を用いて説明する。第1の帯状部101がたわんだ事による反発力201と、第2の帯状部140がたわんだ事による反発力240はお互いにほぼ等しい力で反対向きであり、力の中心は一致しているので、幅広部102の第2の方向における中央部で拮抗する。結果として幅広部102を上部に浮き上がらせる力として働き、幅広部102の第2の方向における中央部と検知対象物表面120との接触が不安定になり、温度センサ装置(100、200、400、500)としての検知温度の精度に影響を与えるおそれがある。これに対し、図14のように左右の第1および第2の帯状部(101、140)をお互いに段違い、つまり左右の第1および第2の帯状部(101、140)の延在方向に伸びるそれぞれの中心線を互いにずらせて配置する。つまり、平行な左右の第1および第2の帯状部(101、140)が同一直線上に存在しないようにお互いに段違いに配置した場合、第2の帯状部140のたわみによる反発力240と、第1の帯状部101のたわみによる反発力201とは力の中心がすれ違うため、幅広部102中央を押上げる力とならない。従って幅広部102と検知対象物表面120の接触を安定にすることができる。図14(b)はこのように、段違いの帯状部を持つFPCを屈曲させて温度センサ装置に組み込んだ様子を示すものであり、図14(a)に示す切断線A−A’に沿って矢印方向に見た断面図である。
(Embodiment 15)
In the fifteenth embodiment, as shown in FIG. 14A, the longitudinal center of the left and right first and second strips (101, 140) are shifted from each other. This is because the central portion of the wide portion 102 in the first and second directions is lifted by the compression force applied to the wide portion 102 that is generated when the left and right first and second belt-like portions (101, 140) are bent. This is to prevent this. When the centers of the left and right first and second strips (101, 140) are aligned as in the previous embodiments, the repulsive force due to the deformation of the first and second strips (101, 140) is reduced. The wide portion 102 is generated from the left and right and antagonizes at the center of the wide portion 102. This will be described with reference to FIG. The repulsive force 201 caused by the bending of the first belt-like portion 101 and the repulsive force 240 caused by the bending of the second belt-like portion 140 are opposite to each other with almost equal forces, and the centers of the forces coincide with each other. Therefore, it antagonizes in the center part in the 2nd direction of the wide part 102. FIG. As a result, it acts as a force that lifts the wide portion 102 upward, the contact between the central portion in the second direction of the wide portion 102 and the surface 120 to be detected becomes unstable, and the temperature sensor device (100, 200, 400, 500), the accuracy of the detected temperature may be affected. On the other hand, as shown in FIG. 14, the left and right first and second strips (101, 140) are different from each other, that is, in the extending direction of the left and right first and second strips (101, 140). The extending center lines are shifted from each other. That is, when the parallel left and right first and second belt-like portions (101, 140) are arranged so as not to be on the same straight line, the repulsive force 240 due to the deflection of the second belt-like portion 140, Since the center of the force is different from the repulsive force 201 due to the deflection of the first belt-like portion 101, it does not become a force for pushing up the center of the wide portion 102. Therefore, the contact between the wide portion 102 and the detection target object surface 120 can be stabilized. FIG. 14B shows a state in which an FPC having a band-like portion with different steps is bent and incorporated in the temperature sensor device, and is taken along a cutting line AA ′ shown in FIG. It is sectional drawing seen in the arrow direction.

本発明に係わる温度センサは、ケースに内蔵されたバッテリセルの温度検出などの機器に利用できる。   The temperature sensor according to the present invention can be used for devices such as temperature detection of a battery cell built in a case.

