JP2015078835A - X-ray diffraction device - Google Patents

X-ray diffraction device Download PDF

Info

Publication number
JP2015078835A
JP2015078835A JP2012008400A JP2012008400A JP2015078835A JP 2015078835 A JP2015078835 A JP 2015078835A JP 2012008400 A JP2012008400 A JP 2012008400A JP 2012008400 A JP2012008400 A JP 2012008400A JP 2015078835 A JP2015078835 A JP 2015078835A
Authority
JP
Japan
Prior art keywords
ray
rays
types
characteristic
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008400A
Other languages
Japanese (ja)
Inventor
栗林 勝
Masaru Kuribayashi
勝 栗林
一之 松下
Kazuyuki Matsushita
一之 松下
好章 渡邉
Yoshiaki Watanabe
好章 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2012008400A priority Critical patent/JP2015078835A/en
Priority to PCT/JP2013/050937 priority patent/WO2013108876A1/en
Publication of JP2015078835A publication Critical patent/JP2015078835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/206Sources of radiation sources operating at different energy levels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray diffraction device capable of allowing X-ray diffraction measurement by plural types of characteristic X-rays under common circumstances.SOLUTION: The X-ray diffraction device comprises: an X-ray source emitting plural types of characteristic X-rays; an optical system including a multilayer film mirror selectively reflecting the plural types of characteristic X-rays of X-rays emitted by the X-ray source, and making the X-rays reflected by the multilayer film mirror incident into a sample; and an X-ray detector detecting a diffraction X-ray generated by the sample. The multilayer film mirror includes plural types of multilayer films respectively corresponding to the plural types of characteristic X-rays. The plural types of multilayer films are sequentially laminated to form a curved reflection surface, and each of the multilayer films includes lattice spacing for selectively reflecting the corresponding characteristic X-rays. The lattice spacing is inclined along an intersection line with an incidence surface of the curved reflection surface.

Description

本発明は、X線回折装置に関し、特に、複数種類の特性X線を用いてX線回折測定が可能なX線回折装置に関する。   The present invention relates to an X-ray diffractometer, and more particularly to an X-ray diffractometer capable of X-ray diffraction measurement using a plurality of types of characteristic X-rays.

X線回折装置において、ある試料に対して波長が異なる複数種類の特性X線を用いて測定を行う必要が生じる場合がある。例えば、タンパク質の構造解析において用いられるMAD法(多波長異常分散法)等において、波長が異なった複数種類のX線がX線回折測定に用いられる。   In an X-ray diffraction apparatus, it may be necessary to perform measurement using a plurality of types of characteristic X-rays having different wavelengths with respect to a certain sample. For example, in the MAD method (multi-wavelength anomalous dispersion method) used in the structural analysis of proteins, a plurality of types of X-rays having different wavelengths are used for X-ray diffraction measurement.

複数種類の金属をターゲットとして用いることにより、複数種類の特性X線を発生するX線発生装置について、すでに開示がなされている。X線管の対陰極を側面にターゲットとなる金属が形成されている回転体(ローターターゲット)とし、回転体の側面に、複数種類の金属を配置することにより、複数種類のX線を発生させることが出来るX線発生装置がある。   An X-ray generator that generates a plurality of types of characteristic X-rays by using a plurality of types of metals as a target has already been disclosed. The counter cathode of the X-ray tube is a rotating body (rotor target) having a target metal formed on the side surface, and a plurality of types of X-rays are generated by arranging a plurality of types of metal on the side surface of the rotating body. There are X-ray generators that can do this.

特開平5−152091号公報JP-A-5-152091 特開2003−14894号公報Japanese Patent Laid-Open No. 2003-14894 特開2002−39970号公報JP 2002-39970 A 特開昭62−014043号公報JP 62-014043 A

複数種類のX線を発生させることが出来るX線発生装置をX線源として用いた場合であっても、通常のX線回折測定の場合、発生するX線を分光結晶や多層膜ミラーなどの分光器によって、所望の特性X線を選別する必要がある。分光結晶や多層膜ミラーを分光器として用いる場合、所望の特性X線ごとに分光器を変更する必要が生じてしまう。特許文献1に、回転体の側面に周期的に複数種類の金属を配置し、回転体の回転に同期して、シャッターを回転させることにより、所望の金属からのX線を発生することが可能となるX線発生装置が開示されている。しかし、この場合であっても、所望の特性X線ごとに分光器が必要である。   Even when an X-ray generator capable of generating a plurality of types of X-rays is used as an X-ray source, in the case of normal X-ray diffraction measurement, the generated X-rays are separated from a spectroscopic crystal, a multilayer mirror, etc. It is necessary to select desired characteristic X-rays by a spectroscope. When a spectroscopic crystal or a multilayer mirror is used as a spectroscope, it is necessary to change the spectroscope for each desired characteristic X-ray. In Patent Document 1, it is possible to generate X-rays from a desired metal by arranging a plurality of types of metals periodically on the side of the rotating body and rotating the shutter in synchronization with the rotation of the rotating body. An X-ray generation apparatus is disclosed. However, even in this case, a spectroscope is required for each desired characteristic X-ray.

特許文献2に、複数のX線源それぞれからのX線を、1個の多層膜ミラーで分光する技術が開示されている。所定の湾曲反射面を有する多層膜ミラーの場合、異なる波長のX線に対しては、焦点位置が異なる。それゆえ、回転体の外周面に、大径部分と小径部分を設け、それぞれに異なる金属を配置させることにより、2個のX線源をそれぞれの波長の焦点位置に置くことが出来、1個の多層膜ミラーで2種類の金属が発するX線を同時に分光することを可能にしている。この場合、波長によって異なる2個の焦点位置が、回転体の外周面の大径部分と小径部分に来るように、回転体の外周面の形状や多層膜ミラーの湾曲で調整する必要があり、装置規模やコストの増大に加えて、その調整に時間が必要となり、測定時間の増大を招くこととなる。また、特許文献2には、2つのX線源が同じ位置にある場合に、X線源の位置が選別する波長の焦点となるように、多層膜ミラーの湾曲を調整する技術が開示されている。これにより、1個の多層膜ミラーで2種類の金属が発する特定X線を別々に分光することが可能となるが、異なる波長の測定のたびに、多層膜ミラーの湾曲を調整する必要があり、やはり、測定時間の増大を招くこととなる。   Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique for splitting X-rays from each of a plurality of X-ray sources with a single multilayer mirror. In the case of a multilayer mirror having a predetermined curved reflecting surface, the focal position is different for X-rays having different wavelengths. Therefore, by providing a large-diameter portion and a small-diameter portion on the outer peripheral surface of the rotating body and disposing different metals on each, two X-ray sources can be placed at the focal positions of the respective wavelengths. It is possible to simultaneously split X-rays emitted from two kinds of metals with the multilayer mirror. In this case, it is necessary to adjust the shape of the outer peripheral surface of the rotating body and the curvature of the multilayer mirror so that the two focal positions that differ depending on the wavelength come to the large diameter portion and the small diameter portion of the outer peripheral surface of the rotating body, In addition to the increase in the scale and cost of the apparatus, it takes time to make adjustments, leading to an increase in measurement time. Patent Document 2 discloses a technique for adjusting the curvature of a multilayer mirror so that when two X-ray sources are at the same position, the position of the X-ray source becomes a focal point of a wavelength to be selected. Yes. This makes it possible to separately separate specific X-rays emitted by two types of metal with a single multilayer mirror, but it is necessary to adjust the curvature of the multilayer mirror each time a different wavelength is measured. After all, the measurement time is increased.

特許文献3に、複数のX線発生装置別々に備え、異なる角度で試料へX線を入射させるX線装置について開示されている。この場合、試料へ入射させるX線が別々の光学経路によって実現されており、波長によってX線回折測定の測定環境が異なることとなり、測定精度の観点から望ましくない。又は、より測定精度を上げるために、複数のX線発生装置の光軸調整をより高い精度で行う必要が生じ、測定時間の増大を招くこととなる。さらに、複数のX線発生装置を備えることにより、試料からの回折X線を検出する検出器の配置場所や移動範囲にも制限がかかることとなり、望ましくない。   Patent Document 3 discloses an X-ray apparatus that is provided separately for a plurality of X-ray generators and that makes X-rays incident on a sample at different angles. In this case, the X-rays incident on the sample are realized by separate optical paths, and the measurement environment of the X-ray diffraction measurement differs depending on the wavelength, which is not desirable from the viewpoint of measurement accuracy. Or, in order to increase the measurement accuracy, it is necessary to adjust the optical axes of a plurality of X-ray generators with higher accuracy, leading to an increase in measurement time. Furthermore, by providing a plurality of X-ray generators, the arrangement location and movement range of the detector that detects the diffracted X-rays from the sample are limited, which is not desirable.

より高い精度のX線回折測定のため、また、測定時間の短縮のために、共通する環境下で、異なる波長の特性XによるX線回折測定を行うことが出来るX線回折装置が望まれる。特許文献4に、多層膜を用いた多重波長X線分散装置について開示がある。かかる多層には、異なる波長に対する分散特性をそれぞれ持たせる異なる多層の間隔が存在している。しかし、特許文献4に開示の多重波長X線分散装置の反射面は平面となっており、多重波長X線分散装置を用いて、X線を試料に入射させる場合、試料に入射するX線には十分な輝度が得られず、測定精度の低下や測定時間の増大を招くこととなる。   An X-ray diffractometer capable of performing X-ray diffraction measurement with characteristics X of different wavelengths in a common environment is desired for higher accuracy X-ray diffraction measurement and shortening measurement time. Patent Document 4 discloses a multiple wavelength X-ray dispersion apparatus using a multilayer film. In such multilayers, there are different multilayer spacings each having dispersion characteristics for different wavelengths. However, the reflection surface of the multi-wavelength X-ray dispersion apparatus disclosed in Patent Document 4 is a flat surface. When X-rays are incident on the sample using the multi-wavelength X-ray dispersion apparatus, As a result, sufficient luminance cannot be obtained, leading to a decrease in measurement accuracy and an increase in measurement time.

本発明は、このような課題を鑑みてなされたものであり、共通する環境下で、複数種類の特性X線によるX線回折測定を可能とするX線回折装置の提供を目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an X-ray diffractometer that enables X-ray diffraction measurement using a plurality of types of characteristic X-rays under a common environment.

(1)上記課題を解決するために、本発明に係るX線回折装置は、所定の領域から所定の測定期間に複数種類の特性X線をそれぞれ放射する、X線源と、前記X線源が前記所定の領域から放射するX線から前記複数種類の特性X線を選択的に反射する多層膜ミラーを含むとともに該多層膜ミラーが反射するX線を試料へ入射させる、光学系と、前記試料より発生する回折X線を検出する、X線検出器と、を備える、X線回折装置であって、前記多層膜ミラーは、前記複数種類の特性X線にそれぞれ対応する複数種類の多層膜を備え、前記複数種類の多層膜は順に積層されて湾曲反射面を構成し、前記各多層膜は対応する特性X線を選択的に反射する格子面間隔を有し、かつ、前記湾曲反射面の入射面との交線に沿って該格子面間隔が傾斜している、ことを特徴とする。   (1) In order to solve the above-described problem, an X-ray diffraction apparatus according to the present invention emits a plurality of types of characteristic X-rays from a predetermined region during a predetermined measurement period, and the X-ray source. Including a multilayer mirror that selectively reflects the plurality of types of characteristic X-rays from the X-rays radiated from the predetermined region, and the X-ray reflected by the multilayer mirror is incident on the sample; An X-ray diffractometer comprising an X-ray detector for detecting diffracted X-rays generated from a sample, wherein the multilayer mirror is a plurality of types of multilayer films respectively corresponding to the plurality of types of characteristic X-rays The plurality of types of multilayer films are sequentially laminated to form a curved reflection surface, each multilayer film has a lattice plane interval that selectively reflects the corresponding characteristic X-rays, and the curved reflection surface The lattice spacing is inclined along the line of intersection with the incident surface of That, characterized in that.

(2) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は楕円曲線であってもよい。   (2) In the X-ray diffractometer described in (1) above, the line of intersection of the curved reflecting surface with the incident surface may be an elliptic curve.

