JP2015071984A - Premixing compression ignition type engine, and operation control method thereof - Google Patents

Premixing compression ignition type engine, and operation control method thereof Download PDF

Info

Publication number
JP2015071984A
JP2015071984A JP2013208441A JP2013208441A JP2015071984A JP 2015071984 A JP2015071984 A JP 2015071984A JP 2013208441 A JP2013208441 A JP 2013208441A JP 2013208441 A JP2013208441 A JP 2013208441A JP 2015071984 A JP2015071984 A JP 2015071984A
Authority
JP
Japan
Prior art keywords
combustion
timing
combustion chamber
combustion timing
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208441A
Other languages
Japanese (ja)
Inventor
大樹 田中
Daiki Tanaka
大樹 田中
俊介 染澤
Shunsuke Somezawa
俊介 染澤
孝弘 佐古
Takahiro Sako
孝弘 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013208441A priority Critical patent/JP2015071984A/en
Publication of JP2015071984A publication Critical patent/JP2015071984A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of: establishing a control index for appropriate combustion timing, the index indicating a variation in cycle variability; and positively and sufficiently achieving restriction over cycle variation under control of combustion timing in a premixing compression ignition type engine.SOLUTION: A total input calorific value Qi that is a heat generation amount of fuel supplied to a combustion chamber every 1 cycle is fed out and at the same time an in-cylinder heat generation amount Q that is an actual heat generation amount in the combustion chamber is monitored; a combustion timing detecting process in which a timing that an input reference combustion ratio that is a ratio of an in-cylinder heat generation amount Q to a total input calorific value Qi reaches a predetermined set combustion ratio (a) is detected as a premixing gas combustion timing Ti in the combustion chamber; and a combustion timing control for adjusting a prescribed operating condition influencing against a premixing gas combustion phase in such a way that a detected combustion timing Ti may be kept within a range of a prescribed target combustion timing is executed.

Description

本発明は、燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行い、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理を実行する燃焼時期検出手段と、
燃焼時期検出手段で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御を実行する運転制御手段とを備えた予混合圧縮着火式エンジン及びその運転制御方法に関する。
The present invention performs premixed compression ignition combustion in which a premixed gas of fresh air and fuel is compressed and self-ignited and burned in the combustion chamber,
Combustion timing detection means for executing a combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Operation control means for performing combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected by the combustion timing detection means is maintained within a predetermined target combustion timing range The present invention relates to a premixed compression ignition type engine and an operation control method thereof.

低公害且つ高効率を実現し得るエンジンとして、空気と燃料とを予め混合した予混合気を燃焼室に投入し、その予混合気をピストンの断熱圧縮により自己着火させて燃焼させる所謂予混合圧縮着火(HCCI:Homogeneous Charge Compression Ignition)燃焼を行う予混合圧縮着火式エンジンが知られている(例えば、特許文献1及び2を参照。)。
かかる予混合圧縮着火式エンジンは、圧縮比を増加させて効率の向上が可能であると共に、燃料を希薄状態で燃焼させ低NOx化が可能となり、特に、高圧噴射が困難でディーゼルエンジン用燃料としては不向きな天然ガス系都市ガス等の気体燃料を用いても、容易に予混合気を圧縮着火させて燃焼させることができるというメリットを有する。
As an engine that can achieve low pollution and high efficiency, a so-called premixed compression in which a premixed mixture of air and fuel is pre-mixed into the combustion chamber and the premixed mixture is self-ignited by adiabatic compression of the piston and burned. A premixed compression ignition type engine that performs ignition (HCCI) combustion is known (see, for example, Patent Documents 1 and 2).
Such a premixed compression ignition type engine can improve the efficiency by increasing the compression ratio, and can reduce the NOx by burning the fuel in a lean state. Has the merit that the premixed gas can be easily ignited and combusted even when gaseous fuel such as natural gas city gas is used.