10 温度センサ
100、200、400、500 温度センサ装置
101、140 帯状部
102 幅広部
103 端子部(第1の端部)
104 FPC
105 感温素子
106 弾性体
107 固定部
108 リード線
110 ランドパターン
111 信号用銅箔パターン
112 端子銅箔パターン
141 係止部(第2の端部)
150 信号線
151 端子
171 第1の支持部
172 第2の支持部
173 第3の支持部
201、240 反発力
300 ケース
301 検知対象物
302 ケース内部の雰囲気
303 ケース外部の雰囲気
304 ケースの壁に開けられた穴
401 空間
501 発泡性樹脂
800、900 集熱用銅箔パターン
901 集熱用銅箔パターンの先端
1100 接触用銅箔パターン
1300、1301 窪み
DESCRIPTION OF SYMBOLS 10 Temperature sensor 100, 200, 400, 500 Temperature sensor apparatus 101, 140 Band-shaped part 102 Wide part 103 Terminal part (1st edge part)
104 FPC
105 Temperature Sensitive Element 106 Elastic Body 107 Fixing Section 108 Lead Wire 110 Land Pattern 111 Signal Copper Foil Pattern 112 Terminal Copper Foil Pattern 141 Locking Section (Second End)
150 Signal line 151 terminal
171 1st support part 172 2nd support part 173 3rd support part 201,240 Repulsive force 300 Case 301 Detected object 302 Atmosphere inside case 303 Atmosphere outside case 304 Hole 401 opened in case wall Space 501 Foamable resin 800, 900 Heat-collecting copper foil pattern 901 Tip of heat-collecting copper foil pattern 1100 Contact copper foil pattern 1300, 1301

Claims (18)

