JP2015072266A - Safety testing method and device therefor - Google Patents

Safety testing method and device therefor Download PDF

Info

Publication number
JP2015072266A
JP2015072266A JP2014181743A JP2014181743A JP2015072266A JP 2015072266 A JP2015072266 A JP 2015072266A JP 2014181743 A JP2014181743 A JP 2014181743A JP 2014181743 A JP2014181743 A JP 2014181743A JP 2015072266 A JP2015072266 A JP 2015072266A
Authority
JP
Japan
Prior art keywords
nail
test
storage device
vertical hole
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014181743A
Other languages
Japanese (ja)
Inventor
米田 哲也
Tetsuya Yoneda
哲也 米田
憲吾 山本
Kengo Yamamoto
憲吾 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Kinzoku Seisakusho KK
Original Assignee
Yamamoto Kinzoku Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kinzoku Seisakusho KK filed Critical Yamamoto Kinzoku Seisakusho KK
Priority to JP2014181743A priority Critical patent/JP2015072266A/en
Publication of JP2015072266A publication Critical patent/JP2015072266A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safety evaluation testing method for a safety evaluation test of an electricity storage device and its testing device, especially for a peg test.SOLUTION: A safety evaluation testing method prepares a test container which stores inert fluid, fully immerses an electricity storage device into the inert fluid by placing the electricity storage device in the test container, and performs a predetermined safety evaluation test for the electricity storage device.

Description

本発明は、蓄電デバイスの安全性評価試験を行なうための安全性評価試験方法およびその試験装置、特に釘刺し試験に関するものである。 The present invention relates to a safety evaluation test method and a test apparatus for performing a safety evaluation test of a power storage device, and particularly to a nail penetration test.

昨今、蓄電デバイスの重要な一角を占めるリチウムイオン電池等のエネルギー密度の高い電池は、高い出力が得られることから盛んに開発が進められている。しかしながら、リチウムイオン電池は内部で電気的な短絡が生じた場合、構造によっては急激な熱発生により、内部の有機電解液(特に、溶媒と電解質)が分解、蒸発し、有害なガスの発生、爆発や火炎の噴出の要因の1つとなり得、安全性に課題が残っているのが現状である。 In recent years, batteries with high energy density, such as lithium ion batteries, which occupy an important corner of power storage devices, have been actively developed because high output can be obtained. However, when an electrical short circuit occurs inside a lithium ion battery, depending on the structure, sudden heat generation causes the internal organic electrolyte (particularly the solvent and electrolyte) to decompose and evaporate, generating harmful gases, It can be one of the causes of explosions and flames, and there are still problems with safety.

このため、リチウムイオン電池等のエネルギー密度の高い電池及び蓄電デバイスにおいては、金属製の釘で電池を突き刺し、正極および負極と絶縁隔壁(セパレータ)を一気に貫くことにより、金属製の釘の表面と、正極および負極が同時に接触する状態にさせ、内部短絡を模擬した状態を生じさせ、安全性を検証することがある。この試験は、通称「釘刺し試験」と呼ばれており、試験に際して、発熱や、発煙・発火、破裂が起こることがある。すなわち、現状この「釘刺し試験」は、種々の原因で電池の内部で電気的な短絡が発生した場合に、事故につながるような発熱や、発煙・発火、破裂が生じないことを確認するための安全性評価試験としての位置づけで行っている。 For this reason, in batteries with high energy density, such as lithium ion batteries, and power storage devices, the surface of the metal nail can be obtained by piercing the battery with a metal nail and penetrating the positive and negative electrodes and the insulating partition wall (separator) all at once. In some cases, the positive electrode and the negative electrode are brought into contact with each other at the same time, and a state simulating an internal short circuit is generated to verify the safety. This test is commonly called a “nail penetration test”, and during the test, heat generation, smoke generation / ignition, and rupture may occur. In other words, the current “nail penetration test” is intended to confirm that there is no heat generation, smoke, ignition, or explosion that can lead to an accident when an electrical short circuit occurs inside the battery for various reasons. As a safety evaluation test.

そこで、試験に際しての人的・物的被害予防の観点から、大きな内圧にも耐え得る高耐圧・防爆構造のチャンバー内で試験を行うか、あるいは密閉チャンバー内を不活性なアルゴンガスなどで満たし、発火を抑制して試験するといった方法がとられてきた。(特許文献3) Therefore, from the viewpoint of preventing human and property damage during the test, perform the test in a chamber with a high pressure resistance and explosion proof structure that can withstand a large internal pressure, or fill the sealed chamber with inert argon gas, Methods such as testing with suppression of ignition have been taken. (Patent Document 3)

国際公開公報 WO2006−088021International Publication WO2006-088021 国際公開公報 WO2011−004506International Publication No. WO2011-004506 特開2011-003513号公報JP 2011-003513 A

上述するように昨今の高エネルギー密度の大型電池は、安全性を検証する試験に際して破裂発火の可能性があり、爆発にも耐えうる部屋または箱型チャンバーで、電池の燃焼で生じた有害ガスの処理もできる設備を持った部屋や密閉型チャンバーを使っていた。なお、既存のチャンバーが使えないほど大きな電池に対してはチャンバーを新規に製作する必要が生じたり、また、破壊力が予想出来ない全く新規のサンプル電池や超大型の電池の場合は、チャンバーを破壊してしまう可能性があるため、花火工場の敷地における屋外爆破実験施設などの広大な場所で試験を実施している現状がある。 As described above, a large battery with a high energy density in recent years has a possibility of explosion and ignition in a test for verifying safety, and is a room or box type chamber that can withstand an explosion. They used rooms with equipment that could handle them and sealed chambers. For batteries that are so large that the existing chamber cannot be used, it is necessary to create a new chamber, or in the case of a completely new sample battery or a very large battery whose destructive force cannot be predicted, the chamber should be Since there is a possibility of destruction, there is a current situation that tests are being conducted in a vast location such as an outdoor blast experiment facility on the site of the fireworks factory.

また、大型電池が試験に供される場合、試験後には爆発し、内容物が飛散してしまう可能性があり、爆発や燃焼しなかった場合は残骸を分析することで可能な解析が、爆発や燃焼生じることで、具体的にどういう反応が原因・きっかけで生じたのかを検証することは不可能であった。 Also, if a large battery is used for the test, it may explode after the test and the contents may be scattered. If the battery does not explode or burn, an analysis that is possible by analyzing the debris It was impossible to verify what kind of reaction was caused by the cause or the cause by the combustion.

以下に、特許文献にみられる具体的な課題を検証する。
上記特許文献1に開示された安全性評価試験方法およびその装置に関する技術には、次のような課題がある。
1)例えば、安全性評価試験の中でも重要な試験項目である釘刺し試験を実施する場合、大きな電池つまり外装容器が丈夫で大型の電池に対しては、大きな荷重負荷を発生させる試験機をブース(本願発明にいう“チャンバー”)に収容しなければならない。したがって、どうしても大容積のブースを用意しなければ試験できないという問題がある。さらに、荷重負荷試験機をブース内に収容するため、試験に際して電池が破損し、内容物が飛散したり、燃えて煤が発生するたびに、チャンバーに加えて、荷重負荷試験機も汚れるという問題も発生する。重篤な汚れの場合、荷重負荷試験機が、可動部および摺動部を有するため、故障を引き起こしやすくなるという問題点もある。
Below, specific problems found in the patent literature will be verified.
The technology relating to the safety evaluation test method and apparatus disclosed in Patent Document 1 has the following problems.
1) For example, when performing a nail penetration test, which is an important test item in the safety evaluation test, a test machine that generates a heavy load load is boothed against a large battery with a large battery, that is, a strong outer container. ("Chamber" as referred to in the present invention). Therefore, there is a problem that the test cannot be performed unless a large-volume booth is prepared. In addition, because the load tester is housed in the booth, the battery is damaged during the test, the contents are scattered, and every time a burning flaw occurs, the load tester becomes dirty in addition to the chamber. Also occurs. In the case of severe dirt, the load tester has a movable part and a sliding part, and therefore there is also a problem that a failure is likely to occur.

2)また、安全性評価試験時に、リチウムイオン電池から多量に発生するガスをブースだけで捕獲しなければならないため、ブースを気密耐圧構造に設計・施工しなければならないという問題点もある。 2) In addition, there is a problem that the booth must be designed and constructed in an airtight pressure-resistant structure because a large amount of gas generated from the lithium ion battery must be captured only by the booth during the safety evaluation test.

また、特許文献2では、温度センサ(ここでは熱電対)が釘内部に仕込まれ、釘刺し試験の際、発熱源近傍での温度変化が容易に測れるデバイスとして明記されている。この時、急激な温度変化や燃焼反応によって、電解液や正極負極活物質が化学反応を起こし、何らかの生成物を生じているが、これらの採取、分析については考慮されていない。 In Patent Document 2, a temperature sensor (here, a thermocouple) is specified in the nail, and is specified as a device that can easily measure a temperature change in the vicinity of a heat source during a nail penetration test. At this time, the electrolytic solution and the positive electrode / negative electrode active material cause a chemical reaction due to a rapid temperature change and a combustion reaction, and some product is generated, but these sampling and analysis are not taken into consideration.

加えて、試験に伴い、爆発し、内容物が飛散してしまった際は、温度履歴は残るが、具体的にどういう化学反応が原因で、爆発・燃焼が生じたのかを究明することはこの試験では困難であった。 In addition, if the contents explode during the test and the contents are scattered, the temperature history remains, but it is not possible to investigate what kind of chemical reaction caused the explosion / combustion. It was difficult in the test.