(3) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は楕円曲線であり、前記湾曲反射面の一方の焦点に前記X線の前記所定の領域が配置され、前記湾曲反射面の他方の焦点に前記試料が配置されてもよい。   (3) In the X-ray diffractometer according to (1), an intersection line with the incident surface of the curved reflecting surface is an elliptic curve, and the predetermined point of the X-ray is at one focal point of the curved reflecting surface. The sample may be arranged at the other focal point of the curved reflecting surface.

(4) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は放物線であってもよい。   (4) In the X-ray diffractometer described in (1) above, the line of intersection of the curved reflecting surface with the incident surface may be a parabola.

(5) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は放物線であり、前記湾曲反射面の焦点に前記X線の前記所定の領域が配置されてもよい。   (5) In the X-ray diffractometer according to (1), an intersection line with the incident surface of the curved reflecting surface is a parabola, and the predetermined region of the X-ray is at a focal point of the curved reflecting surface. It may be arranged.

(6) 上記(1)に記載のX線回折装置であって、前記複数種類の多層膜は、選択的に反射する特性X線の波長の短い方から順に、積層されてもよい。   (6) In the X-ray diffractometer described in (1) above, the plurality of types of multilayer films may be stacked in order from the shorter wavelength of the characteristic X-ray that selectively reflects.

(7) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、電子が走査する方向と垂直に原子番号が異なる複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って前記外周表面に連続して配置されてもよい。   (7) The X-ray diffraction apparatus according to any one of (1) to (6), wherein the X-ray source includes an anti-cathode rotating body that collides electrons with an outer peripheral surface, and the electrons scan. A plurality of types of metals having different atomic numbers may be arranged in order in a direction perpendicular to the direction in which they are performed, and may be continuously arranged on the outer peripheral surface along the direction in which electrons scan.

(8) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、前記外周表面に、電子が走査する方向に沿って、原子番号が異なる複数種類の金属が周期的に並んで配置されてもよい。   (8) The X-ray diffraction apparatus according to any one of (1) to (6), wherein the X-ray source includes an anti-cathode rotating body that causes electrons to collide with an outer peripheral surface, and the outer peripheral surface In addition, a plurality of types of metals having different atomic numbers may be periodically arranged along the direction in which electrons scan.

(9) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、前記外周表面に、原子番号が異なる複数種類の金属の合金が形成されてもよい。   (9) The X-ray diffractometer according to any one of (1) to (6), wherein the X-ray source includes a counter-cathode rotating body in which electrons collide with an outer peripheral surface, and the outer peripheral surface In addition, a plurality of types of metal alloys having different atomic numbers may be formed.

(10) 上記(1)乃至(9)のいずれかに記載のX線回折装置であって、前記X線検出器は、前記複数種類の特性X線の波長それぞれに対応して、受光するX線の強度を検出する、波長分別型検出器であってもよい。   (10) The X-ray diffraction apparatus according to any one of (1) to (9), wherein the X-ray detector receives light corresponding to wavelengths of the plurality of types of characteristic X-rays. It may be a wavelength discrimination type detector that detects the intensity of the line.

(11) 上記(10)に記載のX線回折装置であって、前記X線検出器が検出するX線の情報を、X線の波長に分別し、波長に応じたX線の強度の情報を出力する、分析部と、前記分析部が出力する前記X線の強度の情報に基づいて、データ解析を行うデータ処理部と、前記データ処理部の解析結果のデータを保存する解析データ保存部と、をさらに備えてもよい。   (11) The X-ray diffractometer according to (10), wherein X-ray information detected by the X-ray detector is classified into X-ray wavelengths, and X-ray intensity information corresponding to the wavelengths is obtained. An analysis unit that outputs data, a data processing unit that performs data analysis based on the X-ray intensity information output by the analysis unit, and an analysis data storage unit that stores analysis result data of the data processing unit And may be further provided.

(12)上記(8)に記載のX線回折装置であって、前記対陰極回転体の回転情報を入手し、該回転情報に基づいて、前記複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、前記X線検出器の検出を制御する、同期制御手段を、さらに備えてもよい。   (12) The X-ray diffraction apparatus according to (8), wherein rotation information of the counter-cathode rotator is obtained, and the X-rays radiated from each of the plurality of types of metals are obtained based on the rotation information. And you may further provide the synchronous control means which controls the detection of the said X-ray detector so that the intensity | strength of an X-ray may be detected, respectively.

(13)上記(12)に記載のX線回折装置であって、前記多層膜ミラーと前記試料との間に配置され、連続X線に起因する散乱X線を吸収する、フィルタを、さらに備えてもよい。   (13) The X-ray diffraction apparatus according to (12), further including a filter that is disposed between the multilayer mirror and the sample and absorbs scattered X-rays caused by continuous X-rays. May be.

(14)上記(12)に記載のX線回折装置であって、前記多層膜ミラーは、前記複数種類の多層膜の間の少なくとも1つに、連続X線に起因する散乱X線を吸収する、フィルタ層を含んでもよい。   (14) The X-ray diffraction apparatus according to (12), wherein the multilayer mirror absorbs scattered X-rays caused by continuous X-rays in at least one of the plurality of types of multilayer films. A filter layer may be included.

本発明により、共通する環境下で、複数種類の特性X線によるX線回折測定を可能とするX線回折装置が提供される。   The present invention provides an X-ray diffractometer capable of X-ray diffraction measurement using a plurality of types of characteristic X-rays under a common environment.

本発明の第1の実施形態に係るX線回折装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the X-ray-diffraction apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るX線源の構造を示す模式図である。It is a schematic diagram which shows the structure of the X-ray source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る多層膜ミラーの構造を示す模式図である。It is a schematic diagram which shows the structure of the multilayer mirror which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るX線検出器の構造を示す模式図である。It is a schematic diagram which shows the structure of the X-ray detector which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るX線源の構造を示す模式図である。It is a schematic diagram which shows the structure of the X-ray source which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る入射X線の強度を示す図である。It is a figure which shows the intensity | strength of the incident X-ray which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る同期制御手段を説明する模式図である。It is a schematic diagram explaining the synchronous control means which concerns on the 2nd Embodiment of this invention. 本発明の実施形態に係るX線源の他の例の構造を示す模式図である。It is a schematic diagram which shows the structure of the other example of the X-ray source which concerns on embodiment of this invention. 本発明の実施形態に係るX線源の他の例の構造を示す模式図である。It is a schematic diagram which shows the structure of the other example of the X-ray source which concerns on embodiment of this invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。ただし、以下に示す図は、あくまで、当該実施形態の実施例を説明するものであって、図に示す縮尺と実施例記載の縮尺は必ずしも一致するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the drawings shown below are merely examples of the embodiment, and the scales shown in the drawings do not necessarily coincide with the scales described in the examples.

[第1の実施形態]
図1は、本発明の第1の実施形態に係るX線回折装置1の構造を示す模式図である。当該実施形態に係るX線回折装置1は、複数種類の特定X線を用いて、試料100のX線回折測定を行うことが可能であるX線回折装置である。ここでは、試料100を単結晶としているが、それに限定されることがないのは言うまでもない。X線回折装置1は、複数種類の特性X線を含むX線を放射するX線源2と、多層膜ミラー3を含むとともに多層膜ミラー3が反射するX線を試料100へ入射させる光学系4と、試料100を支持する試料台5と、試料100より発生する回折X線を検出するX線検出器6と、X線検出器6を試料100に対して角度移動させる回転駆動系7と、X線回折測定を制御するとともに測定データの解析を行う制御解析部9と、を備えている。なお、制御解析部9は、X線検出器6が検出した回折X線のエネルギーを分析する分析部8を備えている。
[First Embodiment]
FIG. 1 is a schematic diagram showing the structure of an X-ray diffraction apparatus 1 according to the first embodiment of the present invention. The X-ray diffractometer 1 according to this embodiment is an X-ray diffractometer capable of performing X-ray diffraction measurement of a sample 100 using a plurality of types of specific X-rays. Here, although the sample 100 is a single crystal, it is needless to say that the sample 100 is not limited thereto. The X-ray diffractometer 1 includes an X-ray source 2 that emits X-rays including a plurality of types of characteristic X-rays, and a multilayer mirror 3 and an optical system that causes X-rays reflected by the multilayer mirror 3 to enter a sample 100. 4, a sample stage 5 that supports the sample 100, an X-ray detector 6 that detects diffracted X-rays generated from the sample 100, and a rotational drive system 7 that moves the X-ray detector 6 at an angle with respect to the sample 100. And a control analysis unit 9 for controlling the X-ray diffraction measurement and analyzing the measurement data. The control analysis unit 9 includes an analysis unit 8 that analyzes the energy of diffracted X-rays detected by the X-ray detector 6.

当該実施形態に係るX線回折装置1の特徴は、X線源2が放射するX線から複数種類の特性X線を多層膜ミラー3が選択的に反射し、多層膜ミラー3が反射するX線を光学系4が試料100へ入射させていることにある。それにより、共通する環境下で、複数種類の特性X線を用いて、X線回折測定が可能となる。なお、本明細書において、所定の波長のX線を「選択的に反射する」とは、所定の角度からミラーへ入射するX線の中で、当該所定の波長のX線の反射率が、他のX線の反射率と比較して、特異的に高いことをいうものとする。すなわち、入射するX線に上記複数種類の一部又は全部の特性X線が含まれている場合に、多層膜ミラー3が反射するX線は、当該一部又は全部の特性X線である。   The X-ray diffraction apparatus 1 according to this embodiment is characterized in that the multilayer mirror 3 selectively reflects a plurality of types of characteristic X-rays from the X-rays emitted from the X-ray source 2 and the multilayer mirror 3 reflects X. The reason is that the optical system 4 is incident on the sample 100. Accordingly, X-ray diffraction measurement can be performed using a plurality of types of characteristic X-rays under a common environment. In the present specification, “selectively reflecting” X-rays having a predetermined wavelength means that the reflectance of the X-rays having the predetermined wavelength among X-rays incident on the mirror from a predetermined angle is: It is said to be specifically higher than the reflectance of other X-rays. That is, when some or all of the plurality of types of characteristic X-rays are included in the incident X-rays, the X-rays reflected by the multilayer mirror 3 are the partial or all characteristic X-rays.

以下、当該実施形態に係るX線回折装置1の構成について説明する。   Hereinafter, the configuration of the X-ray diffraction apparatus 1 according to the embodiment will be described.

図2は、当該実施形態に係るX線源2の構造を示す模式図である。X線源2は、原子番号が異なる複数種類の金属をターゲットとして、複数種類のX線を放射する。ここでは、対陰極に原子番号が異なる2種類の金属がターゲットとして形成されている。回転体11は対陰極であり、回転体11の外周側面に、2種類の金属T1,T2が形成されている。ここで、2種類の金属T1,T2は、それぞれCu(銅)とCr(クロム)であるが、この2種類に限定されることはないのは言うまでもなく、たとえば、Mo(モリブデン)、Co(コバルト)、W(タングステン)などが用いられる。フィラメント12は陰極であり、フィラメント12が電子を放出し、対陰極である回転体11の外周表面に電子が衝突される。回転体11は図の矢印方向に駆動系(図示せず)により回転しており、電子の走査方向は、図の矢印方向と逆向きとなる。   FIG. 2 is a schematic diagram showing the structure of the X-ray source 2 according to the embodiment. The X-ray source 2 emits a plurality of types of X-rays using a plurality of types of metals having different atomic numbers as targets. Here, two types of metals having different atomic numbers are formed as targets on the counter cathode. The rotating body 11 is an anti-cathode, and two kinds of metals T1 and T2 are formed on the outer peripheral side surface of the rotating body 11. Here, the two types of metals T1 and T2 are Cu (copper) and Cr (chrome), respectively, but it is needless to say that the two types of metals T1 and T2 are not limited to these two types, for example, Mo (molybdenum), Co ( Cobalt), W (tungsten), or the like is used. The filament 12 is a cathode, the filament 12 emits electrons, and the electrons collide with the outer peripheral surface of the rotating body 11 that is an anti-cathode. The rotating body 11 is rotated by a drive system (not shown) in the direction of the arrow in the figure, and the electron scanning direction is opposite to the direction of the arrow in the figure.