第1の支持部に固定される第1の端部と、前記第1の端部と連続するとともにたるみを持った状態で前記第1の端部から第1の方向に延在する第1の帯状部と、前記第1の帯状部と連続するとともに前記第1の方向とは直交する第2の方向において前記第1の帯状部より大きな幅を有する幅広部と、を有するフィルムと、
前記幅広部において、前記フィルムのおもて面の前記第2の方向における概ね中央部に固定された感温素子と、
前記幅広部において、前記感温素子を囲むともに、前記フィルムのおもて面上に配置され、変形の反発力により前記フィルムの裏面を検知対象物表面に押付けるとともに、前記フィルムのおもて面と接する弾性体と、を有する温度センサ。
A first end fixed to the first support portion; and a first end extending in a first direction from the first end in a state of being continuous with the first end and having a slack. A film having a belt-like portion, and a wide portion that is continuous with the first belt-like portion and has a width larger than that of the first belt-like portion in a second direction orthogonal to the first direction;
In the wide portion, a temperature sensitive element fixed to a substantially central portion in the second direction of the front surface of the film;
The wide portion surrounds the temperature sensing element and is arranged on the front surface of the film, and the back surface of the film is pressed against the surface of the object to be detected by the repulsive force of deformation, and the front surface of the film A temperature sensor having an elastic body in contact with the surface.
前記弾性体の底面は、前記底面の内周側から外周側へ向かう下に凸の凸面である請求項1に記載の温度センサ。   The temperature sensor according to claim 1, wherein the bottom surface of the elastic body is a convex surface that protrudes downward from an inner peripheral side to an outer peripheral side of the bottom surface. 前記フィルムは、第2の支持部に固定される第2の端部と、前記幅広部および前記第2の端部と連続するとともにたるみを持った状態で前記第2の端部から第1の方向とは逆向きに延在するとともに、前記第2の方向において前記幅広部より小さな幅を有する第2の帯状部と、を有する請求項1または2に記載の温度センサ。   The film is continuous with the second end portion fixed to the second support portion, the wide portion and the second end portion, and has a slack in the first end portion from the second end portion. The temperature sensor according to claim 1, further comprising: a second belt-shaped portion that extends in a direction opposite to the direction and has a width smaller than the wide portion in the second direction. 前記弾性体および前記感温素子は、ケースの内壁と前記ケース内に収納された検知対象物との間に配置されるとともに、前記弾性体の前記底面と対向する前記フィルムの裏面が検知対象である前記検知対象物表面と接し、
前記弾性体の上部において、第3の支持部から押さえられることにより前記弾性体が変形し、変形の反発力により前記フィルムの裏面を前記検知対象物表面に押付け、前記第3の支持部において前記弾性体が前記ケース内壁に固定され請求項1乃至3のいずれか一項に記載の温度センサ。
The elastic body and the temperature sensing element are disposed between an inner wall of a case and a detection target housed in the case, and a back surface of the film facing the bottom surface of the elastic body is a detection target. In contact with the surface of the object to be detected,
In the upper part of the elastic body, the elastic body is deformed by being pressed from the third support portion, and the back surface of the film is pressed against the surface of the object to be detected by the repulsive force of the deformation, and the third support portion The temperature sensor according to any one of claims 1 to 3, wherein an elastic body is fixed to the inner wall of the case.
前記感温素子との前記弾性体との接触を避けるための空間が設けられている請求項1乃至4のいずれか一項に記載の温度センサ。   The temperature sensor as described in any one of Claims 1 thru | or 4 with which the space for avoiding a contact with the said elastic body with the said thermosensitive element is provided. 発泡性樹脂を有し、
前記発泡性樹脂により前記感温素子が底面を除いて被覆されるとともに、前記発泡性樹脂と前記弾性体とが接する請求項1乃至4のいずれか一項に記載の温度センサ。
Having foamable resin,
5. The temperature sensor according to claim 1, wherein the thermosensitive element is covered by the foamable resin except for a bottom surface, and the foamable resin and the elastic body are in contact with each other.
前記フィルムのおもて面に形成された前記感温素子の電極と接合するためのランドパターンと、
前記幅広部および前記第1の帯状部において、前記ランドパターンに連結する前記フィルムのおもて面に前記フィルムと一体に形成された信号用銅箔パターンまたは前記フィルムのおもて面に配置された信号用ワイヤーと、を有する請求項1乃至6のいずれか一項に記載の温度センサ。
A land pattern for bonding to the electrode of the temperature sensing element formed on the front surface of the film;
