JP2015074806A - AgCu-BASED CONDUCTIVE FILLER POWDER - Google Patents

AgCu-BASED CONDUCTIVE FILLER POWDER Download PDF

Info

Publication number
JP2015074806A
JP2015074806A JP2013211920A JP2013211920A JP2015074806A JP 2015074806 A JP2015074806 A JP 2015074806A JP 2013211920 A JP2013211920 A JP 2013211920A JP 2013211920 A JP2013211920 A JP 2013211920A JP 2015074806 A JP2015074806 A JP 2015074806A
Authority
JP
Japan
Prior art keywords
powder
agcu
conductive filler
phase
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013211920A
Other languages
Japanese (ja)
Inventor
哲嗣 久世
Tetsutsugu Kuze
哲嗣 久世
哲朗 仮屋
Tetsuro Kariya
哲朗 仮屋
山本 隆久
Takahisa Yamamoto
隆久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013211920A priority Critical patent/JP2015074806A/en
Priority to PCT/JP2014/076704 priority patent/WO2015053222A1/en
Priority to TW103135060A priority patent/TW201527458A/en
Publication of JP2015074806A publication Critical patent/JP2015074806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Abstract

PROBLEM TO BE SOLVED: To provide an AgCu-based conductive filler powder having electric conductivity comparable to pure Ag and being an alloy powder as atomization without needs for Ag coating by controlling a component enhancing effects which an AgCu phase that there are many ultrafine eutectic structures and Ag and less Cu occupies a powder surface layer.SOLUTION: There is provided an AgCu-based conductive filler powder haing an AgCu phase 3 which is atomization alloy powder containing Cu-Ag alloy having the Ag percentage content of 1 to 30 mass% and the atomization alloy powder is as atomization and the Ag mass ratio to Cu, X=(M/M), is 1.2 or more on an atomization powder outermost surface 2 shown schematically in a figure 2.

Description

本発明は、導電性と放熱性に優れ、かつ製造コストが低く、医療用センサーや電子機器などに用いるAg導電フィラー粉末に関する。   The present invention relates to an Ag conductive filler powder that is excellent in electrical conductivity and heat dissipation, has a low manufacturing cost, and is used for medical sensors, electronic devices and the like.

従来、導電性接着剤として利用されるAg導電フィラー粉末では、配合される導電性フィラーとして、銀粒子が広く利用されている。銀自体、熱伝導性、電気伝導性に優れた金属であり、また、銀粒子の表面に形成される酸化被膜層の伸長も進み難いという利点を具えている。加えて、延性、展性に優れており、銀粒子相互の接触で凝集後、その銀粒子相互の接触部面積の拡大が容易に進むため、良好な導電性を示す導電性接着層が形成される。   Conventionally, in an Ag conductive filler powder used as a conductive adhesive, silver particles are widely used as a conductive filler to be blended. Silver itself is a metal excellent in thermal conductivity and electrical conductivity, and has an advantage that the extension of the oxide film layer formed on the surface of silver particles is difficult to proceed. In addition, it is excellent in ductility and malleability, and after agglomeration due to contact between silver particles, the contact area between the silver particles easily expands, so that a conductive adhesive layer showing good conductivity is formed. The

このようなAg導電フィラー粉末は、純Agを用いたり、母材となるCuにAgをコーティングすることで得られるが、純Agはコスト面、Agコーティングはプロセス面がコスト高になる。この問題を同時に解決する、急速冷却によって粉末表面にAgが濃化した導電フィラー用粉末の詳細な検討例は存在しない。   Such Ag conductive filler powder can be obtained by using pure Ag or by coating Ag on Cu as a base material. However, pure Ag is costly, and Ag coating is costly in terms of process. There is no detailed examination example of a conductive filler powder in which Ag is concentrated on the powder surface by rapid cooling, which simultaneously solves this problem.