電子が回転体11の外周表面に衝突する領域がX線放射領域BSであり、回転体11の外周表面のX線放射領域BS(所定の領域)から全方向へX線が放射される。フィラメント12の形状から、X線放射領域BSは、電子の走査方向に垂直に伸びる帯形状をしている。外周表面のX線放射領域BSに垂直な面内であって、帯形状の中心線と所定の角度をなす方向の先に、回転体11を包囲している隔壁(図示せず)に設けられたX線窓13があり、そこからX線S1が外部へ放射される。このX線S1が光学系4の多層膜ミラー3へ入射する。   An area where the electrons collide with the outer peripheral surface of the rotating body 11 is an X-ray emission area BS, and X-rays are emitted in all directions from the X-ray emission area BS (predetermined area) on the outer peripheral surface of the rotating body 11. From the shape of the filament 12, the X-ray emission region BS has a band shape extending perpendicular to the electron scanning direction. Provided in a partition wall (not shown) surrounding the rotator 11 in a plane perpendicular to the X-ray emission region BS on the outer peripheral surface and in a direction forming a predetermined angle with the belt-shaped center line. There is an X-ray window 13 from which the X-ray S1 is emitted to the outside. This X-ray S 1 enters the multilayer mirror 3 of the optical system 4.

回転体11の外周表面に、電子が走査する方向と垂直に(図の横方向)に複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って連続して配置されている。ここでは、電子が走査する方向と垂直に(図の横方向に)、2種類の金属T1,T2が順に並んでおり、電子が走査する方向に沿って、回転体11の外周表面に連続して配置されており、2種類の金属T1,T2それぞれが形成される領域は、ともに、外周表面を周回するリング(環)形状である。なお、X線発生効率の観点からはリング形状が望ましいが、他の理由によって外周表面の周縁の一部にのみ金属が形成されている形状もあり得る。   On the outer peripheral surface of the rotator 11, a plurality of types of metals are arranged in order in a direction perpendicular to the direction in which electrons are scanned (lateral direction in the figure), and are continuously arranged along the direction in which electrons are scanned. Here, two kinds of metals T1 and T2 are arranged in order perpendicularly to the direction in which the electrons scan (in the horizontal direction in the figure), and are continuous with the outer peripheral surface of the rotating body 11 along the direction in which the electrons scan. The regions where the two types of metals T1 and T2 are formed are both ring-shaped around the outer peripheral surface. In addition, although a ring shape is desirable from the viewpoint of X-ray generation efficiency, there may be a shape in which metal is formed only at a part of the peripheral edge of the outer peripheral surface for other reasons.

X線放射領域BSのうち、金属T1が形成されている領域(ここでは、Cu)からは、金属T1の特性X線を含むX線が、金属T2が形成されている領域(ここでは、Cr)からは、金属T2の特性X線を含むX線が、それぞれ放射されており、X線窓13より出射するX線S1は、複数種類の特性X線を含んでいる。ここで複数種類の特性X線とは、例えば、CuKα線(波長1.542Å)とCrKα線(2.291Å)である。すなわち、ここで、X線源2は、複数種類の特性X線を同時に放射しており、よって、所定の測定時間に所定の領域から複数種類の特性X線をそれぞれ放射している。   Of the X-ray emission region BS, from the region where the metal T1 is formed (here, Cu), the X-ray including the characteristic X-ray of the metal T1 is changed into the region where the metal T2 is formed (here, Cr). ), X-rays including the characteristic X-rays of the metal T2 are respectively emitted, and the X-rays S1 emitted from the X-ray window 13 include a plurality of types of characteristic X-rays. Here, the plurality of types of characteristic X-rays are, for example, a CuKα ray (wavelength 1.542Å) and a CrKα ray (2.291Å). That is, here, the X-ray source 2 emits a plurality of types of characteristic X-rays at the same time, and accordingly, emits a plurality of types of characteristic X-rays from a predetermined region at a predetermined measurement time.

図3は、当該実施形態に係る多層膜ミラー3の構造を示す模式図である。図3(a)は、多層膜ミラー3の入射面における断面図である。多層膜ミラー3は、Si(シリコン)からなる基板21の表面に、多重構造多層膜22が積層されたものである。多重構造多層膜22が湾曲反射面となっており、湾曲反射面の入射面との交線が楕円曲線(楕円の一部)である。湾曲反射面は2個の焦点P1,P2を有している。焦点P1にX線の発生源を配置すると、多層膜ミラー3で反射したX線は、焦点P2で集光される。それゆえ、多層膜ミラー3の焦点P1(一方の焦点)に、回転体11の外周表面のX線放射領域BSが配置されるのが望ましい。X線源2は、X線放射領域BSからX線を放射している。さらに、多層膜ミラー3の焦点P2(他方の焦点)に試料100が配置されるよう、試料台5が試料100を支持しているのが望ましい。なお、必要に応じて、多層膜ミラー3と試料100の間に、フィルタ26を配置してもよい。フィルタ26は金属層を含んでおり、かかる金属層により、フィルタ26は、X線源2が放射するX線のうち、連続X線に起因する散乱X線を吸収することが出来る。   FIG. 3 is a schematic diagram showing the structure of the multilayer mirror 3 according to this embodiment. FIG. 3A is a cross-sectional view of the incident surface of the multilayer mirror 3. The multilayer mirror 3 is obtained by laminating a multilayer multilayer film 22 on the surface of a substrate 21 made of Si (silicon). The multi-layer multilayer film 22 is a curved reflecting surface, and the intersection line of the curved reflecting surface with the incident surface is an elliptic curve (a part of an ellipse). The curved reflecting surface has two focal points P1 and P2. When an X-ray generation source is disposed at the focal point P1, the X-rays reflected by the multilayer mirror 3 are collected at the focal point P2. Therefore, it is desirable that the X-ray radiation region BS on the outer peripheral surface of the rotating body 11 is disposed at the focal point P1 (one focal point) of the multilayer mirror 3. The X-ray source 2 emits X-rays from the X-ray emission region BS. Furthermore, it is desirable that the sample stage 5 supports the sample 100 so that the sample 100 is disposed at the focal point P2 (the other focal point) of the multilayer mirror 3. In addition, you may arrange | position the filter 26 between the multilayer mirror 3 and the sample 100 as needed. The filter 26 includes a metal layer, and the filter 26 can absorb scattered X-rays caused by continuous X-rays among the X-rays emitted from the X-ray source 2.

図3(b)は、多層膜ミラー3の多重構造多層膜22の断面を示す模式図である。ここで、断面とは、多重構造多層膜22の入射面との断面である。多重構造多層膜22は、順に積層される複数種類の多層膜を含んでおり、複数種類の多層膜は湾曲反射面を構成している。ここで、複数種類の多層膜は、複数種類の特性X線にそれぞれ対応しており、各多層膜は、入射するX線から対応する特性X線の波長のX線を選択的に反射する。各多層膜が、対応する特性X線の波長のX線をそれぞれ選択的に反射することにより、多層膜ミラー3は、入射するX線から、複数種類の特性X線すべてを選択的に反射することが出来る。よって、入射するX線に、複数種類の特性X線の一部又は全部が含まれている場合、多層膜ミラー3が反射するX線は、一部又は全部の特性X線となる。図には、2種類の多層膜L1,L2が示されている。   FIG. 3B is a schematic diagram showing a cross section of the multilayer multilayer film 22 of the multilayer mirror 3. Here, the cross section is a cross section with respect to the incident surface of the multi-layer multilayer film 22. The multi-layer multilayer film 22 includes a plurality of types of multilayer films that are sequentially stacked, and the plurality of types of multilayer films constitute a curved reflecting surface. Here, the plurality of types of multilayer films respectively correspond to the plurality of types of characteristic X-rays, and each multilayer film selectively reflects X-rays having the wavelength of the corresponding characteristic X-rays from the incident X-rays. Each multilayer film selectively reflects X-rays having the corresponding characteristic X-ray wavelength, so that the multilayer mirror 3 selectively reflects all of the plurality of types of characteristic X-rays from the incident X-rays. I can do it. Therefore, when the incident X-ray includes a part or all of a plurality of types of characteristic X-rays, the X-rays reflected by the multilayer mirror 3 are part or all of the characteristic X-rays. In the figure, two types of multilayer films L1 and L2 are shown.

各多層膜において、重元素層23と軽元素層24とが交互に繰り返されて積層されている。各多層膜では、重元素層23と軽元素層24を1対の層として、繰り返し積層されているが、200対の層以上が積層されているのが望ましい。また、より下方に配置される多層膜へのX線の透過を考慮すると、1000対の層以下が積層されているのが望ましい。隣り合う2対の層の間隔を多層間隔dとする。多層間隔dとは、例えば、隣り合う2層の重元素層23の上表面それぞれとの間の距離である。各多層膜において、X線の反射面を入射側から反射側へ進行するのに伴って、すなわち、図3(b)に示す断面の左側から右側にかけて(図の横方向に)、多層間隔dは徐々に変化している。言い換えると、湾曲反射面の入射面との交線に沿って、多層間隔dは徐々に変化している。多層膜L1の多層間隔dは、図に示す断面の左端ではd1であり右端ではd2であり、多層間隔dは図の左側から右側にかけて大きくなっており、d2はd1より大きい(d1<d2)である。多層膜L2の多層間隔dは、図に示す断面の左端ではD1であり右端ではD2であり、同様に、D2はD1より大きい(D1<D2)。厳密に言えば、多層間隔dは積層方向に沿って徐々に変化している。   In each multilayer film, heavy element layers 23 and light element layers 24 are alternately stacked. In each multilayer film, the heavy element layer 23 and the light element layer 24 are repeatedly laminated as a pair of layers, but it is desirable that 200 pairs or more are laminated. Further, considering the transmission of X-rays to the multilayer film disposed below, it is desirable that 1000 pairs or less are stacked. The interval between two pairs of adjacent layers is defined as a multilayer interval d. The multilayer interval d is, for example, the distance between the upper surfaces of two adjacent heavy element layers 23. In each multilayer film, as the X-ray reflection surface advances from the incident side to the reflection side, that is, from the left side to the right side of the cross section shown in FIG. Is gradually changing. In other words, the multilayer interval d gradually changes along the intersection line of the curved reflecting surface with the incident surface. The multilayer interval d of the multilayer film L1 is d1 at the left end of the cross section shown in the drawing and d2 at the right end. The multilayer interval d increases from the left side to the right side of the drawing, and d2 is larger than d1 (d1 <d2). It is. The multilayer interval d of the multilayer film L2 is D1 at the left end of the cross section shown in the drawing and D2 at the right end, and similarly, D2 is larger than D1 (D1 <D2). Strictly speaking, the multilayer interval d gradually changes along the stacking direction.

X線回折の観点から言えば、多層間隔dは結晶の格子面間隔に相当し、上述のように、多層間隔dが場所によって変化する多層膜は、「傾斜格子面間隔」の多層膜と呼ばれている。各位置における多層間隔dは、湾曲反射面の形状と、選別する光の波長と、によって決定される。すなわち、各多層膜は、対応する特性X線の波長のX線を選択的に反射する格子面間隔を有しており、各多層膜は、横方向に格子面間隔が傾斜して変化している。理想的には、各々の重元素層23の上表面の入射面との交線が2個の焦点P1,P2を焦点とする楕円曲線となっているのが望ましい。   From the viewpoint of X-ray diffraction, the multilayer interval d corresponds to the lattice spacing of the crystal, and as described above, the multilayer film in which the multilayer spacing d varies depending on the location is referred to as a “tilted lattice spacing” multilayer film. It is. The multilayer interval d at each position is determined by the shape of the curved reflecting surface and the wavelength of light to be selected. That is, each multilayer film has a lattice plane interval that selectively reflects X-rays having the wavelength of the corresponding characteristic X-ray, and each multilayer film has a lattice plane interval that changes in the lateral direction with an inclination. Yes. Ideally, the intersecting line with the incident surface on the upper surface of each heavy element layer 23 is preferably an elliptic curve having two focal points P1 and P2 as focal points.

また、複数種類の多層膜それぞれが対応する特性X線の波長はそれぞれ異なっているので、複数種類の多層膜の格子面間隔もそれぞれ異なっている。多重構造多層膜22において、積層方向に沿って、複数種類の多層膜が順に積層されている。多重構造多層膜22の格子面間隔を積層方向に沿って観測すると、ある多層膜においては格子面間隔は徐々に変化するもののほぼ一定の値をとり、そして、隣接する多層膜に進行すると、格子面間隔は不連続に大きく変化する。すなわち、多層膜毎に、格子面間隔は不連続に大きく変化することとなる。このような状態を、積層方向に格子面間隔が勾配していると呼んでもよい。   In addition, since the wavelengths of characteristic X-rays corresponding to the plurality of types of multilayer films are different, the lattice plane spacings of the plurality of types of multilayer films are also different. In the multilayer multilayer film 22, a plurality of types of multilayer films are sequentially stacked along the stacking direction. When the lattice plane spacing of the multi-layer multilayer film 22 is observed along the stacking direction, the lattice plane spacing gradually changes in a certain multilayer film, and takes a substantially constant value. The interplanar spacing varies greatly discontinuously. That is, for each multilayer film, the lattice spacing changes greatly in a discontinuous manner. Such a state may be called that the lattice spacing is inclined in the stacking direction.