一方、特許文献3では、蓄電デバイスを内部に設置し所定の安全性評価試験を行なうためのチャンバー(特許文献3で言う試験容器)と、チャンバー外に設置された荷重負荷試験機の可動ヘッドに取付けられた釘が前記チャンバーの内部に設置した蓄電デバイスを釘刺し可能で、かつ、気密性を有するように前記チャンバーの蓋部に気密シールが設けられたことを特徴とするとともに、このチャンバーに連通したバッファタンクと、このバッファタンクに連通したガスバッグと、前記所定の安全性評価試験前に、前記チャンバー内および前記バッファタンク内の空気を所定圧力まで減圧するための減圧手段と、前記所定の安全性評価試験前に、前記減圧手段により減圧されたチャンバー内とバッファタンク内をそれぞれ所定圧力の不活性ガスで置換されるまで前記不活性ガスを供給し、かつ、前記所定の安全性評価試験が終了した後、前記チャンバー内および前記バッファタンク内に蓄積された前記蓄電デバイスから発生したガスを前記ガスバッグに移し変えるために、前記チャンバーに所定量の不活性ガスを供給するための不活性ガス供給手段と、前記ガスバッグに移し替えられた前記蓄電デバイスから発生したガスを分析するための分析器とを有したことを特徴とする安全性評価試験装置であるが、チャンバー内で試験に際して電池が破損し、内容物が飛散するとか燃えて煤が発生してしまった場合は、荷重負荷試験機の可動ヘッドとチャンバーは汚れてしまうという問題点は残っていた。 On the other hand, in Patent Document 3, a chamber (a test container referred to in Patent Document 3) for installing a power storage device inside and performing a predetermined safety evaluation test, and a movable head of a load load tester installed outside the chamber are used. An airtight seal is provided on the lid of the chamber so that the attached nail can pierce the electricity storage device installed inside the chamber and has airtightness. A buffer tank that communicates with the gas tank; a gas bag that communicates with the buffer tank; a decompression means for decompressing the air in the chamber and the buffer tank to a predetermined pressure before the predetermined safety evaluation test; Before the safety evaluation test, an inert gas having a predetermined pressure is provided in the chamber and the buffer tank that are decompressed by the decompression means. The inert gas is supplied until replacement, and after the predetermined safety evaluation test is completed, the gas generated from the electricity storage device accumulated in the chamber and the buffer tank is supplied to the gas bag. In order to transfer, an inert gas supply means for supplying a predetermined amount of inert gas to the chamber, and an analyzer for analyzing gas generated from the electricity storage device transferred to the gas bag Although it is a safety evaluation test device characterized by having it, if the battery breaks during the test in the chamber and the contents scatter or burns and generates soot, the load tester can move The problem that the head and the chamber became dirty remained.

加えて、不活性ガス充填の効果で発火や爆発を免れるよう条件整備した場合でも、万が一の爆発に備える耐圧密閉容器と、ガスとして反応生成物を採取するため、相応の大型タンクの準備が必要で、大掛かりな設備を構築せざるを得なかった。 In addition, even if the conditions are maintained to avoid ignition and explosion due to the effect of filling with inert gas, it is necessary to prepare a pressure-resistant sealed container in case of an explosion and a corresponding large tank to collect the reaction products as gas. So we had to build a large facility.

本発明の一つの目的は、蓄電デバイスを収容し、安全性評価試験を行なうために高耐圧かつ大容量な試験容器が不要で、かつ、蓄電デバイスの破損や発火を抑え、試験時に蓄電デバイスから発生した化学物質がガス化する前に液体状態で捕集でき、分析が可能な安全性評価試験方法およびその試験装置を提供することにある。具体的には、異常な高温気化を起こさないまたは、起こる前の液体状態でサンプリングできるため、分析に十分なミリグラム単位以上の採取量の確保が可能かつ容易である。 One object of the present invention is to store a power storage device and to perform a safety evaluation test, so that a high-pressure-resistant and large-capacity test container is not required, and the storage device is prevented from being damaged or ignited. It is an object of the present invention to provide a safety evaluation test method and a test apparatus for the generated chemical substance that can be collected in a liquid state before being gasified and can be analyzed. Specifically, since sampling can be performed in a liquid state before the occurrence of abnormal high-temperature vaporization or before it occurs, it is possible and easy to secure a sampling amount of at least a milligram unit sufficient for analysis.

以下、蓄電デバイスの安全性試験の内、釘刺し試験に関する説明を主に行う関係から、蓄電デバイスを一般的な電池と記しているが、同義である。 Hereinafter, the power storage device is referred to as a general battery because it mainly describes the nail penetration test among the safety tests of the power storage device, but it is synonymous.

従来の釘刺し試験では、金属製の釘を、単に被試験電池に突き刺し、電池内部で電気的短絡を生じさせていた。この試験において、短絡時の発熱量・温度変化を測定するために、多くの場合、熱電対等の測温センサは被試験電池表面や釘の付け根部分に取付けられてきた(図示せず)。もし、被試験電池内部に設置し、内部短絡発生部位近傍での温度変化を見ようとすると、一般的に導電体で構成されるセンサ自体が短絡源となってしまうことがあり、また、被試験電池の内部構造や状態も変えてしまうことになるため、温度センサの設置場所は電池表面などに限られ、発生する事故の大きさ、破壊力と直接関係の深い短絡発生部位の短絡発生直後からの温度変化の情報入手は極めて困難であった。 In a conventional nail penetration test, a metal nail is simply pierced into a battery under test, causing an electrical short circuit inside the battery. In this test, in order to measure the calorific value and temperature change at the time of a short circuit, in many cases, a temperature sensor such as a thermocouple has been attached to the surface of the battery under test or the base of a nail (not shown). If it is installed inside the battery under test and the temperature change in the vicinity of the internal short-circuit occurrence site is observed, the sensor itself, which is generally composed of a conductor, may become a short-circuit source. Since the internal structure and state of the battery will also be changed, the location of the temperature sensor is limited to the surface of the battery, etc., immediately after the occurrence of a short circuit at the location of the short circuit that is directly related to the magnitude of the accident and the destructive force. It was extremely difficult to obtain information on temperature changes.

加えて、異常時に電池が膨れ等の変形を始めると、電池表面に取り付けた温度センサが熱源、発熱発生部位(内部短絡発生場所)からますます乖離してしまうことになり、この場合、発生初期からの連続計測ができなくなる。さらに、重大な電池破壊が起こった場合は、温度センサも破壊されることが多かった。 In addition, if the battery begins to deform, such as swelling, in the event of an abnormality, the temperature sensor attached to the battery surface will be increasingly separated from the heat source and heat generation location (internal short circuit location). Continuous measurement cannot be performed. Further, when a serious battery destruction occurs, the temperature sensor is often destroyed.

本発明は上記問題に鑑みて創作されたものである。本発明は具体的には、下記に列挙される。本発明は、
不活性液体を貯留する試験容器を準備し、
蓄電デバイスを試験容器内に載置することで不活性液体内に完全浸漬させて、
蓄電デバイスに対する所定の安全性評価試験を行なう安全性評価試験方法、を提供する。
The present invention has been created in view of the above problems. The present invention is specifically listed below. The present invention
Prepare a test vessel to store the inert liquid,
Immerse it completely in an inert liquid by placing the electricity storage device in a test container,
Provided is a safety evaluation test method for performing a predetermined safety evaluation test for an electric storage device.

前記所定の安全性評価試験が、釘刺し試験、過充電試験、加熱試験の内のいずれか1つであっても良い。 The predetermined safety evaluation test may be any one of a nail penetration test, an overcharge test, and a heating test.

また、本発明の安全性試験方法は、
蓄電デバイスに対する所定の安全性評価試験は、釘刺し試験であり、
前記試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する安全性評価試験方法であって、
前記釘は、釘根部から釘尖端近傍まで開けられた縦穴を形成し、該縦穴中に少なくとも温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられ、該貫通穴を通して、穿刺のときに蓄電デバイスの内容物の少なくとも一部を採取し得る。
Further, the safety test method of the present invention includes:
The predetermined safety evaluation test for the electricity storage device is a nail penetration test,
A safety evaluation test method for puncturing with a nail having a sharp tip with respect to an electricity storage device that is completely immersed in an inert liquid stored in the test container,
The nail forms a vertical hole opened from the nail root to the vicinity of the tip of the nail, and at least a temperature sensor is disposed in the vertical hole,
In addition, a through-hole that communicates the outside of the nail and the vertical hole is formed near the tip of the vertical hole, and at least a part of the contents of the electricity storage device can be collected through the through-hole when puncturing.

上記不活性液体は、フロリナート、ガルデン、シリコーンオイルである。 The inert liquid is Fluorinert, Galden, or silicone oil.

また、他の本発明の安全性試験装置は、
蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、該縦穴中に少なくとも温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられても良い。
In addition, other safety testing devices of the present invention are:
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is provided, and at least a temperature sensor is disposed in the vertical hole,
Further, a through hole that communicates the outside of the nail and the vertical hole may be formed near the tip of the vertical hole.

また、他の本発明の安全性試験装置は、本蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられても良い。
In addition, another safety test apparatus according to the present invention is configured such that a predetermined safety evaluation test for the power storage device is performed with a nail having a pointed tip with respect to the power storage device that is completely immersed in an inert liquid stored in a test container. A nail penetration test,
The nail is
A vertical hole is formed from the nail root to the vicinity of the tip of the nail,
Further, a through hole that communicates the outside of the nail and the vertical hole may be formed near the tip of the vertical hole.

また、本発明の安全性試験装置では、前記所定の安全性評価試験が過充電試験の場合に、前記試験容器外に設置された過充電試験用電源から前記試験容器の内部に設置された蓄電デバイスの正負端子に電流を供給可能とする電流供給端子が前記試験容器に設けられる。 Further, in the safety test device of the present invention, when the predetermined safety evaluation test is an overcharge test, a power storage installed inside the test container from an overcharge test power source installed outside the test container. A current supply terminal that can supply current to the positive and negative terminals of the device is provided in the test container.

さらに、本発明の安全性試験装置では前記所定の安全性評価試験が加熱試験の場合には、前記試験容器外に設置された加熱試験用電源から前記試験容器の内部に設置された蓄電デバイスの近傍に置かれたヒータに電流を供給可能とする電流供給端子が前記試験容器に設けられても良い。 Further, in the safety test apparatus of the present invention, when the predetermined safety evaluation test is a heating test, the power storage device installed inside the test container is supplied from a heating test power supply installed outside the test container. A current supply terminal capable of supplying a current to a heater placed in the vicinity may be provided in the test container.

また、本発明の安全性試験装置では、蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれ縦穴の深さは互いに異なる深さ位置であり、それぞれの縦穴の中には少なくとも1つの温度センサを配置し、
また、該それぞれの縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられた構成が例示される。
In the safety test apparatus of the present invention, the predetermined safety evaluation test for the electricity storage device is performed by a nail that is pierced with a nail having a sharp tip with respect to the electricity storage device that is completely immersed in an inert liquid stored in a test container. A stab test,
The nail is
Two or more vertical holes opened from the nail root to the vicinity of the tip of the nail are provided, and the depths of the vertical holes are different from each other, and at least one temperature sensor is disposed in each vertical hole,
Moreover, the structure by which the through-hole which connects the exterior of a nail and this vertical hole was opened in the tip vicinity of each said vertical hole is illustrated.

また、他の本発明の安全性試験装置では、蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、該縦穴中に少なくとも2個以上の温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられた構成でも良い。
In another safety test apparatus of the present invention, the predetermined safety evaluation test for the power storage device is performed by puncturing with a nail having a sharp tip with respect to the power storage device that is completely immersed in the inert liquid stored in the test container. A nail penetration test,
The nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is provided, and at least two temperature sensors are disposed in the vertical hole,
Moreover, the structure by which the through-hole which connects the exterior of a nail and this vertical hole was opened in the tip vicinity of this vertical hole may be sufficient.