現状、Ag導電フィラー粉末は、銅と銀との総重量を100としたとき、銅の重量比率が50以下であることを特徴とすることが知られている(例えば、特許文献1参照。)。   Currently, it is known that the Ag conductive filler powder is characterized in that the weight ratio of copper is 50 or less when the total weight of copper and silver is 100 (see, for example, Patent Document 1). .

また、芯材である銅系金属の表面に銀粒子が配置されたコアシェル型構造をとるAg導電フィラー粉末は、芯材となる金属とAg粒子間にAg被覆層が存在することが知られている(例えば、特許文献2参照。)。   In addition, Ag conductive filler powder having a core-shell structure in which silver particles are arranged on the surface of a copper-based metal as a core material is known to have an Ag coating layer between the metal as the core material and the Ag particles. (For example, refer to Patent Document 2).

一方、粉末最表層にAgが濃化している合金粉末が記載されている(例えば、特許文献3参照。)。しかし、粉末表層におけるAgとCuの比率やAgCu相の存在率が明確にされていない。   On the other hand, an alloy powder in which Ag is concentrated in the powder outermost layer is described (for example, see Patent Document 3). However, the ratio of Ag and Cu in the powder surface layer and the abundance ratio of the AgCu phase are not clarified.

特開2007−99851号公報JP 2007-99851 A 特開2011−249257号公報JP 2011-249257 A 特開平10−21742号公報Japanese Patent Laid-Open No. 10-21742

ところで、従来の銅系金属からなる芯材の表面を銀粒子で被覆してなる導電性フィラーでは、銅系金属を芯材にすることで、電子部品の電極に用いられるSn(スズ)電極とフィラーとの間の電位差を小さくし、ガルバニック腐食を防止するようにしている。   By the way, in the conductive filler formed by coating the surface of the core material made of a conventional copper-based metal with silver particles, by using the copper-based metal as the core material, the Sn (tin) electrode used for the electrode of the electronic component The potential difference with the filler is reduced to prevent galvanic corrosion.

しかしながら、このものは、芯材の表面に銀粒子を配置したものであるため、銅系粉末製造後に、得られた銅系粉末に銀をコーティングする製法が存在する。   However, since this is one in which silver particles are arranged on the surface of the core material, there is a production method in which the obtained copper-based powder is coated with silver after the copper-based powder is produced.

上記の様な、銅系粉末に銀をコーティングする製法は、アトマイズした粉末を製造し、回収後、コーティングを施す装置で処理するため、コストや時間が問題になる。また、コーティング処理を避けるために、銅系粉末の代わりに銀粉末を用いることは、尚更コスト面が問題になる。   The manufacturing method for coating silver on a copper-based powder as described above produces an atomized powder, and after collection, it is processed by an apparatus for applying the coating. Moreover, in order to avoid the coating process, the use of silver powder instead of copper-based powder causes a further problem of cost.

本発明は、前記の課題を解決するものとして、コーティング処理することなく、アトマイズ製法のみで純Agと同程度の伝導率を示すことを目的とする。   In order to solve the above-described problems, the present invention aims to exhibit a conductivity equivalent to that of pure Ag only by an atomizing method without performing a coating treatment.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、Ag含有率が1〜30質量%のCu−Ag合金からなるアトマイズ合金粉末の最表層に、Cuに対するAgの質量比X=(M Ag/MCu)が1.2以上のAgCu相を10%以上存在させた、優れた伝導率をもつAgCu系導電フィラー粉末の生成を可能にした。 In order to solve the problems as described above, the inventors have made extensive developments. As a result, the outermost layer of an atomized alloy powder made of a Cu-Ag alloy having an Ag content of 1 to 30% by mass contains Ag with respect to Cu. It was possible to produce an AgCu-based conductive filler powder having excellent conductivity in which 10% or more of an AgCu phase having a mass ratio X = (M Ag / M Cu ) of 1.2 or more was present.

