JP2015076278A - Device for producing slurry for electrode - Google Patents

Device for producing slurry for electrode Download PDF

Info

Publication number
JP2015076278A
JP2015076278A JP2013211930A JP2013211930A JP2015076278A JP 2015076278 A JP2015076278 A JP 2015076278A JP 2013211930 A JP2013211930 A JP 2013211930A JP 2013211930 A JP2013211930 A JP 2013211930A JP 2015076278 A JP2015076278 A JP 2015076278A
Authority
JP
Japan
Prior art keywords
viscosity
slurry
powder material
electrode
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211930A
Other languages
Japanese (ja)
Other versions
JP6119547B2 (en
Inventor
庄太 嵯峨
Shota Saga
庄太 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013211930A priority Critical patent/JP6119547B2/en
Publication of JP2015076278A publication Critical patent/JP2015076278A/en
Application granted granted Critical
Publication of JP6119547B2 publication Critical patent/JP6119547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing a slurry for an electrode, capable of easily adjusting a viscosity of a slurry for an electrode to a target value.SOLUTION: A production device 1 is a device for producing a slurry for an electrode, which produces a slurry for an electrode using a solvent and a raw material including a powder material and a paste material. The production device 1 includes: an input reception part 11 for receiving at least one of inputs of a density of the powder material for each lot of the powder material, a DBP oil absorption amount of the powder material for each lot of the powder material, and a viscosity of the paste material for each lot of the paste material; a calculation part 13 preliminary holding a target value of a viscosity of the slurry for an electrode, and calculating a dilution amount of the raw material by the solvent for adjusting a viscosity of the slurry for an electrode to a target value according to at least one of a density of the powder material, a DBP oil absorption amount of the powder material, and a viscosity of the paste material, the inputs of which have been received by the input reception part 11; and a dilution part 20 preparing the slurry for an electrode by diluting the raw material with the solvent at the dilution amount calculated by the calculation part 13.

Description

本発明は、電極用スラリーの製造装置に関する。   The present invention relates to an electrode slurry manufacturing apparatus.

従来、蓄電装置の電極を製造する技術として、例えば、粉体状のリチウム遷移金属複合酸化物と、バインダと、導電助剤と、を溶媒で希釈してスラリーを調製し、このスラリーを金属上に塗布・乾燥することにより、二次電池の正極を製造する技術が知られている(例えば、特許文献1参照)。特許文献1に記載の技術では、遷移金属化合物等を噴霧乾燥した後に、リチウム化合物を添加混合し、混合物を焼成し、その後解砕及び分級して、粉体状のリチウム遷移金属複合酸化物を製造する。   Conventionally, as a technique for manufacturing an electrode of a power storage device, for example, a powdery lithium transition metal composite oxide, a binder, and a conductive additive are diluted with a solvent to prepare a slurry, and the slurry is coated on a metal. A technique for producing a positive electrode of a secondary battery by applying and drying the film on the substrate is known (for example, see Patent Document 1). In the technique described in Patent Document 1, after spray-drying a transition metal compound or the like, a lithium compound is added and mixed, the mixture is fired, and then pulverized and classified to obtain a powdered lithium transition metal composite oxide. To manufacture.

特開2007−5238号公報JP 2007-5238 A

ところで、リチウム遷移金属複合酸化物等の粉体材料の各種物性値には、ロット毎のばらつきがある。したがって、粉体材料と、バインダ等のペースト材料とを混合し、溶媒で希釈することにより調製されるスラリーの粘度にも、粉体材料の物性値のばらつきに起因するばらつきが生じる場合があった。スラリーの粘度にばらつきが生じると、このスラリーを用いて得られる蓄電装置の品質にもばらつきが生じるおそれがある。調製されたスラリーの粘度を実測して、実測された粘度に基づいて希釈量を調節することによってスラリーの粘度を微調整することも可能ではあるが、この場合には人件費及び加工時間が増加するという問題がある。   By the way, various physical property values of powder materials such as lithium transition metal composite oxides vary from lot to lot. Therefore, the viscosity of the slurry prepared by mixing the powder material and a paste material such as a binder and diluting with a solvent may also vary due to variations in the physical properties of the powder material. . When the viscosity of the slurry varies, the quality of the power storage device obtained using the slurry may also vary. Although it is possible to finely adjust the viscosity of the slurry by actually measuring the viscosity of the prepared slurry and adjusting the dilution amount based on the measured viscosity, this increases labor costs and processing time. There is a problem of doing.

本発明は、上記課題の解決のためになされたものであり、電極用スラリーの粘度を簡便に目標値に合わせることができる電極用スラリーの製造装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus for producing an electrode slurry that can easily adjust the viscosity of the electrode slurry to a target value.

上記課題の解決のため、本発明の電極用スラリーの製造装置は、粉体材料及びペースト材料を含む原材料並びに溶媒を用いて電極用スラリーを製造する、電極用スラリーの製造装置であって、粉体材料のロット毎の粉体材料の密度、DBP(ジブチルフタレート)吸油量及びペースト材料のロット毎のペースト材料の粘度の少なくともいずれか一の入力を受け付ける入力受付部と、電極用スラリーの粘度の目標値を予め保持し、入力受付部により入力が受け付けられた粉体材料の密度、DBP吸油量及びペースト材料の粘度の少なくともいずれか一に基づいて、電極用スラリーの粘度を目標値とするための溶媒による原材料の希釈量を算出する算出部と、算出部により算出された希釈量の溶媒で原材料を希釈することにより電極用スラリーを調製する調製部と、を備える。   In order to solve the above-mentioned problems, an electrode slurry manufacturing apparatus according to the present invention is an electrode slurry manufacturing apparatus that manufactures an electrode slurry using a raw material including a powder material and a paste material and a solvent. An input receiving unit for receiving at least one of the density of the powder material for each lot of the body material, the DBP (dibutyl phthalate) oil absorption amount, and the viscosity of the paste material for each lot of the paste material; and the viscosity of the slurry for the electrode To hold the target value in advance and set the viscosity of the electrode slurry to the target value based on at least one of the density of the powder material, the DBP oil absorption amount, and the viscosity of the paste material that has been input by the input receiving unit. A calculation unit that calculates the dilution amount of the raw material with the solvent of the electrode, and the electrode slurry by diluting the raw material with the solvent of the dilution amount calculated by the calculation unit Comprising a Seisuru preparation unit.

本発明によれば、ロット毎の粉体材料の密度、DBP吸油量及びロット毎のペースト材料の粘度の少なくともいずれか一に基づいて、電極用スラリーの粘度を目標値とするための希釈量が算出部により算出され、この希釈量の溶媒で原材料が希釈されて電極用スラリーが調製される。したがって、ロット毎の粉体材料の密度、DBP吸油量及びロット毎のペースト材料の粘度がばらついたとしても、調製される電極用スラリーの粘度を常に目標値に合わせることが可能になる。希釈量の算出は、算出部により自動的に実行されるので、調製されたスラリーの粘度を実測する必要がなくなり、スラリーの粘度を簡便に微調整することができる。   According to the present invention, based on at least one of the density of the powder material for each lot, the DBP oil absorption amount, and the viscosity of the paste material for each lot, the dilution amount for setting the viscosity of the electrode slurry to the target value is Calculated by the calculation unit, the raw material is diluted with the diluted amount of the solvent to prepare an electrode slurry. Therefore, even if the density of the powder material for each lot, the DBP oil absorption amount, and the viscosity of the paste material for each lot vary, it is possible to always adjust the viscosity of the prepared electrode slurry to the target value. Since the calculation of the dilution amount is automatically executed by the calculation unit, it is not necessary to actually measure the viscosity of the prepared slurry, and the viscosity of the slurry can be easily finely adjusted.