ここで、多層膜ミラー3が、X線から異なる2つの波長のX線を選択的に反射するものとすると、その波長それぞれのX線を選択的に反射する多層膜が2個必要である。図2には、2個の多層膜L1,L2が示されているが、例えば、多層膜L1はCrKα線の波長のX線を、多層膜L2はCuKα線の波長のX線を選択的に反射できるとすると、多層膜ミラー3は、X線源2が放射するX線から、CuKα線とCrKα線という2種類の特性X線を選択的に反射することが出来ており、多層膜ミラー3を含む光学系4は、CuKα線とCrKα線という2種類の特性X線を集光して試料100へ入射させることが出来る。一般に、X線の波長が長くなるほど、X線の透過の度合いが低下する。それゆえ、複数種類の多層膜を配置する際、反射する波長の長い多層膜が、多層膜ミラー3の反射表面に、より近くなるよう基板21よりもより上方に配置されるのが望ましい。すなわち、複数種類の多層膜は、選択的に反射する波長の短い方から長い方へ順に積層されるのが望ましい。反射表面(湾曲反射面)から下方へ配置されるのが望ましい。ここでは、CrKα線の波長の方がCuKα線の波長より長く、CrKα線を反射する多層膜L1の下方に、CuKα線を反射する多層膜L2が配置されている。なお、CrKα線の波長の方がCuKα線の波長より長いので、多層膜L1の多層間隔dは多層膜L2の多層間隔dより、同じ場所において長くなっている。すなわち、図の左端においてはd1>D1、右端においてはd2>D2となっている。ここで、CrKα線を反射する多層膜L1の重元素層23は
V(バナジウム)で形成され、軽元素層24はC(炭素)で形成される。また、CuKα線を反射する多層膜L2の重元素層23はNi(ニッケル)で形成され、軽元素層24はC(炭素)で形成される。しかし、これらの組み合わせに限定されることはなく、選択するX線の波長に応じて適当な材料を選択すればよく、重元素層23と軽元素層24とにそれぞれ形成される物質は、例えば、W(タングステン)とBC(炭化ホウ素)でもよいし、Mo(モリブデン)とSi(シリコン)でもよい。
Here, if the multilayer mirror 3 selectively reflects X-rays having two different wavelengths from the X-rays, two multilayer films that selectively reflect X-rays having the respective wavelengths are required. FIG. 2 shows two multilayer films L1 and L2. For example, the multilayer film L1 selectively selects X-rays having the wavelength of CrKα rays, and the multilayer film L2 selectively selects X-rays having the wavelength of CuKα rays. If it can be reflected, the multilayer mirror 3 can selectively reflect two types of characteristic X-rays, CuKα ray and CrKα ray, from the X-rays emitted from the X-ray source 2. The optical system 4 including can collect two types of characteristic X-rays, CuKα ray and CrKα ray, so as to be incident on the sample 100. In general, the longer the X-ray wavelength, the lower the degree of X-ray transmission. Therefore, when a plurality of types of multilayer films are disposed, it is desirable that the multilayer film having a long wavelength to be reflected is disposed above the substrate 21 so as to be closer to the reflective surface of the multilayer film mirror 3. That is, it is desirable that a plurality of types of multilayer films are stacked in order from the shorter wavelength to the longer wavelength to selectively reflect. It is desirable to dispose downward from the reflective surface (curved reflective surface). Here, the wavelength of the CrKα line is longer than the wavelength of the CuKα line, and the multilayer film L2 that reflects the CuKα line is disposed below the multilayer film L1 that reflects the CrKα line. Since the wavelength of the CrKα ray is longer than the wavelength of the CuKα ray, the multilayer interval d of the multilayer film L1 is longer at the same place than the multilayer interval d of the multilayer film L2. That is, d1> D1 at the left end and d2> D2 at the right end. Here, the heavy element layer 23 of the multilayer film L1 that reflects CrKα rays is formed of V (vanadium), and the light element layer 24 is formed of C (carbon). The heavy element layer 23 of the multilayer film L2 that reflects CuKα rays is formed of Ni (nickel), and the light element layer 24 is formed of C (carbon). However, it is not limited to these combinations, and an appropriate material may be selected according to the wavelength of the X-ray to be selected. The substances formed in the heavy element layer 23 and the light element layer 24 are, for example, W (tungsten) and B 4 C (boron carbide), or Mo (molybdenum) and Si (silicon) may be used.

なお、図3(a)に示すフィルタ26を配置する代わりに、必要に応じて、所定の金属からなるフィルタ層27を、隣接する多層膜の間に配置してもよい。ここでは、例えば、多層膜L1,L2の間に、Niからなるフィルタ層27を積層させる。また、多重構造多層膜22の上表面にも、例えばVからなるフィルタ層(図示せず)を積層させるとなおよい。かかるフィルタ層は、X線源2が放射するX線のうち、連続X線に起因する散乱X線を吸収することが出来る。   Instead of disposing the filter 26 shown in FIG. 3A, a filter layer 27 made of a predetermined metal may be disposed between adjacent multilayer films as necessary. Here, for example, a filter layer 27 made of Ni is laminated between the multilayer films L1 and L2. Further, it is more preferable that a filter layer (not shown) made of V, for example, is laminated on the upper surface of the multi-layer multilayer film 22. Such a filter layer can absorb scattered X-rays caused by continuous X-rays among X-rays emitted from the X-ray source 2.

光学系4が多層膜ミラー3を含むことにより、多層膜ミラー3が、X線源2が放射するX線から、所望の複数種類の特性X線を選択的に反射し、多層膜ミラー3で反射されたX線を集光して、試料台5が支持する試料100へ入射させることが可能となっている。これにより、例えば、単位面積当たりのX線量が10kW/mmといった高輝度なX線に増加させて試料に入射させることが出来、より高い精度のX線回折測定を行うことが出来る。なお、多層膜ミラー3の湾曲反射面は図3に示すものに限定されることはなく、湾曲反射面の入射面との交線が放物線となっているものでもよい。 Since the optical system 4 includes the multilayer mirror 3, the multilayer mirror 3 selectively reflects a desired plurality of types of characteristic X-rays from the X-rays radiated from the X-ray source 2. The reflected X-rays can be collected and incident on the sample 100 supported by the sample stage 5. Thereby, for example, the X-ray dose per unit area can be increased to high-intensity X-rays of 10 kW / mm 2 and incident on the sample, and X-ray diffraction measurement with higher accuracy can be performed. Note that the curved reflecting surface of the multilayer mirror 3 is not limited to that shown in FIG. 3, and the intersecting line with the incident surface of the curved reflecting surface may be a parabola.

図4は、当該実施形態に係る多層膜ミラー3の他の例の構造を示す模式図であり、多層膜ミラー3の入射面における断面を表している。図4に示す多層膜ミラー3の湾曲反射面は、P1を焦点とする放物曲線の一部である。放物線の焦点位置に、回転体11の外周表面のX線放射領域BSを配置することにより、所望の複数種類の特性X線を選択的に反射し平行X線とすることが出来る。ここで得られる平行X線を、光学系4に備えられる他の光学部材によって集光して試料へ入射させればよい。また、平行X線を試料に入射させることにより、X線反射率の測定などにも利用することが出来る。   FIG. 4 is a schematic view showing the structure of another example of the multilayer mirror 3 according to this embodiment, and shows a cross section on the incident surface of the multilayer mirror 3. The curved reflecting surface of the multilayer mirror 3 shown in FIG. 4 is a part of a parabolic curve having P1 as a focal point. By disposing the X-ray emission region BS on the outer peripheral surface of the rotator 11 at the focal position of the parabola, a desired plurality of types of characteristic X-rays can be selectively reflected and converted into parallel X-rays. The parallel X-rays obtained here may be collected by another optical member provided in the optical system 4 and incident on the sample. Further, by making parallel X-rays incident on the sample, it can also be used for measuring X-ray reflectivity.

図1に示す試料台5は、針状のサンプルホルダーと、1又は複数の回転駆動系と、を備えており、針状のサンプルホルダーの先端には単結晶である試料100が装着され、試料100はサンプルホルダーに支持される。サンプルホルダーは、光学系4から入射される複数種類の特性X線が試料100に照射されるように、配置される。さらに、回転駆動系にサンプルホルダーの他端が固定され、回転駆動系により、試料100を3次元的に方向転換させることが可能となっている。試料100の種類に応じて、試料台5のサンプルホルダーの形状は選択される。   A sample stage 5 shown in FIG. 1 includes a needle-shaped sample holder and one or a plurality of rotational drive systems, and a sample 100 that is a single crystal is attached to the tip of the needle-shaped sample holder. 100 is supported by the sample holder. The sample holder is arranged so that the sample 100 is irradiated with a plurality of types of characteristic X-rays incident from the optical system 4. Furthermore, the other end of the sample holder is fixed to the rotation drive system, and the sample 100 can be three-dimensionally changed by the rotation drive system. The shape of the sample holder of the sample stage 5 is selected according to the type of the sample 100.

X線検出器6は、例えば、波長分別型2次元ピクセル検出器であり、受光するX線を波長(エネルギー)によって分別し、波長に応じて、X線の強度を検出することが出来る。光学系4により、所望の複数種類の特性X線が試料100に照射され、試料100より、複数種類の特性X線それぞれの回折X線が発生する。X線検出器6は、複数種類の特性X線を分別し、複数種類それぞれの特性X線の回折像を検出することが出来る。   The X-ray detector 6 is, for example, a wavelength classification type two-dimensional pixel detector, and can classify received X-rays by wavelength (energy) and detect the intensity of X-rays according to the wavelength. The optical system 4 irradiates the sample 100 with a desired plurality of types of characteristic X-rays, and the sample 100 generates diffraction X-rays for each of the plurality of types of characteristic X-rays. The X-ray detector 6 can classify a plurality of types of characteristic X-rays and detect diffraction images of the plurality of types of characteristic X-rays.

図5は、当該実施形態に係るX線検出器6の構造を示す模式図である。X線検出器6は、平面状X線検出部30と、平面状X線検出部30の背面に設けられる信号処理部(図示せず)とを有し、平面状X線検出部30には、規則的に配列された複数のピクセル31が設けられている。各ピクセル31に設けられる半導体(例えば、Si)にX線が到達すると、電荷が発生する。信号処理部は、各ピクセル31に対応する波高分別回路を複数備えており、検出した電荷を各波高分別回路が分別することにより、X線の波長(エネルギー)に応じて、X線の強度を検出することが出来る。   FIG. 5 is a schematic diagram showing the structure of the X-ray detector 6 according to this embodiment. The X-ray detector 6 has a planar X-ray detector 30 and a signal processing unit (not shown) provided on the back surface of the planar X-ray detector 30. A plurality of regularly arranged pixels 31 are provided. When X-rays reach a semiconductor (for example, Si) provided in each pixel 31, electric charges are generated. The signal processing unit includes a plurality of pulse height classification circuits corresponding to the respective pixels 31, and each wave height classification circuit classifies the detected charges, thereby increasing the intensity of the X-rays according to the wavelength (energy) of the X-rays. Can be detected.

図1に示す通り、X線検出器6は、試料100を中心に角度移動をすることが出来る回転駆動系7の上に配置されている。試料台5の回転駆動系と、回転駆動系7により、X線検出器6は、試料100の回折像全体を検出することが可能である。   As shown in FIG. 1, the X-ray detector 6 is disposed on a rotational drive system 7 that can be moved angularly about the sample 100. The X-ray detector 6 can detect the entire diffraction image of the sample 100 by the rotation drive system of the sample stage 5 and the rotation drive system 7.