そこで、本発明の課題を解決するための手段としては、請求項1の手段では、Ag含有率が1〜30質量%のCu−Ag合金からなるアトマイズ合金粉末であって、該アトマイズ合金粉末はアトマイズままで、Cuに対するAgの質量比X=(M Ag/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有することを特徴とするAgCu系導電フィラー粉末である。粉末最表層とは、粉末最表面から内部に20nmまでの層をいう。 Therefore, as means for solving the problems of the present invention, in the means of claim 1, an atomized alloy powder made of a Cu-Ag alloy having an Ag content of 1 to 30% by mass, the atomized alloy powder being It is an AgCu-based conductive filler powder characterized by having an AgCu phase in an atomized powder outermost layer with an Ag mass ratio X = (M Ag / M Cu ) of 1.2 or more as atomized. The powder outermost layer refers to a layer of 20 nm from the outermost surface of the powder to the inside.

請求項2の手段では、前記アトマイズ合金粉末は、比Xが1.2以上のAgCu相が粉末最表層の10%以上に存在することを特徴とする請求項1に記載のAgCu系導電フィラー粉末である。   The AgCu-based conductive filler powder according to claim 1, wherein the atomized alloy powder has an AgCu phase having a ratio X of 1.2 or more in 10% or more of the powder outermost layer. It is.

アトマイズ合金粉末はガスアトマイズ合金粉末、ディスクアトマイズ合金粉末等があるがこの限りではない。   The atomized alloy powder includes gas atomized alloy powder, disk atomized alloy powder, and the like, but is not limited thereto.

AgとCuは微細共晶組織の形成に有効であり、Agが多く、かつCuが少ないAgCu相が粉末表層を占めることで、純Cuよりも接触抵抗を減少させ、電気伝導度を高める。特に最表層のAgCu相のCuに対するAgの質量比Xが1.2以上の場合に、純Agとほぼ遜色ない優れた電気伝導度を得ることができる。これは、比Xが1.2以上の場合、酸化物を形成し難くなり、また酸化物を形成する場合でも、比抵抗の高いCu系の酸化物形成を抑制し、比抵抗の低いAg系の酸化物が形成されるためである。   Ag and Cu are effective in forming a fine eutectic structure, and the AgCu phase with a large amount of Ag and a small amount of Cu occupies the powder surface layer, thereby reducing the contact resistance and increasing the electrical conductivity compared to pure Cu. In particular, when the mass ratio X of Ag to Cu in the outermost AgCu phase is 1.2 or more, it is possible to obtain excellent electrical conductivity substantially inferior to pure Ag. This is because when the ratio X is 1.2 or more, it becomes difficult to form an oxide, and even when an oxide is formed, the formation of Cu-based oxides with high specific resistance is suppressed, and Ag-based with low specific resistance This is because the oxide is formed.

また、Cuに対するAgの質量比Xが1.2以上のAgCu相が粉末表層の面積比率が10%以上を占めることで、Agが少なく、かつCuが多いCuAg相である粉末内層に存在するCuが大気に露出することを極力防止することができる。その結果、Ag同士の金属接合が良好に行われ、接合の信頼性を確保できる。   In addition, the AgCu phase having a mass ratio X of Ag with respect to Cu of 1.2 or more occupies 10% or more of the area ratio of the powder surface layer, so that Cu present in the powder inner layer which is a CuAg phase with a small amount of Ag and a large amount of Cu. Can be prevented from being exposed to the atmosphere as much as possible. As a result, the metal bonding between Ag is performed well, and the bonding reliability can be ensured.

以上述べたように、本発明は純Agと遜色ない電気伝導度をもち、かつアトマイズままの合金粉末で、Agコーティングが不要なAgCu系導電フィラー粉末を提供できる極めて優れた効果を奏するものである。   As described above, the present invention has an extremely excellent effect of providing an AgCu-based conductive filler powder that has an electrical conductivity comparable to pure Ag and is an atomized alloy powder that does not require Ag coating. .