入力受付部は、粉体材料のロット毎の粉体材料の密度、DBP吸油量及びペースト材料のロット毎のペースト材料の粘度の少なくともいずれか一を表す情報コードを読み取る読取部を備えていることが好ましい。この場合、入力受付部への情報の入力がより簡便なものとなり、利便性を向上できる。   The input receiving unit includes a reading unit that reads an information code representing at least one of the density of the powder material for each lot of the powder material, the DBP oil absorption, and the viscosity of the paste material for each lot of the paste material. Is preferred. In this case, the input of information to the input receiving unit becomes simpler and the convenience can be improved.

入力受付部が受け付ける粉体材料の密度がタップ密度であることが好ましい。タップ密度は、スラリーの粘度に特に強く影響するパラメータである。したがって、粉体材料の密度としてタップ密度を用いることにより、調製される電極用スラリーの粘度をより精度良く目標値に合わせることができる。   It is preferable that the density of the powder material received by the input receiving unit is a tap density. The tap density is a parameter that particularly strongly affects the viscosity of the slurry. Therefore, by using the tap density as the density of the powder material, the viscosity of the prepared electrode slurry can be adjusted to the target value with higher accuracy.

本発明によれば、電極用スラリーの粘度を簡便に目標値に合わせることができる。   According to the present invention, the viscosity of the electrode slurry can be easily adjusted to the target value.

製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a manufacturing apparatus. 粉体材料のタップ密度と所定の固形分率の電極用スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the tap density of powder material, and the viscosity of the slurry for electrodes of a predetermined solid content rate. ペースト材料の粘度と所定の固形分率の電極用スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of paste material, and the viscosity of the slurry for electrodes of a predetermined | prescribed solid content rate. 所定の固形分率の電極用スラリーの粘度と完成時の電極用スラリーの固形分率との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of the slurry for electrodes of a predetermined | prescribed solid content rate, and the solid content rate of the slurry for electrodes at the time of completion. 活物質の吸油量と所定の固形分率の電極用スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the oil absorption amount of an active material, and the viscosity of the slurry for electrodes of a predetermined solid content rate. ペースト材料の粘度と所定の固形分率の電極用スラリーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of paste material, and the viscosity of the slurry for electrodes of a predetermined | prescribed solid content rate. 所定の固形分率の電極用スラリーの粘度と完成時の電極用スラリーの固形分率との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of the slurry for electrodes of a predetermined | prescribed solid content rate, and the solid content rate of the slurry for electrodes at the time of completion. 粉体材料の密度の実測工程を示す模式図である。It is a schematic diagram which shows the measurement process of the density of powder material.

以下、図面を参照しながら、本発明に係る電極用スラリーの製造装置の好適な実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of an electrode slurry manufacturing apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る電極用スラリーSLの製造装置1の構成を示す模式図である。同図に示される製造装置1は、粉体材料P及びペースト材料Bを含む原材料並びに溶媒Sを用いて電極用スラリーSLを製造する装置である。製造装置1により製造される電極用スラリーSLは、例えばアルミニウムや銅などの金属箔の表面に塗工されることにより、二次電池等の蓄電装置の電極を製造するために用いられる。   FIG. 1 is a schematic diagram illustrating a configuration of an apparatus 1 for producing an electrode slurry SL according to an embodiment of the present invention. The manufacturing apparatus 1 shown in the figure is an apparatus for manufacturing an electrode slurry SL using a raw material including a powder material P and a paste material B and a solvent S. The electrode slurry SL manufactured by the manufacturing apparatus 1 is used to manufacture an electrode of a power storage device such as a secondary battery by being coated on the surface of a metal foil such as aluminum or copper.

粉体材料Pは、例えば活物質である。活物質は、正極活物質及び負極活物質のいずれであってもよい。粉体材料Pには、例えばカーボンブラック、アセチレンブラック等の導電助剤が含まれていてもよい。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物は、マンガン、ニッケル、コバルト、鉄及びアルミニウムの少なくとも1つとリチウムとを含む。   The powder material P is, for example, an active material. The active material may be either a positive electrode active material or a negative electrode active material. The powder material P may contain a conductive additive such as carbon black and acetylene black. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes at least one of manganese, nickel, cobalt, iron, and aluminum and lithium.

負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、Si、SiOxのようなシリコン系材料、Sn、SnOxのようなスズ系材料、ホウ素添加炭素等が挙げられる。   Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, silicon-based materials such as Si and SiOx, Sn , Sn-based materials such as SnOx, boron-added carbon and the like.

ペースト材料Bは、例えばバインダである。バインダとしては、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、SBR(スチレン・ブタジエンゴム)、NBR(ニトリル・ブタジエンゴム)、CMC(カルボキシメチルセルロース)、ポリアクリル酸、ポリアミドイミド、ポリイミド等が挙げられる。溶媒Sは、例えばNMP(N−メチルピロリドン)、メタノール、メチルイソブチルケトン等の有機溶剤であってもよく、水であってもよい。   The paste material B is, for example, a binder. Examples of the binder include PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), SBR (styrene / butadiene rubber), NBR (nitrile / butadiene rubber), CMC (carboxymethylcellulose), polyacrylic acid, polyamideimide, and polyimide. Etc. The solvent S may be an organic solvent such as NMP (N-methylpyrrolidone), methanol, methyl isobutyl ketone, or water.

図1に示される製造装置1は、原材料の密度、DBP吸油量及び粘度の少なくともいずれか一の入力を受け付ける入力受付部11と、入力受付部により入力が受け付けられた情報に基づいて原材料の希釈量を算出する算出部13と、算出部13により算出された希釈量の溶媒Sで原材料を希釈する希釈部20と、を備えている。   The manufacturing apparatus 1 illustrated in FIG. 1 includes an input receiving unit 11 that receives at least one input of density of raw materials, DBP oil absorption, and viscosity, and dilution of raw materials based on information received by the input receiving unit. The calculation part 13 which calculates quantity, and the dilution part 20 which dilutes a raw material with the solvent S of the dilution amount calculated by the calculation part 13 are provided.

入力受付部11は、ロット毎の粉体材料Pの密度、DBP吸油量及びロット毎のペースト材料Bの粘度の少なくともいずれか一の入力を受け付ける部分である。入力受付部11は、例えば、ロット毎の粉体材料Pの密度、DBP吸油量及びロット毎のペースト材料Bの粘度の少なくともいずれか一を表す情報コードCを読み取る読取部12を備えている。読取部12は、例えば、画像情報を取得するためのスキャナやカメラ等の画像取得部、及び取得された画像情報をデコードして、情報コードCに含まれる粉体材料Pの密度、DBP吸油量又はペースト材料Bの粘度を読み出す情報読出部等によって構成されている。情報コードCとしては、例えばQRコード(登録商標)やバーコードが用いられ得る。情報コードCは、例えば、粉体材料P又はペースト材料Bのロット毎の納入仕様書DS等に印刷されている。   The input receiving unit 11 is a part that receives at least one of the density of the powder material P for each lot, the DBP oil absorption amount, and the viscosity of the paste material B for each lot. The input receiving unit 11 includes, for example, a reading unit 12 that reads an information code C that represents at least one of the density of the powder material P for each lot, the DBP oil absorption amount, and the viscosity of the paste material B for each lot. For example, the reading unit 12 decodes the acquired image information, such as a scanner or a camera for acquiring image information, and the density of the powder material P included in the information code C, the DBP oil absorption amount. Or it is comprised by the information read-out part etc. which read the viscosity of the paste material B, etc. As the information code C, for example, a QR code (registered trademark) or a barcode can be used. The information code C is printed on, for example, a delivery specification DS for each lot of the powder material P or the paste material B.