さらに、他の本発明の安全性試験装置では、蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれの縦穴に少なくとも1つに温度センサを配置し、
また、該それぞれの縦穴の尖端近傍に釘の外部と該縦穴とを連通する各貫通穴が開けられた構成も考えられる。
Furthermore, in another safety test apparatus of the present invention, the predetermined safety evaluation test for the power storage device is performed by puncturing with a nail having a sharp tip with respect to the power storage device that is completely immersed in the inert liquid stored in the test container. A nail penetration test,
The nail is
Two or more vertical holes opened from the nail root to the vicinity of the tip of the nail are provided, and at least one temperature sensor is disposed in each of the vertical holes,
Further, a configuration is also conceivable in which each through hole that communicates the outside of the nail and the vertical hole is formed in the vicinity of the tip of each vertical hole.

なお、温度センサは、熱電対、サーミスタ、測温抵抗体であることが好ましい。 The temperature sensor is preferably a thermocouple, a thermistor, or a resistance temperature detector.

以上、本発明の具体的な構成を示したが、本発明の基本的な考え方を以下に示す。
本目的を達成するために、本発明者らは、釘刺し試験に際して、破壊や発火の要因となるような酸化・燃焼反応を抑制し、電池の試験時の温度変化をより忠実に計測し続けられる方法として、空気(酸素)の、発火源となる釘の刺さった部位(内部短絡発生場所)への侵入を抑制することについて考察した。なぜなら、電池破壊が起こる前、具体的には1秒に満たないくらいの直前には、発火が生じるのであるが、発火の3要素とは、
酸素:どこにでもある空気
発火源:内部短絡で発生する熱および短絡電流で生じる赤熱点
燃料:電解液が有機性可燃物
であり、これらのうちの1つでも除くことができれば、発火すら起こらず、当然、爆発へも進展しないからである。以下、この考察に至った経緯を説明する。
The specific configuration of the present invention has been described above, but the basic concept of the present invention is described below.
In order to achieve this object, the present inventors have continued to measure the temperature change during the battery test more faithfully by suppressing the oxidation / combustion reaction that causes destruction or ignition during the nail penetration test. As a method, it was considered to suppress the penetration of air (oxygen) into the nail-pierced part (internal short-circuit occurrence place) as an ignition source. Because, before the battery breaks down, specifically, just before less than 1 second, ignition occurs, but the three elements of ignition are
Oxygen: Anywhere air ignition source: Heat generated by internal short circuit and red hot point fuel generated by short circuit current Fuel: If the electrolyte is an organic combustible material, even if one of these can be removed, no ignition will occur Of course, it does not progress to an explosion. Hereinafter, the background to this consideration will be described.

電池の内部にある電解液は当然除去することは不可能である。また、短絡で発生する熱も、電圧がありエネルギーを電気エネルギーの状態で蓄積した蓄電デバイスに対して、電気的短絡を発生させる試験という本来の趣旨から考えて、無くすことはできない。故に、残った因子である空気を除去するしかないと結論付けた。 Naturally, it is impossible to remove the electrolytic solution inside the battery. In addition, heat generated by a short circuit cannot be eliminated in view of the original purpose of a test for generating an electrical short circuit for a power storage device that has voltage and stores energy in the state of electrical energy. Therefore, it was concluded that the remaining factor, air, must be removed.

これまで、具体的には、釘刺し試験では、従来は不活性なアルゴンガスや窒素ガスで置換する手法が採られていた(特許文献3参照)。他には、試験環境において爆発限界を考慮して、減圧下で実施することが考えられるが、もし釘刺し試験を行ったとすると、釘を刺した穴より電解液が、外圧に依存する沸点低下も相まって、短絡電流発熱による温度上昇に誘発され急速に蒸発飛散し、減圧を維持するのが難しくなるとともに、試験電池の内部抵抗が上昇し始めるため、本来の発熱挙動が継続しなくなるので、内部短絡試験の異常発熱による異常な状態を現出させえない。 So far, specifically, in the nail penetration test, conventionally, a method of replacing with inert argon gas or nitrogen gas has been employed (see Patent Document 3). In addition, considering the explosive limit in the test environment, it is conceivable to carry out under reduced pressure, but if a nail penetration test is performed, the electrolyte will lower the boiling point depending on the external pressure from the hole where the nail was inserted. In combination with this, it is induced by temperature rise due to short-circuit current heat generation, rapidly evaporating and scattering, making it difficult to maintain the reduced pressure, and the internal resistance of the test battery starts to rise, so the original heat generation behavior does not continue, so the internal An abnormal condition due to abnormal heat generation in the short circuit test cannot be displayed.

また、気化し始めた電解液に、何らかの理由(例えば、噴出速度が大きくなりすぎ、ガスと電池容器の金属との摩擦着火が引き金)で、引火・発火することがあり、逆に安全性に問題があった。 In addition, the electrolyte that has started to vaporize may ignite or ignite for some reason (for example, the ejection speed becomes too high and triggers frictional ignition between the gas and the metal of the battery container). There was a problem.

そこで、鋭意検討を行った結果、液状で空気、特に酸素の供給を遮蔽する方法として、不活性液体中にて釘刺し試験を行う試験方法を提供したものである。
なお、本発明中で言う不活性液体とは、絶縁耐力が高く、化学反応性が低いもの、具体的には、試験電池系が発生しうる最高電圧までの絶縁性を少なくとも有し、電池に用いられる各種材料及びその反応生成物との化学反応性が無いものであればよく、その例としてフロリナート、ガルデン、シリコーンオイルを用いた。
As a result of intensive studies, the present inventors have provided a test method for performing a nail penetration test in an inert liquid as a method for shielding the supply of air, particularly oxygen, in liquid form.
The inert liquid referred to in the present invention has a high dielectric strength and low chemical reactivity, specifically, has at least an insulation property up to the maximum voltage that can be generated by the test battery system, and Any material may be used as long as it does not have chemical reactivity with various materials used and reaction products thereof. For example, fluorinate, galden, and silicone oil were used.

さらに、想定される破壊力の大きさと関係の深い短絡発生部温度(最高到達温度と温度変化)の測定を容易にすべく、釘の外形をした硬度の高い金属を材質とする外枠と温度センサより構成される。具体的には釘の外形をした外枠の中心部に、軸方向に温度センサを挿入するための縦穴が釘頭部より先端近くまで穿たれており、縦穴に温度センサが挿入され、その測温点のある先端を孔の底部に近接させて、温度測定機能を持つ釘刺し試験具とした。これにより、マイルドな温度変化する内部短絡現象であっても正確に観測できる上、万一電池が変形した場合にも測温点がずれたり外れたりすることなく温度測定が発熱点近傍で行えるため、温度変化測定の正確性が保たれる。 Furthermore, in order to facilitate the measurement of the temperature of the short-circuit occurrence part (maximum temperature reached and temperature change) that is closely related to the magnitude of the expected destructive force, the outer frame and temperature of the nail that is made of a metal with high hardness It consists of sensors. Specifically, a vertical hole for inserting the temperature sensor in the axial direction is drilled in the center of the outer frame with the outer shape of the nail from the nail head to near the tip, and the temperature sensor is inserted into the vertical hole. A tip with a hot spot was brought close to the bottom of the hole to make a nail penetration tester with a temperature measuring function. As a result, it is possible to accurately observe even an internal short-circuit phenomenon with a mild temperature change, and even if the battery is deformed, temperature measurement can be performed near the heating point without shifting or detaching the temperature measuring point. The accuracy of temperature change measurement is maintained.

加えて、釘の先端に横穴(貫通孔)を穿つことにより、滲み出した電解液と不活性液体との混合物をサンプリングできるため、釘刺し試験時の短絡電流発熱や異常加熱試験により、通常より高温になった際に、電解液に生じた化学変化や、安全性試験の一つである過充電に伴う異常電圧状態での電気化学反応生成物を、無酸素状態で不活性液体へ滲み出した液状サンプルとして、不活性液体との非相溶性を活用することで、抽出分離が容易であることも幸いして、化学分析が可能となる。なお、自発的採取の代わりに、吸引採取の場合も差異はなく、同じ効果が期待できる。具体的には、穿孔の最奥部に横穴を開けた釘の付け根部分に吸引機を取付け、少量吸引制御能力に長けたポンプで電解液を採取する。 In addition, a mixture of exuded electrolyte and inert liquid can be sampled by drilling a horizontal hole (through hole) at the tip of the nail. When the temperature rises, chemical changes that have occurred in the electrolyte and the electrochemical reaction products in an abnormal voltage state associated with overcharging, which is one of the safety tests, ooze out into an inert liquid in the absence of oxygen. By utilizing the incompatibility with an inert liquid as the liquid sample, it is fortunate that extraction separation is easy, and chemical analysis becomes possible. In addition, there is no difference in the case of suction collection instead of spontaneous collection, and the same effect can be expected. Specifically, a suction machine is attached to the base of a nail that has a horizontal hole in the innermost part of the perforation, and the electrolyte is collected with a pump that has excellent small-volume suction control capability.

代表的なポンプとしては、チューブポンプやハンダ吸引機、バイモルポンプ(メドー産業が販売)といった液体搬送用ポンプが好適に用いられる。 As typical pumps, liquid transport pumps such as tube pumps, solder suction machines, and bimol pumps (sold by Meadow Industries) are preferably used.

また、上記釘刺し試験における釘は、温度センサを配置する前記縦穴の尖端近傍でかつ温度センサと該縦穴内壁との間に高い熱伝導性を有する流動性物質を充填しても良い。 Further, the nail in the nail penetration test may be filled with a fluid material having high thermal conductivity in the vicinity of the tip of the vertical hole where the temperature sensor is disposed and between the temperature sensor and the inner wall of the vertical hole.

温度センサは縦穴に挿入されたとき十分底面に接触していない場合があり得る。このような場合、温度センサはその熱応答性が低下する傾向にあった。これに対して、銀ペーストのような高い熱伝導性を有する流動性物質を縦穴の先端近傍に充填すると、縦穴の底面への接触状態が多少悪い場合でも、接触した場合と同程度の熱応答性(感度)が得られることが判明した。このことは温度センサの挿入深さの自由度が向上することにもつながる。その結果、釘ひいては本装置の組立て作業が容易になり、作業時間が短縮化され、不良品が減少し、コストダウン作用が認められる。 The temperature sensor may not be sufficiently in contact with the bottom surface when inserted into the vertical hole. In such a case, the temperature sensor has a tendency to decrease its thermal responsiveness. On the other hand, if a fluid material with high thermal conductivity such as silver paste is filled in the vicinity of the tip of the vertical hole, even if the contact state to the bottom surface of the vertical hole is somewhat bad, the thermal response is about the same as that of contact It was found that sex (sensitivity) can be obtained. This leads to an improvement in the degree of freedom of the insertion depth of the temperature sensor. As a result, the assembly work of the nail and the apparatus is facilitated, the working time is shortened, the number of defective products is reduced, and the cost reduction effect is recognized.