In the wide part and the first belt-like part, the signal copper foil pattern formed integrally with the film or the front surface of the film is disposed on the front surface of the film connected to the land pattern. The temperature sensor according to any one of claims 1 to 6, further comprising a signal wire.
前記幅広部において、前記信号用銅箔パターンまたは前記信号用ワイヤーが蛇行する部分を持つ請求項7に記載の温度センサ。   The temperature sensor according to claim 7, wherein the wide portion has a portion where the signal copper foil pattern or the signal wire meanders. 前記信号用銅箔パターンまたは前記信号用ワイヤーは、前記幅広部における前記感温素子の周囲においては折り返して引き回される、あるいは渦巻状に引き回される請求項7または8に記載の温度センサ。   9. The temperature sensor according to claim 7, wherein the signal copper foil pattern or the signal wire is folded around the temperature sensing element in the wide portion or drawn in a spiral shape. 10. . 前記幅広部における前記感温素子周囲の近傍領域に前記ランドパターンに連結している集熱用銅箔パターンを持つ請求項7乃至9のいずれか一項に記載の温度センサ。   10. The temperature sensor according to claim 7, wherein a heat collecting copper foil pattern connected to the land pattern is provided in a region near the temperature sensing element in the wide portion. 前記集熱用銅箔パターンは向かいあった一対の半円形であり、其の中心に前記感温素子が位置するよう設けられている請求項10に記載の温度センサ。   The temperature sensor according to claim 10, wherein the heat-collecting copper foil pattern is a pair of facing semicircles, and the temperature-sensitive element is located at the center thereof. 前記集熱用銅箔パターンは前記電極を中心に放射状に伸びる請求項10に記載の温度センサ。   The temperature sensor according to claim 10, wherein the copper foil pattern for heat collection extends radially around the electrode. 前記集熱用銅箔パターンは前記電極を中心に放射状に伸びかつ枝分れする請求項10に記載の温度センサ。   The temperature sensor according to claim 10, wherein the heat collecting copper foil pattern radially extends and branches around the electrode. 前記フィルムの裏面の前記幅広部における前記感温素子周囲の近傍領域に集熱用銅箔パターンが設けられている請求項7乃至13のいずれか一項に記載の温度センサ。   The temperature sensor as described in any one of Claims 7 thru | or 13 with which the copper foil pattern for heat collection is provided in the vicinity area | region around the said temperature sensing element in the said wide part of the back surface of the said film. 前記弾性体は、前記信号用銅箔パターンまたは前記信号用ワイヤーに対向する部分に窪みを有し、前記信号用銅箔パターンまたは前記信号用銅箔パターン上の前記フィルムと一体に形成された保護層または前記信号用ワイヤーに、前記弾性体の表面が接触しない請求項7乃至14のいずれか一項に記載の温度センサ。   The elastic body has a depression in a portion facing the signal copper foil pattern or the signal wire, and is formed integrally with the film on the signal copper foil pattern or the signal copper foil pattern. The temperature sensor according to claim 7, wherein a surface of the elastic body does not contact the layer or the signal wire. 第1および/または第2の帯状部は前記弾性体側面からたるみを持った状態で離れて保持されている請求項1乃至15のいずれか一項の記載の温度センサ。   The temperature sensor according to any one of claims 1 to 15, wherein the first and / or second belt-like portion is held away from the side surface of the elastic body with a slack. 前記第1および第2の帯状部は、前記幅広部および前記感熱素子を挟んで対抗して設けられ、前記第1および第2の帯状部の中心線同士が段違いである請求項3乃至16のいずれか一項に記載の温度センサ。   17. The first and second strip portions are provided to face each other with the wide portion and the thermosensitive element sandwiched therebetween, and the center lines of the first and second strip portions are uneven. The temperature sensor as described in any one. 前記弾性体は発泡性樹脂である請求項1乃至4のいずれか一項、または、請求項6乃至17のいずれか一項に記載の温度センサ。
The temperature sensor according to any one of claims 1 to 4, or the temperature sensor according to any one of claims 6 to 17, wherein the elastic body is a foamable resin.
JP2013214713A 2013-10-15 2013-10-15 Temperature sensor Active JP6314413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214713A JP6314413B2 (en) 2013-10-15 2013-10-15 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214713A JP6314413B2 (en) 2013-10-15 2013-10-15 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2015078851A true JP2015078851A (en) 2015-04-23
JP6314413B2 JP6314413B2 (en) 2018-04-25