入力受付部11が受け付ける粉体材料Pの密度は、例えばタップ密度である。タップ密度を測定する際のタップの回数は、特に限定されないが、例えば250回である。また、粉体材料Pの密度として、粉体材料Pを容器に入れた後にタップを行わない状態で体積を測定して得られるかさ密度を用いてもよい。この他、粉体材料Pの密度として、粉体材料Pが不溶性を示す液体の中に粉体材料Pを投入し、液体の液面の上昇に基づいて粉体材料Pの体積を算出し、液体中に投入された粉体材料Pの質量を上記算出された体積で除算して得られる密度を用いてもよい。   The density of the powder material P received by the input receiving unit 11 is, for example, a tap density. The number of taps when measuring the tap density is not particularly limited, but is, for example, 250 times. Further, as the density of the powder material P, a bulk density obtained by measuring the volume without tapping after the powder material P is put in the container may be used. In addition, as the density of the powder material P, the powder material P is put into a liquid in which the powder material P is insoluble, and the volume of the powder material P is calculated based on the rise of the liquid level of the liquid. You may use the density obtained by dividing the mass of the powder material P thrown into the liquid by the calculated volume.

算出部13は、溶媒Sによる原材料の希釈量を算出する部分である。算出部13は、電極用スラリーSLの粘度の目標値を不図示のメモリ等の記憶部に予め保持している。そして、算出部13は、入力受付部11により入力が受け付けられた粉体材料Pの密度、DBP吸油量及びペースト材料Bの粘度の少なくともいずれか一に基づいて、希釈量を算出する。算出部13は、物理的には、例えばマイクロプロセッサ及びメモリ等によって構成することができる。希釈量の具体的な算出方法は後述する。   The calculation unit 13 is a part that calculates the dilution amount of the raw material by the solvent S. The calculation unit 13 holds in advance a target value of the viscosity of the electrode slurry SL in a storage unit such as a memory (not shown). Then, the calculation unit 13 calculates the dilution amount based on at least one of the density of the powder material P, the DBP oil absorption amount, and the viscosity of the paste material B that are input by the input reception unit 11. The calculation unit 13 can be physically configured by, for example, a microprocessor and a memory. A specific method for calculating the dilution amount will be described later.

希釈部20は、算出部13により算出された希釈量の溶媒Sで原材料を希釈することにより電極用スラリーSLを調製する部分である。希釈部20は、例えば溶媒貯留槽21、粉体材料貯留槽22、ペースト材料貯留槽23、混合槽24、弁25A〜25C及び制御部27を備えている。溶媒貯留槽21は、溶媒Sを貯留する容器である。粉体材料貯留槽22は、粉体材料Pを貯留する容器である。ペースト材料貯留槽23は、ペースト材料Bを貯留する容器である。混合槽24は、粉体材料貯留槽22に貯留された粉体材料Pとペースト材料貯留槽23に貯留されたペースト材料Bとを混合し、溶媒貯留槽21に貯留された溶媒Sを加えて希釈するための容器である。   The dilution unit 20 is a part that prepares the electrode slurry SL by diluting the raw material with the amount of the solvent S calculated by the calculation unit 13. The dilution unit 20 includes, for example, a solvent storage tank 21, a powder material storage tank 22, a paste material storage tank 23, a mixing tank 24, valves 25A to 25C, and a control unit 27. The solvent storage tank 21 is a container for storing the solvent S. The powder material storage tank 22 is a container for storing the powder material P. The paste material storage tank 23 is a container for storing the paste material B. The mixing tank 24 mixes the powder material P stored in the powder material storage tank 22 and the paste material B stored in the paste material storage tank 23, and adds the solvent S stored in the solvent storage tank 21. A container for dilution.

弁25A〜25Cは、溶媒貯留槽21、粉体材料貯留槽22及びペースト材料貯留槽23から混合槽24に至る配管26A〜26C上にそれぞれ設けられている。弁25A〜25Cが開閉されることにより、溶媒貯留槽21、粉体材料貯留槽22及びペースト材料貯留槽23から配管26A〜26Cを経由して混合槽24へ供給される溶媒S、粉体材料P及びペースト材料Bの供給量が調整される。   The valves 25 </ b> A to 25 </ b> C are respectively provided on pipes 26 </ b> A to 26 </ b> C extending from the solvent storage tank 21, the powder material storage tank 22, and the paste material storage tank 23 to the mixing tank 24. By opening and closing the valves 25A to 25C, the solvent S and the powder material supplied from the solvent storage tank 21, the powder material storage tank 22 and the paste material storage tank 23 to the mixing tank 24 via the pipes 26A to 26C. The supply amounts of P and paste material B are adjusted.

制御部27は、算出部13により算出された希釈量に応じて、弁25A〜25Cの開閉を制御する部分である。制御部27は、混合槽24へ供給される溶媒S、粉体材料P及びペースト材料Bの全ての量を可変とするように弁25A〜25Cを制御してもよい。あるいは、制御部27は、溶媒Sの量のみを希釈量に応じて可変とするように弁25Aを制御し、粉体材料P及びペースト材料Bの量については粉体材料Pの密度、DBP吸油量及びペースト材料Bの粘度によらず一定とするように弁25B及び25Cを制御しようにしてもよい。   The control unit 27 is a part that controls opening and closing of the valves 25 </ b> A to 25 </ b> C according to the dilution amount calculated by the calculation unit 13. The control unit 27 may control the valves 25 </ b> A to 25 </ b> C so that all the amounts of the solvent S, the powder material P, and the paste material B supplied to the mixing tank 24 are variable. Alternatively, the control unit 27 controls the valve 25A so that only the amount of the solvent S is variable according to the dilution amount, and the amount of the powder material P and the paste material B is the density of the powder material P, DBP oil absorption The valves 25B and 25C may be controlled to be constant regardless of the amount and the viscosity of the paste material B.

以上のように構成される製造装置1は、次のように動作する。まず、入力受付部11の読取部12が、粉体材料P及びペースト材料Bの少なくとも一方のロット毎の納入仕様書DSに印刷された情報コードCを読み取る。入力受付部11は、情報コードCをデコードして、粉体材料Pのロットの密度、DBP吸油量及びペースト材料Bのロットの粘度の少なくともいずれか一の情報を読み出す。入力受付部11は、読み出されたタップ密度、DBP吸油量又は粘度の情報を算出部13に出力する。   The manufacturing apparatus 1 configured as described above operates as follows. First, the reading unit 12 of the input receiving unit 11 reads the information code C printed on the delivery specification DS for each lot of at least one of the powder material P and the paste material B. The input receiving unit 11 decodes the information code C and reads at least one information of the density of the lot of the powder material P, the DBP oil absorption amount, and the viscosity of the lot of the paste material B. The input reception unit 11 outputs the read tap density, DBP oil absorption amount, or viscosity information to the calculation unit 13.

