JP2015075001A - Oil-cooled air compressor and control method thereof - Google Patents

Oil-cooled air compressor and control method thereof Download PDF

Info

Publication number
JP2015075001A
JP2015075001A JP2013210349A JP2013210349A JP2015075001A JP 2015075001 A JP2015075001 A JP 2015075001A JP 2013210349 A JP2013210349 A JP 2013210349A JP 2013210349 A JP2013210349 A JP 2013210349A JP 2015075001 A JP2015075001 A JP 2015075001A
Authority
JP
Japan
Prior art keywords
oil
temperature
cooling water
air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013210349A
Other languages
Japanese (ja)
Other versions
JP5980754B2 (en
Inventor
元就 山口
Motonari Yamaguchi
元就 山口
吉村 省二
Seiji Yoshimura
省二 吉村
中村 元
Hajime Nakamura
中村  元
明 星川
Akira Hoshikawa
明 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013210349A priority Critical patent/JP5980754B2/en
Publication of JP2015075001A publication Critical patent/JP2015075001A/en
Application granted granted Critical
Publication of JP5980754B2 publication Critical patent/JP5980754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve performance of an oil-cooled air compressor such as an amount of discharged air, energy saving performance, and prevention of thermal deterioration of lubricating oil.SOLUTION: An oil-cooled air compressor 1 comprises a compressor body 2 and an oil separating/recovering device 3. An oil reservoir of the oil separating/recovering device 3 is connected to a suction port 2c of the compressor body 2 via an oil supply passage 7. The compressor body 2 is provided with a cooling water supply passage 31 that supplies cooling water. The cooling water is supplied to the compressor body 2 to cool sucked air so that a temperature of compressed air discharged from a discharge port 2d of the compressor body 2 is equal to or less than a dew point.

Description

本発明は、油冷式空気圧縮機及びその制御方法に関する。   The present invention relates to an oil-cooled air compressor and a control method thereof.

油冷式空気圧縮機では、圧縮機本体の潤滑のために、圧縮機本体で圧縮される空気中に潤滑油を混入させている。圧縮機本体から吐出された圧縮空気は油分離回収器に送られ、圧縮空気と潤滑油に分離される。油冷式空気圧縮機において、ロータ室への注油温度を45℃〜55℃とし、吐出温度を油分離回収器内でドレン水の析出する温度(露点以下の温度)まで低下させることが、吐出空気量の増加等による性能向上の手段として知られている。しかし、油分離回収器内で析出したドレン水は、潤滑油の劣化の原因となるので、油分離回収器内に蓄積されたドレン水を排出する作業(ドレン抜き作業)が必要となる。   In the oil-cooled air compressor, lubricating oil is mixed in the air compressed by the compressor body in order to lubricate the compressor body. The compressed air discharged from the compressor main body is sent to the oil separator / collector and separated into compressed air and lubricating oil. In an oil-cooled air compressor, the temperature of oil injection to the rotor chamber is set to 45 ° C to 55 ° C, and the discharge temperature is reduced to the temperature at which drain water is deposited (the temperature below the dew point) in the oil separator / collector. It is known as a means for improving performance by increasing the amount of air. However, since the drain water deposited in the oil separator / recovery device causes deterioration of the lubricating oil, an operation of draining the drain water accumulated in the oil separation / recovery device (drain removing operation) is required.

現状の油冷式空気圧縮機では、油分離回収器内の温度を意図的に露点以上の温度(例えば80℃程度)に調節し、水分を蒸発させることで油分離回収器内のドレン水蓄積を防止している。例えば、特許文献1には、圧縮機本体のロータ室の吐出口側に油冷却器を介さない潤滑油を供給することで、吐出温度を油分離回収器内が露点以上となる温度とすることが開示されている。また、特許文献2には、油冷却器を通る潤滑油の油冷却器を介さない潤滑油に対する流量比の制御によって圧縮機本体へ供給する潤滑油の温度を調整し、それによって油分離回収器内が露点以上となるように吐出温度を調節することが開示されている。   In the current oil-cooled air compressor, drain water accumulation in the oil separation and recovery unit is intentionally adjusted to a temperature above the dew point (for example, about 80 ° C.) by evaporating the water. Is preventing. For example, in Patent Document 1, by supplying lubricating oil not through an oil cooler to the discharge port side of the rotor chamber of the compressor main body, the discharge temperature is set to a temperature at which the inside of the oil separation and recovery device is equal to or higher than the dew point. Is disclosed. Further, in Patent Document 2, the temperature of the lubricating oil supplied to the compressor body is adjusted by controlling the flow rate ratio of the lubricating oil passing through the oil cooler to the lubricating oil without going through the oil cooler, and thereby the oil separator / recoverer It is disclosed that the discharge temperature is adjusted so that the inside becomes the dew point or higher.

しかし、特許文献1では油分離回収器内でドレン水が析出する程度の温度よりも吐出温度を低温とすることは考慮されていない。また、特許文献2では、油分離回収器の温度を高温に保つ必要があり、吐出温度を低下させることは困難である。さらに、特許文献2では、油冷式空気圧縮機の運転中に潤滑油を高温としているため、潤滑油の劣化につながる。以上のように、特許文献1,2に開示されたものを含め、従来の油冷式空気圧縮機には、更なる性能向上の余地がある。   However, Patent Document 1 does not take into consideration that the discharge temperature is lower than the temperature at which drain water is precipitated in the oil separation and recovery device. Moreover, in patent document 2, it is necessary to maintain the temperature of an oil separation collection | recovery device at high temperature, and it is difficult to reduce discharge temperature. Furthermore, in Patent Document 2, the lubricating oil is kept at a high temperature during the operation of the oil-cooled air compressor, which leads to deterioration of the lubricating oil. As described above, conventional oil-cooled air compressors including those disclosed in Patent Documents 1 and 2 have room for further performance improvement.

特開平7−35067号公報Japanese Unexamined Patent Publication No. 7-35067 特開2012−112268号公報JP 2012-112268 A

本発明は、吐出空気量、省エネルギ性、潤滑油の温度劣化防止等の油冷式空気圧縮機の性能向上を課題とする。   An object of the present invention is to improve the performance of an oil-cooled air compressor, such as the amount of discharged air, energy saving, and prevention of temperature deterioration of lubricating oil.

本発明は、吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、前記空気が前記圧縮機本体内で露点以下となるように、前記空気を冷却する冷却水を供給する冷却水供給流路とを備える、油冷式空気圧縮機を提供する。これにより、前記圧縮機本体から吐出される圧縮空気の温度(以下、吐出温度という場合がある。)を露点以下とすることができる。   The present invention includes an oil-cooled compressor main body that compresses and discharges sucked air, an oil separation and recovery device that separates and recovers lubricating oil from the compressed air discharged from the compressor main body, and the oil separation An oil supply passage that connects the recovery device and the suction side of the compressor body, and a cooling water supply passage that supplies cooling water that cools the air so that the air is below the dew point in the compressor body An oil-cooled air compressor is provided. Thereby, the temperature of the compressed air discharged from the compressor body (hereinafter sometimes referred to as a discharge temperature) can be set to a dew point or lower.

圧縮機本体の吐出温度を露点以下とすることにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。   By setting the discharge temperature of the compressor main body to a dew point or lower, it is possible to improve performance by increasing the amount of discharged air, and energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented.

前記冷却水の供給位置は前記圧縮機本体の吸込部と圧縮歯溝のうち少なくとも一方であることが好ましい。   It is preferable that the cooling water supply position is at least one of a suction portion and a compression tooth groove of the compressor body.