また、前記釘は、釘根部から釘尖端近傍まで開けられた縦穴を形成し、該縦穴中に少なくとも温度センサを配置するに際して、該縦穴中に温度センサを挿入するための挿入口を釘の側壁に有しても良い。 Further, the nail forms a vertical hole opened from the nail root portion to the vicinity of the tip of the nail, and when placing at least the temperature sensor in the vertical hole, an insertion port for inserting the temperature sensor into the vertical hole is provided as a side wall of the nail. You may have.

この場合、温度センサの縦穴への挿入口を釘の側壁に設けているため、釘の根元を台座に付けた状態で温度センサを挿入することができるため強い圧力での釘の押し込みが可能となる。 In this case, since the insertion port for the vertical hole of the temperature sensor is provided on the side wall of the nail, the temperature sensor can be inserted with the base of the nail attached to the base, so that the nail can be pushed in with a strong pressure. Become.

また、前記釘は、釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれ縦穴の深さは互いに異なる深さ位置であり、それぞれの縦穴の中には少なくとも1つの温度センサを配置するに際して、該縦穴それぞれの中に温度センサを挿入するための挿入口が釘の側壁にそれぞれ開口しているとともに、該挿入口の釘根部からの位置がそれぞれの縦穴の深さに対応して違えて開口されることもある。 The nail is provided with two or more vertical holes opened from the root of the nail to the vicinity of the tip of the nail, and the depth of the vertical holes is different from each other. At least one temperature sensor is included in each vertical hole. Are inserted in the side walls of the nail, and the position of the insertion port from the nail root corresponds to the depth of each vertical hole. It may be opened differently.

温度センサの挿入口を釘の側壁に設けている点では上記同様であるが、この釘では縦穴を複数設けている。このときそれぞれの挿入口から縦穴尖端の位置までの高さは略同一としている。したがって、縦穴の深さに応じて温度センサの挿入口の位置がわかり、挿入する際、どれが深穴でどれが浅穴なのかといった、個別情報を開口位置で判断できる。その結果、誤挿入を防止し得る。 Although the same as the above in that the temperature sensor insertion port is provided in the side wall of the nail, the nail has a plurality of vertical holes. At this time, the height from each insertion port to the position of the tip of the vertical hole is substantially the same. Therefore, the position of the insertion port of the temperature sensor can be known according to the depth of the vertical hole, and individual information such as which is a deep hole and which is a shallow hole can be determined by the opening position when inserting. As a result, erroneous insertion can be prevented.

さらに、前記釘は、縦穴中に温度センサを挿入するための挿入口が釘の側壁に有するとともに、該挿入口が釘根部から釘尖端に向かって斜め下方に開口することが好ましい。 Further, the nail preferably has an insertion port for inserting the temperature sensor in the vertical hole in the side wall of the nail, and the insertion port opens obliquely downward from the nail root toward the nail tip.

挿入口が釘内の縦穴に対して直交方向に側壁を貫通させているとき(横穴のケース)、大量に温度センサの挿入作業をする場合に不都合がある場合がある。具体的には、温度センサを釘内の縦穴に挿入する際、接触点が90度の角度で鋭利に尖っており温度センサを傷つける可能性がある。このような場合を考慮し、ここでは挿入口までの横穴を斜めに開けることで温度センサを傷つけることも少なく、緩い角度で挿入が可能となり、短時間で挿入できることがわかった。とりわけ、縦穴が細く、釘が太い場合、この作業性の向上が顕著であり、大量製造に有利となる。 When the insertion port passes through the side wall in a direction orthogonal to the vertical hole in the nail (a case of a horizontal hole), there may be a problem when inserting a large amount of temperature sensors. Specifically, when the temperature sensor is inserted into the vertical hole in the nail, the contact point is sharply sharp at an angle of 90 degrees, which may damage the temperature sensor. Considering such a case, it was found here that the temperature sensor is hardly damaged by opening a horizontal hole up to the insertion opening at an angle, and the insertion can be performed at a gentle angle and can be inserted in a short time. In particular, when the vertical hole is narrow and the nail is thick, this improvement in workability is remarkable, which is advantageous for mass production.

なお、上述したようにそれぞれの前記縦穴の尖端近傍には釘の外部と該縦穴とを連通する貫通穴が開けられたていることが好ましい。また、以下、シース熱電対での説明を行っているが、他の温度センサ、例えば、所定のサイズ(釘の縦穴に装着できる大きさ)と性能(最高到達温度に耐える耐性)を有する測温抵抗体やサーミスタを用いてもよい。 As described above, it is preferable that a through hole that communicates the outside of the nail and the vertical hole is formed in the vicinity of the tip of each vertical hole. In addition, the following explanation is given with a sheath thermocouple, but other temperature sensors, for example, a temperature measuring device having a predetermined size (a size that can be mounted in a vertical hole of a nail) and performance (resistance to withstand the highest temperature). A resistor or a thermistor may be used.

本発明は、釘内部に温度センサを挿入したことにより、釘刺し試験における被試験電池の内部短絡部の温度測定が直接可能となった。 In the present invention, since the temperature sensor is inserted into the nail, the temperature of the internal short-circuit portion of the battery under test in the nail penetration test can be directly measured.

一方、縦穴の先端近傍に開けた横穴(貫通坑)は、電池内部から短絡時に熱反応で生じた生成物をサンプリングするのに好適である。なぜなら、反応近傍に届いた、釘の先端部位より電解液の採取が逐次行え、反応による生成物の経時変化も追跡できるからである。 On the other hand, a horizontal hole (through hole) opened near the tip of the vertical hole is suitable for sampling a product generated by a thermal reaction at the time of a short circuit from the inside of the battery. This is because the electrolyte solution can be sequentially collected from the tip of the nail that has reached the vicinity of the reaction, and the change with time of the product due to the reaction can be traced.

また、空気より熱容量の大きい不活性液体中で行うと、釘刺しによる強制内部短絡や外部から強制的にエネルギーを供給する過充電試験での発熱が吸収・分散され、空気中での試験と比較して電池自体はあまり温度上昇しなくなる。加えて、急激な酸化反応つまり発火も酸素が遮蔽されていることで発生しないため、危険性のある電池であっても発火・発煙は起こりにくく、温度変化や化学ガス発生等による変化のみを精密に観察でき、短絡電流による発熱挙動や化学反応(発熱反応や吸熱反応)の進行状況を含めた知見を得られ、これまで、釘内部に配置した温度センサによる温度変化しか解析方法がなかったことに比べ、欠かせない情報源である。 Also, when performed in an inert liquid with a larger heat capacity than air, heat generated by forced internal short-circuiting due to nail penetration and overcharge tests that force energy from the outside is absorbed and dispersed, and compared with tests in air. Thus, the temperature of the battery itself does not increase so much. In addition, since rapid oxidation reaction, that is, ignition, does not occur because oxygen is shielded, ignition and smoke are unlikely to occur even with dangerous batteries, and only changes due to temperature changes, chemical gas generation, etc. are precise. It was possible to observe the heat generation behavior due to short circuit current and the progress of chemical reactions (exothermic reaction and endothermic reaction), and until now, there was only an analysis method for temperature change by the temperature sensor placed inside the nail. This is an indispensable information source.

また、釘先端に開けた貫通孔から採取される電池の内容物は化学反応の開始初期から採取でき、電池の燃焼による採取不能や高温化によるガス化・体積膨張、熱変性といった事態も起こらず、液状で回収できることから、より有益な知見を得るためには欠かせない採取法と考えられる。 In addition, the contents of the battery collected from the through-hole opened at the tip of the nail can be collected from the beginning of the chemical reaction, and there is no situation such as inability to collect due to battery combustion, gasification / volume expansion due to high temperature, and thermal denaturation. Since it can be recovered in liquid form, it is considered to be an indispensable collection method for obtaining more useful knowledge.

一方、不活性液体の熱容量が空気より大きいことで、試験時の電池の温度変化が緩慢化され、危険性の高い電池と危険性の高くない電池の温度上昇挙動の差異が小さくなったため、電池表面での温度変化では判明しなかった微妙な違いを、釘内部の温度センサで短絡点近傍の温度変化を正確に掴むことで把握する必要性を高める作用となった。 On the other hand, since the heat capacity of the inert liquid is larger than that of air, the temperature change of the battery during the test is slowed down, and the difference in temperature rise behavior between the high-risk battery and the non-hazardous battery is reduced. It became the action which raised the necessity to grasp the subtle difference which was not understood by the temperature change on the surface by grasping the temperature change near the short circuit point accurately by the temperature sensor inside the nail.