算出部13は、入力受付部11により読み出された粉体材料Pのロットの密度、DBP吸油量及びペースト材料Bのロットの粘度の少なくともいずれか一に基づいて、希釈量を算出する。希釈部20の制御部27は、算出部13により算出された希釈量に基づいて弁25A〜25Cを開閉する。弁25A〜25Cの開閉に応じて、溶媒貯留槽21、粉体材料貯留槽22及びペースト材料貯留槽23から、それぞれ溶媒S、粉体材料P及びペースト材料Bが、混合槽24に供給される。混合槽24では、粉体材料P及びペースト材料Bが混合され、さらに溶媒Sで希釈されることにより、電極用スラリーSLが製造される。製造された電極用スラリーSLは、混合槽24から後段へ排出される。   The calculation unit 13 calculates the dilution amount based on at least one of the density of the lot of the powder material P, the DBP oil absorption amount, and the viscosity of the lot of the paste material B read by the input reception unit 11. The control unit 27 of the dilution unit 20 opens and closes the valves 25 </ b> A to 25 </ b> C based on the dilution amount calculated by the calculation unit 13. The solvent S, the powder material P, and the paste material B are supplied to the mixing tank 24 from the solvent storage tank 21, the powder material storage tank 22, and the paste material storage tank 23, respectively, according to opening and closing of the valves 25A to 25C. . In the mixing tank 24, the powder material P and the paste material B are mixed and further diluted with the solvent S, whereby the electrode slurry SL is manufactured. The manufactured electrode slurry SL is discharged from the mixing tank 24 to the subsequent stage.

以上説明したように、本実施形態の製造装置1によれば、ロット毎の粉体材料Pの密度、DBP吸油量及びロット毎のペースト材料Bの粘度の少なくともいずれか一に基づいて、電極用スラリーSLの粘度を目標値とするための希釈量が算出部13により算出され、この希釈量の溶媒Sで原材料が希釈されて電極用スラリーSLが調製される。したがって、ロット毎の粉体材料Pの密度、DBP吸油量及びロット毎のペースト材料Bの粘度がばらついたとしても、調製される電極用スラリーSLの粘度を常に目標値に合わせることが可能になる。希釈量の算出は、算出部13により自動的に実行されるので、調製された電極用スラリーSLの粘度を実測する必要がなくなり、電極用スラリーSLの粘度を簡便に微調整することができる。   As described above, according to the manufacturing apparatus 1 of the present embodiment, based on at least one of the density of the powder material P for each lot, the DBP oil absorption amount, and the viscosity of the paste material B for each lot, A dilution amount for setting the viscosity of the slurry SL to the target value is calculated by the calculation unit 13, and the raw material is diluted with the solvent S of this dilution amount to prepare the electrode slurry SL. Therefore, even if the density of the powder material P for each lot, the DBP oil absorption amount, and the viscosity of the paste material B for each lot vary, the viscosity of the prepared electrode slurry SL can always be adjusted to the target value. . Since the calculation of the dilution amount is automatically executed by the calculation unit 13, it is not necessary to actually measure the viscosity of the prepared electrode slurry SL, and the viscosity of the electrode slurry SL can be easily finely adjusted.

また、入力受付部11は、ロット毎の粉体材料Pの密度、DBP吸油量及びロット毎のペースト材料Bの粘度の少なくともいずれか一を表す情報コードCを読み取る読取部12を備えている。この構成により、入力受付部11への情報の入力がより簡便なものとなり、利便性が向上されている。   The input receiving unit 11 includes a reading unit 12 that reads an information code C representing at least one of the density of the powder material P for each lot, the DBP oil absorption amount, and the viscosity of the paste material B for each lot. With this configuration, it is easier to input information to the input receiving unit 11, and convenience is improved.

また、入力受付部11が受け付ける粉体材料Pの密度がタップ密度である場合には、タップ密度は、電極用スラリーSLの粘度に特に強く影響するパラメータであるため、粉体材料Pの密度としてタップ密度を用いることにより、調製される電極用スラリーSLの粘度をより精度良く目標値に合わせることができる。   When the density of the powder material P received by the input receiving unit 11 is a tap density, the tap density is a parameter that particularly strongly affects the viscosity of the electrode slurry SL. By using the tap density, the viscosity of the prepared electrode slurry SL can be adjusted to the target value with higher accuracy.

(希釈量の算出方法の例)
算出部13による希釈量の算出方法の一つの実施例について説明する。本実施例では、製造装置1により製造される電極用スラリーSLは、正極スラリーである。粉体材料Pは、活物質であるニッケルコバルトマンガン酸リチウムと、導電助剤であるカーボンブラックとを含む。ペースト材料Bは、バインダであるPVdFを含む。溶媒Sは、NMP(N−メチルピロリドン)を含む。
(Example of how to calculate dilution amount)
An embodiment of a method for calculating the dilution amount by the calculation unit 13 will be described. In the present embodiment, the electrode slurry SL manufactured by the manufacturing apparatus 1 is a positive electrode slurry. The powder material P contains nickel cobalt lithium manganate as an active material and carbon black as a conductive additive. Paste material B contains PVdF as a binder. The solvent S contains NMP (N-methylpyrrolidone).

希釈量の算出に先立ち、粉体材料Pのタップ密度と、当該タップ密度を有する粉体材料Pをペースト材料Bと混合して得られる所定固形分率のスラリーの粘度との関係を予め調べておく。図2は、粉体材料Pのタップ密度と所定固形分率(70重量%)のスラリーの粘度との関係の一例である。横軸は、粉体材料Pのタップ密度(単位:g/cm)である。縦軸は、所定固形分率(70重量%)のスラリーの粘度(単位:cP)である。図2において、ペースト材料Bの粘度は、1000cPで固定とされている。図2上の5つの点は、粉体材料Pのタップ密度を5通りに変化させて所定固形分率(70重量%)となるように希釈したスラリーの粘度を実測し、結果をプロットしたものである。図2の直線は、5通りの実測値から得られた、粉体材料Pのタップ密度と所定固形分率のスラリーの粘度との関係を示す近似直線を示す。粉体材料Pのタップ密度をxとし、所定固形分率のスラリーの粘度をyとすれば、y=−11650x+32881と近似される。 Prior to calculating the dilution amount, the relationship between the tap density of the powder material P and the viscosity of the slurry having a predetermined solid content ratio obtained by mixing the powder material P having the tap density with the paste material B is examined in advance. deep. FIG. 2 is an example of the relationship between the tap density of the powder material P and the viscosity of the slurry having a predetermined solid content (70% by weight). The horizontal axis represents the tap density (unit: g / cm 3 ) of the powder material P. The vertical axis represents the viscosity (unit: cP) of a slurry having a predetermined solid content (70% by weight). In FIG. 2, the viscosity of the paste material B is fixed at 1000 cP. The five points on FIG. 2 are plots of the results obtained by actually measuring the viscosity of the slurry diluted with the tap density of the powder material P in five ways to obtain a predetermined solid content (70% by weight). It is. The straight line in FIG. 2 is an approximate straight line showing the relationship between the tap density of the powder material P and the viscosity of the slurry having a predetermined solid content ratio, which is obtained from five actually measured values. If the tap density of the powder material P is x and the viscosity of the slurry having a predetermined solid content is y, it can be approximated as y = -11650x + 32881.