本発明に係るAgとCuの共晶合金のアトマイズ合金粉末の断面の模式図を示す図である。It is a figure which shows the schematic diagram of the cross section of the atomized alloy powder of the eutectic alloy of Ag and Cu which concerns on this invention. 図1のアトマイズ合金粉末の断面図の円で囲む粉末最表層部分の拡大図を示す。The enlarged view of the powder outermost layer part enclosed with the circle | round | yen of the sectional drawing of the atomized alloy powder of FIG. 1 is shown.

以下に、本発明について詳細に説明する。
導電フィラー粉末の電気伝導度は電子の移動量で決まってくる。電子を多量に移動、かつ移動を阻害するようなものの存在がない状態が求められる。そこで、導電フィラー材料に純Au、純Ag、純Cuを使用すれば良いのだが、純Auと純Agはコスト面に、純Cuは酸化のされ易さに問題がある。そこで、電子をより多く移動できる合金の研究を進めたところ、それら合金の中でもCu系合金表面にAgを存在させた合金が有望であることがわかった。そこで、Agを採用するものとする。
The present invention is described in detail below.
The electric conductivity of the conductive filler powder is determined by the amount of electron movement. There is a demand for a state in which a large amount of electrons are moved and there is no such thing that inhibits the movement. Therefore, pure Au, pure Ag, and pure Cu may be used as the conductive filler material. However, pure Au and pure Ag have a problem in terms of cost, and pure Cu is easily oxidized. Then, the research of the alloy which can move more electrons was advanced, and it turned out that the alloy which made Ag exist on the Cu type alloy surface among these alloys is promising. Therefore, Ag is adopted.

本発明の特徴は、Cuに対するAgの質量比を1.2以上に制御したAgCu相を粉末最表層に存在させることである。   The feature of the present invention is that an AgCu phase in which the mass ratio of Ag to Cu is controlled to 1.2 or more is present in the outermost layer of the powder.

また、溶融金属が冷却される際、Cuが多くAgが少ないCuAgが高融点であるため先に凝固し始め、凝固したCuAgの周囲に、低融点であるAgが多くCuが少ないAgCuが覆う形で凝固する。   In addition, when the molten metal is cooled, CuAg with a large amount of Cu and a low amount of Ag has a high melting point, so that it first solidifies first, and around the solidified CuAg is covered with AgCu with a low melting point and a large amount of Cu. To solidify.

上記のAgとCuの共晶組織に加えて、Agの比率を制御することで、さらにAgCu系導電フィラー粉末の改善が見込まれる。Ag含有率が少なすぎると、粉末表層にAgが多く、かつCuが少ないAgCu相が現れにくくなる。また、Ag含有率が多すぎると、粉末表層にAgが多く含まれるAgCu相が現れ易くなるが、コスト面で問題がある。このことより、粉末全体のAg含有率は1〜30質量%とする。   In addition to the above eutectic structure of Ag and Cu, further improvement of the AgCu-based conductive filler powder is expected by controlling the Ag ratio. When there is too little Ag content rate, it will become difficult to show an AgCu phase with much Ag and few Cu in a powder surface layer. Moreover, when there is too much Ag content rate, the AgCu phase in which much Ag is contained in the powder surface layer is likely to appear, but there is a problem in terms of cost. From this, Ag content rate of the whole powder shall be 1-30 mass%.

AgとCuの共晶組織の制御については、上記に定めた成分の制御に加えて、原料金属を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、ガスアトマイズ法、ディスクアトマイズ法、水アトマイズ法等があるが、この限りではない。   The eutectic structure of Ag and Cu can be controlled by controlling the cooling rate at the time of solidification after dissolving the raw metal in addition to the control of the components defined above. Examples of the production method include a gas atomization method, a disk atomization method, and a water atomization method, but are not limited thereto.