制御解析部9は、X線源2の制御及びX線回折測定の制御を行うとともに、得られた測定データの解析を行う。制御解析部9は、X線源2の回転体11を駆動させるとともに、陰極と対陰極の間に所定の電圧を印加することにより、X線源2からX線を発生させる。また、制御解析部9は、試料台5の回転駆動系及びX線検出器6が配置されている回転駆動系7の駆動制御を行い、さらにX線検出器6の検出制御を行い、X線検出器6が検出する回折像に係る情報を複数収集し、それにより複数種類の特性X線それぞれの回折像全体の測定データを取得する。その際、制御解析部9に備えられる分析部8は、多重波高分析器(Multi-Channel pulse height Analyzer:マルチチャンネル・アナライザー,MCA)であり、波高ピーク値を測定し波高ピーク値スペクトラムを生成することが出来る。X線検出器6で検出されたX線の情報を、分析部8は、X線の波長(エネルギー)に分別し、波長に応じたX線の強度の情報を出力する。さらに、制御解析部9は、分析部8の分析データに基づいて、試料100の単結晶構造のデータ解析を行うデータ処理部(図示せず)と、データ処理部の解析結果のデータを保存する解析データ保存部(図示せず)とを備えている。   The control analysis unit 9 controls the X-ray source 2 and X-ray diffraction measurement, and analyzes the obtained measurement data. The control analysis unit 9 drives the rotating body 11 of the X-ray source 2 and generates X-rays from the X-ray source 2 by applying a predetermined voltage between the cathode and the counter cathode. In addition, the control analysis unit 9 performs drive control of the rotation drive system of the sample stage 5 and the rotation drive system 7 in which the X-ray detector 6 is disposed, and further performs detection control of the X-ray detector 6 to perform X-ray detection. A plurality of pieces of information related to the diffraction images detected by the detector 6 are collected, thereby obtaining measurement data of the entire diffraction images of the plurality of types of characteristic X-rays. At that time, the analysis unit 8 provided in the control analysis unit 9 is a multi-channel pulse height analyzer (Multi-Channel pulse height Analyzer, MCA), which measures a peak height value and generates a peak height spectrum. I can do it. The analysis unit 8 classifies the X-ray information detected by the X-ray detector 6 into the X-ray wavelength (energy), and outputs the X-ray intensity information according to the wavelength. Furthermore, the control analysis unit 9 stores a data processing unit (not shown) that performs data analysis of the single crystal structure of the sample 100 based on the analysis data of the analysis unit 8 and data of the analysis result of the data processing unit. And an analysis data storage unit (not shown).

当該実施形態に係るX線回折装置1において、X線源2は、所定の領域から所定の測定時間に複数種類の特性X線を同時に含むX線を放射することが出来る。多層膜ミラー3を含む光学系4が、X線源2が放射するX線から、所望の複数種類の特性X線を選択的に反射するとともに集光して、試料100へ所望の複数種類の特性X線を入射させる。光学系4により、所望の複数種類の特性X線からなる高輝度なX線が、同時に試料100に照射されることが可能となる。1個の多層膜ミラー3が所望の複数種類の特性X線を選択して反射することが出来るので、波長に応じて分光器を変更したり、分光器が分光する波長を変更するよう湾曲反射面を変更したりする必要がない。よって、装置規模を増大させることなく、複数の波長によるX線回折測定にかかる時間を短縮することが出来る。X線が照射され試料100から回折X線が発生するが、光学系4によって高輝度なX線が試料100に照射されているので、高いS/N比を有する回折像が得られ、測定時間の短縮が実現出来る。   In the X-ray diffraction apparatus 1 according to the embodiment, the X-ray source 2 can emit X-rays including a plurality of types of characteristic X-rays simultaneously from a predetermined region at a predetermined measurement time. The optical system 4 including the multilayer mirror 3 selectively reflects and collects a desired plurality of types of characteristic X-rays from the X-rays radiated from the X-ray source 2, and collects the desired plurality of types of samples on the sample 100. A characteristic X-ray is incident. The optical system 4 makes it possible to simultaneously irradiate the sample 100 with high-intensity X-rays composed of a desired plurality of types of characteristic X-rays. Since one multilayer mirror 3 can select and reflect a desired plurality of types of characteristic X-rays, the curved reflection is performed so that the spectrometer is changed according to the wavelength or the wavelength at which the spectrometer is dispersed is changed. There is no need to change the face. Therefore, the time required for X-ray diffraction measurement using a plurality of wavelengths can be shortened without increasing the scale of the apparatus. Although X-rays are irradiated and diffracted X-rays are generated from the sample 100, since the sample 100 is irradiated with high-brightness X-rays by the optical system 4, a diffraction image having a high S / N ratio is obtained, and the measurement time Can be shortened.

試料100に複数種類の特性X線が同時に照射されているので、回折X線は、複数種類の波長それぞれの回折X線を含んでいる。しかし、X線検出器6が、波長分別型検出器であり、制御解析部9の分析部8が、測定される回折X線の情報を複数種類の波長それぞれに分別することが出来ており、同時に、複数種類の波長それぞれの回折像の情報を得ることが出来る。さらに、制御解析部9のデータ処理部が、複数種類の波長それぞれの回折像の情報より、試料のデータ解析を行うことが出来る。これにより、複数種類の波長によるX線回折測定を、別々に行う必要がなく同時に行え、さらに、データ解析を併せて行うことが出来るので、測定時間及びデータ解析時間をさらに大幅に短縮することが出来る。   Since the sample 100 is irradiated with a plurality of types of characteristic X-rays at the same time, the diffracted X-rays include diffracted X-rays of a plurality of types of wavelengths. However, the X-ray detector 6 is a wavelength separation type detector, and the analysis unit 8 of the control analysis unit 9 can separate the information of the measured diffraction X-rays into each of a plurality of types of wavelengths. At the same time, it is possible to obtain information on diffraction images of a plurality of types of wavelengths. Further, the data processing unit of the control analysis unit 9 can perform data analysis of the sample from information of diffraction images of a plurality of types of wavelengths. As a result, X-ray diffraction measurements using a plurality of types of wavelengths can be performed simultaneously without having to be performed separately, and furthermore, data analysis can be performed at the same time, so that the measurement time and data analysis time can be further greatly reduced. I can do it.

複数種類の特性X線は、X線源2のX線放射領域BSより放射され、光学系4より試料100へ入射しているので、試料100への経路は同一である。これにより、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定が出来ているので、測定時間の短縮のみならず、高い品質の測定データが得られている。特に、変質しやすい試料の短時間測定や、環境変化をさせながら行う測定(例えば、温度を変化させながら測定する場合)などに、顕著な効果を奏する。   Since a plurality of types of characteristic X-rays are emitted from the X-ray emission region BS of the X-ray source 2 and are incident on the sample 100 from the optical system 4, the paths to the sample 100 are the same. As a result, since X-ray diffraction measurement can be performed simultaneously in a common environment using a plurality of types of characteristic X-rays, not only the measurement time is shortened but also high quality measurement data is obtained. In particular, a remarkable effect can be obtained for short-time measurement of a sample that easily changes in quality or measurement performed while changing the environment (for example, when measuring while changing temperature).

従来において、異なる波長のX線回折測定を別々に行っており、この場合に、経時劣化が早い不安定な物質においては、試料を小分けにして、小分けされた試料を用いて、各波長のX線回折測定を行う必要が生じていた。その場合、あるX線回折測定を行ってから、他の波長のX線回折測定をするために、分光器などの交換に加えて、試料をセッティングする必要が生じており、準備を含めて測定時間が増大してしまっていた。さらに、分光器など光学系の測定環境が異なる上に、測定する試料も同一ではなく、測定されるデータの信頼性が低下せざるを得なかった。共通する環境下で、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定を可能とすることにより、かかる問題を解決している。特に、タンパク質のように変質しやすい試料、医薬品など温度や湿度の変化に敏感な試料、一度に作製する量が限られていたり高価な試料などを測定することに対して、本発明の効果は顕著となる。   Conventionally, X-ray diffraction measurements at different wavelengths are performed separately. In this case, in an unstable substance that is rapidly deteriorated with time, the sample is subdivided and the subdivided sample is used to measure the X of each wavelength. There was a need to perform line diffraction measurements. In that case, after performing a certain X-ray diffraction measurement, in order to perform X-ray diffraction measurement of other wavelengths, it is necessary to set the sample in addition to replacing the spectroscope, etc. Time has increased. Further, the measurement environment of the optical system such as a spectroscope is different, and the samples to be measured are not the same, and the reliability of the measured data has to be reduced. This problem is solved by enabling X-ray diffraction measurement simultaneously under a common environment using a plurality of types of characteristic X-rays under a common environment. In particular, the present invention is effective for measuring samples such as proteins that are easily altered, samples that are sensitive to changes in temperature and humidity, such as pharmaceuticals, and samples that are produced in limited amounts or are expensive. Become prominent.

さらに、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定を行うことにより、複数種類の特性X線を用いる場合の利点を併せて利用することが出来る。例えば、試料の結晶の格子間隔(d値)が大きい領域についての回折X線の情報については、波長の長い特性X線の測定データより角度分解能がよい情報が得られる。試料の結晶の格子間隔(d値)が小さい領域についての回折X線の情報は、波長の短い特性X線の測定データより得られる。   Furthermore, by performing X-ray diffraction measurement simultaneously in a common environment using a plurality of types of characteristic X-rays, the advantages of using a plurality of types of characteristic X-rays can be used together. For example, as for the information of the diffracted X-ray for the region where the lattice distance (d value) of the crystal of the sample is large, information with better angular resolution than the measurement data of the characteristic X-ray having a long wavelength is obtained. Diffraction X-ray information for a region where the lattice spacing (d value) of the sample crystal is small is obtained from characteristic X-ray measurement data having a short wavelength.

また、X線源2が放射するX線には、所望の特性X線以外の特性X線や連続X線が含まれており、これらX線も試料100に照射される場合には、これらX線からも回折X線が発生する。これらX線に、所望の特性X線の波長の近傍の波長を有するX線が含まれていると、X線検出器6が波長を分別する際に、所望の特性X線からの回折X線のみならずこのX線からの回折X線を一緒に検出してしまう場合があり得る。これを防ぐためには、X線検出器6の波長分解能(エネルギー分解能)を向上させる必要がある。しかし、当該実施形態に係るX線回折装置1では、多層膜ミラー3により、光学系4が所望の特性X線を選択して試料100へ入射させている。すなわち、所望の特性X線以外のX線は多層膜ミラー3によって除外されており、所望の特性X線以外のX線が試料100に到達するのが大幅に抑制されており、X線検出器6に高い波長分解能は必要とせず、コスト増大を低減させるとともに高品質な測定データが得られる。   In addition, the X-rays emitted from the X-ray source 2 include characteristic X-rays other than the desired characteristic X-rays and continuous X-rays. Diffracted X-rays are also generated from the line. If these X-rays include an X-ray having a wavelength in the vicinity of the wavelength of the desired characteristic X-ray, when the X-ray detector 6 classifies the wavelength, the diffracted X-ray from the desired characteristic X-ray Not only that, but also the diffracted X-rays from this X-ray may be detected together. In order to prevent this, it is necessary to improve the wavelength resolution (energy resolution) of the X-ray detector 6. However, in the X-ray diffraction apparatus 1 according to this embodiment, the optical system 4 selects a desired characteristic X-ray and makes it enter the sample 100 by the multilayer mirror 3. That is, X-rays other than the desired characteristic X-rays are excluded by the multilayer mirror 3, and X-rays other than the desired characteristic X-rays are greatly suppressed from reaching the sample 100, and the X-ray detector 6 does not require a high wavelength resolution, thereby reducing the increase in cost and obtaining high-quality measurement data.

当該実施形態に係るX線回折装置1は、例えば、タンパク質の構造解析に好適である。タンパク質のX線構造解析では、結晶構造因子の位相情報を決定するために、MAD法が用いられている。MAD法は、タンパク質中に含まれる特定原子の吸収端近傍での異常分散効果を利用して位相決定行うものであり、複数の波長のX線の回折像の測定データを使用する。   The X-ray diffraction apparatus 1 according to the embodiment is suitable for protein structural analysis, for example. In the X-ray structural analysis of proteins, the MAD method is used to determine the phase information of the crystal structure factor. The MAD method performs phase determination using an anomalous dispersion effect near the absorption edge of a specific atom contained in a protein, and uses measurement data of X-ray diffraction images of a plurality of wavelengths.