同様に、希釈量の算出に先立ち、ペースト材料Bの粘度と、当該粘度を有するペースト材料Bを粉体材料Pと混合して得られる所定固形分率のスラリーとの粘度の関係を予め調べておく。図3は、ペースト材料Bの粘度と所定固形分率(70重量%)のスラリーの粘度との関係の一例である。横軸は、ペースト材料Bの粘度(単位:cP)である。縦軸は、所定固形分率(70重量%)のスラリーの粘度(単位:cP)である。図3において、粉体材料Pのタップ密度は、2.3g/cmで固定とされている。図3上の5つの点は、ペースト材料Bの粘度を5通りに変化させて所定固形分率(70重量%)となるように希釈したスラリーの粘度を実測し、結果をプロットしたものである。図3の直線は、5通りの実測値から得られた、ペースト材料Bの粘度と所定固形分率のスラリーの粘度との関係を示す近似直線を示す。ペースト材料Bの粘度をxとし、所定固形分率のスラリーの粘度をyとすれば、y=3.183x+2842.1と近似される。 Similarly, prior to the calculation of the dilution amount, the relationship between the viscosity of the paste material B and the viscosity of the slurry having a predetermined solid content obtained by mixing the paste material B having the viscosity with the powder material P is examined in advance. deep. FIG. 3 is an example of the relationship between the viscosity of the paste material B and the viscosity of the slurry having a predetermined solid content (70% by weight). The horizontal axis represents the viscosity (unit: cP) of the paste material B. The vertical axis represents the viscosity (unit: cP) of a slurry having a predetermined solid content (70% by weight). In FIG. 3, the tap density of the powder material P is fixed at 2.3 g / cm 3 . The five points on FIG. 3 are obtained by actually measuring the viscosity of the slurry diluted so that the paste material B has a predetermined solid content (70% by weight) by changing the viscosity of the paste material B in five ways, and plotting the results. . The straight line of FIG. 3 shows the approximate straight line which shows the relationship between the viscosity of the paste material B and the viscosity of the slurry of a predetermined solid content rate obtained from five kinds of measured values. If the viscosity of the paste material B is x and the viscosity of the slurry having a predetermined solid content is y, it is approximated as y = 3.183x + 2842.1.

これらの関係を統合すると、粉体材料Pのタップ密度及びペースト材料Bの粘度に基づいて所定固形分率のスラリーの粘度を計算するための式が、次の式(1)のように得られる。
η=−α(ρ−ρA0)+β(η−ηB0)+η ・・・(1)
When these relationships are integrated, an equation for calculating the viscosity of the slurry having a predetermined solid content ratio based on the tap density of the powder material P and the viscosity of the paste material B is obtained as the following equation (1). .
η 1 = −α (ρ A −ρ A0 ) + β (η B −η B0 ) + η 0 (1)

式(1)において、ηは所定固形分率のスラリーの粘度、ηは所定固形分率のスラリーの粘度の中央値、αは粉体材料Pのタップ密度にかかる係数、βはペースト材料Bの粘度にかかる係数、ρはロット毎の粉体材料Pのタップ密度、ρA0は粉体材料Pのタップ密度の中央値、ηはロット毎のペースト材料Bの粘度、ηB0はペースト材料Bの粘度の中央値である。上述した実施例の場合、例えばη=6056、α=11650、β=3.183、ρA0=2.3、ηB0=1000とすれば、所定固形分率のスラリーの粘度ηを粉体材料Pのタップ密度ρ及びペースト材料Bの粘度ηに基づいて計算することができる。 In Formula (1), η 1 is the viscosity of the slurry having a predetermined solid content rate, η 0 is the median value of the viscosity of the slurry having the predetermined solid content rate, α is a coefficient related to the tap density of the powder material P, and β is the paste material Coefficient of viscosity of B, ρ A is the tap density of the powder material P for each lot, ρ A0 is the median value of the tap density of the powder material P, η B is the viscosity of the paste material B for each lot, η B0 is This is the median viscosity of the paste material B. In the case of the above-described embodiment, for example, if η 0 = 6056, α = 1650, β = 3.183, ρ A0 = 2.3, and η B0 = 1000, the viscosity η 1 of the slurry having a predetermined solid content is reduced to the powder. It can be calculated based on the tap density ρ A of the body material P and the viscosity η B of the paste material B.

算出部13は、このようにして所定固形分率のスラリーの粘度ηを計算し、次いで、粘度ηの所定固形分率のスラリーを希釈して最終的に得られる電極用スラリーSLの粘度を目標値とすることができる溶媒の希釈量を計算する。 The calculation unit 13 thus calculates the viscosity η 1 of the slurry having a predetermined solid fraction, and then dilutes the slurry having the predetermined solid fraction with the viscosity η 1 to finally obtain the viscosity of the electrode slurry SL. Is calculated as a target value.

図4は、所定固形分率(70重量%)のスラリーの粘度と目標粘度(5000cP)での固形分率との関係の一例である。横軸は、所定固形分率(70重量%)のスラリーの粘度である。縦軸は、目標粘度(5000cP)での固形分率である。図4上の10の点は、図2及び図3でプロットした所定固形分率(70重量%)となるように希釈したスラリーを目標粘度(5000cP)とするために必要な固形分率を実測し、結果をプロットしたものである。図4の直線は、10通りの実測値から得られた、所定固形分率(70重量%)のスラリーの粘度と目標粘度(5000cP)での固形分率との関係を示す近似直線を示す。所定固形分率(70重量%)のスラリーの粘度をxとし、目標粘度(5000cP)での固形分率をyとすれば、y=−0.00096x+74.95122と近似される。   FIG. 4 is an example of the relationship between the viscosity of a slurry having a predetermined solid content rate (70 wt%) and the solid content rate at a target viscosity (5000 cP). The horizontal axis represents the viscosity of the slurry having a predetermined solid content (70% by weight). The vertical axis represents the solid content ratio at the target viscosity (5000 cP). The 10 points on FIG. 4 indicate the solid content required to obtain the target viscosity (5000 cP) for the slurry diluted to the predetermined solid content (70 wt%) plotted in FIGS. 2 and 3. The results are plotted. The straight line in FIG. 4 is an approximate straight line showing the relationship between the viscosity of a slurry having a predetermined solid content rate (70 wt%) and the solid content rate at a target viscosity (5000 cP), obtained from 10 actually measured values. When the viscosity of the slurry having a predetermined solid content (70 wt%) is x and the solid content at the target viscosity (5000 cP) is y, y = −0.00096x + 74.95122 is approximated.

この結果から、目標粘度の電極用スラリーを得るために必要な固形分率を所定固形分率のスラリーの粘度ηに基づいて計算するための式が、次の式(2)のように得られる。
M=−γ(η−η)+M ・・・(2)
From this result, an equation for calculating the solid fraction necessary for obtaining the electrode slurry having the target viscosity based on the viscosity η 1 of the slurry having the predetermined solid fraction is obtained as the following equation (2). It is done.
M = −γ (η 1 −η) + M 1 (2)

式(2)において、Mは、目標粘度の電極用スラリーを得るために必要な固形分率、Mは所定固形分率のスラリーの固形分率、ηは所定固形分率のスラリーの粘度、ηは最終的に得る電極用スラリーSLの目標粘度、γは粘度にかかる係数である。上述した実施例の場合、例えばM=70、η=5000、γ=0.00096とすれば、目標粘度の電極用スラリーを得るために必要な固形分率を所定固形分率のスラリーの粘度ηに基づいて計算することができる。 In the formula (2), M is a solid content rate required to obtain an electrode slurry having a target viscosity, M 1 is a solid content rate of a slurry having a predetermined solid content rate, and η 1 is a viscosity of the slurry having a predetermined solid content rate. , Η is a target viscosity of the electrode slurry SL finally obtained, and γ is a coefficient related to the viscosity. In the case of the above-described embodiment, for example, if M 1 = 70, η = 5000, and γ = 0.00096, the solid fraction required to obtain the electrode slurry with the target viscosity is the viscosity of the slurry with a predetermined solid fraction. It can be calculated based on η 1 .

このような方法により、算出部13は、粉体材料Pのタップ密度ρ及びペースト材料Bの粘度ηに基づいて、溶媒Sの希釈量(固形分率)を計算することができる。 By such a method, the calculation unit 13 can calculate the dilution amount (solid content ratio) of the solvent S based on the tap density ρ A of the powder material P and the viscosity η B of the paste material B.