ガスアトマイズ法は、溶融金属を出湯する際に噴霧ガスの圧力を調整することで、溶融金属の凝固速度を変化させることができる。例えば、噴霧ガスの圧力を下げることや他の製造条件最適化を図ることで、溶融金属の凝固する冷却速度が遅くなり、AgCu粉末の表層にAgが多くCuが少ないAgCu相が偏析しやすくなる。   The gas atomization method can change the solidification rate of the molten metal by adjusting the pressure of the spray gas when the molten metal is discharged. For example, by lowering the pressure of the spray gas and optimizing other manufacturing conditions, the cooling rate at which the molten metal solidifies becomes slow, and the AgCu phase with a high amount of Ag and a low amount of Cu tends to segregate on the surface layer of the AgCu powder. .

ディスクアトマイズ法は、溶融金属を出湯する際に噴霧ガスを用いないので、ガスアトマイズ法と比較すると冷却速度を遅く制御できる。これより、他の製造条件の最適化と合わせて、AgCu粉末の表層にAgが多くCuが少ないAgCu相が偏析しやすくなる。   The disc atomizing method does not use a spray gas when discharging molten metal, so that the cooling rate can be controlled slower than the gas atomizing method. From this, together with optimization of other production conditions, the AgCu phase with a large amount of Ag in the surface layer of the AgCu powder is likely to segregate.

Agの比率を制御して作製したAgCu系導電フィラー粉末を用いることにより、アトマイズままの合金粉末で、Agコーティングが不要であり、かつ純Agと遜色ない優れた電気伝導度を示す粉末が得られる。   By using an AgCu-based conductive filler powder produced by controlling the Ag ratio, an atomized alloy powder that does not require Ag coating and exhibits excellent electrical conductivity comparable to pure Ag can be obtained. .

CuとAgの他に、低融点を示す金属やCu、Agと液相分離するZn、In、Ga、Sn、Bi、Pb等を添加してもよい。   In addition to Cu and Ag, a metal having a low melting point, Cu, Ag, Zn, In, Ga, Sn, Bi, Pb, or the like that undergoes liquid phase separation may be added.

以下、本発明について、実施例により具体的に説明する。
表1に示す組成のAgCu系導電フィラー粉末を、ガスアトマイズ法およびディスクアトマイズ法により作製した。
Hereinafter, the present invention will be specifically described with reference to examples.
AgCu-based conductive filler powder having the composition shown in Table 1 was produced by a gas atomizing method and a disk atomizing method.

ガスアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、ガス噴射により出湯させて、急冷凝固することで、ガスアトマイズ微粉末を得た。   As for the gas atomization method, a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then heated in an Ar gas atmosphere by gas injection. Then, gas atomized fine powder was obtained by rapid solidification.

ガス噴射圧を調整することで、急冷凝固する速度を変化させることができる。ガス噴射圧を下げると、ガスによる溶融金属の冷却が小さくなるので、急冷凝固する速度は遅くなる。対して、ガス噴射圧を上げると、ガスによる溶融金属の冷却が大きくなるので、急冷凝固する速度は早くなる。   The rate of rapid solidification can be changed by adjusting the gas injection pressure. When the gas injection pressure is lowered, the cooling of the molten metal by the gas is reduced, so that the rapid solidification rate is reduced. On the other hand, when the gas injection pressure is increased, the cooling of the molten metal by the gas increases, so that the rapid solidification speed increases.

ディスクアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、40000〜60000r.p.m.の回転ディスク上に出湯させて、急冷凝固させることでディスクアトマイズ微粉末を得た。   In the disk atomization method, a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then in an Ar gas atmosphere, 40000 to 60000 r. p. m. The hot water was discharged onto a rotating disk of No. 1 and rapidly solidified to obtain a disk atomized fine powder.

ガスアトマイズ法、ディスクアトマイズ法などで作製したアトマイズ合金粉末を評価するために、東陽テクニカ製の粉体インピーダンス測定用4端子サンプルホルダーを用いて、アトマイズ合金粉末の電気伝導度を測定した。   In order to evaluate the atomized alloy powder produced by the gas atomizing method, the disk atomizing method, etc., the electric conductivity of the atomized alloy powder was measured using a 4-terminal sample holder for powder impedance measurement manufactured by Toyo Technica.