予混合圧縮着火式エンジンでは、安定した運転を維持し更には効率を向上させるために、燃焼室において予混合気を上死点近傍の適切な時期に自己着火させることが重要である。しかしながら、予混合圧縮着火式エンジンの自己着火の時期は、火花点火時期を能動的に決定できる火花点火式エンジンとは異なり、予混合気の温度、圧力、濃度、成分等のわずかな外乱により変動する。
そのため、上記特許文献1及び2等に記載された従来の予混合圧縮着火式エンジンでは、上死点近傍での適切な自己着火を維持してノッキングや失火等によるサイクル変動の抑制を図るために、燃焼室における予混合気の燃焼時期を逐次検出する燃焼時期検出処理を実行しながら、内部EGR量を変化させて燃焼室における予混合気の温度を調整したり、又は、燃焼室に火花を発生させて自己着火を誘発させるなどのように、予混合気の実際の燃焼位相に影響を与える所定の運転条件を調整する形態で、逐次検出される燃焼時期を所定の目標燃焼時期範囲内に制御する燃焼時期制御が実行される。
そして、これら従来の予混合圧縮着火式エンジンの燃焼時期検出処理では、燃焼室における予混合気の燃焼時期を検出するにあたり、燃焼室での実際の熱発生量である筒内熱発生量を監視し、かかる筒内熱発生量を燃焼過程全体で累積した総筒内熱発生量を基準とし、当該筒内熱発生量の進行度合いを用いて予混合気の燃焼時期の検出している。
具体的には、クランク角から求めることができる燃焼室の容積と筒内圧センサで計測された筒内圧とから、燃焼室における熱発生速度(熱発生率)を逐次求め、その熱発生速度をその時期までの燃焼過程において積分したものを筒内熱発生量として逐次求める。そして、筒内熱発生量を燃焼過程全体で累積して総筒内熱発生量を求めると共に、その総筒内熱発生量に対して、その時期までの筒内熱発生量の割合である筒内基準燃焼割合を逐次求め、その筒内基準燃焼割合が50%等の所定の設定割合に達した時期である筒内基準燃焼時期を、燃焼室における予混合気の燃焼時期として検出している。
In a premixed compression ignition engine, it is important that the premixed gas is self-ignited at an appropriate time in the vicinity of the top dead center in the combustion chamber in order to maintain stable operation and further improve the efficiency. However, the self-ignition timing of a premixed compression ignition engine differs from a spark ignition engine that can actively determine the spark ignition timing, and varies depending on slight disturbances such as the temperature, pressure, concentration, and components of the premixed gas. To do.
Therefore, in the conventional premixed compression ignition type engine described in Patent Documents 1 and 2, etc., in order to maintain appropriate self-ignition near the top dead center and to suppress cycle fluctuation due to knocking, misfire, etc. While performing the combustion timing detection process for sequentially detecting the combustion timing of the premixed gas in the combustion chamber, the internal EGR amount is changed to adjust the temperature of the premixed gas in the combustion chamber, or a spark is applied to the combustion chamber. In order to adjust the predetermined operating conditions that affect the actual combustion phase of the premixed gas, such as inducing self-ignition, the detected combustion timing is within the predetermined target combustion timing range. The combustion timing control to be controlled is executed.
In the combustion timing detection processing of these conventional premixed compression ignition engines, in-cylinder heat generation, which is the actual heat generation in the combustion chamber, is monitored when detecting the combustion timing of the premixed gas in the combustion chamber. Then, with reference to the total in-cylinder heat generation amount obtained by accumulating the in-cylinder heat generation amount over the entire combustion process, the combustion timing of the premixed gas is detected using the progress of the in-cylinder heat generation amount.
Specifically, the heat generation rate (heat generation rate) in the combustion chamber is sequentially obtained from the volume of the combustion chamber that can be obtained from the crank angle and the in-cylinder pressure measured by the in-cylinder pressure sensor. The integral in the combustion process up to the time is obtained sequentially as the amount of heat generated in the cylinder. Then, the in-cylinder heat generation amount is accumulated over the entire combustion process to obtain the total in-cylinder heat generation amount, and the cylinder is the ratio of the in-cylinder heat generation amount up to that time with respect to the total in-cylinder heat generation amount. The in-cylinder reference combustion ratio is sequentially obtained, and the in-cylinder reference combustion timing at which the in-cylinder reference combustion ratio reaches a predetermined set ratio such as 50% is detected as the combustion timing of the premixed gas in the combustion chamber. .