(希釈量の算出方法の別の例)
上記実施例ではペースト材料Bのロットの粘度である粉体材料Pのタップ密度に基づいて希釈量を算出したが、粉体材料Pの密度を用いる代わりに、密度と相関を示す他の指標を用いても良い。例えば、DBP吸油量を用いることができる。DBP吸油量は、タップ密度に対して負の相関を有する物性値である。
(Another example of how to calculate the dilution amount)
In the above embodiment, the dilution amount is calculated based on the tap density of the powder material P, which is the viscosity of the lot of the paste material B. However, instead of using the density of the powder material P, another index indicating a correlation with the density is used. It may be used. For example, DBP oil absorption can be used. The DBP oil absorption is a physical property value having a negative correlation with the tap density.

以下、算出部13による希釈量の算出方法の別の例について説明する。本実施例では、製造装置1により製造される電極用スラリーSLは、負極スラリーである。粉体材料Pは、活物質である天然黒鉛を含む。ペースト材料Bは、増粘剤であるCMC水溶液を含む。溶媒Sは、水を含む。電極用スラリーSLの材料としては、上述の粉体材料P、ペースト材料B及び溶媒Sに加えて、液体としての性状を示すSBRが用いられる。   Hereinafter, another example of the calculation method of the dilution amount by the calculation unit 13 will be described. In the present embodiment, the electrode slurry SL manufactured by the manufacturing apparatus 1 is a negative electrode slurry. The powder material P contains natural graphite which is an active material. Paste material B contains a CMC aqueous solution that is a thickener. The solvent S contains water. As the material of the electrode slurry SL, in addition to the powder material P, the paste material B, and the solvent S described above, SBR that exhibits properties as a liquid is used.

希釈量の算出に先立ち、粉体材料PのDBP吸油量と、当該DBP吸油量を有する粉体材料Pをペースト材料Bと混合して得られる所定固形分率のスラリーの粘度との関係を予め調べておく。図5は、粉体材料PのDBP吸油量と所定固形分率(60重量%)のスラリーの粘度との関係の一例である。横軸は、粉体材料PのDBP吸油量(単位:ml/100g)である。縦軸は、所定固形分率(60重量%)のスラリーの粘度(単位:cP)である。図5において、ペースト材料Bの粘度は、3700cPで固定とされている。図5上の5つの点は、粉体材料PのDBP吸油量を5通りに変化させて所定固形分率(60重量%)となるように希釈したスラリーの粘度を実測し、結果をプロットしたものである。図5の直線は、5通りの実測値から得られた、粉体材料PのDBP吸油量と所定固形分率のスラリーの粘度との関係を示す近似直線を示す。粉体材料PのDBP吸油量をxとし、所定固形分率のスラリーの粘度をyとすれば、y=134.82x−1223.5と近似される。   Prior to the calculation of the dilution amount, the relationship between the DBP oil absorption amount of the powder material P and the viscosity of the slurry having a predetermined solid content ratio obtained by mixing the powder material P having the DBP oil absorption amount with the paste material B is previously determined. Check it out. FIG. 5 is an example of the relationship between the DBP oil absorption amount of the powder material P and the viscosity of the slurry having a predetermined solid content rate (60 wt%). The horizontal axis represents the DBP oil absorption (unit: ml / 100 g) of the powder material P. The vertical axis represents the viscosity (unit: cP) of a slurry having a predetermined solid content (60% by weight). In FIG. 5, the viscosity of the paste material B is fixed at 3700 cP. The five points on FIG. 5 are obtained by plotting the viscosity of the slurry diluted to a predetermined solid content (60 wt%) by changing the DBP oil absorption amount of the powder material P in five ways. Is. The straight line in FIG. 5 is an approximate straight line showing the relationship between the DBP oil absorption amount of the powder material P and the viscosity of the slurry having a predetermined solid content, obtained from five actual measurement values. If the DBP oil absorption amount of the powder material P is x and the viscosity of the slurry having a predetermined solid content is y, it is approximated as y = 134.82x-1223.5.

同様に、希釈量の算出に先立ち、ペースト材料Bの粘度と、当該粘度を有するペースト材料Bを粉体材料Pと混合して得られる所定固形分率のスラリーとの粘度の関係を予め調べておく。図6は、ペースト材料Bの粘度と所定固形分率(60重量%)のスラリーの粘度との関係の一例である。横軸は、ペースト材料Bの粘度(cP)である。縦軸は、所定固形分率(60重量%)のスラリーの粘度(cP)である。図6において、粉体材料PのDBP吸油量は、54ml/100gで固定とされている。図6上の5つの点は、ペースト材料Bの粘度を5通りに変化させて所定固形分率(60重量%)となるように希釈したスラリーの粘度を実測し、結果をプロットしたものである。図6の直線は、5通りの実測値から得られた、ペースト材料Bの粘度と所定固形分率のスラリーの粘度との関係を示す近似直線を示す。ペースト材料Bの粘度をxとし、所定固形分率のスラリーの粘度をyとすれば、y=1.8395x−826.67と近似される。   Similarly, prior to the calculation of the dilution amount, the relationship between the viscosity of the paste material B and the viscosity of the slurry having a predetermined solid content obtained by mixing the paste material B having the viscosity with the powder material P is examined in advance. deep. FIG. 6 is an example of the relationship between the viscosity of the paste material B and the viscosity of the slurry having a predetermined solid content (60% by weight). The horizontal axis represents the viscosity (cP) of the paste material B. The vertical axis represents the viscosity (cP) of the slurry having a predetermined solid content (60% by weight). In FIG. 6, the DBP oil absorption amount of the powder material P is fixed at 54 ml / 100 g. The five points on FIG. 6 are obtained by plotting the results obtained by actually measuring the viscosity of the slurry diluted to have a predetermined solid content (60 wt%) by changing the viscosity of the paste material B in five ways. . The straight line of FIG. 6 shows the approximate straight line which shows the relationship between the viscosity of the paste material B and the viscosity of the slurry of a predetermined solid content rate obtained from five kinds of measured values. If the viscosity of the paste material B is x and the viscosity of the slurry having a predetermined solid content is y, it is approximated as y = 1.8395x−826.67.

これらの関係を統合すると、粉体材料PのDBP吸油量及びペースト材料Bの粘度に基づいて所定固形分率のスラリーの粘度を計算するための式が、次の式(3)のように得られる。
η=α(V−VA0)+β(η−ηB0)+η ・・・(3)
When these relationships are integrated, an equation for calculating the viscosity of the slurry having a predetermined solid content based on the DBP oil absorption amount of the powder material P and the viscosity of the paste material B is obtained as the following equation (3). It is done.
η 1 = α (V A −V A0 ) + β (η B −η B0 ) + η 0 (3)

式(3)において、ηは所定固形分率のスラリーの粘度、ηは所定固形分率のスラリーの粘度の中央値、αは粉体材料PのDBP吸油量にかかる係数、βはペースト材料Bの粘度にかかる係数、Vはロット毎の粉体材料PのDBP吸油量、VA0は粉体材料PのDBP吸油量の中央値、ηはロット毎のペースト材料Bの粘度、ηB0はペースト材料Bの粘度の中央値である。上述した実施例の場合、例えばη=6018、α=135、β=1.84、VA0=54、ηB0=3700とすれば、所定固形分率のスラリーの粘度ηを粉体材料PのDBP吸油量V及びペースト材料Bの粘度ηに基づいて計算することができる。 In Formula (3), η 1 is the viscosity of the slurry having a predetermined solid content rate, η 0 is the median value of the viscosity of the slurry having the predetermined solid content rate, α is a coefficient related to the DBP oil absorption amount of the powder material P, and β is the paste Coefficient related to viscosity of material B, VA is DBP oil absorption amount of powder material P for each lot, V A0 is median value of DBP oil absorption amount of powder material P, η B is viscosity of paste material B for each lot, η B0 is the median value of the viscosity of the paste material B. In the case of the above-described embodiment, for example, if η 0 = 6018, α = 135, β = 1.84, V A0 = 54, η B0 = 3700, the viscosity η 1 of the slurry having a predetermined solid content is set to the powder material. It can be calculated based on the DBP oil absorption VA of P and the viscosity η B of the paste material B.