電気伝導度測定に用いるアトマイズ合金粉末は、篩を用いて45μm以下の粒度に揃えた後、直径25mm、高さ10mmの円柱状のサンプルホルダーに充填させた後、高さ方向上下から4ニュートンメートルの荷重をかけた。   The atomized alloy powder used for electrical conductivity measurement is aligned to a particle size of 45 μm or less using a sieve, then filled into a cylindrical sample holder having a diameter of 25 mm and a height of 10 mm, and then 4 Newton meters from the top and bottom in the height direction. The load of was applied.

電気伝導度測定は、荷重方向上に電流Iのプラス端子と電圧Vのプラス端子を、荷重方向下に電流Iのマイナス端子と電圧Vのマイナス端子を取り付けて、電流を流して電圧を測定する四端子法を用いた。   For electrical conductivity measurement, a positive terminal of current I and a positive terminal of voltage V are attached in the load direction, a negative terminal of current I and a negative terminal of voltage V are attached in the lower direction of load, and the voltage is measured by flowing current. A four probe method was used.

Figure 2015074806
Figure 2015074806

Figure 2015074806
Figure 2015074806

表1は、本発明における実施例1〜12を、表2は比較例1〜24を表す。これらの特性として、フィラー材に対するAgが1質量%以上で30質量%以下、比Xが1.2以上で、フィラー材であるAgCu相の存在率Yが10%以上、さらに、Agと同程度の電気伝導度4000AV-1-1を示すものを評価Aとする。評価Bは電気伝導度が3500AV-1-1以上であり、評価Cは電気伝導度が3500AV-1-1以下で、評価Dはフィラー材に対するAgが1質量%未満もしくは30質量%超、比Xが1.2未満、フィラー材であるAgCu相の存在率Yが10%未満のどれかに該当している。なお、表1、表2では、電気伝導度を単に伝導度として記載している。また、表2において、比Xにおける下線は比Xの値が1.2未満を示す。フィラー材の組織におけるAgの値の下線は、1質量%未満または30質量%超を示す。 Table 1 represents Examples 1 to 12 in the present invention, and Table 2 represents Comparative Examples 1 to 24. As these characteristics, Ag with respect to the filler material is 1% by mass or more and 30% by mass or less, the ratio X is 1.2 or more, the abundance ratio Y of the AgCu phase as the filler material is 10% or more, and about the same as Ag. A material having an electrical conductivity of 4000 AV −1 m −1 is evaluated as A. Evaluation B has an electric conductivity of 3500AV −1 m −1 or more, Evaluation C has an electric conductivity of 3500AV −1 m −1 or less, and Evaluation D has an Ag of less than 1 mass% or more than 30 mass% with respect to the filler material. The ratio X is less than 1.2 and the abundance Y of the AgCu phase as the filler material corresponds to any of less than 10%. In Tables 1 and 2, electric conductivity is simply described as conductivity. In Table 2, the underline in the ratio X indicates that the value of the ratio X is less than 1.2. The underline of the Ag value in the structure of the filler material indicates less than 1% by mass or more than 30% by mass.

すなわち、一番良い実施例が評価Aであり、二番目に良い実施例が評価B、三番目に良い実施例が評価C、四番目に良い実施例が評価Dである。   That is, the best example is evaluation A, the second best example is evaluation B, the third best example is evaluation C, and the fourth best example is evaluation D.

例えば、実施例12は、フィラー材に対するAgが30質量%であり、比Xが1.2以上、存在率Yが10%以上の条件を満たしている。このような本発明の条件を満たし、かつ電気伝導度が4140S/mである本発明は、一番良い特性を示した。   For example, in Example 12, Ag with respect to the filler material is 30% by mass, the ratio X is 1.2 or more, and the abundance Y is 10% or more. The present invention satisfying such conditions of the present invention and having an electric conductivity of 4140 S / m exhibited the best characteristics.