吸込空気と圧縮空気のうち少なくとも一方を冷却でき、吐出空気量の増加等による性能向上を図ることができる。   At least one of the intake air and the compressed air can be cooled, and the performance can be improved by increasing the discharge air amount.

前記冷却水、及び空気圧縮時に前記圧縮機本体内で発生させた水分を、前記圧縮機本体外で前記潤滑油と分離する油水分離装置を備えることが好ましい。   It is preferable to provide an oil-water separator that separates the cooling water and moisture generated in the compressor body during air compression from the lubricating oil outside the compressor body.

油水分離装置を設けることで、吐出温度を露点以下としたことにより生じる圧縮空気内の水分が潤滑油に混ざるのを確実に防止でき、潤滑油内への水分の混在による潤滑油の品質劣化を回避できる。   By providing an oil / water separator, it is possible to reliably prevent moisture in the compressed air generated when the discharge temperature is below the dew point from being mixed with the lubricating oil, and to reduce the quality of the lubricating oil due to the mixing of moisture in the lubricating oil. Can be avoided.

前記油水分離装置に設けられ、ドレン水を排出するドレン排出部と、前記ドレン排出部と前記圧縮機本体の吸込側とを接続し、前記冷却水として前記ドレン水を供給するドレン水供給流路とを備えることが好ましい。   A drain water supply passage that is provided in the oil / water separator and connects the drain discharge portion for discharging drain water, the drain discharge portion and the suction side of the compressor body, and supplies the drain water as the cooling water. It is preferable to comprise.

油分が残留する可能性を有するドレン水から油分を除去してドレン水を排出する必要性を排除できる。   It is possible to eliminate the necessity of removing the drain water by removing the oil from the drain water having the possibility that the oil remains.

前記ドレン水供給流路にドレン水用電磁弁を設け、前記ドレン水用電磁弁をタイマーにより開閉することが好ましい。   It is preferable that a drain water solenoid valve is provided in the drain water supply flow path, and the drain water solenoid valve is opened and closed by a timer.

タイマーによる設定時間の経過後に、油水分離装置で分離され貯留された水分を油水分離装置から排出できる。   After the set time by the timer elapses, the water separated and stored by the oil / water separator can be discharged from the oil / water separator.

前記冷却水供給流路に設けられた冷却水用電磁弁と、前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する吐出空気温度センサと、前記吐出空気温度センサにより測定された温度に基づいて前記冷却水用電磁弁の開閉を制御するコントローラとを備え、前記コントローラは、前記吐出空気温度センサにより測定された温度が、予め設定した第1の供給開始温度より高いと判断すれば、前記冷却水用電磁弁を開弁し、前記吐出空気温度センサにより測定された温度が、予め設定した第1の供給停止温度以下と判断すれば、前記冷却水用電磁弁を閉弁することが好ましい。   A cooling water solenoid valve provided in the cooling water supply flow path, a discharge air temperature sensor for directly or indirectly measuring the temperature of the compressed air discharged from the compressor body, and the discharge air temperature sensor. And a controller for controlling the opening and closing of the cooling water solenoid valve based on the measured temperature, wherein the controller has a temperature measured by the discharge air temperature sensor higher than a preset first supply start temperature. The cooling water solenoid valve is opened, and if it is determined that the temperature measured by the discharge air temperature sensor is equal to or lower than the first supply stop temperature set in advance, the cooling water solenoid valve is opened. It is preferable to close the valve.

圧縮機本体から吐出される圧縮空気の温度を、第1の供給停止温度以下の温度となるように維持できる。   The temperature of the compressed air discharged from the compressor body can be maintained so as to be equal to or lower than the first supply stop temperature.

前記油冷式空気圧縮機を起動して予め設定した時間経過した後に、前記冷却水供給流路により前記冷却水の供給を開始することが好ましい。   It is preferable to start supplying the cooling water through the cooling water supply channel after a predetermined time has elapsed after the oil-cooled air compressor is started.

装置内で、冷却水の供給により凍結のトラブルが生じることを回避できる。   In the apparatus, it is possible to avoid the occurrence of freezing trouble due to the supply of cooling water.

前記冷却水供給流路に設けられた冷却水用電磁弁と、前記圧縮機本体の吸込空気の温度を測定する吸込空気温度センサ、前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する吐出空気温度センサ、前記油分離回収器内の温度を測定する油分離回収器温度センサ、及び周囲温度を測定する周囲温度センサのいずれか1つからなる温度検出センサと、前記温度検出センサにより測定された温度に基づいて前記冷却水用電磁弁の開閉を制御するコントローラとを備え、前記コントローラは、前記温度検出センサにより測定された温度が、予め設定した第2の供給開始温度より高いと判断すれば、前記冷却水用電磁弁を開弁し、前記温度検出センサにより測定された温度が、予め設定した第2の供給停止温度以下と判断すれば、前記冷却水用電磁弁を閉弁することが好ましい。   A solenoid valve for cooling water provided in the cooling water supply channel, an intake air temperature sensor for measuring the temperature of the intake air of the compressor body, and the temperature of the compressed air discharged from the compressor body directly or A temperature detection sensor comprising any one of a discharge air temperature sensor for indirectly measuring, an oil separator / collector temperature sensor for measuring a temperature in the oil separator / collector, and an ambient temperature sensor for measuring an ambient temperature; A controller for controlling opening and closing of the solenoid valve for cooling water based on the temperature measured by the temperature detection sensor, wherein the controller starts the second supply in which the temperature measured by the temperature detection sensor is set in advance. If it is determined that the temperature is higher than the temperature, the solenoid valve for cooling water is opened, and the temperature measured by the temperature detection sensor is determined to be equal to or lower than a preset second supply stop temperature. , It is preferable to close the solenoid valve for the cooling water.

温度検出センサの測定温度が、第2の供給停止温度以下である場合、冷却水の供給を停止することができ、圧縮機本体内で、冷却水の供給により凍結のトラブルが生じることを回避できる。   When the measured temperature of the temperature detection sensor is equal to or lower than the second supply stop temperature, the supply of cooling water can be stopped, and the occurrence of freezing trouble due to the supply of cooling water in the compressor body can be avoided. .

前記圧縮機本体、または前記冷却水供給流路にヒータを設け、前記温度検出センサの測定温度が、前記第2の供給停止温度以下である場合、前記ヒータを作動させることが好ましい。   It is preferable that a heater is provided in the compressor body or the cooling water supply flow path, and the heater is operated when the temperature measured by the temperature detection sensor is equal to or lower than the second supply stop temperature.

温度検出センサの測定温度が、第2の供給停止温度以下である場合、ヒータを作動させて冷却水を加熱できる。これにより、装置内で、冷却水の供給により凍結のトラブルが生じることを回避できる。   When the temperature measured by the temperature detection sensor is equal to or lower than the second supply stop temperature, the cooling water can be heated by operating the heater. Thereby, it can avoid that the trouble of freezing arises by supply of cooling water in an apparatus.

前記潤滑油の比重が0.95以下であることが好ましい。   The specific gravity of the lubricating oil is preferably 0.95 or less.

水より低比重の潤滑油、つまり水と比重差のある潤滑油を使用することで、油水分離装置において潤滑油から水分をより容易かつ確実に分離できる。   By using a lubricating oil having a specific gravity lower than that of water, that is, a lubricating oil having a specific gravity difference from water, water can be more easily and reliably separated from the lubricating oil in the oil / water separator.

前記潤滑油は疎水性を有することが好ましい。   The lubricating oil is preferably hydrophobic.