算出部13は、このようにして所定固形分率のスラリーの粘度ηを計算し、次いで、粘度ηの所定固形分率のスラリーを希釈して最終的に得られる電極用スラリーSLの粘度を目標値とすることができる溶媒の希釈量を計算する。 The calculation unit 13 thus calculates the viscosity η 1 of the slurry having a predetermined solid fraction, and then dilutes the slurry having the predetermined solid fraction with the viscosity η 1 to finally obtain the viscosity of the electrode slurry SL. Is calculated as a target value.

図7は、所定固形分率(60重量%)のスラリーの粘度と目標粘度(4000cP)での固形分率との関係の一例である。横軸は、所定固形分率(60重量%)のスラリーの粘度である。縦軸は、目標粘度(4000cP)での固形分率である。図7上の10の点は、図5及び図6でプロットした所定固形分率(60重量%)となるように希釈したスラリーを目標粘度(4000cP)とするために必要な固形分率を実測し、結果をプロットしたものである。図7の直線は、10通りの実測値から得られた、所定固形分率(60重量%)のスラリーの粘度と目標粘度(4000cP)での固形分率との関係を示す近似直線を示す。所定固形分率(60重量%)のスラリーの粘度をxとし、目標粘度(4000cP)での固形分率をyとすれば、y=−0.00066x+62.54694と近似される。   FIG. 7 is an example of the relationship between the viscosity of a slurry having a predetermined solid content rate (60 wt%) and the solid content rate at a target viscosity (4000 cP). The horizontal axis represents the viscosity of the slurry having a predetermined solid content (60% by weight). The vertical axis represents the solid content rate at the target viscosity (4000 cP). The 10 points on FIG. 7 indicate the solid content rate required to obtain the target viscosity (4000 cP) for the slurry diluted to the predetermined solid content rate (60 wt%) plotted in FIGS. 5 and 6. The results are plotted. The straight line in FIG. 7 is an approximate straight line showing the relationship between the viscosity of a slurry having a predetermined solid content rate (60 wt%) and the solid content rate at a target viscosity (4000 cP), which is obtained from 10 actually measured values. If the viscosity of the slurry having a predetermined solid content (60% by weight) is x and the solid content at the target viscosity (4000 cP) is y, then y = −0.00066x + 625.4694.

この結果から、目標粘度の電極用スラリーを得るために必要な固形分率を所定固形分率のスラリーの粘度ηに基づいて計算するための式が、次の式(4)のように得られる。
M=−γ(η−η)+M ・・・(4)
From this result, an equation for calculating the solid content necessary for obtaining the electrode slurry having the target viscosity based on the viscosity η 1 of the slurry having the predetermined solid content is obtained as the following equation (4). It is done.
M = −γ (η 1 −η) + M 1 (4)

式(4)において、Mは、目標粘度の電極用スラリーを得るために必要な固形分率、Mは所定固形分率のスラリーの固形分率、ηは所定固形分率のスラリーの粘度、ηは最終的に得る電極用スラリーSLの目標粘度、γは粘度にかかる係数である。上述した実施例の場合、例えばM=60、η=4000、γ=0.00066とすれば、目標粘度の電極用スラリーを得るために必要な固形分率を所定固形分率のスラリーの粘度ηに基づいて計算することができる。 In the formula (4), M is a solid fraction necessary for obtaining a slurry for an electrode having a target viscosity, M 1 is a solid fraction of a slurry having a predetermined solid fraction, and η 1 is a viscosity of the slurry having a predetermined solid fraction. , Η is a target viscosity of the electrode slurry SL finally obtained, and γ is a coefficient related to the viscosity. In the case of the above-described embodiment, for example, if M 1 = 60, η = 4000, and γ = 0.00066, the solid content rate required to obtain the electrode slurry with the target viscosity is the viscosity of the slurry with the predetermined solid content rate. It can be calculated based on η 1 .

このような方法により、算出部13は、粉体材料PのDBP吸油量V及びペースト材料Bの粘度ηに基づいて、溶媒Sの希釈量(固形分率)を計算することができる。 By such a method, the calculation unit 13 can calculate the dilution amount (solid content ratio) of the solvent S based on the DBP oil absorption amount V A of the powder material P and the viscosity η B of the paste material B.

(変形例)
本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、入力受付部11に、読取部12に代えてキーボード等の入力装置を設け、作業者が入力装置を用いて粉体材料Pの密度又はペースト材料Bの粘度を入力することとしてもよい。
(Modification)
The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the input receiving unit 11 may be provided with an input device such as a keyboard instead of the reading unit 12, and the operator may input the density of the powder material P or the viscosity of the paste material B using the input device.

また、入力受付部11が受け付ける粉体材料Pの密度又はペースト材料Bの粘度は、粉体材料P又はペースト材料Bの製造者が提供するロット毎の情報であってもよいし、製造装置1を使用して電極用スラリーSLを製造する作業者が測定するようにしてもよい。   Further, the density of the powder material P or the viscosity of the paste material B received by the input receiving unit 11 may be information for each lot provided by the manufacturer of the powder material P or the paste material B, or the manufacturing apparatus 1. The operator who manufactures the slurry SL for electrodes may be measured.

図8を参照して、粉体材料Pの密度の測定方法の一例を説明する。図8は、粉体材料Pの密度の実測工程を示す模式図である。   An example of a method for measuring the density of the powder material P will be described with reference to FIG. FIG. 8 is a schematic diagram showing an actual measurement process of the density of the powder material P.

この方法では、作業者がロットから粉体材料Pの一部を抜き取り、粉体材料Pが不溶性を示す液体Lに、抜き取られた粉体材料Pを投入する。粉体材料Pが液体Lに投入されると、液体Lの液面は、元の液面F1から、新たな液面F2まで上昇する。この液面の上昇に基づき、粉体材料Pの体積を計算する。液体Lに投入された粉体材料Pの質量を上記計算された体積で除算することにより、粉体材料Pの密度を計算することができる。   In this method, an operator extracts a part of the powder material P from the lot, and puts the extracted powder material P into the liquid L in which the powder material P is insoluble. When the powder material P is introduced into the liquid L, the liquid level of the liquid L rises from the original liquid level F1 to a new liquid level F2. Based on the rise in the liquid level, the volume of the powder material P is calculated. By dividing the mass of the powder material P charged in the liquid L by the calculated volume, the density of the powder material P can be calculated.

1…製造装置、11…入力受付部、12…読取部、13…算出部、20…希釈部、B…ペースト材料、C…情報コード、P…粉体材料、S…溶媒、SL…電極用スラリー。   DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus, 11 ... Input reception part, 12 ... Reading part, 13 ... Calculation part, 20 ... Dilution part, B ... Paste material, C ... Information code, P ... Powder material, S ... Solvent, SL ... For electrodes slurry.