比較例1〜24はAg含有率が1質量%未満、あるいは30質量%よりも大きいため、また、比Xが1.2未満であるため本条件を満たさない。   Comparative Examples 1 to 24 do not satisfy this condition because the Ag content is less than 1% by mass or greater than 30% by mass, and the ratio X is less than 1.2.

例えば、比較例4では、Ag含有率が20%、存在率Yが14%を満たしているが、比Xが1.2以上を満たしておらず、電気伝導度が2210AV-1-1と良い特性を示していない。 For example, in Comparative Example 4, the Ag content is 20% and the abundance Y is 14%, but the ratio X is not 1.2 or more, and the electrical conductivity is 2210AV −1 m −1 . It does not show good characteristics.

比較例20では、比Xが2.2%、存在率Yが22%、電気伝導度4070AV-1-1と良い特性を示しているが、フィラー材に対するAgが90質量%であるため、Agの含有率1〜30質量%の条件を満たしていない。 In Comparative Example 20, the ratio X is 2.2%, the abundance Y is 22%, and the electrical conductivity is 4070AV −1 m −1 , but the Ag relative to the filler material is 90% by mass. The Ag content ratio of 1 to 30% by mass is not satisfied.

存在率Yは、Cuに対するAgの質量比Xが1.2以上のAgCu相が、粉末1粒子の最表層(表面から内部に20nm)中に存在する率を、任意箇所20点を計測したTEM像の分析結果より求めている。   The abundance Y is a TEM in which an AgCu phase having a mass ratio X of Ag with respect to Cu of 1.2 or more is present in the outermost layer (20 nm from the surface to the inside) of one particle, and 20 points are measured at arbitrary points. It is obtained from the image analysis results.

以上のように、本発明では、図2に示すように、Cuに対するAgの質量比Xが1.2以上のAgCu相3を、図1に示すアトマイズ合金粉末1の粉末最表層2に存在させるように制御することで、純Agと遜色ない電気伝導度を有し、かつアトマイズままの合金粉末で、Agコーティングが不要なAgCu系導電フィラー粉末の提供が可能となる。   As described above, in the present invention, as shown in FIG. 2, the AgCu phase 3 having a mass ratio X of Ag with respect to Cu of 1.2 or more is present in the powder outermost layer 2 of the atomized alloy powder 1 shown in FIG. By controlling in this way, it is possible to provide an AgCu-based conductive filler powder that has an electrical conductivity comparable to pure Ag and is an atomized alloy powder that does not require Ag coating.

1 アトマイズ合金粉末
2 粉末最表層(20nm)
3 Cuに対するAgの質量比Xが1.2以上のAgCu相
A 拡大部分
1 Atomized alloy powder 2 Powder outermost layer (20 nm)
3 AgCu phase with Ag mass ratio X to Cu of 1.2 or more A A Enlarged portion

Claims (2)