疎水性の潤滑油を使用することで、油水分離装置において潤滑油から水分をより容易かつ確実に分離できる。   By using hydrophobic lubricating oil, water can be more easily and reliably separated from the lubricating oil in the oil / water separator.

本発明は、吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、前記空気を冷却する冷却水を供給する冷却水供給流路とを備える油冷式空気圧縮機の制御方法であって、前記空気が前記圧縮機本体内で露点以下となるように、あるいは前記圧縮機本体から吐出される圧縮空気の温度である吐出温度が露点以下となるように、前記冷却水供給流路により冷却水を供給して前記空気を冷却する、油冷式空気圧縮機の制御方法を提供する。   The present invention includes an oil-cooled compressor main body that compresses and discharges sucked air, an oil separation and recovery device that separates and recovers lubricating oil from the compressed air discharged from the compressor main body, and the oil separation An oil-cooled air compressor control method comprising an oil supply passage connecting a recovery device and a suction side of the compressor body, and a cooling water supply passage for supplying cooling water for cooling the air, Cooling water is supplied by the cooling water supply channel so that the air is below the dew point in the compressor body or the discharge temperature, which is the temperature of the compressed air discharged from the compressor body, is below the dew point. A method for controlling an oil-cooled air compressor is provided that cools the air by supplying air.

圧縮機本体の吐出温度を露点以下とすることにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化すなわち品質劣化を防止できる。   By setting the discharge temperature of the compressor main body to a dew point or lower, it is possible to improve performance by increasing the amount of discharged air, and energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, it is possible to prevent the temperature deterioration of the lubricating oil, that is, the quality deterioration.

本発明の第1実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 10th Embodiment of this invention. 圧縮機本体の模式的な部分断面図。The typical fragmentary sectional view of a compressor main body.

(第1実施形態)
図1は本発明の第1実施形態に係る油冷式空気圧縮機1を示す。油冷式空気圧縮機1は、油冷式のスクリュー圧縮機である圧縮機本体2、及び油分離回収器3を備える。
(First embodiment)
FIG. 1 shows an oil-cooled air compressor 1 according to a first embodiment of the present invention. The oil-cooled air compressor 1 includes a compressor body 2 that is an oil-cooled screw compressor, and an oil separation and recovery device 3.

図11を併せて参照すると、圧縮機本体2は、ロータ室2aに収容された雌雄一対のロータ2b,2b(図示しない駆動装置により回転駆動される)を備える。また、ロータ室2aと連通する吸込口(吸込部)2cと吐出口2dとが設けられている。圧縮機本体2には、空気を露点以下に冷却する冷却水を供給する冷却水供給流路31が設けられている。冷却水供給流路31の端部は、冷却水供給口32に接続されている。本実施形態では、冷却水は水道水である。図11において符号P0で冷却水供給流路31の圧縮機本体2との接続位置、つまり給水位置を概念的に示す。冷却水供給流路31には、図示しないコントローラに制御される電磁弁(冷却水用電磁弁)33が設けられている。   Referring also to FIG. 11, the compressor main body 2 includes a pair of male and female rotors 2b, 2b (rotated and driven by a driving device not shown) housed in the rotor chamber 2a. In addition, a suction port (suction part) 2c and a discharge port 2d communicating with the rotor chamber 2a are provided. The compressor main body 2 is provided with a cooling water supply passage 31 for supplying cooling water for cooling the air below the dew point. The end of the cooling water supply channel 31 is connected to the cooling water supply port 32. In the present embodiment, the cooling water is tap water. In FIG. 11, the connection position with the compressor main body 2 of the cooling water supply flow path 31, that is, the water supply position is conceptually indicated by the symbol P 0. The cooling water supply passage 31 is provided with a solenoid valve (cooling water solenoid valve) 33 controlled by a controller (not shown).

圧縮機本体2の吐出口2dは吐出流路6を介して油分離回収器3に接続されている。   A discharge port 2 d of the compressor body 2 is connected to the oil separation / recovery device 3 through a discharge flow path 6.

油分離回収器3の下部の油溜りは給油流路7を介して圧縮機本体2の吸込口2cに接続されている。図11において符号P2で給油流路7の吸込口2cの接続位置、つまり給油位置を概念的に示す。本実施形態では、給油流路7に油冷却器4が設けられている。   An oil sump at the lower part of the oil separator / recovery unit 3 is connected to a suction port 2 c of the compressor body 2 via an oil supply passage 7. In FIG. 11, the connection position of the suction port 2 c of the oil supply passage 7, that is, the oil supply position is conceptually indicated by the symbol P <b> 2. In the present embodiment, the oil cooler 4 is provided in the oil supply passage 7.

圧縮機本体2のロータ室2a内では、ロータ2b,2bの歯溝とロータ室2aの内壁で形成される空間がロータ2b,2bの回転に伴って移動しつつ容積が減少し、それによって吸込口2cから吸引された空気が圧縮されて吐出口2dから吐出される。吐出口2dから吐出された圧縮空気は吐出流路6を通って油分離回収器3に流入する。油分離回収器3では、圧縮空気から潤滑油が分離され下部の油溜りに一時的に溜められる。潤滑油が分離された圧縮空気は油分離回収器3の出口3aから図示しない下流側へ送られる。   In the rotor chamber 2a of the compressor body 2, the space formed by the tooth spaces of the rotors 2b and 2b and the inner wall of the rotor chamber 2a is reduced as the rotor 2b and 2b rotate, and the volume is reduced thereby. The air sucked from the port 2c is compressed and discharged from the discharge port 2d. The compressed air discharged from the discharge port 2 d flows into the oil separation / recovery device 3 through the discharge flow path 6. In the oil separator / collector 3, the lubricating oil is separated from the compressed air and temporarily stored in a lower oil sump. The compressed air from which the lubricating oil has been separated is sent from the outlet 3a of the oil separator / recoverer 3 to the downstream side (not shown).

油分離回収器3の油溜りに溜められた潤滑油は、油分離回収器3と圧縮機本体2(吸込口2c)との差圧により給油流路7を通って圧縮機本体2(図11の給油位置P2)へ流れる。本実施形態では、給油流路7を通って圧縮機本体2へ流れる潤滑油は、油冷却器4を通過する際に予備冷却される。   The lubricating oil stored in the oil sump of the oil separator / recovery unit 3 passes through the oil supply passage 7 by the differential pressure between the oil separation / recovery unit 3 and the compressor body 2 (suction port 2c), and the compressor body 2 (FIG. 11). To the refueling position P2). In the present embodiment, the lubricating oil flowing to the compressor body 2 through the oil supply passage 7 is precooled when passing through the oil cooler 4.

一方、油冷式空気圧縮機1では、冷却水供給流路31により、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水が供給される。言い換えると、油冷式空気圧縮機1では、冷却水供給流路31により、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度(吐出温度)が露点(水の凝縮温度)以下となるように、吸込口2cから吸引された空気を冷却する冷却水が供給される。吸込口2cから吸引された空気が圧縮機本体2内で露点以下となり、圧縮機本体2内で圧縮空気内の水分が結露(凝縮)することにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。   On the other hand, in the oil-cooled air compressor 1, cooling water for cooling the air is supplied by the cooling water supply passage 31 so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. Is done. In other words, in the oil-cooled air compressor 1, the temperature (discharge temperature) of the compressed air discharged from the discharge port 2 d of the compressor body 2 is less than the dew point (water condensation temperature) by the cooling water supply flow path 31. Thus, cooling water for cooling the air sucked from the suction port 2c is supplied. The air sucked from the suction port 2c becomes the dew point or less in the compressor body 2, and the moisture in the compressed air is condensed (condensed) in the compressor body 2, thereby improving the performance by increasing the amount of discharged air. Energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented.