釘内部に温度センサを配置した釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-shaped test tool used for the nail penetration test which has arrange | positioned the temperature sensor inside a nail. 本発明での安全性試験装置の試験概念図である。It is a test conceptual diagram of the safety test device in the present invention. 本発明の安全性試験装置に用いる釘内部に温度センサを配置し、かつ蓄電デバイスの内部からサンプル採取する貫通坑も有する釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-like test tool used for the nail penetration test which arrange | positions a temperature sensor inside the nail used for the safety test apparatus of this invention, and also has a penetration pit which takes a sample from the inside of an electrical storage device. 本発明の安全性試験装置に用いる蓄電デバイスの内部からサンプル採取する貫通坑も有する釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-shaped test tool used for the nail penetration test which also has a through-hole which samples from the inside of the electrical storage device used for the safety test apparatus of this invention. 本発明の安全性試験装置に用いる釘内部に温度センサを配置し、かつ蓄電デバイスの内部からサンプル採取する貫通坑も有する釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-like test tool used for the nail penetration test which arrange | positions a temperature sensor inside the nail used for the safety test apparatus of this invention, and also has a penetration pit which takes a sample from the inside of an electrical storage device. 本発明の安全性試験装置に用いる釘内部に温度センサを配置した釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-shaped test tool used for the nail penetration test which has arrange | positioned the temperature sensor inside the nail used for the safety test apparatus of this invention. 本発明の安全性試験装置に用いる釘内部に温度センサを配置した釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-shaped test tool used for the nail penetration test which has arrange | positioned the temperature sensor inside the nail used for the safety test apparatus of this invention. 本発明の安全性試験装置に用いる釘内部に温度センサを配置し、かつ蓄電デバイスの内部からサンプル採取する貫通坑も有する釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-like test tool used for the nail penetration test which arrange | positions a temperature sensor inside the nail used for the safety test apparatus of this invention, and also has a penetration pit which takes a sample from the inside of an electrical storage device. 本発明の安全性試験装置に用いる蓄電デバイスの内部からサンプル採取する貫通坑も有する釘刺し試験に使用する釘状の試験具の縦断面図である。It is a longitudinal cross-sectional view of the nail-shaped test tool used for the nail penetration test which also has a through-hole which samples from the inside of the electrical storage device used for the safety test apparatus of this invention. 従来例としての、安全性試験装置の試験概念図である。It is a test conceptual diagram of a safety test device as a conventional example. 図3の安全性試験装置の釘内部に熱電対を挿入する縦穴に高熱伝導性を有する流動性物質を充填させた試験具である。4 is a test tool in which a fluid material having high thermal conductivity is filled in a vertical hole into which a thermocouple is inserted into the nail of the safety test apparatus of FIG. 3. 図3の安全性試験装置の釘の上部側壁に熱電対の挿入口を設けた試験具である。FIG. 4 is a test device in which a thermocouple insertion port is provided in the upper side wall of the nail of the safety test apparatus of FIG. 3. 図8の安全性試験装置の釘の上部側壁に高さ位置の異なる熱電対の挿入口を設けた試験具である。9 is a test tool in which insertion holes for thermocouples having different height positions are provided on the upper side wall of the nail of the safety test apparatus of FIG. 8. 図8の安全性試験装置の釘の上部側壁に高さ位置が同じな熱電対の挿入口を設けた試験具である。FIG. 9 is a test device in which a thermocouple insertion opening having the same height is provided on the upper side wall of the nail of the safety test apparatus of FIG. 8. 図3の安全性試験装置の釘の上部側壁に斜め下方の熱電対の挿入口を設けた試験具である。4 is a test tool in which an insertion port for a thermocouple obliquely downward is provided on the upper side wall of the nail of the safety test apparatus of FIG. 3.

本発明は、釘と温度センサを一体構造にした釘刺し試験に使用する釘状の試験具で、従来困難であった被試験電池の短絡発生部温度を容易に測定可能にしたものである。 The present invention is a nail-like test tool used for a nail penetration test in which a nail and a temperature sensor are integrated, and can easily measure a short-circuit occurrence temperature of a battery under test, which has been difficult in the past.

また、同時に電池内部から電解液の採取を可能とし、分析に適したサンプルの提供を可能とする仕組みを提供するものである。
以下具体的に実施例にて詳説する。
以下では、温度センサとして熱電対を用いているが、他の温度センサ(測温抵抗体やサーミスタ)を用いても同様の結果となることは言うまでもない。
At the same time, an electrolyte solution can be collected from the inside of the battery, and a mechanism that can provide a sample suitable for analysis is provided.
Hereinafter, specific examples will be described in detail.
In the following, a thermocouple is used as the temperature sensor, but it goes without saying that the same result is obtained even if another temperature sensor (a resistance temperature detector or a thermistor) is used.

実施例1
図1にしたがって、本発明による安全性試験装置における釘刺し試験具(釘)1の概要を以下に示す。
外枠3は、突き刺し時の変形を防止し、繰り返し使用ができるよう、十分に硬度の高い金属例えば工具鋼を材料として用いた。形状は、突き刺し部外径φ3.0mmとし、先端円錐部の頂角30°、シース熱電対挿入孔(貫通孔)5の径をφ0.6mmとした。シース熱電対挿入孔5は、釘1の上端の釘根部5から穿孔して開けられ、軸方向下方に向かって釘尖端近傍7の位置まで到達している。
Example 1
An outline of a nail penetration test device (nail) 1 in the safety test apparatus according to the present invention is shown below according to FIG.
The outer frame 3 is made of a metal having a sufficiently high hardness, for example, tool steel, so as to prevent deformation at the time of piercing and can be used repeatedly. The shape was a pierced portion outer diameter φ3.0 mm, the apex angle of the tip cone portion was 30 °, and the diameter of the sheath thermocouple insertion hole (through hole) 5 was φ0.6 mm. The sheath thermocouple insertion hole 5 is drilled from the nail root 5 at the upper end of the nail 1 and reaches the position near the tip of the nail 7 in the axially downward direction.

シース熱電対4は、シース材質がSUS316、シース外径がφ0.5mmで、熱電対素線がKタイプのものを使用した。
なお、図1には描いていないが、シース熱電対4の後端において、シース熱電対4の出力線は、記録・表示する計器に接続され、測定された被試験電池内部短絡部の温度を記録する仕組みとした。
The sheath thermocouple 4 used was a sheath material of SUS316, a sheath outer diameter of φ0.5 mm, and a thermocouple wire of K type.
Although not depicted in FIG. 1, the output line of the sheath thermocouple 4 is connected to a recording / displaying instrument at the rear end of the sheath thermocouple 4, and the measured temperature of the short circuit inside the battery under test is measured. The recording mechanism was adopted.

図2に示すように、机12に透明等のチャンバー(保護箱)13を載置し、その中に試験容器8を配設した。液体が流出しない試験容器8の中に置いた固定台9に、満充電済みの蓄電デバイス11(パナソニック製リチウムイオン電池CGR18650C)を固定し、不活性液体10として住友スリーエム社製フロリナートFC-40を満たし、電池11を完全に浸漬したのち、速度2mm/秒で外径3mmの釘刺し試験具を電池のほぼ中央に12mmの深さまで穿刺(突き刺)して停止させ、釘内部に設置した、熱電対4にて温度変化を観測した。また、他の熱電対として蓄電デバイス(電池)11の表面温度を測定する熱電対20と、試験容器8内の不活性液体10の温度を測定する熱電対21とが配設される。なお、釘1の釘根部6は加圧ヘッド14に連結されており、加圧ヘッド14により昇降する。 As shown in FIG. 2, a transparent chamber 13 (protective box) 13 was placed on the desk 12, and the test container 8 was disposed therein. A fully charged power storage device 11 (Panasonic lithium-ion battery CGR18650C) is fixed to a fixed base 9 placed in a test container 8 where liquid does not flow out. After filling the battery 11 and completely immersing the battery 11, the nail penetration test tool having an outer diameter of 3 mm was punctured (pierced) to a depth of 12 mm at the center of the battery at a speed of 2 mm / second, and placed inside the nail. A temperature change was observed with a thermocouple 4. In addition, a thermocouple 20 that measures the surface temperature of the electricity storage device (battery) 11 and a thermocouple 21 that measures the temperature of the inert liquid 10 in the test container 8 are disposed as other thermocouples. The nail root 6 of the nail 1 is connected to the pressure head 14 and is moved up and down by the pressure head 14.

酸化反応に伴う発火や化学変化が生じていないため、急激な温度上昇はみられず、電池の変形や破壊も生じないことが分かった。さらに、電解液の噴出・飛散も抑制されるため、試験後の構造解析にも利用できた。 It was found that since there was no ignition or chemical change associated with the oxidation reaction, there was no rapid temperature rise, and there was no deformation or destruction of the battery. In addition, since the spraying and scattering of the electrolyte was suppressed, it could be used for structural analysis after the test.

釘刺し試験具1により、電池内部の正確な測定を繰り返し実施できることは確認した。
なお、釘刺し試験具1は、1回使用すると表面に酸化被膜(錆)や汚れが付着し、釘刺し試験具1の表面と電池内部の電極間の接触抵抗が増大する、また、先端の尖り具合が若干滑らかになるため、厳密な内部短絡の発生を計測する試験の場合は1回限りの使用とした。
It was confirmed that accurate measurement of the inside of the battery can be repeatedly performed with the nail penetration test device 1.
When the nail penetration test device 1 is used once, an oxide film (rust) or dirt adheres to the surface, increasing the contact resistance between the surface of the nail penetration test device 1 and the electrode inside the battery. Since the sharpness is slightly smooth, it was used only once in the case of a test measuring the occurrence of a strict internal short circuit.

実施例2
実施例1と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−1のみ、図3に示すように、縦穴5−1の釘尖端近傍7−1と釘1−1の外部とを連通する貫通穴15が開けられたものに変更して試験を行った。
Example 2
Using the same sample and test system as in Example 1 (see FIG. 2), only the nail penetration test device (nail) 1-1, as shown in FIG. The test was performed by changing to the one having a through hole 15 communicating with the outside of 1-1.

電解液と不活性液体10(ここでも、実施例1と同様フロリナートFC-40を使用)との相溶性がほとんどないため、分析に際して、面倒な分離・抽出作業が必要なく、つまり、容易に電解液を単離でき、分析手配が可能であった。 Since there is almost no compatibility between the electrolyte and inert liquid 10 (here, Fluorinert FC-40 is used as in Example 1), there is no need for troublesome separation / extraction operations, that is, electrolysis can be easily performed. The liquid could be isolated and the analysis could be arranged.

なお、分析装置の種類は電解液で使われている材料により最適のものを用いその種別は問わないが、一例をあげると、ガスクロマトグラフィー、液体クロマトグラフィー、IR分光分析計等々がある。 Note that the type of analyzer used is optimal depending on the material used in the electrolytic solution, and the type thereof is not limited, but examples include gas chromatography, liquid chromatography, IR spectroscopy, and the like.

具体的には、釘1−1が刺さった瞬間より、不活性液体10が電池11内部に浸透を開始し、釘1−1の先端に開けてある貫通穴15周辺に微量に存在する電解液が、不活性液体10に弾かれて(押し出され、セパレータや活物質から引き剥がされて)、浮き上がり、比重も不活性液体10の方が大きいことも相まって、下方に侵入し、浮いた電解液が釘1−1に空いた穴15を通して0.3ml採取できた。同時に、釘刺し試験具1の内部に配置した熱電対4で電池の発熱挙動も測定できた。 Specifically, from the moment the nail 1-1 is stabbed, the inert liquid 10 starts to penetrate into the battery 11, and the electrolyte solution is present in a small amount around the through hole 15 opened at the tip of the nail 1-1. However, it is bounced by the inert liquid 10 (extruded, peeled off from the separator and the active material), floats up, and in combination with the fact that the inert liquid 10 has a larger specific gravity, it enters below and floats the electrolyte. Was able to collect 0.3 ml through the hole 15 in the nail 1-1. At the same time, the heat generation behavior of the battery could be measured with the thermocouple 4 arranged inside the nail penetration test device 1.