なお、1種類の金属から複数の特性X線が放射される。それゆえ、例えば、ある金属から1種類の特性X線を選択し、別の金属から2種類の特性X線を選択して、3種類の特性X線を所望の特性X線としてもよい。この場合、X線源2の回転体11にターゲットとして形成される金属の種類数より、多層膜ミラー3に形成される多層膜の種類数が大きくなる。さらに、1種類の金属から所望の複数種類の特性X線が得られる場合もある。この場合は、図2に示すように、複数の金属に電子を衝突させてX線を発生させる必要はなく、回転体11の外周表面に1種類の金属が形成されていればよい。対陰極に形成される金属が固定される(固定ターゲット)X線源でもよい。   A plurality of characteristic X-rays are emitted from one type of metal. Therefore, for example, one type of characteristic X-ray may be selected from a certain metal, two types of characteristic X-rays may be selected from another metal, and the three types of characteristic X-rays may be set as desired characteristic X-rays. In this case, the number of types of multilayer films formed on the multilayer mirror 3 is larger than the number of types of metals formed as targets on the rotating body 11 of the X-ray source 2. Furthermore, in some cases, a desired plurality of types of characteristic X-rays can be obtained from one type of metal. In this case, as shown in FIG. 2, it is not necessary to cause electrons to collide with a plurality of metals to generate X-rays, and one type of metal may be formed on the outer peripheral surface of the rotating body 11. It may be an X-ray source in which the metal formed on the counter cathode is fixed (fixed target).

[第2の実施形態]
本発明の第2の実施形態に係るX線回折装置1は、以下の点において、第1の実施形態に係るX線回折装置1と異なるが、それ以外の構成については同じである。第1の点として、X線源2の回転体11にターゲットとして形成される複数種類の金属の形状が異なっている。第2の点として、X線検出器6が、波長分別機能を有していない2次元検出器である。第3の点として、制御解析部9の分析部8は、必ずしもX線の波長に分別することが出来る多重波高分析器である必要はなく、さらに、制御解析部9は同期制御手段10を有している。
[Second Embodiment]
The X-ray diffraction apparatus 1 according to the second embodiment of the present invention is different from the X-ray diffraction apparatus 1 according to the first embodiment in the following points, but the other configurations are the same. As a first point, the shapes of a plurality of types of metals formed as targets on the rotating body 11 of the X-ray source 2 are different. As a second point, the X-ray detector 6 is a two-dimensional detector that does not have a wavelength separation function. Thirdly, the analysis unit 8 of the control analysis unit 9 does not necessarily need to be a multi-wave height analyzer that can be classified into X-ray wavelengths, and the control analysis unit 9 has a synchronization control means 10. doing.

図6は、当該実施形態に係るX線源2の構造を示す模式図である。前述の通り、回転体11の外周表面に形成される複数種類の金属の形状が異なっている。回転体11の外周表面に、電子が走査する方向に沿って、複数種類の金属が周期的に並んで配置される。ここでは、電子が走査する方向に沿って、回転体11の外周表面を、2種類の金属T1,T2が周期的に並んでおり、2種類の金属T1,T2が形成される各領域の、電子が走査する方向の長さは等しい。金属T2が形成される領域の図の横方向の幅は、X線放射領域BSの幅より長くなっている。それゆえ、回転体11の回転に伴い、電子が衝突するX線放射領域BS(所定の領域)に形成されている金属は、周期的に2種類の金属T1,T2を繰り返すこととなる。その結果、X線窓13より出射するX線S1は、金属T1から放射されるX線と、金属T2から放射されるX線とを、交互に繰り返している。金属T1をCu、金属T2をCrとして、所望の2種類の特性X線をCuKα線とCrKα線とするとき、X線源2は、CuKα線を含むX線と、CrKα線を含むX線とを、周期的に放射している。すなわち、X線源2は、所定の測定期間において所定の領域から交互にCuKα線とCrKα線を放射している。ここで、所定の測定期間とは、例えば、X線検出器6がある位置に配置されて、その位置においてX線検出器6がX線の検出を行う期間のことであり、かかる期間の間に、X線源2は複数種類の特性X線をそれぞれ放射している。当該実施形態において、かかる期間の間に、X線源2は交互にCuKα線とCrKα線をそれぞれ多数回放射しているが、かかる期間のタイムスケールで考えると、X線源2は実質的に同時にCuKα線とCrKα線を放射しているとみなすことが出来る。   FIG. 6 is a schematic diagram showing the structure of the X-ray source 2 according to the embodiment. As described above, the shapes of the plurality of types of metals formed on the outer peripheral surface of the rotating body 11 are different. A plurality of types of metals are periodically arranged on the outer peripheral surface of the rotator 11 along the direction in which electrons scan. Here, along the direction in which the electrons scan, the outer peripheral surface of the rotator 11 is periodically arranged with two types of metals T1 and T2, and in each region where the two types of metals T1 and T2 are formed, The length in the direction in which electrons are scanned is equal. The horizontal width of the region where the metal T2 is formed is longer than the width of the X-ray emission region BS. Therefore, the metal formed in the X-ray emission region BS (predetermined region) where the electrons collide with the rotation of the rotating body 11 periodically repeats two kinds of metals T1 and T2. As a result, the X-ray S1 emitted from the X-ray window 13 alternately repeats the X-ray emitted from the metal T1 and the X-ray emitted from the metal T2. When the metal T1 is Cu, the metal T2 is Cr, and two desired characteristic X-rays are CuKα ray and CrKα ray, the X-ray source 2 includes an X-ray including a CuKα ray and an X-ray including a CrKα ray. Are periodically emitted. That is, the X-ray source 2 emits CuKα rays and CrKα rays alternately from a predetermined region during a predetermined measurement period. Here, the predetermined measurement period is, for example, a period in which the X-ray detector 6 is arranged at a certain position and the X-ray detector 6 detects X-rays at the position. In addition, the X-ray source 2 emits a plurality of types of characteristic X-rays. In this embodiment, during such a period, the X-ray source 2 alternately emits CuKα rays and CrKα rays each time, but considering the time scale of such a period, the X-ray source 2 is substantially At the same time, it can be considered that CuKα rays and CrKα rays are emitted.

多層膜ミラー3は、所望の複数種類の特性X線を選択的に反射する。ここでは、CuKα線を含むX線と、CrKα線を含むX線とが、周期的に繰り返して、多層膜ミラー3へ入射する。よって、多層膜ミラー3は、CuKα線を含むX線からCuKα線を、CrKα線を含むX線からCrKα線を、周期的に繰り返して、選択的に反射し、光学系4によって、試料100へ入射される。   The multilayer mirror 3 selectively reflects desired types of characteristic X-rays. Here, X-rays including CuKα rays and X-rays including CrKα rays are periodically and repeatedly incident on the multilayer mirror 3. Therefore, the multilayer mirror 3 periodically and selectively reflects the CuKα ray from the X-ray including the CuKα ray and the CrKα ray from the X-ray including the CrKα ray to the sample 100 by the optical system 4. Incident.

図7は、当該実施形態に係る入射X線の強度を示す図である。試料100へ入射するX線の強度の時間変化を表しており、図7(a)は、金属T1の特性X線(CuKα線)を、図7(b)は、金属T2の特性X線(CrKα線)を表している。図7に示す通り、金属T1の特性X線は強度Iで、金属T2の特性X線は強度Iで、周期的に繰り返している。ここで、金属Tの特性X線が強度Iとなる期間を奇期間Todd、金属Tの特性X線が強度Iとなる期間を偶期間Tevenとすると、奇期間Toddに試料100から発生する回折X線は、金属T1の特性X線によるもの、偶期間Tevenに試料100から発生する回折X線は、金属T2の特性X線によるものとなり、奇期間Toddと偶期間Tevenとで、発生する回折X線の波長が分離出来ている。 FIG. 7 is a diagram showing the intensity of incident X-rays according to the embodiment. FIG. 7A shows the characteristic X-ray of the metal T1 (CuKα ray) and FIG. 7B shows the characteristic X-ray of the metal T2 (CuKα ray). CrKα line). As shown in FIG. 7, a characteristic X-ray intensity I 1 of the metal T1, the characteristic X-ray intensity I 2 of the metal T2, are cyclically repeated. Here, if the period in which the characteristic X-ray of the metal T 1 has the intensity I 1 is the odd period T odd , and the period in which the characteristic X-ray of the metal T 2 has the intensity I 2 is the even period T even , the odd period T odd is obtained. The diffracted X-rays generated from the sample 100 are due to the characteristic X-rays of the metal T1, and the diffracted X-rays generated from the sample 100 during the even period Teven are due to the characteristic X-rays of the metal T2, and the odd period T odd and the even period The wavelength of the generated diffracted X-rays can be separated in the period T even .

第1の実施形態においては、試料100に複数種類の特性X線が同時に照射されているので、回折X線は、複数種類の波長それぞれの回折X線を含んでおり、X線検出器6は、波長分別型検出器を用いる必要があった。しかし、当該実施形態においては、奇期間Toddと偶期間Tevenとに同期して、X線検出器6が受光するX線を分離して検出出来るよう、同期制御手段10を備えることにより、波長分別機能を有していない検出器でも、金属T1の特性X線からの回折X線と、金属T2の特性X線からの回折X線とを分離して、検出することが出来る。すなわち、同期制御手段10は、X線源2の回転体11の回転情報を入手し、該回転情報に基づいて、複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、X線検出器6の検出を制御する。 In the first embodiment, since the sample 100 is irradiated with a plurality of types of characteristic X-rays simultaneously, the diffracted X-rays include diffracted X-rays of a plurality of types of wavelengths, and the X-ray detector 6 is Therefore, it was necessary to use a wavelength separation type detector. However, in this embodiment, the synchronization control means 10 is provided so that the X-rays received by the X-ray detector 6 can be detected separately in synchronization with the odd period T odd and the even period T even . Even a detector that does not have a wavelength separation function can separate and detect the diffracted X-ray from the characteristic X-ray of the metal T1 and the diffracted X-ray from the characteristic X-ray of the metal T2. That is, the synchronization control means 10 obtains the rotation information of the rotating body 11 of the X-ray source 2, and based on the rotation information, the X-ray intensity corresponding to the X-rays radiated from each of the plurality of types of metals. The detection of the X-ray detector 6 is controlled to detect each.

図8は、当該実施形態に係る同期制御手段10を説明する模式図である。同期制御手段10は、制御解析部9に備えられる。同期制御手段10は、X線源2と接続され、X線源2から回転体11の回転情報を入手する。例えば、回転体が1秒間に100回転し、回転体11の外周表面に、金属T1が5枚、金属T2が5枚、交互に形成されているとすると、1個の奇期間Todd及び偶期間Tevenそれぞれは、1msとなる。回転情報とは、例えば、回転体11上の所定の点が、どの位置にいるかを示す情報である。かかる情報と、回転体11の外周表面の形状とを考慮して、同期制御手段10は同期信号を生成する。 FIG. 8 is a schematic diagram for explaining the synchronization control means 10 according to the embodiment. The synchronization control means 10 is provided in the control analysis unit 9. The synchronization control means 10 is connected to the X-ray source 2 and obtains rotation information of the rotating body 11 from the X-ray source 2. For example, if the rotating body rotates 100 times per second and five metal T1s and five metal T2s are alternately formed on the outer peripheral surface of the rotating body 11, one odd period Todd and even number Each period T even is 1 ms. The rotation information is information indicating where a predetermined point on the rotating body 11 is, for example. Considering such information and the shape of the outer peripheral surface of the rotating body 11, the synchronization control means 10 generates a synchronization signal.