特開2013−133814号公報JP2013-133814A 特開2008−057407号公報JP 2008-057407 A

予混合圧縮着火式エンジンにおいて、予混合気の当量比(空燃比)を一定にして吸気温度を変化させて燃焼位相を変動させたときの実験データを図3〜図5に示す。尚、予混合圧縮着火式エンジンでは、一般的に、吸気温度が上昇すると燃焼位相が早期化し、吸気温度が低下すると燃焼位相が遅延化する。   In a premixed compression ignition type engine, experimental data when the combustion phase is changed by changing the intake air temperature while keeping the equivalence ratio (air-fuel ratio) of the premixed gas constant are shown in FIGS. In a premixed compression ignition type engine, generally, when the intake air temperature rises, the combustion phase is advanced, and when the intake air temperature is lowered, the combustion phase is delayed.

図3に、筒内基準燃焼割合が50%に達した筒内基準燃焼時期(以下「筒内基準燃焼割合50%時期」という。)と、図示有効圧力の変動係数(以下「サイクル変動係数」という。)との関係を示す。この実験結果から判るように、筒内基準燃焼割合50%時期が10(deg.ATDC)以降に遅延すると、サイクル変動係数が急激に大きくなる。このような状態に陥ると、燃焼時期制御において筒内基準燃焼割合50%時期を目標燃焼時期範囲内へ制御することが困難となる。
図4に、各筒内基準燃焼割合50%時期におけるクランク角に対する燃焼室の熱発生速度の履歴を示す。また、図5に、筒内基準燃焼割合50%時期と総筒内熱発生量の関係を示す。これら実験結果から判るように、筒内基準燃焼割合50%時期が10(deg.ATDC)以降に遅延すると、総筒内熱発生量が急激に小さくなる。言い換えれば、1サイクルで燃焼室へ供給される燃料の発熱量の合計である総投入発熱量に対する総筒内熱発生量の割合である燃焼効率が急激に低下する。一方で、総筒内熱発生量の減少に対する筒内基準燃焼割合50%時期の遅延幅は漸次小さくなる。
つまり、予混合圧縮着火式エンジンでは、燃焼位相が大きく遅延する状態では、実際は燃焼効率が低下し、サイクル変動が増加する。しかし、このサイクル変動の増加が、総筒内熱発生量を基準にした筒内基準燃焼割合50%時期の変化として正確に現れないことになる、或いは、サイクル変動の変化が判別し難いものとなる。よって、この筒内熱発生量を燃焼過程全体で累積した総筒内熱発生量を基準とした燃焼時期である筒内基準燃焼割合50%時期は、予混合圧縮着火燃焼における燃焼時期の制御指標としては不適切であると言える。
そこで、予混合圧縮着火式エンジンでは、サイクル変動の変化を現すことができる燃焼時期の適切な制御指標を確立することが望まれる。
FIG. 3 shows the in-cylinder reference combustion timing when the in-cylinder reference combustion ratio reaches 50% (hereinafter referred to as “in-cylinder reference combustion ratio 50% timing”), and the coefficient of variation of the illustrated effective pressure (hereinafter “cycle variation coefficient”). And the relationship. As can be seen from the experimental results, when the in-cylinder reference combustion rate 50% is delayed after 10 (deg. ATDC), the cycle variation coefficient increases rapidly. In such a state, it becomes difficult to control the in-cylinder reference combustion ratio 50% timing within the target combustion timing range in the combustion timing control.
FIG. 4 shows a history of the heat generation rate of the combustion chamber with respect to the crank angle at the time of each in-cylinder reference combustion ratio of 50%. FIG. 5 shows the relationship between the in-cylinder reference combustion rate 50% and the total in-cylinder heat generation amount. As can be seen from these experimental results, when the in-cylinder reference combustion rate 50% is delayed after 10 (deg. ATDC), the total in-cylinder heat generation amount decreases rapidly. In other words, the combustion efficiency, which is the ratio of the total in-cylinder heat generation amount to the total input heat generation amount, which is the total heat generation amount of the fuel supplied to the combustion chamber in one cycle, rapidly decreases. On the other hand, the delay width at the time of the in-cylinder reference combustion ratio 50% with respect to the decrease in the total in-cylinder heat generation amount gradually decreases.
That is, in the premixed compression ignition type engine, in a state where the combustion phase is greatly delayed, the combustion efficiency actually decreases and the cycle fluctuation increases. However, this increase in cycle fluctuation does not appear accurately as a change in the 50% timing of the in-cylinder reference combustion ratio based on the total in-cylinder heat generation amount, or the change in cycle fluctuation is difficult to distinguish. Become. Therefore, the in-cylinder reference combustion ratio 50% timing, which is the combustion timing based on the total in-cylinder heat generation amount accumulated during the entire combustion process, is a control index for the combustion timing in premixed compression ignition combustion. Can be said to be inappropriate.
Therefore, in a premixed compression ignition type engine, it is desired to establish an appropriate control index for the combustion timing that can show changes in cycle fluctuations.