また、圧縮空気は、圧縮機本体2の吐出口2dから吐出された時点ですでに露点以下となっているので、圧縮空気の流れにおいて下流側となる位置に、圧縮空気冷却器ないしは圧縮空気の水分を除去するドライヤを設置する際には、その冷却能力をより小さいものとすることができる。また、冷却水供給流路31を設けることで、冷却水により圧縮機本体内でも潤滑油を冷却することができ、油冷却器4の消費電力を抑えることができる。   Further, since the compressed air is already below the dew point when it is discharged from the discharge port 2d of the compressor body 2, the compressed air cooler or the compressed air is placed at a position downstream of the compressed air flow. When installing a dryer for removing moisture, the cooling capacity can be reduced. Further, by providing the cooling water supply flow path 31, the lubricating oil can be cooled in the compressor body by the cooling water, and the power consumption of the oil cooler 4 can be suppressed.

(第2実施形態)
図2は本発明の第2実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。本実施形態の構成は、給油流路7に、油冷却器4に代えて潤滑油から水分を分離するための油水分離装置5を設ける点を除いて、第1実施形態の構成と同様である。
(Second Embodiment)
FIG. 2 shows an oil-cooled air compressor 1 according to the second embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point. The configuration of the present embodiment is the same as the configuration of the first embodiment except that an oil / water separator 5 for separating moisture from the lubricating oil is provided in the oil supply passage 7 instead of the oil cooler 4. .

吐出温度を露点以下としたことで、圧縮機本体2の吐出口2dから吐出される圧縮空気内には結露(凝縮)した水分が含まれる。また、圧縮空気内には冷却水供給流路31により供給された冷却水が含まれる。潤滑油内に混在する水分は潤滑油劣化の原因となる。しかし、油水分離装置5を設けて潤滑油と水分を分離することで、水分混在に起因する潤滑油劣化を防止できる。   By setting the discharge temperature to be equal to or lower than the dew point, condensed air is contained in the compressed air discharged from the discharge port 2d of the compressor body 2. The compressed air contains the cooling water supplied by the cooling water supply channel 31. Moisture mixed in the lubricating oil causes deterioration of the lubricating oil. However, by providing the oil / water separator 5 to separate the lubricating oil and the water, it is possible to prevent the deterioration of the lubricating oil due to the mixed water.

本実施形態の油冷式空気圧縮機1では、圧縮機本体2の吐出温度を露点以下とすることで性能向上と潤滑油の温度劣化防止を実現しつつ、圧縮機本体2の吐出温度を露点以下としたことによる潤滑油中の水分混在とそれに起因する潤滑油劣化とを、油水分離装置5を設けることで防止している。   In the oil-cooled air compressor 1 of the present embodiment, the discharge temperature of the compressor main body 2 is reduced to the dew point while the discharge temperature of the compressor main body 2 is set to the dew point or less to improve performance and prevent temperature degradation of the lubricating oil. By providing the oil / water separator 5, water mixing in the lubricating oil due to the following and deterioration of the lubricating oil resulting therefrom are prevented.

油水分離装置5において潤滑油から水分をより容易かつ確実に分離するためには、潤滑油は疎水性を有することが好ましい。また、水より低比重の潤滑油、つまり水と比重差のある潤滑油を使用することで、油水分離装置5において潤滑油から水分をより容易かつ確実に分離できる。例えば、潤滑油の比重が0.95以下であることが好ましい。   In order to more easily and reliably separate water from the lubricating oil in the oil / water separator 5, the lubricating oil preferably has hydrophobicity. Further, by using a lubricating oil having a specific gravity lower than that of water, that is, a lubricating oil having a specific gravity difference from that of water, the oil / water separator 5 can more easily and reliably separate water from the lubricating oil. For example, the specific gravity of the lubricating oil is preferably 0.95 or less.

(第3実施形態)
図3は本発明の第3実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。本実施形態の構成は、給油流路7に、油冷却器4を設けない点を除いて、第1実施形態の構成と同様である。
(Third embodiment)
FIG. 3 shows an oil-cooled air compressor 1 according to the third embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point. The configuration of the present embodiment is the same as the configuration of the first embodiment except that the oil cooler 4 is not provided in the oil supply passage 7.

吸込口2cから吸引された空気が圧縮機本体2内で露点以下となり、圧縮機本体2内で圧縮空気内の水分が結露(凝縮)することにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。   The air sucked from the suction port 2c becomes the dew point or less in the compressor body 2, and the moisture in the compressed air is condensed (condensed) in the compressor body 2, thereby improving the performance by increasing the amount of discharged air. Energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented.

(第4実施形態)
図4は本発明の第4実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。本実施形態の構成は、吐出流路6に、油水分離装置5を設ける点を除いて、第1実施形態の構成と同様である。本実施形態では、吐出流路6に油水分離装置5を設けているので、油分離回収器3内において水分が結露して油溜りにドレン水として溜まるのを防止できる。
(Fourth embodiment)
FIG. 4 shows an oil-cooled air compressor 1 according to the fourth embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point. The configuration of this embodiment is the same as the configuration of the first embodiment except that the oil / water separator 5 is provided in the discharge flow path 6. In the present embodiment, since the oil / water separator 5 is provided in the discharge flow path 6, it is possible to prevent moisture from condensing in the oil separator / collector 3 and accumulating as drain water in the oil reservoir.

第4実施形態のその他の作用は、第1実施形態と同様である。   Other operations of the fourth embodiment are the same as those of the first embodiment.

(第5実施形態)
図5は本発明の第5実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。本実施形態の構成は、油分離回収器3内に、油水分離装置5を設ける点を除いて、第1実施形態の構成と同様である。油分離回収器3内に油水分離装置5を設けることで、油分離回収器3と油水分離装置5とをそれぞれ別個に設ける場合と比較して、油冷式空気圧縮機1の設置投影面積の増加の回避できる。
(Fifth embodiment)
FIG. 5 shows an oil-cooled air compressor 1 according to the fifth embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point. The configuration of the present embodiment is the same as the configuration of the first embodiment except that the oil / water separator 5 is provided in the oil separator / recovery unit 3. By providing the oil / water separation device 5 in the oil separation / recovery device 3, compared to the case where the oil separation / recovery device 3 and the oil / water separation device 5 are provided separately, the installation projected area of the oil-cooled air compressor 1 is reduced. Increase can be avoided.

第5実施形態のその他の作用は、第1実施形態と同様である。   Other operations of the fifth embodiment are the same as those of the first embodiment.

(第6実施形態)
図6は本発明の第6実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。
(Sixth embodiment)
FIG. 6 shows an oil-cooled air compressor 1 according to a sixth embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point.

本実施形態では、給油流路7の油冷却器4よりも上流側から分岐して油冷却器4よりも下流側で給油流路7に合流するバイパス流路12が設けられている。油分離回収器3と圧縮機本体2との差圧により、潤滑油がバイパス流路12を通って油冷却器4を迂回して流れる。つまり、ポンプを用いることなく、潤滑油を油水分離装置5に流入させることができる。油冷却器4と油水分離装置5を異なる流路に並列的に配置したことで、油分離回収器3から圧縮機本体2までの流路全体として潤滑油の流動抵抗を低減できる。   In the present embodiment, a bypass flow path 12 that branches from the upstream side of the oil cooler 4 of the oil supply flow path 7 and merges with the oil supply flow path 7 on the downstream side of the oil cooler 4 is provided. Due to the differential pressure between the oil separator / collector 3 and the compressor body 2, the lubricating oil flows through the bypass flow path 12 and bypasses the oil cooler 4. That is, the lubricating oil can be allowed to flow into the oil / water separator 5 without using a pump. By arranging the oil cooler 4 and the oil / water separator 5 in parallel in different flow paths, the flow resistance of the lubricating oil can be reduced as a whole flow path from the oil separator / collector 3 to the compressor body 2.