同期制御手段10は、X線検出器6と接続される。ここで、X線検出器6は、CCD、CMOSセンサー、TFTセンサーなど、2次元検出器である。これら2次元検出器は、規則的に配列された複数のピクセルを有し、複数のピクセルそれぞれで受光するX線の強度を検出する。上述の通り、当該実施形態において、X線検出器6は波長分別機能を有する必要はなく、所定の時間(奇期間Todd、偶期間Tevenなど)に検出する情報を加算することが出来ればよい。同様に、制御解析部9の分析部8は波長分別機能を有する必要はなく、波長によらず受光するX線の強度の情報を出力出来ればよい。同期制御手段10は生成した同期信号をX線検出器6へ出力する。X線検出器6における積算時間を、1個の奇期間Todd及び偶期間Tevenより短く設定することにより、各期間に、回折X線の強度を検出することが出来るので、所望の特性X線に対応して、X線の強度をそれぞれ検出する。X線検出器6は、X線の強度の検出結果を同期制御手段10へ出力する。同期制御手段10を備える制御解析部9は、入手した検出結果を加算することにより、金属T1の特性X線からの回折像の測定データと、金属T2の特性X線からの回折像の測定データとを、得る。 The synchronization control means 10 is connected to the X-ray detector 6. Here, the X-ray detector 6 is a two-dimensional detector such as a CCD, a CMOS sensor, or a TFT sensor. These two-dimensional detectors have a plurality of regularly arranged pixels, and detect the intensity of X-rays received by each of the plurality of pixels. As described above, in the present embodiment, the X-ray detector 6 does not need to have a wavelength classification function, and can detect information to be detected at a predetermined time (odd period T odd , even period T even, etc.). Good. Similarly, the analysis unit 8 of the control analysis unit 9 does not need to have a wavelength classification function, and it is only necessary to output information on the intensity of received X-rays regardless of the wavelength. The synchronization control means 10 outputs the generated synchronization signal to the X-ray detector 6. By setting the integration time in the X-ray detector 6 to be shorter than one odd period T odd and even period T even , the intensity of diffracted X-rays can be detected in each period, so that the desired characteristic X Corresponding to the line, the X-ray intensity is detected. The X-ray detector 6 outputs an X-ray intensity detection result to the synchronization control means 10. The control analysis unit 9 including the synchronization control means 10 adds the obtained detection results, thereby measuring the diffraction image from the characteristic X-ray of the metal T1 and the measurement data of the diffraction image from the characteristic X-ray of the metal T2. And get.

なお、金属が放出するX線には、特定X線と連続X線とがある。例えば、金属T1(Cu)からのX線を、多層膜ミラー3で選択的に反射した場合、金属T1の特性X線(CuKα線)とともに、金属T1の連続X線から、金属T2の特性X線(CrKα線)の波長のX線が多層膜ミラー3で反射され、光学系4により試料100へ入射される。図7には、奇期間Toddにおいて、金属T2の特性X線に強度ΔIが、偶期間Tevenにおいて、金属T1の特性X線に強度ΔIが示されている。一般に、連続X線の強度は特性X線の強度と比べて十分に小さいので、図7に示す通り、奇期間Toddに金属T2の特性X線と同じ波長のX線が、偶期間Tevenに金属T1の特性X線と同じ波長のX線が、微小に含まれていても、回折X線の測定への影響は大きくない。金属T1(T2)の特性X線における回折像の測定データには、微小な金属T2(T1)の特性X線における回折像が微小に含まれているが、必要があれば、両方の回折像の測定データを比較して補正することにより、微小なX線強度の影響を低減させることが可能である。 Note that X-rays emitted by metal include specific X-rays and continuous X-rays. For example, when X-rays from the metal T1 (Cu) are selectively reflected by the multilayer mirror 3, the characteristic X-rays of the metal T1 from the continuous X-rays of the metal T1 together with the characteristic X-rays of the metal T1 (CuKα rays). The X-ray having the wavelength of the line (CrKα line) is reflected by the multilayer mirror 3 and is incident on the sample 100 by the optical system 4. In FIG. 7, the intensity ΔI 2 is shown in the characteristic X-ray of the metal T2 in the odd period T odd , and the intensity ΔI 1 is shown in the characteristic X-ray of the metal T1 in the even period T even . In general, the strength of the continuous X-rays is sufficiently small compared to the intensity of the characteristic X-rays, as shown in FIG. 7, the X-ray of the same wavelength as the characteristic X-ray of the metal T2 in odd period T odd is偶期between T the even Even if X-rays having the same wavelength as the characteristic X-rays of the metal T1 are included in a minute amount, the influence on the measurement of diffracted X-rays is not great. The measurement data of the diffraction image of the characteristic X-ray of the metal T1 (T2) includes a minute diffraction image of the characteristic X-ray of the metal T2 (T1), but if necessary, both diffraction images. By comparing and correcting the measured data, it is possible to reduce the influence of minute X-ray intensity.

また、図3及び図4に示す通り、多層膜ミラー3と試料100の間にフィルタ26を配置させるか、多層膜ミラー3にフィルタ層27を積層させるとよい。これらフィルタ(フィルタ層)が連続X線に起因する散乱X線を吸収することにより、例えば、奇期間Toddにおける、金属T2の特性X線に強度ΔIが、偶期間Tevenにおける、金属T1の特性X線に強度ΔIが、それぞれ低減されることとなり、これらの影響を抑制することが出来ており、さらなる効果が奏する。 Further, as shown in FIGS. 3 and 4, the filter 26 may be disposed between the multilayer mirror 3 and the sample 100, or the filter layer 27 may be laminated on the multilayer mirror 3. When these filters (filter layers) absorb scattered X-rays caused by continuous X-rays, for example, the intensity ΔI 2 of the characteristic X-rays of the metal T2 in the odd period T odd becomes the metal T1 in the even period T even . The intensity ΔI 1 of the characteristic X-rays is reduced, and these effects can be suppressed, and further effects can be obtained.

当該実施形態に係るX線回折装置1において、第1の実施形態と同様に、X線源2は、複数種類の特性X線を放射することが出来る。しかし、第1の実施形態において、所望の複数種類の特性X線が同時に、X線窓13より出射されるX線S1に含まれているのに対して、当該実施形態において、所望の複数種類の特性X線が、周期的に繰り返して、別々に、X線窓13より出射されており、所望の複数種類の特性X線を分離することが出来ている。これにより、所望の複数種類の特性X線が、高輝度なX線として、試料100へ周期的にかつ別々に照射されることが可能となる。当該実施形態に係るX線回折装置1は、同期制御手段10を備えることにより、第1の実施形態とは異なり、波長分別型検出器を用いることなく、所望の複数種類の特性X線の回折像の測定データをそれぞれ得ることが出来ている。その他、第1の実施形態の構成と同じ点については、当該実施形態においても、同様の効果が得られており、共通の環境下で同時にX線回折測定が出来ているので、測定時間の短縮のみならず、高い品質の測定データが得られている。   In the X-ray diffraction apparatus 1 according to this embodiment, the X-ray source 2 can emit a plurality of types of characteristic X-rays, as in the first embodiment. However, in the first embodiment, desired multiple types of characteristic X-rays are simultaneously included in the X-ray S1 emitted from the X-ray window 13, whereas in the present embodiment, the desired multiple types of characteristic X-rays are included. These characteristic X-rays are periodically and repeatedly emitted separately from the X-ray window 13, and a desired plurality of types of characteristic X-rays can be separated. This makes it possible to irradiate the sample 100 periodically and separately with a plurality of desired types of characteristic X-rays as high-intensity X-rays. Unlike the first embodiment, the X-ray diffractometer 1 according to this embodiment includes the synchronization control means 10 and diffracts a desired plurality of types of characteristic X-rays without using a wavelength discrimination detector. Image measurement data can be obtained respectively. In addition, with respect to the same points as the configuration of the first embodiment, the same effect is obtained also in the embodiment, and the X-ray diffraction measurement can be performed simultaneously in a common environment, so that the measurement time is shortened. Not only that, high-quality measurement data is obtained.

[その他の実施形態]
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はそれらに限定されることはないのは言うまでもない。
[Other Embodiments]
Although the present invention has been described with reference to the preferred embodiments, it is needless to say that the present invention is not limited thereto.

図9は、本発明の実施形態に係るX線源の他の例の構造を示す模式図である。図9(a)には、回転体11の外周表面に、原子番号が異なる複数種類の金属の合金T3が形成されている。これにより、X線窓13より出射されるX線S1は、複数種類の特性X線を含んでおり、図2に示すX線源2と同様に、複数種類の特性X線を同時に放出している。図9(b)に示すX線源の対陰極は回転体ではなく、固定対陰極15であり、固定対陰極15の表面には、原子番号が異なる複数種類の金属の合金T3が形成されている。これにより、X線源が放射するX線は、複数種類の特性X線を含んでおり、図2に示すX線源2と同様に、複数種類の特性X線を同時に放出している。   FIG. 9 is a schematic diagram showing the structure of another example of the X-ray source according to the embodiment of the present invention. In FIG. 9A, a plurality of types of metal alloys T3 having different atomic numbers are formed on the outer peripheral surface of the rotating body 11. As a result, the X-ray S1 emitted from the X-ray window 13 includes a plurality of types of characteristic X-rays, and simultaneously emits a plurality of types of characteristic X-rays, similar to the X-ray source 2 shown in FIG. Yes. The counter-cathode of the X-ray source shown in FIG. 9B is not a rotating body but a fixed counter-cathode 15, and a plurality of types of metal alloys T3 having different atomic numbers are formed on the surface of the fixed counter-cathode 15. Yes. Thus, the X-rays emitted from the X-ray source include a plurality of types of characteristic X-rays, and a plurality of types of characteristic X-rays are simultaneously emitted in the same manner as the X-ray source 2 shown in FIG.

図9に示すX線源は、同時に所望の複数種類の特性X線を放出している。よって、第1の実施形態に係るX線回折装置1のX線源2をこれらX線源に変更し、他の構成は同じであるとしても、本発明の効果は得られている。すなわち、X線検出器6を波長分別型検出器とすることにより、共通する環境下で、複数種類の特性X線によるX線回折測定が可能である。   The X-ray source shown in FIG. 9 emits a desired plurality of types of characteristic X-rays simultaneously. Therefore, even if the X-ray source 2 of the X-ray diffraction apparatus 1 according to the first embodiment is changed to these X-ray sources and the other configurations are the same, the effects of the present invention are obtained. That is, by making the X-ray detector 6 a wavelength classification type detector, X-ray diffraction measurement using a plurality of types of characteristic X-rays is possible in a common environment.

本発明の実施形態に係るX線検出器6は、規則的に配列された複数のピクセルを有する2次元検出器としたが、1列に並ぶピクセルを有する1次元検出器であってもよい。測定時間低減の観点からは2次元検出器が望ましいが、測定の目的に応じて、選択すればよい。   The X-ray detector 6 according to the embodiment of the present invention is a two-dimensional detector having a plurality of regularly arranged pixels, but may be a one-dimensional detector having pixels arranged in one column. Although a two-dimensional detector is desirable from the viewpoint of reducing measurement time, it may be selected according to the purpose of measurement.

1 X線回折装置、2 X線源、3 多層膜ミラー、4 光学系、5 試料台、6 X線検出器、7 回転駆動系、8 分析部、9 制御解析部、10 同期制御手段、11 回転体、12 フィラメント、13 X線窓、15 固定対陰極、21 基板、22 多重構造多層膜、23 重元素層、24 軽元素層、30 平面状X線検出部、31 ピクセル、100 試料、BS X線放射領域、L1,L2 多層膜、P1,P2 焦点、S1 X線、T1,T2,金属、T3 合金、Teven 偶期間、Todd 奇期間。 DESCRIPTION OF SYMBOLS 1 X-ray diffraction apparatus, 2 X-ray source, 3 Multilayer mirror, 4 Optical system, 5 Sample stand, 6 X-ray detector, 7 Rotation drive system, 8 Analysis part, 9 Control analysis part, 10 Synchronous control means, 11 Rotating body, 12 Filament, 13 X-ray window, 15 Fixed anti-cathode, 21 Substrate, 22 Multi-layered multilayer film, 23 Heavy element layer, 24 Light element layer, 30 Planar X-ray detector, 31 pixels, 100 sample, BS X-ray emission region, L1, L2 multilayer film, P1, P2 focal point, S1 X-ray, T1, T2, metal, T3 alloy, T even even period, T odd odd period.