本発明は、かかる点に着目してなされたものであり、その目的は、予混合圧縮着火式エンジンにおいて、サイクル変動の変化を現すことができる適切な燃焼時期の制御指標を確立し、燃焼時期制御によるサイクル変動の抑制を確実且つ十分に実現することができる技術を提供する点にある。   The present invention has been made paying attention to such a point, and an object of the present invention is to establish an appropriate combustion timing control index capable of expressing changes in cycle fluctuations in a premixed compression ignition type engine, The object is to provide a technique capable of reliably and sufficiently realizing suppression of cycle fluctuation by control.

この目的を達成するための本発明に係る予混合圧縮着火式エンジンは、
燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行い、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理を実行する燃焼時期検出手段と、
前記燃焼時期検出手段で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御を実行する運転制御手段とを備えた予混合圧縮着火式エンジンであって、
その特徴構成は、
前記燃焼時期検出手段が、燃焼時期検出処理において、1サイクル毎に燃焼室へ供給される燃料の発熱量の合計である総投入発熱量を導出すると共に、燃焼室での実際の熱発生量である筒内熱発生量を監視し、前記総投入発熱量に対して前記筒内熱発生量の割合である投入基準燃焼割合が所定の設定燃焼割合に達した時期を燃焼時期として検出する点にある。
In order to achieve this object, a premixed compression ignition engine according to the present invention comprises:
In the combustion chamber, premixed compression ignition combustion is performed in which a premixed gas of fresh air and fuel is compressed and self-ignited to burn.
Combustion timing detection means for executing a combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Operation control for performing combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected by the combustion timing detection means is maintained within a predetermined target combustion timing range A premixed compression ignition engine comprising means,
Its feature configuration is
In the combustion timing detection process, the combustion timing detection means derives a total input calorific value that is the sum of the calorific values of fuel supplied to the combustion chamber every cycle, and the actual heat generation amount in the combustion chamber. A certain amount of in-cylinder heat generation is monitored, and the time when the input reference combustion ratio, which is the ratio of the in-cylinder heat generation amount to the total input heat generation amount, reaches a predetermined set combustion ratio is detected as a combustion timing. is there.