Claims (3)

粉体材料及びペースト材料を含む原材料並びに溶媒を用いて電極用スラリーを製造する、電極用スラリーの製造装置であって、
前記粉体材料のロット毎の前記粉体材料の密度、DBP吸油量及び前記ペースト材料のロット毎の前記ペースト材料の粘度の少なくともいずれか一の入力を受け付ける入力受付部と、
前記電極用スラリーの粘度の目標値を予め保持し、前記入力受付部により入力が受け付けられた前記粉体材料の密度、DBP吸油量及び前記ペースト材料の粘度の少なくともいずれか一に基づいて、前記電極用スラリーの粘度を前記目標値とするための前記溶媒による前記原材料の希釈量を算出する算出部と、
前記算出部により算出された前記希釈量の前記溶媒で前記原材料を希釈することにより前記電極用スラリーを調製する希釈部と、
を備える、電極用スラリーの製造装置。
An apparatus for producing a slurry for an electrode that produces a slurry for an electrode using a raw material and a solvent including a powder material and a paste material,
An input receiving unit that receives at least one of the density of the powder material for each lot of the powder material, the DBP oil absorption amount, and the viscosity of the paste material for each lot of the paste material;
Preliminarily holding a target value of the viscosity of the electrode slurry, based on at least one of the density of the powder material, the DBP oil absorption amount, and the viscosity of the paste material received by the input receiving unit, A calculation unit for calculating a dilution amount of the raw material with the solvent for setting the viscosity of the electrode slurry to the target value;
A dilution unit for preparing the electrode slurry by diluting the raw material with the solvent in the amount of dilution calculated by the calculation unit;
An apparatus for producing an electrode slurry.
前記入力受付部は、前記粉体材料のロット毎の前記粉体材料の密度、DBP吸油量及び前記ペースト材料のロット毎の前記ペースト材料の粘度の少なくともいずれか一を表す情報コードを読み取る読取部を備えている、請求項1に記載の電極用スラリーの製造装置。   The input receiving unit reads an information code indicating at least one of the density of the powder material for each lot of the powder material, the DBP oil absorption amount, and the viscosity of the paste material for each lot of the paste material The apparatus for producing a slurry for an electrode according to claim 1, comprising: 前記入力受付部が受け付ける前記粉体材料の密度がタップ密度である、請求項1又は2に記載の電極用スラリーの製造装置。   The apparatus for producing an electrode slurry according to claim 1 or 2, wherein the density of the powder material received by the input receiving unit is a tap density.
JP2013211930A 2013-10-09 2013-10-09 Electrode slurry manufacturing equipment Active JP6119547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211930A JP6119547B2 (en) 2013-10-09 2013-10-09 Electrode slurry manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211930A JP6119547B2 (en) 2013-10-09 2013-10-09 Electrode slurry manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2015076278A true JP2015076278A (en) 2015-04-20
JP6119547B2 JP6119547B2 (en) 2017-04-26

Family

ID=53000976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211930A Active JP6119547B2 (en) 2013-10-09 2013-10-09 Electrode slurry manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6119547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117432A (en) * 2019-06-21 2020-12-22 贝特瑞新材料集团股份有限公司 Electrode slurry batching method and electrode slurry prepared by same
CN113533137A (en) * 2021-06-29 2021-10-22 龙佰四川钛业有限公司 Method for testing oil absorption of titanium dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577976B1 (en) * 2021-08-04 2023-09-13 주식회사 엘지에너지솔루션 Tracking management system and tracking management method for lot information of electrode slurry

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303572A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Manufacturing method of electrode plate, and nonaqueous electrolyte secondary battery equipped with electrode plate obtained by manufacturing method of the same
JP2008243470A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Processed active material and its processing method as well as paste containing processed active material
JP2009187819A (en) * 2008-02-07 2009-08-20 Panasonic Corp Method for manufacturing paste for lithium-ion secondary battery
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2011096458A (en) * 2009-10-28 2011-05-12 Toyota Motor Corp Method of manufacturing battery
WO2012056532A1 (en) * 2010-10-27 2012-05-03 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP2012243470A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Method for manufacturing battery
JP2013084525A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Manufacturing method for secondary battery electrode
JP2013089346A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2013105638A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Secondary battery manufacturing method
JP2013114747A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Lithium ion secondary battery manufacturing method
JP2014179313A (en) * 2013-02-12 2014-09-25 Jtekt Corp Production apparatus and production method for electric storage material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303572A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Manufacturing method of electrode plate, and nonaqueous electrolyte secondary battery equipped with electrode plate obtained by manufacturing method of the same
JP2008243470A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Processed active material and its processing method as well as paste containing processed active material
JP2009187819A (en) * 2008-02-07 2009-08-20 Panasonic Corp Method for manufacturing paste for lithium-ion secondary battery
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2011096458A (en) * 2009-10-28 2011-05-12 Toyota Motor Corp Method of manufacturing battery
WO2012056532A1 (en) * 2010-10-27 2012-05-03 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP2012243470A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Method for manufacturing battery
JP2013084525A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Manufacturing method for secondary battery electrode
JP2013089346A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2013105638A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Secondary battery manufacturing method
JP2013114747A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Lithium ion secondary battery manufacturing method
JP2014179313A (en) * 2013-02-12 2014-09-25 Jtekt Corp Production apparatus and production method for electric storage material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117432A (en) * 2019-06-21 2020-12-22 贝特瑞新材料集团股份有限公司 Electrode slurry batching method and electrode slurry prepared by same
CN113533137A (en) * 2021-06-29 2021-10-22 龙佰四川钛业有限公司 Method for testing oil absorption of titanium dioxide
CN113533137B (en) * 2021-06-29 2024-03-12 龙佰四川钛业有限公司 Titanium dioxide oil absorption testing method

Also Published As

Publication number Publication date
JP6119547B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
Li et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2
JP6119547B2 (en) Electrode slurry manufacturing equipment
JP2011113688A (en) Method for detecting condition of secondary battery
CN106099050A (en) Active substance compound particle, electrode active material layer and all-solid lithium battery
Jiang et al. Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium-ion batteries
CN107632272B (en) Battery discharge state of charge accurate estimation method based on battery core temperature prediction
WO2013191179A1 (en) Positive electrode active substance for lithium ion secondary cells, and production method thereof
CN108011100A (en) A kind of tertiary cathode material of surface reaction cladding and preparation method thereof
Darbar et al. New synthesis strategies to improve Co-Free LiNi0. 5Mn0. 5O2 cathodes: Early transition metal d0 dopants and manganese pyrophosphate coating
CN106159346A (en) A kind of computational methods of lithium ion battery liquid injection amount
JP6662155B2 (en) Stability evaluation method for cathode material slurry for lithium ion secondary battery
Borhani-Haghighi et al. High-throughput compositional and structural evaluation of a Li a (Ni x Mn y Co z) O r thin film battery materials library
Fu et al. Lithium pre‐cycling induced fast kinetics of commercial Sb2S3 anode for advanced sodium storage
CN116297020A (en) Lithium battery slurry viscosity prediction method and system and electronic equipment thereof
JP2021086796A (en) Sulfide-based solid electrolyte powder to be used for lithium ion secondary battery, production method thereof, solid electrolyte layer, and lithium ion secondary battery
JP6178967B2 (en) AC impedance measurement method for powder samples
Cheng et al. Significant improved electrochemical performance of layered Li1. 2Mn0. 54Co0. 13Ni0. 13O2 via graphene surface modification
JP7444520B2 (en) Manufacturing method and manufacturing device for slurry for secondary batteries
CN101131414B (en) Method for appraising sphere nickel median voltage performance
CN109980300A (en) A kind of electrolyte and its preparation method and battery
Jin et al. Electrochemical properties of commercial NCA Cathode materials for high capacity of lithium ion battery
Wang et al. Simple, rapid and accurate determination of lattice composition and evaluation of electrochemical properties of LixNi2− xO2 electrode material for lithium ion battery by a novel method
CN104152680A (en) Determination method for proper pelletizing water content of sintering mixture
JP6079496B2 (en) Method for producing graphite paste
JP6674315B2 (en) Method for producing lithium-containing composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160411

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151