Claims (14)

所定の領域から所定の測定期間に複数種類の特性X線をそれぞれ放射する、X線源と、
前記X線源が前記所定の領域から放射するX線から前記複数種類の特性X線を選択的に反射する多層膜ミラーを含むとともに該多層膜ミラーが反射するX線を試料へ入射させる、光学系と、
前記試料より発生する回折X線を検出する、X線検出器と、
を備える、X線回折装置であって、
前記多層膜ミラーは、前記複数種類の特性X線にそれぞれ対応する複数種類の多層膜を備え、
前記複数種類の多層膜は順に積層されて湾曲反射面を構成し、前記各多層膜は対応する特性X線を選択的に反射する格子面間隔を有し、かつ、前記湾曲反射面の入射面との交線に沿って該格子面間隔が傾斜している、
ことを特徴とする、X線回折装置。
An X-ray source that emits a plurality of types of characteristic X-rays in a predetermined measurement period from a predetermined region;
An optical system that includes a multilayer mirror that selectively reflects the plurality of types of characteristic X-rays from the X-rays emitted from the predetermined region by the X-ray source, and that causes the X-rays reflected by the multilayer mirror to enter the sample; The system,
An X-ray detector for detecting diffracted X-rays generated from the sample;
An X-ray diffraction apparatus comprising:
The multilayer mirror includes a plurality of types of multilayer films respectively corresponding to the plurality of types of characteristic X-rays,
The plurality of types of multilayer films are sequentially laminated to form a curved reflection surface, each multilayer film has a lattice plane interval that selectively reflects a corresponding characteristic X-ray, and the incident surface of the curved reflection surface The lattice spacing is inclined along the line of intersection with
An X-ray diffractometer characterized by that.
前記湾曲反射面の入射面との交線は楕円曲線である、
ことを特徴とする、請求項1に記載のX線回折装置。
The line of intersection of the curved reflecting surface with the incident surface is an elliptic curve,
The X-ray diffraction apparatus according to claim 1, wherein:
前記湾曲反射面の入射面との交線は楕円曲線であり、前記湾曲反射面の一方の焦点に前記X線の前記所定の領域が配置され、前記湾曲反射面の他方の焦点に前記試料が配置される、
ことを特徴とする、請求項1に記載のX線回折装置。
The line of intersection of the curved reflecting surface with the incident surface is an elliptic curve, the predetermined region of the X-ray is disposed at one focal point of the curved reflecting surface, and the sample is disposed at the other focal point of the curved reflecting surface. Arranged,
The X-ray diffraction apparatus according to claim 1, wherein:
前記湾曲反射面の入射面との交線は放物線である、
ことを特徴とする、請求項1に記載のX線回折装置。
The line of intersection with the incident surface of the curved reflecting surface is a parabola,
The X-ray diffraction apparatus according to claim 1, wherein:
前記湾曲反射面の入射面との交線は放物線であり、前記湾曲反射面の焦点に前記X線の前記所定の領域が配置される、
ことを特徴とする、請求項1に記載のX線回折装置。
The line of intersection of the curved reflecting surface with the incident surface is a parabola, and the predetermined region of the X-ray is disposed at the focal point of the curved reflecting surface.
The X-ray diffraction apparatus according to claim 1, wherein:
前記複数種類の多層膜は、選択的に反射する特性X線の波長の短い方から順に、積層される、
ことを特徴とする、請求項1に記載のX線回折装置。
The plurality of types of multilayer films are stacked in order from the shorter wavelength of the characteristic X-ray that selectively reflects,
The X-ray diffraction apparatus according to claim 1, wherein:
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
電子が走査する方向と垂直に原子番号が異なる複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って前記外周表面に連続して配置される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
The X-ray source has an anti-cathode rotating body with which electrons collide with the outer peripheral surface,
A plurality of types of metals having different atomic numbers are arranged in order perpendicular to the direction in which the electrons are scanned, and are continuously arranged on the outer peripheral surface along the direction in which the electrons are scanned.
The X-ray diffraction apparatus according to claim 1, wherein
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
前記外周表面に、電子が走査する方向に沿って、原子番号が異なる複数種類の金属が周期的に並んで配置される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
The X-ray source has an anti-cathode rotating body with which electrons collide with the outer peripheral surface,
A plurality of types of metals having different atomic numbers are periodically arranged on the outer peripheral surface along the direction in which electrons scan.
The X-ray diffraction apparatus according to claim 1, wherein
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
前記外周表面に、原子番号が異なる複数種類の金属の合金が形成される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
The X-ray source has an anti-cathode rotating body with which electrons collide with the outer peripheral surface,
A plurality of types of metal alloys having different atomic numbers are formed on the outer peripheral surface,
The X-ray diffraction apparatus according to claim 1, wherein
前記X線検出器は、前記複数種類の特性X線の波長それぞれに対応して、受光するX線の強度を検出する、波長分別型検出器である、
ことを特徴とする、請求項1乃至9のいずれかに記載のX線回折装置。
The X-ray detector is a wavelength classification type detector that detects the intensity of received X-rays corresponding to the wavelengths of the plurality of types of characteristic X-rays.
The X-ray diffraction apparatus according to claim 1, wherein the X-ray diffraction apparatus is characterized in that
前記X線検出器が検出するX線の情報を、X線の波長に分別し、波長に応じたX線の強度の情報を出力する、分析部と、
前記分析部が出力する前記X線の強度の情報に基づいて、データ解析を行うデータ処理部と、
前記データ処理部の解析結果のデータを保存する解析データ保存部と、
をさらに備える、請求項10に記載のX線回折装置。
Analyzing the X-ray information detected by the X-ray detector into an X-ray wavelength, and outputting X-ray intensity information corresponding to the wavelength;
A data processing unit that performs data analysis based on the X-ray intensity information output by the analysis unit;
An analysis data storage unit for storing data of analysis results of the data processing unit;
The X-ray diffraction apparatus according to claim 10, further comprising:
前記対陰極回転体の回転情報を入手し、該回転情報に基づいて、前記複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、前記X線検出器の検出を制御する、同期制御手段を、さらに備える、
ことを特徴とする、請求項8に記載のX線回折装置。
The X-ray detector is configured to obtain rotation information of the counter-cathode rotating body and detect X-ray intensities corresponding to X-rays radiated from the plurality of types of metals based on the rotation information. Synchronization control means for controlling the detection of
The X-ray diffraction apparatus according to claim 8, wherein:
前記多層膜ミラーと前記試料との間に配置され、連続X線に起因する散乱X線を吸収する、フィルタを、
さらに備える、請求項12に記載のX線回折装置。
A filter that is disposed between the multilayer mirror and the sample and absorbs scattered X-rays caused by continuous X-rays;
The X-ray diffraction apparatus according to claim 12, further comprising:
前記多層膜ミラーは、
前記複数種類の多層膜の間の少なくとも1つに、連続X線に起因する散乱X線を吸収する、フィルタ層を含む、
ことを特徴とする、請求項12に記載のX線回折装置。
The multilayer mirror is
A filter layer that absorbs scattered X-rays caused by continuous X-rays is included in at least one of the plurality of types of multilayer films;
The X-ray diffraction apparatus according to claim 12, wherein:
JP2012008400A 2012-01-18 2012-01-18 X-ray diffraction device Pending JP2015078835A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012008400A JP2015078835A (en) 2012-01-18 2012-01-18 X-ray diffraction device
PCT/JP2013/050937 WO2013108876A1 (en) 2012-01-18 2013-01-18 X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008400A JP2015078835A (en) 2012-01-18 2012-01-18 X-ray diffraction device

Publications (1)

Publication Number Publication Date
JP2015078835A true JP2015078835A (en) 2015-04-23

Family

ID=48799297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008400A Pending JP2015078835A (en) 2012-01-18 2012-01-18 X-ray diffraction device

Country Status (2)

Country Link
JP (1) JP2015078835A (en)
WO (1) WO2013108876A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180259464A1 (en) * 2017-03-09 2018-09-13 Malvern Panalytical B.V. High resolution X-ray Diffraction Method and Apparatus
CN111077172A (en) * 2019-12-16 2020-04-28 东莞材料基因高等理工研究院 X-ray CT imaging device
JP2020526929A (en) * 2017-07-11 2020-08-31 ケーエルエー コーポレイション Methods and systems for semiconductor measurement based on pleochroic soft X-ray diffraction
US11210366B2 (en) 2017-07-14 2021-12-28 Malvern Panalytical B.V. Analysis of X-ray spectra using fitting
WO2023203856A1 (en) * 2022-04-22 2023-10-26 株式会社リガク Semiconductor inspecting device, semiconductor inspecting system, and semiconductor inspecting method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025211B2 (en) * 2013-11-28 2016-11-16 株式会社リガク X-ray topography equipment
JP6322172B2 (en) * 2015-09-11 2018-05-09 株式会社リガク X-ray small angle optical system
CN111380880B (en) 2018-12-28 2023-04-07 中国兵器工业第五九研究所 Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135722A (en) * 1991-11-08 1993-06-01 Rigaku Corp Wavelength selection type x-ray generator
JPH06215710A (en) * 1993-01-19 1994-08-05 Rigaku Corp X-ray generator for generating x-ray of heterogeneous wavelength
JPH06273357A (en) * 1993-03-17 1994-09-30 Toshiba Corp Crystal defect evaluation equipment
JP2003255089A (en) * 2002-03-05 2003-09-10 Rigaku Industrial Co X-ray spectroscopy element and fluorescent x-ray analyzer
JP4019029B2 (en) * 2002-09-03 2007-12-05 株式会社リガク Parallel X-ray beam extraction method and apparatus, and X-ray diffraction apparatus
JP4994722B2 (en) * 2006-07-07 2012-08-08 株式会社リガク Measurement result display method of ultra-small angle X-ray scattering measurement and orientation degree analysis method based on ultra-small angle X-ray scattering measurement
US7978820B2 (en) * 2009-10-22 2011-07-12 Panalytical B.V. X-ray diffraction and fluorescence

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180259464A1 (en) * 2017-03-09 2018-09-13 Malvern Panalytical B.V. High resolution X-ray Diffraction Method and Apparatus
CN108572184A (en) * 2017-03-09 2018-09-25 马尔文帕纳科公司 High-resolution X-ray diffraction method and device
JP2018173403A (en) * 2017-03-09 2018-11-08 マルバーン パナリティカル ビー ヴィ High resolution x-ray diffraction method and apparatus
US10753890B2 (en) 2017-03-09 2020-08-25 Malvern Panalytical B.V. High resolution X-ray diffraction method and apparatus
CN108572184B (en) * 2017-03-09 2022-02-11 马尔文帕纳科公司 High resolution X-ray diffraction method and apparatus
JP2020526929A (en) * 2017-07-11 2020-08-31 ケーエルエー コーポレイション Methods and systems for semiconductor measurement based on pleochroic soft X-ray diffraction
JP7181274B2 (en) 2017-07-11 2022-11-30 ケーエルエー コーポレイション Method and system for semiconductor metrology based on polychromatic soft x-ray diffraction
US11210366B2 (en) 2017-07-14 2021-12-28 Malvern Panalytical B.V. Analysis of X-ray spectra using fitting
CN111077172A (en) * 2019-12-16 2020-04-28 东莞材料基因高等理工研究院 X-ray CT imaging device
WO2023203856A1 (en) * 2022-04-22 2023-10-26 株式会社リガク Semiconductor inspecting device, semiconductor inspecting system, and semiconductor inspecting method

Also Published As

Publication number Publication date
WO2013108876A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP2015078835A (en) X-ray diffraction device
US10295486B2 (en) Detector for X-rays with high spatial and high spectral resolution
US10416099B2 (en) Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US9383324B2 (en) Laboratory X-ray micro-tomography system with crystallographic grain orientation mapping capabilities
JP5838114B2 (en) X-ray topography equipment
JP4278108B2 (en) Ultra-small angle X-ray scattering measurement device
EP2772752B1 (en) X-ray spectrometry detector device
US20150357069A1 (en) High brightness x-ray absorption spectroscopy system
WO2015187219A1 (en) X-ray absorption measurement system
US9417341B2 (en) Device and method for determining the energetic composition of electromagnetic waves
JP5116014B2 (en) Small-angle wide-angle X-ray measurement system
JP2017523386A (en) X-ray absorption measurement system
JP2004184314A (en) X-ray fluorescence analytical device
CN108572184B (en) High resolution X-ray diffraction method and apparatus
US7860217B2 (en) X-ray diffraction measuring apparatus having debye-scherrer optical system therein, and an X-ray diffraction measuring method for the same
EP3602020B1 (en) Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
WO2006095467A1 (en) X-ray diffraction analyzing method and analyzer
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
JP2014211367A (en) Fluorescent x-ray analyzer
JPH08220027A (en) X-ray fluorescence analyzer
US7209542B2 (en) Simultaneous measurement of the reflectivity of X-ray with different orders of reflections and apparatus for measurement thereof
JP2015184092A (en) X-ray analyzer
JP3968452B2 (en) X-ray analyzer
WO2022118585A1 (en) Total internal reflection fluorescent x-ray analyzer
WO2006095468A1 (en) X-ray diffraction analyzer and analyzing method