本特徴構成によれば、燃焼時期検出処理において燃焼室における予混合気の燃焼時期を検出するにあたり、従来のように筒内熱発生量を燃焼過程全体で累積した総筒内熱発生量を基準として求めた筒内基準燃焼割合を用いるのではなく、1サイクルで燃焼室へ供給される燃料の発熱量の合計である総投入発熱量を基準として求めた投入基準燃焼割合を用いる。
即ち、図2を参照して、逐次求められた燃焼室での実際の熱発生量である筒内熱発生量Qを逐次監視し、従来では、燃焼室での実際の熱発生量として逐次監視される筒内熱発生量Qが、筒内熱発生量を燃焼過程全体で累積した総筒内熱発生量Qsに対して所定の設定割合aに達した時期である筒内基準燃焼時期Tsが、予混合気の燃焼時期として検出される。
それに対して、本特徴構成の燃焼時期検出処理では、燃焼室での実際の熱発生量として逐次監視される筒内熱発生量Qが、1サイクル毎に燃焼室へ供給される燃料の発熱量の合計である総投入発熱量Qiに対して所定の設定割合aに達した時期である投入基準燃焼時期Tiが、予混合気の燃焼時期として検出されることになる。
According to this feature configuration, when detecting the combustion timing of the premixed gas in the combustion chamber in the combustion timing detection process, the total in-cylinder heat generation amount obtained by accumulating the in-cylinder heat generation amount over the entire combustion process is used as a reference. Rather than using the in-cylinder reference combustion rate obtained as follows, the input reference combustion rate obtained based on the total input calorific value, which is the total calorific value of the fuel supplied to the combustion chamber in one cycle, is used.
That is, referring to FIG. 2, the in-cylinder heat generation amount Q, which is the actual heat generation amount in the combustion chamber obtained sequentially, is successively monitored, and conventionally, it is sequentially monitored as the actual heat generation amount in the combustion chamber. The in-cylinder heat generation amount Q is a time when the in-cylinder heat generation amount Q reaches a predetermined set ratio a with respect to the total in-cylinder heat generation amount Qs obtained by accumulating the in-cylinder heat generation amount over the entire combustion process. It is detected as the combustion timing of the premixed gas.
On the other hand, in the combustion timing detection process of this feature configuration, the in-cylinder heat generation amount Q that is successively monitored as the actual heat generation amount in the combustion chamber is the calorific value of the fuel supplied to the combustion chamber every cycle. The input reference combustion timing Ti, which is a time when the predetermined set ratio a is reached with respect to the total input calorific value Qi, which is the sum of the above, is detected as the combustion timing of the premixed gas.

図3に、予混合気の当量比を一定にして吸気温度を変化させて燃焼時期を変動させたときの実験データであって、筒内基準燃焼時期Tsの一例としての筒内基準燃焼割合が50%に達した時期である筒内基準燃焼割合50%時期と、投入基準燃焼時期Tiの一例としての投入基準燃焼割合が50%に達した時期である投入基準燃焼割合50%時期との夫々におけるサイクル変動係数との関係を示す。
この実験データから判るように、投入基準燃焼時期Tiについては、筒内基準燃焼時期Tsと比較して、燃焼位相が遅延化した際のサイクル変動係数の上昇が緩やかになる。よって、投入基準燃焼時期Tiについては、サイクル変動係数の変動に対する制御範囲が比較的広く確保されることになり、サイクル変動係数の変化が投入基準燃焼時期Tiの変化として正確に現れることになり、結果、サイクル変動係数の変化を判別し易くなる。
従って、本発明により、予混合圧縮着火式エンジンにおいて、サイクル変動の変化を現すことができる適切な燃焼時期の制御指標として投入燃焼時期を用いることで、燃焼時期制御によるサイクル変動の抑制を確実且つ十分に実現することができる。
FIG. 3 shows experimental data when the combustion timing is changed by changing the intake air temperature while keeping the equivalence ratio of the premixed gas constant, and the in-cylinder reference combustion ratio as an example of the in-cylinder reference combustion timing Ts is shown. An in-cylinder reference combustion ratio 50% period, which has reached 50%, and an input reference combustion ratio 50% period, in which the input reference combustion ratio as an example of the input reference combustion period Ti has reached 50%, respectively. The relationship with the cycle variation coefficient in is shown.
As can be seen from this experimental data, in the input reference combustion timing Ti, as compared with the in-cylinder reference combustion timing Ts, the increase in the cycle variation coefficient when the combustion phase is delayed becomes gradual. Therefore, for the input reference combustion timing Ti, a relatively wide control range with respect to the variation of the cycle variation coefficient is secured, and the change in the cycle variation coefficient appears accurately as the change in the input reference combustion timing Ti. As a result, it becomes easy to discriminate changes in the cycle variation coefficient.
Therefore, according to the present invention, in the premixed compression ignition type engine, by using the input combustion timing as an appropriate combustion timing control index capable of expressing the variation of the cycle variation, the cycle variation can be reliably suppressed by the combustion timing control. It can be fully realized.