第6実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the sixth embodiment are the same as those of the first embodiment.

(第7実施形態)
図7は本発明の第7実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。
(Seventh embodiment)
FIG. 7 shows an oil-cooled air compressor 1 according to a seventh embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point.

本実施形態では、油水分離装置5の底部にドレン水を排出するドレン排出部5aが設けられている。油水分離装置5のドレン排出部5aは、ドレン水供給流路34を介して圧縮機本体2の吸込口2cに接続されている。図11において符号P1でドレン水供給流路34の吸込口2cの接続位置、つまり給水位置を概念的に示す。ドレン水供給流路34により、油水分離装置5のドレン水を冷却水として圧縮機本体2の吸込口2cに戻すことで、油分が残留する可能性を有するドレン水から油分を除去してドレン水を排出する必要性を排除できる。   In the present embodiment, a drain discharge portion 5 a for discharging drain water is provided at the bottom of the oil / water separator 5. The drain discharge part 5 a of the oil / water separator 5 is connected to the suction port 2 c of the compressor body 2 via the drain water supply flow path 34. In FIG. 11, the connection position of the suction port 2 c of the drain water supply flow path 34, that is, the water supply position is conceptually indicated by the symbol P <b> 1. The drain water supply channel 34 removes the oil from the drain water having the possibility of remaining oil by returning the drain water of the oil / water separator 5 as cooling water to the suction port 2c of the compressor main body 2, thereby removing the drain water. Can eliminate the need to discharge

第7実施形態のその他の構成及び作用は、第6実施形態と同様である。   Other configurations and operations of the seventh embodiment are the same as those of the sixth embodiment.

図2,4,5において二点鎖線で示すように、第2,4,5実施形態についても、本実施形態と同様に、油水分離装置5の底部にドレン排出部5aを設け、ドレン排出部5aと圧縮機本体2の吸込口2cとを接続するドレン水供給流路34を設けてもよい。   As shown by a two-dot chain line in FIGS. 2, 4, and 5, the second, fourth, and fifth embodiments are also provided with a drain discharge portion 5 a at the bottom of the oil / water separator 5, as in the present embodiment. You may provide the drain water supply flow path 34 which connects 5a and the suction inlet 2c of the compressor main body 2. FIG.

(第8実施形態)
図8は本発明の第8実施形態に係る油冷式空気圧縮機1を示す。冷却水供給流路31は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように、前記空気を冷却する冷却水を供給する。言い換えると、冷却水供給流路31は、圧縮機本体2の吐出温度が露点以下となるように、吸込口2cから吸引された空気を冷却する冷却水を供給する。ドレン水供給流路34には、電磁弁(ドレン水用電磁弁)35が設けられている。電磁弁35には、コントローラ19に接続されたタイマー36が設けられている。タイマー36による設定時間の経過後に、油水分離装置5で分離され貯留された水分を油水分離装置5から排出できる。
(Eighth embodiment)
FIG. 8 shows an oil-cooled air compressor 1 according to the eighth embodiment of the present invention. The cooling water supply channel 31 supplies cooling water that cools the air so that the air sucked from the suction port 2 c is below the dew point in the compressor body 2. In other words, the cooling water supply channel 31 supplies the cooling water that cools the air sucked from the suction port 2c so that the discharge temperature of the compressor body 2 is equal to or lower than the dew point. The drain water supply flow path 34 is provided with a solenoid valve (drain water solenoid valve) 35. The electromagnetic valve 35 is provided with a timer 36 connected to the controller 19. After the set time by the timer 36 elapses, the water separated and stored by the oil / water separator 5 can be discharged from the oil / water separator 5.

第8実施形態のその他の構成及び作用は、第7実施形態と同様である。   Other configurations and operations of the eighth embodiment are the same as those of the seventh embodiment.

(第9実施形態)
図9は本発明の第9実施形態に係る油冷式空気圧縮機1を示す。
(Ninth embodiment)
FIG. 9 shows an oil-cooled air compressor 1 according to the ninth embodiment of the present invention.

圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定する吐出空気温度センサ18が設けられている。本実施形態では、吐出空気温度センサ18は油分離回収器3に設けられ、油分離回収器3の温度を測定することで、吐出温度を間接的に測定する。しかし、吐出空気温度センサ18を吐出口2d又はその近傍に配置し、吐出温度を直接測定してもよい。また、油分離回収器3以外の箇所に吐出空気温度センサ18を配置することで、吐出温度を間接的に測定してもよい。   A discharge air temperature sensor 18 that directly or indirectly measures the discharge temperature that is the temperature of the compressed air discharged from the discharge port 2d of the compressor body 2 is provided. In the present embodiment, the discharge air temperature sensor 18 is provided in the oil separation / recovery unit 3 and measures the discharge temperature indirectly by measuring the temperature of the oil separation / recovery unit 3. However, the discharge air temperature sensor 18 may be disposed at or near the discharge port 2d to directly measure the discharge temperature. Further, the discharge temperature may be indirectly measured by disposing the discharge air temperature sensor 18 at a place other than the oil separator / collector 3.

コントローラ19は、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度が露点以下となるように、吐出空気温度センサ18の検出温度に応じて冷却水供給流路31の電磁弁33を制御する。具体的には、コントローラ19は、吐出空気温度センサ18により測定された温度に基づいて、予め設定した第1の供給開始温度(露点温度以下の設定温度)より高いと判断すれば、電磁弁33を開弁し、冷却水を供給して、吸込口2cから吸引された空気を冷却する。一方、コントローラ19は、吐出空気温度センサ18により測定された温度に基づいて、予め設定した、第1の供給開始温度より低い第1の供給停止温度以下であると判断すれば、電磁弁33を閉弁し、冷却水の供給を停止、すなわち吸込口2cから吸引された空気の冷却を停止する。圧縮機本体2から吐出される圧縮空気の温度を、第1の供給停止温度以下の温度となるように維持できる。   The controller 19 adjusts the cooling water supply flow path 31 according to the detected temperature of the discharge air temperature sensor 18 so that the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2d of the compressor main body 2, is equal to or lower than the dew point. The electromagnetic valve 33 is controlled. Specifically, if the controller 19 determines that the temperature is higher than a preset first supply start temperature (set temperature equal to or lower than the dew point temperature) based on the temperature measured by the discharge air temperature sensor 18, the solenoid valve 33. Is opened and cooling water is supplied to cool the air sucked from the suction port 2c. On the other hand, if the controller 19 determines that the temperature is equal to or lower than the first supply stop temperature lower than the first supply start temperature set in advance based on the temperature measured by the discharge air temperature sensor 18, the controller 19 The valve is closed and the supply of the cooling water is stopped, that is, the cooling of the air sucked from the suction port 2c is stopped. The temperature of the compressed air discharged from the compressor body 2 can be maintained so as to be equal to or lower than the first supply stop temperature.

第9実施形態のその他の構成及び作用は、第8実施形態と同様である。   Other configurations and operations of the ninth embodiment are the same as those of the eighth embodiment.