実施例3
実施例2と同様の試験系(図2参照)及び手法を用い、50Ah級リチウムイオン電池11を対象に試験し、貫通孔5−2の頭部(釘根部)6−2に吸引機として、少量吸引制御能力に長けた、液体搬送用ポンプの一種バイモルポンプ(メドー産業販売(図示せず))を取付け、強制的に吸引を行ったところ約8ミリリットルの電解液が採取された。(当該吸引機の接続方法、配管については図示省略)
Example 3
Using the same test system (see FIG. 2) and method as in Example 2, the 50Ah-class lithium ion battery 11 was tested, and the head (nail root) 6-2 of the through hole 5-2 was used as a suction device. A bimol pump (medo industry sales (not shown)), which is a liquid transporting pump with excellent ability to control a small amount of suction, was attached, and when suction was forced, about 8 milliliters of electrolyte was collected. (The connection method and piping of the suction machine are not shown)

なお、今回約8ml採取出来たが、電池によっては、吸引採取できるほどの電解液を内部に含んでいるとは限らないため、採取できない場合もある。また、電解液の採取のみを目的とする場合は、図4のように、釘1−2の内部に、電解液を吸引しやすくするためには、温度センサを設置しないことがより好ましく、採取速度が速められる。 In addition, although about 8 ml was able to be collected this time, depending on the battery, it may not be collected because it does not always contain an electrolyte solution that can be collected by suction. In addition, when the purpose is only to collect the electrolytic solution, it is more preferable not to install a temperature sensor in order to make it easier to suck the electrolytic solution into the nail 1-2 as shown in FIG. Speed is increased.

さらに、複数の縦穴5−3,5−3’、つまり、熱電対4を挿入した穴5−3’と採取用の穴5−3をそれぞれ専用に準備(図5参照)し、使用すると温度も測定でき、採取速度が速まる効果ももたらされる。 Furthermore, a plurality of vertical holes 5-3, 5-3 ′, that is, a hole 5-3 ′ into which the thermocouple 4 is inserted and a sampling hole 5-3 are prepared for each (see FIG. 5), and when used, the temperature Can also be measured, and the effect of increasing the sampling speed is also brought about.

実施例4
実施例1と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−4のみ、図6に示すように、深さの異なる2本の縦穴5−4、5−4’かあり、それぞれの深さに応じて釘1−4の尖端先端近傍7−4,7−4’まで熱電対4,4’を配置したものに変更して試験を行ったところ、電池11内部の発熱挙動の深さ方向での差異が観測できた。
Example 4
Using the same sample and test system as in Example 1 (see FIG. 2), only the nail penetration test device (nail) 1-4 has two vertical holes 5-4, 5 and 5 having different depths as shown in FIG. -4 ′, depending on the depth of the nail 1-4, the tip of the nail 1-4 near the tip 7-4, 7-4 ′ was changed to the one where the thermocouple 4, 4 ′ was arranged, A difference in the depth direction of the heat generation behavior inside the battery 11 was observed.

なお、温度測定の為のみであれは、図7に示す釘1−5の様に、一つの縦穴5−5に、2つの熱電対4、4’を、挿入深さを変えて配置しても同じ目的は達成される。 For temperature measurement only, like the nail 1-5 shown in FIG. 7, two thermocouples 4 and 4 'are arranged at different insertion depths in one vertical hole 5-5. The same purpose is achieved.

実施例5
実施例1と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−6のみ、図8に示すように、深さの異なる2本の縦穴5−6,5−6’があり、それぞれの縦穴5−6,5−6’の釘尖端近傍7−6、7−6’に釘1−6の外部まで届く貫通穴18、18’が開けられたものに変更して試験を行った。
Example 5
Using the same sample and test system as in Example 1 (see FIG. 2), only the nail penetration test device (nail) 1-6 has two vertical holes 5-6, 5 having different depths as shown in FIG. -6 ', and through holes 18, 18' reaching the outside of the nail 1-6 are opened in the vicinity of the tip of the nail 7-6, 7-6 'of each vertical hole 5-6, 5-6' Tests were made with changes.

電池11内の電解液はそれぞれ釘1−6に空いた穴18、18’を通して各0.1mlずつ今回採取できた。加えて、釘刺し試験具(釘)1−6の内部に配置した熱電対4,4’で電池11の発熱挙動分布も測定できた。 The electrolyte solution in the battery 11 could be sampled 0.1 ml each through the holes 18 and 18 'opened in the nail 1-6. In addition, the heat generation behavior distribution of the battery 11 could be measured with the thermocouples 4 and 4 ′ disposed inside the nail penetration test device (nail) 1-6.

なお、実施例3にも記載しているが、電解液の採取のみを目的とする場合は、図9のように、釘1−7の内部の縦穴5−7、5−7’に、温度センサ(熱電対)を設置しないことが電解液吸引する場合より好ましく、採取速度も速められることは上述したとおりである。 Although described in Example 3, when the purpose is only to collect the electrolyte, the temperature is set in the vertical holes 5-7 and 5-7 ′ in the nail 1-7 as shown in FIG. As described above, it is more preferable not to install a sensor (thermocouple) than the case of sucking an electrolyte, and the collection speed is also increased.

比較例1
図10に示す同様なサンプル、試験系では、安全確保のため、強靭な耐防爆型チャンバー構造13’の中で、試験容器8内の不活性液体10(図2参照)に浸漬することなく試験をする以外は、実施例1と同様の同じ釘刺し試験条件(温度、電池容量、充電条件、釘の太さ、材質、針刺し速度)にて、実施したところ、電池表面及び釘内部の温度(熱電対4及び20)が共に急激に上下動し、ほぼ同時に発火・破裂したこと。これにより、発火点の真の温度を継続して計測はできなかった。
Comparative Example 1
In the same sample and test system shown in FIG. 10, the test is performed without immersing in the inert liquid 10 (see FIG. 2) in the test container 8 in the strong explosion-proof chamber structure 13 ′ for ensuring safety. The same nail penetration test conditions (temperature, battery capacity, charging conditions, nail thickness, material, needle penetration speed) as in Example 1 were conducted. Both thermocouples 4 and 20) suddenly moved up and down and ignited and ruptured almost simultaneously. As a result, the true temperature at the ignition point could not be continuously measured.

比較例2
比較例1と同様に(図10参照)、強靭な耐防爆型チャンバー構造体13’の中で、チャンバー内に被検査電池11を入れ、アルゴンガスを充満させ試験をする以外は同じ釘刺し試験条件(温度、電池容量、充電条件、釘の太さ、材質、針刺し速度)にて、釘刺し試験を実施したところ、電池表面及び釘内部の温度が共に上下動したが、酸化反応に伴う発火や化学変化が生じていないため、急激な温度上昇はみられず、電池の変形や破壊も生じないことが分かった。
Comparative Example 2
Similar to Comparative Example 1 (see FIG. 10), the same nail penetration test except that the test battery 11 is placed in a chamber in a tough explosion-proof chamber structure 13 ′ and filled with argon gas. When the nail penetration test was carried out under the conditions (temperature, battery capacity, charging conditions, nail thickness, material, needle penetration speed), both the battery surface and the temperature inside the nail moved up and down, but ignition occurred due to the oxidation reaction. As a result, no rapid temperature rise was observed and no battery deformation or destruction occurred.

実施例6
再び上述した実施例1と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−8について、図11に示すように、釘1−8は、熱電対4を配置する縦穴5−8の尖端7−8の近傍で熱電対4と縦穴5−8の内壁との間に高い熱伝導性を有する高流動性物質20を充填して試験を行った。高流動性物質20としては、ここでは銀ペースト20を使用した。
Example 6
Again, using the same sample and test system as in Example 1 described above (see FIG. 2), with regard to the nail penetration test device (nail) 1-8, as shown in FIG. The test was conducted by filling a high fluidity material 20 having high thermal conductivity between the thermocouple 4 and the inner wall of the vertical hole 5-8 in the vicinity of the tip 7-8 of the vertical hole 5-8 to be arranged. Here, the silver paste 20 was used as the high fluidity material 20.

銀ペーストのような高熱伝導性を有する流動性物質20を縦穴5−8の先端近傍7−8に充填すると、熱電対4が縦穴5−8の底面に対して接触状態が悪い場合でも、接触した場合と同程度の熱応答性(感度)が得られることが判明した。 When a fluid material 20 having high thermal conductivity such as silver paste is filled in the vicinity 7-8 of the vertical hole 5-8, even if the thermocouple 4 is in poor contact with the bottom surface of the vertical hole 5-8, the contact is made. It was found that the thermal response (sensitivity) of the same level as that obtained was obtained.

また、図11では示していないが、実施例1〜6と同様に縦穴5−8の釘尖端近傍7−1と釘1−1の外部とを連通する貫通穴15が開けられる場合もあり、貫通穴を開けたものに変更して試験も行った。図2に示すように電池11内の電解液はそれぞれ釘1−8に空いた穴(図3の符号18、18’参照)を通して各0.3ml採取できた。加えて、釘刺し試験具(釘)1−8の内部に配置した熱電対4,4’で電池11の発熱挙動分布も測定できた。 Moreover, although not shown in FIG. 11, the through-hole 15 which connects the nail point vicinity 7-1 of the vertical hole 5-8 and the exterior of the nail 1-1 similarly to Examples 1-6 may be opened, The test was also conducted by changing to a through hole. As shown in FIG. 2, 0.3 ml of the electrolyte in the battery 11 could be collected through the holes (see reference numerals 18 and 18 ′ in FIG. 3) in the nails 1-8. In addition, the heat generation behavior distribution of the battery 11 could be measured with the thermocouples 4 and 4 ′ disposed inside the nail penetration test device (nail) 1-8.

実施例7
上記実施例6と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−9について、図12に示すように、釘1−9は、縦穴5−9に熱電対4を挿入するための挿入口21を釘1−9の側壁に有している。具体的には、熱電対4の上部側壁に縦穴5−9に対して直交方向に外部から縦穴5−9まで貫通させた挿入口21を設けている。この場合でも縦穴5−9の尖端近傍7−9で銀ペースト20(図11参照)を充填しても良い。
Example 7
Using the same sample and test system as in Example 6 above (see FIG. 2), with respect to the nail penetration test device (nail) 1-9, as shown in FIG. An insertion port 21 for inserting the pair 4 is provided on the side wall of the nail 1-9. Specifically, an insertion port 21 is provided in the upper side wall of the thermocouple 4 so as to penetrate from the outside to the vertical hole 5-9 in a direction orthogonal to the vertical hole 5-9. Even in this case, the silver paste 20 (see FIG. 11) may be filled in the vicinity of the apex 7-9 of the vertical hole 5-9.