Family

ID=53010390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214713A Active JP6314413B2 (en) 2013-10-15 2013-10-15 Temperature sensor

Country Status (1)

Country Link
JP (1) JP6314413B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011687A1 (en) * 2016-07-11 2018-01-18 Tyco Electronics (Shanghai) Co. Ltd. Temperature measurement assembly, temperature measurement device and electrical device assembly
JP2019074326A (en) * 2017-10-12 2019-05-16 株式会社オートネットワーク技術研究所 Sensor unit
JP2019074327A (en) * 2017-10-12 2019-05-16 株式会社オートネットワーク技術研究所 Sensor unit and power storage module
WO2020054305A1 (en) * 2018-09-12 2020-03-19 株式会社豊田自動織機 Power storage module
CN111164396A (en) * 2017-12-06 2020-05-15 Nok株式会社 Temperature measuring device and temperature measuring mechanism
CN111293266A (en) * 2020-02-26 2020-06-16 中航锂电(洛阳)有限公司 Battery module
JP2020187137A (en) * 2020-08-06 2020-11-19 株式会社オートネットワーク技術研究所 Sensor unit and power storage module
JP2021039124A (en) * 2020-11-20 2021-03-11 株式会社オートネットワーク技術研究所 Sensor unit
JP7475238B2 (en) 2020-08-06 2024-04-26 日本メクトロン株式会社 Temperature measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124906Y2 (en) * 1980-08-29 1986-07-26
JPH03156331A (en) * 1989-08-21 1991-07-04 Nkk Corp Temperature sensor
JPH05150685A (en) * 1991-12-02 1993-06-18 Konica Corp Temperature detecting device for fixing device
JPH09218102A (en) * 1996-02-08 1997-08-19 Fuji Xerox Co Ltd Temperature detecting device
JP2009276071A (en) * 2008-05-12 2009-11-26 Yazaki Corp Temperature detecting module and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124906Y2 (en) * 1980-08-29 1986-07-26
JPH03156331A (en) * 1989-08-21 1991-07-04 Nkk Corp Temperature sensor
US5088836A (en) * 1989-08-21 1992-02-18 Nkk Corporation Apparatus for temperature measurement
JPH05150685A (en) * 1991-12-02 1993-06-18 Konica Corp Temperature detecting device for fixing device
JPH09218102A (en) * 1996-02-08 1997-08-19 Fuji Xerox Co Ltd Temperature detecting device
JP2009276071A (en) * 2008-05-12 2009-11-26 Yazaki Corp Temperature detecting module and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607215A (en) * 2016-07-11 2018-01-19 泰科电子(上海)有限公司 Temperature survey component, temperature measuring equipment and electric appliance component
WO2018011687A1 (en) * 2016-07-11 2018-01-18 Tyco Electronics (Shanghai) Co. Ltd. Temperature measurement assembly, temperature measurement device and electrical device assembly
JP2019074326A (en) * 2017-10-12 2019-05-16 株式会社オートネットワーク技術研究所 Sensor unit
JP2019074327A (en) * 2017-10-12 2019-05-16 株式会社オートネットワーク技術研究所 Sensor unit and power storage module
US11473979B2 (en) 2017-10-12 2022-10-18 Autonetworks Technologies, Ltd. Sensor unit and energy storage module
US11422039B2 (en) 2017-10-12 2022-08-23 Autonetworks Technologies, Ltd. Sensor unit
CN111164396B (en) * 2017-12-06 2021-11-30 Nok株式会社 Temperature measuring device and temperature measuring mechanism
CN111164396A (en) * 2017-12-06 2020-05-15 Nok株式会社 Temperature measuring device and temperature measuring mechanism
US11480473B2 (en) 2017-12-06 2022-10-25 Nok Corporation Temperature measuring device and temperature measuring arrangement
EP3722759A4 (en) * 2017-12-06 2021-02-17 Nok Corporation Temperature measuring device and temperature measuring mechanism
WO2020054305A1 (en) * 2018-09-12 2020-03-19 株式会社豊田自動織機 Power storage module
CN111293266B (en) * 2020-02-26 2022-09-02 中创新航科技股份有限公司 Battery module
US11444340B2 (en) 2020-02-26 2022-09-13 Calb Co., Ltd. Battery module with temperature collecting unit
CN111293266A (en) * 2020-02-26 2020-06-16 中航锂电(洛阳)有限公司 Battery module
JP7068397B2 (en) 2020-08-06 2022-05-16 株式会社オートネットワーク技術研究所 Sensor unit and power storage module
JP2020187137A (en) * 2020-08-06 2020-11-19 株式会社オートネットワーク技術研究所 Sensor unit and power storage module
JP7475238B2 (en) 2020-08-06 2024-04-26 日本メクトロン株式会社 Temperature measuring device
JP7108009B2 (en) 2020-11-20 2022-07-27 株式会社オートネットワーク技術研究所 sensor unit
JP2021039124A (en) * 2020-11-20 2021-03-11 株式会社オートネットワーク技術研究所 Sensor unit

Also Published As

Publication number Publication date
JP6314413B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314413B2 (en) Temperature sensor
JP4935225B2 (en) Electronic component assembly
JP2007035962A (en) Semiconductor device
JP6515569B2 (en) Temperature sensor
JP2006292620A (en) Indirectly heated thermistor
TW201346944A (en) Flexible cable for low profile electrical device
US20120001649A1 (en) Leadframe current sensor
JP6293982B2 (en) Mechanical quantity measuring device
US20230040761A1 (en) Temperature sensor and method of manufacturing temperature sensor
JP2010025843A (en) Pressure sensor
JPH11118553A (en) Flow sensor
JP2018138872A (en) Temperature sensor
JP6031928B2 (en) Infrared sensor mounting material
JP2011043444A (en) Temperature sensor
WO2016017283A1 (en) Temperature detection device and electronic device
JP5931004B2 (en) Physical quantity measurement sensor
JP2020148648A (en) Sensor device
JP4727486B2 (en) Semiconductor device
JP5445384B2 (en) Air flow measurement device
EP3605040A1 (en) Infrared sensor
JP2019174135A (en) Temperature sensor
JP6282526B2 (en) Non-contact temperature sensor
JP7124725B2 (en) Temperature sensor and its manufacturing method
JP7081354B2 (en) Sensor holding board and sensor module
JP6725852B2 (en) Semiconductor sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150