(第10実施形態)
図10は本発明の第10実施形態に係る油冷式空気圧縮機1を示す。
(10th Embodiment)
FIG. 10 shows an oil-cooled air compressor 1 according to a tenth embodiment of the present invention.

油分離回収器3に温度検出センサとしての吐出空気温度センサ18が設けられている。電磁弁33と圧縮機本体2との間の冷却水供給流路31に、ヒータ37が設けられている。   The oil separator / collector 3 is provided with a discharge air temperature sensor 18 as a temperature detection sensor. A heater 37 is provided in the cooling water supply passage 31 between the electromagnetic valve 33 and the compressor body 2.

コントローラ19は、吐出空気温度センサ18により測定された温度に基づいて、予め設定した第2の供給開始温度(凍結温度より高い設定温度)より高いと判断すれば、冷却水供給流路31の電磁弁33を開弁し、冷却水を供給して、吸込口2cから吸引された空気を冷却する。一方、コントローラ19は、吐出空気温度センサ18により測定された温度に基づいて、予め設定した第2の供給停止温度以下であると判断すれば、電磁弁33を閉弁し、冷却水の供給を停止する。その後、コントローラ19は、ヒータ37を作動させる。吐出空気温度センサ18の測定温度が、第2の供給停止温度(凍結温度以下の設定温度)以下である場合、冷却水の供給を停止することができ、圧縮機本体2内で、冷却水の供給により凍結のトラブルが生じることを回避できる。また、ヒータ37を作動させて冷却水を加熱できるので、装置内で、冷却水の供給により凍結のトラブルが生じることを回避できる。なお、温度検出センサは、図10で二点鎖線で示すように、圧縮機本体2の吸込空気の温度を測定する吸込空気温度センサ38、吐出流路6に設けられた吐出温度を測定する吐出流路温度センサ39、及び周囲温度を測定する周囲温度センサ40のいずれか1つであってもよい。   If the controller 19 determines that the temperature is higher than a preset second supply start temperature (a set temperature higher than the freezing temperature) based on the temperature measured by the discharge air temperature sensor 18, the controller 19 The valve 33 is opened and cooling water is supplied to cool the air sucked from the suction port 2c. On the other hand, if the controller 19 determines that the temperature is equal to or lower than the preset second supply stop temperature based on the temperature measured by the discharge air temperature sensor 18, the controller 19 closes the solenoid valve 33 and supplies the cooling water. Stop. Thereafter, the controller 19 operates the heater 37. When the measured temperature of the discharge air temperature sensor 18 is equal to or lower than the second supply stop temperature (set temperature equal to or lower than the freezing temperature), the supply of cooling water can be stopped, and the cooling water is It is possible to avoid the problem of freezing due to the supply. Further, since the cooling water can be heated by operating the heater 37, it is possible to avoid the occurrence of freezing trouble due to the supply of the cooling water in the apparatus. The temperature detection sensor includes a suction air temperature sensor 38 that measures the temperature of the suction air of the compressor main body 2 and a discharge temperature that measures the discharge temperature provided in the discharge flow path 6, as shown by a two-dot chain line in FIG. 10. Any one of the flow path temperature sensor 39 and the ambient temperature sensor 40 that measures the ambient temperature may be used.

なお、上述の実施形態の説明では説明を省略しているが、圧縮機本体2から吐出される圧縮空気の温度が露点以上であるか否かの判断に必要な露点の求め方については、特に限定されない。例えば、吐出直前あるいは直後における圧縮空気の圧力測定値及び温度測定値から求めても良く、油分離回収器3内の圧縮空気の圧力測定値及び油分離回収器3内の圧縮空気あるいは油の温度測定値から求めても良い。後者の場合、吐出口2dから油分離回収器3までの圧損が実質的に無視できないときは、露点の算出に必要な圧力の値は油分離回収器3内の圧力測定値に上記圧損を考慮して求めることができる。また、後者の場合、吐出口2dから油分離回収器3までに生じる温度降下を踏まえ、露点の算出に必要な温度は、油分離回収器3内の圧縮空気あるいは油の温度測定値に吐出後の放熱量(吐出流路を構成する配管類と油分離回収器からの放熱量)を考慮して求めることができる。   In addition, although description is abbreviate | omitted in description of the above-mentioned embodiment, especially about the method of calculating | requiring the dew point required for judgment whether the temperature of the compressed air discharged from the compressor main body 2 is more than a dew point. It is not limited. For example, the pressure measurement value and the temperature measurement value of the compressed air immediately before or immediately after the discharge may be obtained. The pressure measurement value of the compressed air in the oil separation and recovery unit 3 and the temperature of the compressed air or oil in the oil separation and recovery unit 3 You may obtain | require from a measured value. In the latter case, when the pressure loss from the discharge port 2d to the oil separation / recovery unit 3 is not substantially negligible, the pressure value necessary for calculating the dew point takes the pressure loss into consideration in the pressure measurement value in the oil separation / recovery unit 3. Can be obtained. In the latter case, the temperature required for calculating the dew point is determined by measuring the temperature of the compressed air or oil in the oil separation / recovery unit 3 after being discharged based on the temperature drop that occurs from the discharge port 2d to the oil separation / recovery unit 3. The amount of heat released can be determined in consideration of the amount of heat released from the pipes and oil separator / collector constituting the discharge flow path.

また、上述の実施形態の説明では説明を省略しているが、油分離回収器3の底面に配管を接続する場合、油分離回収器3の底部を球面状に形成して最下部に配管を接続することが望ましい。こうすることで水の混入の多い油を抜き出すことができる。   Moreover, although description is abbreviate | omitted in description of the above-mentioned embodiment, when connecting piping to the bottom face of the oil separation collection | recovery device 3, the bottom part of the oil separation collection | recovery device 3 is formed in spherical shape, and piping is used for the lowest part. It is desirable to connect. By doing so, oil with much water contamination can be extracted.

また、上述の実施形態を説明する模式図においては、ロータ2b,2bを支持する軸受や、その軸受に対して油を供給する軸受給油ラインのような周知の構造は図示を省略されている。   Moreover, in the schematic diagram explaining the above-mentioned embodiment, illustration is abbreviate | omitted in the well-known structure like the bearing which supports rotor 2b, 2b and the bearing oil supply line which supplies oil with respect to the bearing.

なお、本発明の油冷式空気圧縮機1は、前記実施形態の構成に限定されるものではなく、種々の変更が可能である。   The oil-cooled air compressor 1 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.

第1から第10実施形態において、冷却水供給流路31を図11における符号P0で示した位置に接続する構成に代えて、符号P2’(圧縮過程にあるロータ室2aにおけるロータ2b,2bへの給水位置)、P3(ロータ室2aの吸込口2cの直後の空間部(閉じ込み直後)への給水位置)、P4(ロータ室2aの吐出口2dの直前の空間部(吐出直前)への給水位置)で示した位置の少なくとも1つに接続する構成にしてもよい。また、冷却水供給流路31を符号P0で示した位置と、符号P2’、P3、P4で示した位置の少なくとも1つとに接続する構成にしてもよい。なお、符号P0で示した位置は、吸込口2cへの供給位置であり、符号P2’、P3、P4で示した位置は、ロータ2b,2bの歯溝への供給位置である。   In the first to tenth embodiments, instead of the configuration in which the cooling water supply flow path 31 is connected to the position indicated by the symbol P0 in FIG. 11, the symbol P2 ′ (to the rotors 2b and 2b in the rotor chamber 2a in the compression process). Water supply position), P3 (water supply position to the space immediately after the suction port 2c of the rotor chamber 2a (immediately after closing)), P4 (space immediately before the discharge port 2d of the rotor chamber 2a (immediately before discharge)) You may make it the structure connected to at least 1 of the position shown by (water supply position). Further, the cooling water supply channel 31 may be connected to the position indicated by the symbol P0 and at least one of the positions indicated by the symbols P2 ', P3, and P4. In addition, the position shown with the code | symbol P0 is a supply position to the suction inlet 2c, and the position shown with code | symbol P2 ', P3, and P4 is a supply position to the tooth gap of the rotors 2b and 2b.