また、図12でも示していないが、縦穴5−9の釘尖端近傍7−9と釘1−9の外部とを連通する貫通穴15が開けられたものに変更して試験を行った。図2に示すように電池11内の電解液はそれぞれ釘1−9に空いた穴(図3の符号18、18’参照)を通して各0.3ml採取できた。加えて、釘刺し試験具(釘)1−9の内部に配置した熱電対4,4’で電池11の発熱挙動分布も測定できた。 In addition, although not shown in FIG. 12, the test was performed by changing to the one in which the through hole 15 communicating the nail point vicinity 7-9 of the vertical hole 5-9 and the outside of the nail 1-9 was opened. As shown in FIG. 2, 0.3 ml of the electrolyte solution in the battery 11 could be collected through the holes (see reference numerals 18 and 18 'in FIG. 3) in the nails 1-9. In addition, the heat generation behavior distribution of the battery 11 could be measured with the thermocouples 4 and 4 ′ arranged inside the nail penetration test device (nail) 1-9.

実施例8
実施例4と同様なサンプル、試験系(図2参照)を用い、釘刺し試験具(釘)1−4について、図13に示すように、釘1−10は、縦穴5−10,5−10’が2つ設けられている。それぞれ縦穴5−10,5−10’の深さは互いに異なる深さ位置であり、それぞれの縦穴5−10,5−10’の中に熱電対4,4‘を配置する。この釘1−10では、挿入口21、21’の位置に特長がある。図14には実施例4に示す図6の釘1−4の側壁の同じ高さ位置に挿入口21,21‘を設けた場合である。この場合、縦穴5−11,5−11’の深さがわからないため熱電対4,4‘を挿入する際、誤挿入(押し込み過ぎ又は押し込み不足)の可能性がある。誤挿入を防止しようとすると熱電対4、4’挿入に時間を要し、大量製造に適さない。これに対して図13の釘1−10では、挿入口21,21’それぞれの高さ位置を相違させることで挿入口21,21’から縦穴7−10,7−10’尖端の位置までの高さは略同一としている。したがって、縦穴5−10,5−10’の深さに応じて熱電対4,4’の挿入口の位置がわかり、縦穴位置(個別情報)を開口位置で判断でき、誤挿入を防止し得る。
Example 8
Using the same sample and test system as in Example 4 (see FIG. 2), as shown in FIG. 13 for the nail penetration test device (nail) 1-4, the nail 1-10 has vertical holes 5-10, 5- Two 10 'are provided. The depths of the vertical holes 5-10 and 5-10 ′ are different depth positions, and the thermocouples 4 and 4 ′ are disposed in the vertical holes 5-10 and 5-10 ′. The nail 1-10 has a feature in the positions of the insertion ports 21 and 21 '. FIG. 14 shows a case where insertion ports 21 and 21 ′ are provided at the same height position on the side wall of the nail 1-4 shown in FIG. In this case, since the depths of the vertical holes 5-11 and 5-11 ′ are not known, there is a possibility of erroneous insertion (too much pressing or insufficient pressing) when inserting the thermocouples 4 and 4 ′. In order to prevent erroneous insertion, it takes time to insert thermocouples 4 and 4 ′, which is not suitable for mass production. On the other hand, in the nail 1-10 of FIG. 13, the heights of the insertion ports 21 and 21 ′ are made different from each other so that the insertion ports 21 and 21 ′ can reach the positions of the vertical holes 7-10 and 7-10 ′. The height is substantially the same. Therefore, the positions of the insertion holes of the thermocouples 4 and 4 ′ can be known according to the depth of the vertical holes 5-10 and 5-10 ′, and the vertical hole position (individual information) can be determined from the opening position, thereby preventing erroneous insertion. .

また、図13でも示していないが、縦穴5−10,5−10’、の釘尖端近傍7−10,7−10’と釘1−10の外部とを連通する貫通穴15が開けられたものに変更して試験を行った。図2に示すように電池11内の電解液はそれぞれ釘1−10に空いた穴(図3の符号18、18’参照)を通して各0.1ml採取できた。加えて、釘刺し試験具(釘)1−10の内部に配置した熱電対4,4’で電池11の発熱挙動分布も測定できた。 Although not shown in FIG. 13, through holes 15 are formed to communicate the vertical holes 5-10 and 5-10 ′ with the vicinity of the tip of the nail 7-10 and 7-10 ′ and the outside of the nail 1-10. The test was conducted after changing to a different one. As shown in FIG. 2, 0.1 ml of the electrolyte solution in the battery 11 could be collected through holes (see reference numerals 18 and 18 ′ in FIG. 3) formed in the nail 1-10. In addition, the heat generation behavior distribution of the battery 11 could be measured with the thermocouples 4 and 4 ′ arranged inside the nail penetration test device (nail) 1-10.

実施例9
実施例6の改良例として、釘1−12について、図15に示すように、釘1−12の挿入口21が斜め下方に形成されている。この形状により挿入口21から熱電対4の縦穴5−12に挿入する際に傷つけることも少なく、緩い角度で挿入が可能となり、短時間で挿入できることがわかった。
Example 9
As an improved example of the sixth embodiment, with respect to the nail 1-12, as shown in FIG. 15, the insertion port 21 of the nail 1-12 is formed obliquely downward. With this shape, it was found that there was little damage when inserted into the vertical hole 5-12 of the thermocouple 4 from the insertion port 21, insertion was possible at a loose angle, and it was found that insertion was possible in a short time.

また、図12でも示していないが、縦穴5−12の釘尖端近傍7−12と釘1−12の外部とを連通する貫通穴15が開けられたものに変更して試験を行った。図2に示すように電池11内の電解液はそれぞれ釘1−12に空いた穴(図3の符号18、18’参照)を通して各0.3ml採取できた。加えて、釘刺し試験具(釘)1−12の内部に配置した熱電対4,4’で電池11の発熱挙動分布も測定できた。 Although not shown in FIG. 12, the test was performed by changing to the one in which the through hole 15 communicating the nail point vicinity 7-12 of the vertical hole 5-12 and the outside of the nail 1-12 was opened. As shown in FIG. 2, 0.3 ml of the electrolyte solution in the battery 11 could be collected through holes (see reference numerals 18 and 18 ′ in FIG. 3) formed in the nail 1-12. In addition, the heat generation behavior distribution of the battery 11 could be measured with the thermocouples 4 and 4 ′ disposed inside the nail penetration test device (nail) 1-12.

以上、本発明の安全性評価試験方法および安全性評価試験装置について例示説明してきたが本発明は特許請求の範囲の記載を逸脱しない範囲で種々の変形例が存在することは当業者に容易に理解できよう。 The safety evaluation test method and the safety evaluation test apparatus according to the present invention have been described above by way of example. However, it is easily understood by those skilled in the art that the present invention includes various modifications without departing from the scope of the claims. I understand.

1 釘(釘刺し試験具)
4 熱電対
5 縦穴
6 釘根部
7 先端部
8 試験容器
9 固定台
10 不活性液体
15〜19 貫通孔
21 挿入口
1 Nail (nail penetration test device)
4 Thermocouple 5 Vertical hole 6 Nail root 7 Tip 8 Test vessel 9 Fixing base 10 Inert liquid 15-19 Through hole 21 Insertion port

Claims (17)