導電性接着剤に用いる導電性フィラー用で、Ag含有率が1〜30質量%のCu−Ag合金からなるアトマイズ合金粉末であって、該アトマイズ合金粉末はアトマイズままで、Cuに対するAgの質量比X=(MAg/MCu)が1.2以上のAgCu相をアトマイズ粉末最表層に有することを特徴とするAgCu系導電フィラー粉末。
ただし、粉末最表層とは、粉末最表面から内部に20nmまでの層をいう。
It is an atomized alloy powder made of a Cu-Ag alloy with an Ag content of 1 to 30% by mass, for the conductive filler used in the conductive adhesive, and the atomized alloy powder remains atomized, and the mass ratio of Ag to Cu An AgCu-based conductive filler powder characterized by having an AgCu phase with X = (M Ag / M Cu ) of 1.2 or more in the outermost layer of the atomized powder.
However, the powder outermost layer refers to a layer of 20 nm from the outermost surface of the powder to the inside.
前記アトマイズ合金粉末は、比Xが1.2以上のAgCu相が粉末最表層の10%以上に存在することを特徴とする請求項1に記載のAgCu系導電フィラー粉末。   2. The AgCu-based conductive filler powder according to claim 1, wherein the atomized alloy powder has an AgCu phase having a ratio X of 1.2 or more in 10% or more of a powder outermost layer.
JP2013211920A 2013-10-09 2013-10-09 AgCu-BASED CONDUCTIVE FILLER POWDER Pending JP2015074806A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013211920A JP2015074806A (en) 2013-10-09 2013-10-09 AgCu-BASED CONDUCTIVE FILLER POWDER
PCT/JP2014/076704 WO2015053222A1 (en) 2013-10-09 2014-10-06 Agcu-based conductive filler powder
TW103135060A TW201527458A (en) 2013-10-09 2014-10-08 Agcu-based conductive filler powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211920A JP2015074806A (en) 2013-10-09 2013-10-09 AgCu-BASED CONDUCTIVE FILLER POWDER

Publications (1)

Publication Number Publication Date
JP2015074806A true JP2015074806A (en) 2015-04-20

Family

ID=52813038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211920A Pending JP2015074806A (en) 2013-10-09 2013-10-09 AgCu-BASED CONDUCTIVE FILLER POWDER

Country Status (3)

Country Link
JP (1) JP2015074806A (en)
TW (1) TW201527458A (en)
WO (1) WO2015053222A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380868B (en) * 2018-02-07 2021-02-05 海宁瑞兴材料科技有限公司 Copper powder automatic collection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331360A (en) * 1994-06-06 1995-12-19 Asahi Chem Ind Co Ltd New copper alloy powder and its production
JPH09219112A (en) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd Anisotropic conductive composition
JPH09302403A (en) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd Novel fine powder of copper alloy, and its manufacture
JPH1030103A (en) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd Metal powdery and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331360A (en) * 1994-06-06 1995-12-19 Asahi Chem Ind Co Ltd New copper alloy powder and its production
JPH09219112A (en) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd Anisotropic conductive composition
JPH09302403A (en) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd Novel fine powder of copper alloy, and its manufacture
JPH1030103A (en) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd Metal powdery and its production

Also Published As

Publication number Publication date
TW201527458A (en) 2015-07-16
WO2015053222A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6266137B2 (en) Composition containing fine metal particles
TWI535855B (en) Solder alloy, solder composition, solder paste and electronic circuit substrate
TWI583800B (en) Solder alloy, solder paste and electronic circuit substrate
TWI612156B (en) Precious metal coated copper wire for ball bonding
JP2019188474A (en) Lead-free solder paste and production method of the same
JP2015021145A (en) Silver-coated copper alloy powder and method for producing the same
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
WO2015053222A1 (en) Agcu-based conductive filler powder
JP2011177719A (en) Solder powder and paste for solder using the powder
JP6338846B2 (en) Conductive filler powder
JP2015196877A (en) POWDER FOR AgCuBi-BASED CONDUCTIVE FILLER
JP6546384B2 (en) Conductive filler powder
JP6445854B2 (en) Conductive filler powder
JP2017007885A (en) Powder for conductive filler
WO2016052643A1 (en) Powder for conductive fillers
JP6581771B2 (en) Conductive filler powder
JP2015232160A (en) Powder for conductive filler
JP2013157356A (en) Electronic circuit module component
JP2017134889A (en) Powder for conductive filler
JP2018123375A (en) Porous powder and method for producing the same
JP5876609B1 (en) Conductive filler powder
TW201610191A (en) Powder for electroconductive filler
JP6475531B2 (en) Powder for filler
JP6654922B2 (en) Powder for conductive filler
JP2015188902A (en) Solder composition, solder paste, solder junction structure and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180131