第1から第10実施形態において、油冷式空気圧縮機1を起動して予め設定した時間経過した後に、冷却水供給流路31により冷却水の供給を開始してもよい。装置内で、冷却水の供給により凍結のトラブルが生じることを回避できる。   In the first to tenth embodiments, the cooling water supply channel 31 may start supplying cooling water after the oil-cooled air compressor 1 is started and a preset time has elapsed. In the apparatus, it is possible to avoid the occurrence of freezing trouble due to the supply of cooling water.

ヒータ37は、冷却水供給流路31に設けずに、図10において二点鎖線で示すように、圧縮機本体2に設けてもよい。また、ヒータ37は、冷却水供給流路31、及び圧縮機本体2の両方に設けてもよい。   The heater 37 may be provided in the compressor main body 2 as shown by a two-dot chain line in FIG. 10 without being provided in the cooling water supply flow path 31. Further, the heater 37 may be provided in both the cooling water supply channel 31 and the compressor body 2.

第6から第10実施形態において、バイパス流路12の油水分離装置5の上流側または下流側に潤滑油の流れを一時的に遮断する電磁弁を設けてもよい。これにより、油冷却器4での予備冷却される潤滑油の量を増減させることができる。また、バイパス流路12の油水分離装置5の上流側および下流側の両方に潤滑油の流れを一時的に遮断する電磁弁を設けてもよい。これにより、圧縮機の運転を継続しながら油水分離装置5の点検を行うことが出来る。   In the sixth to tenth embodiments, an electromagnetic valve for temporarily blocking the flow of the lubricating oil may be provided on the upstream side or the downstream side of the oil / water separator 5 of the bypass flow path 12. Thereby, the quantity of the lubricating oil preliminarily cooled in the oil cooler 4 can be increased or decreased. Moreover, you may provide the solenoid valve which interrupts | blocks the flow of lubricating oil temporarily in both the upstream and downstream of the oil-water separator 5 of the bypass flow path 12. Thereby, the oil-water separator 5 can be inspected while continuing the operation of the compressor.

以上で説明した冷却水は、水に添加剤等を加えたものや、水を主成分とするものを含む。   The cooling water demonstrated above contains what added the additive etc. to water, and the thing which has water as a main component.

1 油冷式空気圧縮機
2 圧縮機本体
2a ロータ室
2b ロータ
2c 吸込口(吸込部)
2d 吐出口
3 油分離回収器
3a 出口
4 油冷却器
5 油水分離装置
5a ドレン排出部
6 吐出流路
7 給油流路
12 バイパス流路
18 吐出空気温度センサ
19 コントローラ
31 冷却水供給流路
32 冷却水供給口
33 電磁弁(冷却水用電磁弁)
34 ドレン水供給流路
35 電磁弁(ドレン水用電磁弁)
36 タイマー
37 ヒータ
38 吸込空気温度センサ
39 吐出流路温度センサ
40 周囲温度センサ
DESCRIPTION OF SYMBOLS 1 Oil-cooled air compressor 2 Compressor main body 2a Rotor chamber 2b Rotor 2c Suction port (suction part)
2d Discharge port 3 Oil separator / collector 3a Outlet 4 Oil cooler 5 Oil / water separator 5a Drain discharge part 6 Discharge flow path 7 Oil supply flow path 12 Bypass flow path 18 Discharge air temperature sensor 19 Controller 31 Cooling water supply flow path 32 Cooling water Supply port 33 Solenoid valve (solenoid valve for cooling water)
34 Drain water supply flow path 35 Solenoid valve (solenoid valve for drain water)
36 Timer 37 Heater 38 Suction air temperature sensor 39 Discharge flow path temperature sensor 40 Ambient temperature sensor

Claims (13)

吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、
前記空気が前記圧縮機本体内で露点以下となるように、前記空気を冷却する冷却水を供給する冷却水供給流路と
を備える、油冷式空気圧縮機。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
An oil supply passage connecting the oil separator and the suction side of the compressor body;
An oil-cooled air compressor, comprising: a cooling water supply passage that supplies cooling water that cools the air so that the air has a dew point or less in the compressor body.
前記冷却水の供給位置は前記圧縮機本体の吸込部と圧縮歯溝のうち少なくとも一方である、請求項1に記載の油冷式空気圧縮機。   2. The oil-cooled air compressor according to claim 1, wherein a supply position of the cooling water is at least one of a suction portion and a compression tooth groove of the compressor body. 前記冷却水、及び空気圧縮時に前記圧縮機本体内で発生させた水分を、前記圧縮機本体外で前記潤滑油と分離する油水分離装置を備える、請求項1または2に記載の油冷式空気圧縮機。   The oil-cooled air according to claim 1 or 2, further comprising an oil-water separator that separates the cooling water and moisture generated in the compressor body during air compression from the lubricating oil outside the compressor body. Compressor. 前記油水分離装置に設けられ、ドレン水を排出するドレン排出部と、
前記ドレン排出部と前記圧縮機本体の吸込側とを接続し、前記冷却水として前記ドレン水を供給するドレン水供給流路と
を備える、請求項3に記載の油冷式空気圧縮機。
A drain discharger provided in the oil / water separator for discharging drain water;
The oil-cooled air compressor according to claim 3, further comprising: a drain water supply channel that connects the drain discharge unit and a suction side of the compressor body and supplies the drain water as the cooling water.
前記ドレン水供給流路にドレン水用電磁弁を設け、
前記ドレン水用電磁弁はタイマーにより開閉される、請求項4に記載の油冷式空気圧縮機。
A drain water solenoid valve is provided in the drain water supply channel,
The oil-cooled air compressor according to claim 4, wherein the drain water solenoid valve is opened and closed by a timer.
前記冷却水供給流路に設けられた冷却水用電磁弁と、
前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する吐出空気温度センサと、
前記吐出空気温度センサにより測定された温度に基づいて前記冷却水用電磁弁の開閉を制御するコントローラと
を備え、
前記コントローラは、前記吐出空気温度センサにより測定された温度が、予め設定した第1の供給開始温度より高いと判断すれば、前記冷却水用電磁弁を開弁し、前記吐出空気温度センサにより測定された温度が、予め設定した第1の供給停止温度以下と判断すれば、前記冷却水用電磁弁を閉弁する、請求項1ないし5のいずれか1項に記載の油冷式空気圧縮機。
A solenoid valve for cooling water provided in the cooling water supply flow path;
A discharge air temperature sensor for directly or indirectly measuring the temperature of the compressed air discharged from the compressor body;
A controller that controls opening and closing of the electromagnetic valve for cooling water based on the temperature measured by the discharge air temperature sensor,
If the controller determines that the temperature measured by the discharge air temperature sensor is higher than a preset first supply start temperature, the controller opens the cooling water solenoid valve and measures the temperature by the discharge air temperature sensor. The oil-cooled air compressor according to any one of claims 1 to 5, wherein when the determined temperature is equal to or lower than a preset first supply stop temperature, the cooling water solenoid valve is closed. .
前記油冷式空気圧縮機を起動して予め設定した時間経過した後に、前記冷却水供給流路により前記冷却水の供給を開始する、請求項1ないし6のいずれか1項に油冷式空気圧縮機。   The oil-cooled air according to any one of claims 1 to 6, wherein the cooling water supply passage is started after the oil-cooled air compressor is started and a preset time has elapsed. Compressor. 前記冷却水供給流路に設けられた冷却水用電磁弁と、
前記圧縮機本体の吸込空気の温度を測定する吸込空気温度センサ、前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する吐出空気温度センサ、前記油分離回収器内の温度を測定する油分離回収器温度センサ、及び周囲温度を測定する周囲温度センサのいずれか1つからなる温度検出センサと、
前記温度検出センサにより測定された温度に基づいて前記冷却水用電磁弁の開閉を制御するコントローラと
を備え、
前記コントローラは、前記温度検出センサにより測定された温度が、予め設定した第2の供給開始温度より高いと判断すれば、前記冷却水用電磁弁を開弁し、前記温度検出センサにより測定された温度が、予め設定した第2の供給停止温度以下と判断すれば、前記冷却水用電磁弁を閉弁する、請求項1に記載の油冷式空気圧縮機。
A solenoid valve for cooling water provided in the cooling water supply flow path;
An intake air temperature sensor for measuring the temperature of the intake air of the compressor body, a discharge air temperature sensor for directly or indirectly measuring the temperature of the compressed air discharged from the compressor body, A temperature detection sensor comprising any one of an oil separator / collector temperature sensor for measuring temperature and an ambient temperature sensor for measuring ambient temperature;
A controller for controlling opening and closing of the cooling water solenoid valve based on the temperature measured by the temperature detection sensor,
If the controller determines that the temperature measured by the temperature detection sensor is higher than a preset second supply start temperature, the controller opens the cooling water solenoid valve and measures the temperature by the temperature detection sensor. The oil-cooled air compressor according to claim 1, wherein if the temperature is determined to be equal to or lower than a preset second supply stop temperature, the cooling water solenoid valve is closed.
前記圧縮機本体、または前記冷却水供給流路にヒータを設け、
前記温度検出センサの測定温度が、前記第2の供給停止温度以下である場合、前記ヒータを作動させる、請求項8に記載の油冷式空気圧縮機。
A heater is provided in the compressor body or the cooling water supply flow path,
The oil-cooled air compressor according to claim 8, wherein the heater is operated when a temperature measured by the temperature detection sensor is equal to or lower than the second supply stop temperature.
前記潤滑油の比重が0.95以下である、請求項1ないし9のいずれか1項に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to any one of claims 1 to 9, wherein a specific gravity of the lubricating oil is 0.95 or less. 前記潤滑油は疎水性を有する、請求項1ないし10のいずれか1項に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to any one of claims 1 to 10, wherein the lubricating oil has hydrophobicity. 吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、
前記空気を冷却する冷却水を供給する冷却水供給流路と
を備える油冷式空気圧縮機の制御方法であって、
前記空気が前記圧縮機本体内で露点以下となるように、前記冷却水供給流路により冷却水を供給して前記空気を冷却する、油冷式空気圧縮機の制御方法。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
An oil supply passage connecting the oil separator and the suction side of the compressor body;
A control method for an oil-cooled air compressor comprising: a cooling water supply passage for supplying cooling water for cooling the air,
A control method for an oil-cooled air compressor, wherein cooling air is supplied by the cooling water supply flow path to cool the air so that the air is below a dew point in the compressor body.
吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、
前記空気を冷却する冷却水を供給する冷却水供給流路と
を備える油冷式空気圧縮機の制御方法であって、
前記圧縮機本体から吐出される圧縮空気の温度が露点以下となるように、前記冷却水供給流路により冷却水を供給して前記空気を冷却する、油冷式空気圧縮機の制御方法。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
An oil supply passage connecting the oil separator and the suction side of the compressor body;
A control method for an oil-cooled air compressor comprising: a cooling water supply passage for supplying cooling water for cooling the air,
A control method for an oil-cooled air compressor, wherein cooling air is supplied through the cooling water supply channel to cool the air so that the temperature of the compressed air discharged from the compressor main body is lower than a dew point.
JP2013210349A 2013-10-07 2013-10-07 Oil-cooled air compressor and control method thereof Active JP5980754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210349A JP5980754B2 (en) 2013-10-07 2013-10-07 Oil-cooled air compressor and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210349A JP5980754B2 (en) 2013-10-07 2013-10-07 Oil-cooled air compressor and control method thereof

Publications (2)

Publication Number Publication Date
JP2015075001A true JP2015075001A (en) 2015-04-20
JP5980754B2 JP5980754B2 (en) 2016-08-31

Family

ID=53000077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210349A Active JP5980754B2 (en) 2013-10-07 2013-10-07 Oil-cooled air compressor and control method thereof

Country Status (1)

Country Link
JP (1) JP5980754B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122398A (en) * 2016-01-06 2017-07-13 株式会社神戸製鋼所 Oil-cooled air compressor
CN107956696A (en) * 2017-11-30 2018-04-24 海宁善能制冷科技有限公司 A kind of two-phase streaming energy-saving air compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649792U (en) * 1992-12-07 1994-07-08 フジ産業株式会社 Oil-water automatic separator in screw air compressor
JP2011149382A (en) * 2010-01-25 2011-08-04 Hitachi Industrial Equipment Systems Co Ltd Water circulation type compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649792U (en) * 1992-12-07 1994-07-08 フジ産業株式会社 Oil-water automatic separator in screw air compressor
JP2011149382A (en) * 2010-01-25 2011-08-04 Hitachi Industrial Equipment Systems Co Ltd Water circulation type compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122398A (en) * 2016-01-06 2017-07-13 株式会社神戸製鋼所 Oil-cooled air compressor
CN107956696A (en) * 2017-11-30 2018-04-24 海宁善能制冷科技有限公司 A kind of two-phase streaming energy-saving air compressor

Also Published As

Publication number Publication date
JP5980754B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6412992B2 (en) Oil-cooled air compressor
CN104296421B (en) Air conditioner and oil return control method thereof
US10711784B2 (en) Air compressor with drain pipe arrangement
CN104343683B (en) Oil-cooled air compressor and control method thereof
JP5966364B2 (en) Refrigeration equipment
CN104251575B (en) Compressor assembly and there is its air-conditioner
JPH09303279A (en) Oil-cooling type screw compressor
JP2015038407A (en) Refrigerating device
CN102326041B (en) Device for separating lubricant from refrigerant lubricant/gas mixture discharged from at least one refrigerating compressor
JP2019218931A (en) Screw compressor
JP2015038406A (en) Refrigerating device
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
JP2011202817A (en) Refrigerating cycle device
JP4214013B2 (en) Oil-cooled air compressor
JP6053026B2 (en) Oil-cooled air compressor
JP2009180134A (en) Water-lubricated compressor
JP2009287844A (en) Refrigeration device
JP5680519B2 (en) Water jet screw compressor
JP5775061B2 (en) Compression device
JP5997670B2 (en) Oil-cooled air compressor
KR101330332B1 (en) Two-stage screw compression type refrigerating device
TWI711760B (en) Oil-injected multistage compressor device and method for controlling a compressor device
JP2018025166A (en) Air compression system
JP6000108B2 (en) Oil return circuit and air compression apparatus provided with the same
JP2008039200A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350