不活性液体が貯留する試験容器を準備し、
蓄電デバイスを試験容器内に載置することで不活性液体内に完全浸漬させて、
蓄電デバイスに対する所定の安全性評価試験を行なう安全性評価試験方法。
Prepare a test container to store the inert liquid,
Immerse it completely in an inert liquid by placing the electricity storage device in a test container,
A safety evaluation test method for performing a predetermined safety evaluation test for an electricity storage device.
前記所定の安全性評価試験が、釘刺し試験、過充電試験、加熱試験の内のいずれか1つであることを特徴とする請求項1に記載の安全性評価試験方法。 The safety evaluation test method according to claim 1, wherein the predetermined safety evaluation test is any one of a nail penetration test, an overcharge test, and a heating test. 蓄電デバイスに対する所定の安全性評価試験は、釘刺し試験であり、
前記試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する安全性評価試験方法であって、
前記釘は、釘根部から釘尖端近傍まで開けられた縦穴を形成し、該縦穴中に少なくとも温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられ、該貫通穴を通して、穿刺のときに蓄電デバイスの内容物の少なくとも一部を採取し得ることを特徴とする請求項1に記載の安全性試験方法。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test,
A safety evaluation test method for puncturing with a nail having a sharp tip with respect to an electricity storage device that is completely immersed in an inert liquid stored in the test container,
The nail forms a vertical hole opened from the nail root to the vicinity of the tip of the nail, and at least a temperature sensor is disposed in the vertical hole,
In addition, a through hole that communicates the outside of the nail and the vertical hole is formed near the apex of the vertical hole, and at least a part of the contents of the electricity storage device can be collected through the through hole at the time of puncturing The safety test method according to claim 1.
蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、該縦穴中に少なくとも温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられたことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is provided, and at least a temperature sensor is disposed in the vertical hole,
In addition, a safety testing device for an electricity storage device, wherein a through-hole that communicates the outside of the nail and the vertical hole is formed near the tip of the vertical hole.
蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられたことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
A vertical hole is formed from the nail root to the vicinity of the tip of the nail,
In addition, a safety testing device for an electricity storage device, wherein a through-hole that communicates the outside of the nail and the vertical hole is formed near the tip of the vertical hole.
前記所定の安全性評価試験が過充電試験の場合に、前記試験容器外に設置された過充電試験用電源から前記試験容器の内部に設置された蓄電デバイスの正負端子に電流を供給可能とする電流供給端子が前記試験容器に設けられたことを特徴とする請求項4又は5に記載の安全性評価試験装置。 When the predetermined safety evaluation test is an overcharge test, a current can be supplied from the overcharge test power supply installed outside the test container to the positive and negative terminals of the electricity storage device installed inside the test container. 6. The safety evaluation test apparatus according to claim 4, wherein a current supply terminal is provided in the test container. 前記所定の安全性評価試験が加熱試験の場合には、前記試験容器外に設置された加熱試験用電源から前記試験容器の内部に設置された蓄電デバイスの近傍に置かれたヒータに電流を供給可能とする電流供給端子が前記試験容器に設けられたことを特徴とする請求項4又は5に記載の安全性評価試験装置。 When the predetermined safety evaluation test is a heating test, a current is supplied from a heating test power supply installed outside the test container to a heater placed in the vicinity of the electricity storage device installed inside the test container. 6. The safety evaluation test apparatus according to claim 4, wherein a current supply terminal that can be used is provided in the test container. 不活性液体が、フロリナート、ガルデン、シリコーンオイルであることを特徴とする請求項1記載の安全性試験方法。 The safety test method according to claim 1, wherein the inert liquid is Florinart, Galden, or silicone oil. 蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれ縦穴の深さは互いに異なる深さ位置であり、それぞれの縦穴の中には少なくとも1つの温度センサを配置し、
また、該それぞれの縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられたことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
Two or more vertical holes opened from the nail root to the vicinity of the tip of the nail are provided, and the depths of the vertical holes are different from each other, and at least one temperature sensor is disposed in each vertical hole,
A safety testing device for an electricity storage device, wherein a through-hole that communicates the outside of the nail and the vertical hole is formed in the vicinity of the tip of each vertical hole.
蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、該縦穴中に少なくとも2個以上の温度センサを配置し、
また、該縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられたことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is provided, and at least two temperature sensors are disposed in the vertical hole,
In addition, a safety testing device for an electricity storage device, wherein a through-hole that communicates the outside of the nail and the vertical hole is formed near the tip of the vertical hole.
蓄電デバイスに対する所定の安全性評価試験は、試験容器に貯留する不活性液体内に完全浸漬する蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、
前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれの縦穴に少なくとも1つに温度センサを配置し、
また、該それぞれの縦穴の尖端近傍に釘の外部と該縦穴とを連通する各貫通穴が開けられたことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which an electricity storage device completely immersed in an inert liquid stored in a test container is punctured with a nail with a sharp tip,
The nail is
Two or more vertical holes opened from the nail root to the vicinity of the tip of the nail are provided, and at least one temperature sensor is disposed in each of the vertical holes,
In addition, a safety testing device for an electricity storage device, wherein each through-hole communicating the outside of the nail and the vertical hole is formed in the vicinity of the tip of each vertical hole.
温度センサが、熱電対、サーミスタ、測温抵抗体であることを特徴とする請求項5、請求項9〜1記載の安全性評価試験装置。 The safety evaluation test apparatus according to claim 5, wherein the temperature sensor is a thermocouple, a thermistor, or a resistance temperature detector. 蓄電デバイスに対する所定の安全性評価試験は、蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を設け、該縦穴中に温度センサを配置し、
また、該縦穴の尖端近傍でかつ温度センサと該縦穴内壁との間に高い熱伝導性を有する流動性物質を充填していることを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which the electricity storage device is punctured with a nail having a sharp tip, and the nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is provided, and a temperature sensor is disposed in the vertical hole,
An electrical storage device safety testing apparatus characterized by filling a fluid material having high thermal conductivity in the vicinity of the tip of the vertical hole and between the temperature sensor and the inner wall of the vertical hole.
蓄電デバイスに対する所定の安全性評価試験は、蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を形成し、該縦穴中に少なくとも温度センサを配置するに際して、該縦穴中に温度センサを挿入するための挿入口を釘の側壁に有していることを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which the electricity storage device is punctured with a nail having a sharp tip, and the nail is
A vertical hole opened from the nail root to the vicinity of the tip of the nail is formed, and at least when the temperature sensor is disposed in the vertical hole, an insertion port for inserting the temperature sensor into the vertical hole is provided on the side wall of the nail. An electrical storage device safety test apparatus characterized by the above.
蓄電デバイスに対する所定の安全性評価試験は、蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を2個以上設け、該それぞれ縦穴の深さは互いに異なる深さ位置であり、それぞれの縦穴の中には少なくとも1つの温度センサを配置するに際して、該縦穴それぞれの中に温度センサを挿入するための挿入口が釘の側壁にそれぞれ開口しているとともに、該挿入口の釘根部からの位置がそれぞれの縦穴の深さに対応して違えて開口されている、ことを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which the electricity storage device is punctured with a nail having a sharp tip, and the nail is
Two or more vertical holes drilled from the nail root to the vicinity of the tip of the nail are provided, and the depths of the vertical holes are different from each other. When arranging at least one temperature sensor in each vertical hole, The insertion holes for inserting the temperature sensors into the respective vertical holes are opened in the side walls of the nail, and the positions of the insertion holes from the nail roots are opened in accordance with the depths of the respective vertical holes. An electrical storage device safety test apparatus characterized by comprising:
蓄電デバイスに対する所定の安全性評価試験は、蓄電デバイスに対して先端を尖らせた釘で穿刺する釘刺し試験であって、前記釘は、
釘根部から釘尖端近傍まで開けられた縦穴を形成し、該縦穴中に少なくとも温度センサを配置するに際して、該縦穴中に温度センサを挿入するための挿入口が釘の側壁に有するとともに、該挿入口が釘根部から釘尖端に向かって斜め下方に開口していることを特徴とする蓄電デバイスの安全性試験装置。
The predetermined safety evaluation test for the electricity storage device is a nail penetration test in which the electricity storage device is punctured with a nail having a sharp tip, and the nail is
When a vertical hole is formed from the nail root to the vicinity of the tip of the nail, and at least the temperature sensor is disposed in the vertical hole, an insertion port for inserting the temperature sensor into the vertical hole has a side wall of the nail, and the insertion An electrical storage device safety testing apparatus, characterized in that the mouth opens obliquely downward from the nail root toward the tip of the nail.
それぞれの前記縦穴の尖端近傍に釘の外部と該縦穴とを連通する貫通穴が開けられたている、ことを特徴とする請求項13〜16のいずれか1項に記載する蓄電デバイスの安全性試験装置。

The safety of the electricity storage device according to any one of claims 13 to 16, wherein a through-hole that communicates the outside of the nail and the vertical hole is formed in the vicinity of the tip of each vertical hole. Test equipment.

JP2014181743A 2013-09-05 2014-09-05 Safety testing method and device therefor Pending JP2015072266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181743A JP2015072266A (en) 2013-09-05 2014-09-05 Safety testing method and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013184002 2013-09-05
JP2013184002 2013-09-05
JP2014181743A JP2015072266A (en) 2013-09-05 2014-09-05 Safety testing method and device therefor

Publications (1)

Publication Number Publication Date
JP2015072266A true JP2015072266A (en) 2015-04-16

Family

ID=53014711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181743A Pending JP2015072266A (en) 2013-09-05 2014-09-05 Safety testing method and device therefor

Country Status (1)

Country Link
JP (1) JP2015072266A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199453A (en) * 2016-08-31 2016-12-07 华南理工大学 A kind of cylindrical battery lancing test fixture
JP2017174704A (en) * 2016-03-25 2017-09-28 国立大学法人山形大学 Safety evaluation test method for power storage device, and safety evaluation test apparatus
CN107390137A (en) * 2017-08-16 2017-11-24 中国科学技术大学 A kind of insulation pricker for assessing lithium ion battery safety performance
CN114415028A (en) * 2021-12-01 2022-04-29 中国民用航空飞行学院 Lithium ion battery pyrolysis gas explosion limit and inerting gas test system
JP7160404B1 (en) * 2021-09-27 2022-10-25 東洋システム株式会社 Secondary battery charge/discharge test equipment
CN115901607A (en) * 2022-12-28 2023-04-04 国网山东省电力公司菏泽供电公司 Electric automobile battery package puncture test bench
CN115963295A (en) * 2022-12-29 2023-04-14 溧阳天目先导电池材料科技有限公司 Lithium battery needling test flame-retardant device and test method
US11718723B2 (en) 2018-07-26 2023-08-08 Lg Chem, Ltd. Crosslinked polyolefin separator and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174704A (en) * 2016-03-25 2017-09-28 国立大学法人山形大学 Safety evaluation test method for power storage device, and safety evaluation test apparatus
CN106199453A (en) * 2016-08-31 2016-12-07 华南理工大学 A kind of cylindrical battery lancing test fixture
CN107390137A (en) * 2017-08-16 2017-11-24 中国科学技术大学 A kind of insulation pricker for assessing lithium ion battery safety performance
CN107390137B (en) * 2017-08-16 2023-11-17 中国科学技术大学 Insulation puncture needle for evaluating safety performance of lithium ion battery
US11718723B2 (en) 2018-07-26 2023-08-08 Lg Chem, Ltd. Crosslinked polyolefin separator and manufacturing method therefor
JP7160404B1 (en) * 2021-09-27 2022-10-25 東洋システム株式会社 Secondary battery charge/discharge test equipment
CN114415028A (en) * 2021-12-01 2022-04-29 中国民用航空飞行学院 Lithium ion battery pyrolysis gas explosion limit and inerting gas test system
CN115901607A (en) * 2022-12-28 2023-04-04 国网山东省电力公司菏泽供电公司 Electric automobile battery package puncture test bench
CN115963295A (en) * 2022-12-29 2023-04-14 溧阳天目先导电池材料科技有限公司 Lithium battery needling test flame-retardant device and test method

Similar Documents

Publication Publication Date Title
JP2015072266A (en) Safety testing method and device therefor
Mao et al. Failure mechanism of the lithium ion battery during nail penetration
CN208109740U (en) A kind of lithium ion battery combustion explosion risk experimental rig
JP4862542B2 (en) Safety evaluation method for test apparatus and power storage and supply device
CN108008303B (en) Safety test method for determining critical battery state through internal short circuit challenge
US20140241394A1 (en) Analysis of rechargeable batteries
Dubaniewicz et al. Are lithium ion cells intrinsically safe?
CN109946634A (en) A kind of lithium ion battery thermal runaway environmental simulation device and method
CN111487538A (en) Lithium ion battery or battery pack thermal runaway comprehensive detection system and method
JP2012215537A (en) Safety evaluation test method, safety evaluation test device, and destructive measuring instrument with thermocouple
Kong et al. Computed tomography analysis of li-ion battery case ruptures
CN105372294A (en) Lithium ion battery exposure detection method
CN103743868B (en) A kind of pick-up unit for combustion product of lithium ion battery
Wang et al. Study on the fire risk associated with a failure of large‐scale commercial LiFePO4/graphite and LiNixCoyMn1‐x‐yO2/graphite batteries
Tao et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
CN203869706U (en) Protection device for explosive component tests and testing
Abbott et al. Experimental study of three commercially available 18650 lithium ion batteries using multiple abuse methods
Lalinde et al. On the characterization of lithium-ion batteries under overtemperature and overcharge conditions: Identification of abuse areas and experimental validation
Pegel et al. Extensive experimental thermal runaway and thermal propagation characterization of large-format tabless cylindrical lithium-ion cells with aluminum housing and laser welded endcaps
Nagourney et al. The implications of post-fire physical features of cylindrical 18650 lithium-ion battery cells
CN116298975A (en) Early smoke characteristic test platform for thermal runaway of battery and measurement method thereof
Chen et al. Experimental Study of Sidewall Rupture of Cylindrical Lithium-Ion Batteries under Radial Nail Penetration
Spinner et al. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration
CN114518541A (en) Battery thermal runaway experimental device and experimental method
Kwon et al. Fire Characterization and Gas Analysis of Lithium-Ion Batteries During Thermal Runaway

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20140926