本発明に係る予混合圧縮着火式エンジンの更なる特徴構成は、
燃焼室への燃料供給量を計測する燃料供給量計測手段を備え、
前記燃焼時期検出手段が、燃焼時期検出処理において、前記燃料供給量計測手段で計測された燃料供給量の1サイクル毎の合計である総燃料供給量から前記総投入発熱量を導出する点にある。
A further characteristic configuration of the premixed compression ignition engine according to the present invention is as follows:
A fuel supply amount measuring means for measuring the fuel supply amount to the combustion chamber;
In the combustion timing detection process, the combustion timing detection means derives the total input calorific value from the total fuel supply amount that is the sum of the fuel supply amounts measured by the fuel supply amount measurement means for each cycle. .

本特徴構成によれば、燃焼時期検出処理において、投入基準燃焼時期の検出に利用する総投入発熱量を取得するにあたり、燃料供給量計測手段で計測される燃焼室への燃料供給量を吸気行程全体で累積するなどして、当該燃料供給量の1サイクル毎の合計である総燃料供給量を取得すれば、その総燃料供給量に燃料の単位発熱量を乗算する形態で、上記総投入発熱量を取得することができる。   According to this characteristic configuration, in the combustion timing detection process, the fuel supply amount to the combustion chamber measured by the fuel supply amount measuring means is obtained in the intake stroke when acquiring the total input heat generation amount used for detection of the input reference combustion timing. If the total fuel supply amount that is the sum of the fuel supply amount per cycle is obtained by accumulating the fuel supply amount as a whole, the total input heat generation is performed by multiplying the total fuel supply amount by the unit calorific value of the fuel. The amount can be acquired.

本発明に係る予混合圧縮着火式エンジンの更なる特徴構成は、
燃焼室の圧力である筒内圧を計測する筒内圧計測手段を備え、
前記燃焼時期検出手段が、燃焼時期検出処理において、前記筒内圧計測手段で計測された筒内圧と燃焼室の容積とから求められる熱発生速度を燃焼過程において積分した積分量を前記筒内熱発生量として監視する点にある。
A further characteristic configuration of the premixed compression ignition engine according to the present invention is as follows:
In-cylinder pressure measuring means for measuring the in-cylinder pressure that is the pressure of the combustion chamber,
In the combustion timing detection process, the combustion timing detection means integrates an integral amount obtained by integrating the heat generation rate obtained from the cylinder pressure measured by the cylinder pressure measurement means and the volume of the combustion chamber in the combustion process. The point is to monitor as a quantity.

本特徴構成によれば、燃焼時期検出処理において、投入基準燃焼時期の検出に利用する筒内熱発生量を取得するにあたり、圧縮行程及び膨張行程における燃焼室の容積変化に対する筒内圧計測手段で計測された筒内圧変化を分析することにより燃焼室における熱発生速度を求め、その熱発生速度をその時期までの燃焼過程において積分する形態で、上記筒内熱発生量を逐次取得することができる。   According to this feature configuration, in the combustion timing detection process, when acquiring the in-cylinder heat generation amount used for detection of the input reference combustion timing, measurement is performed by the in-cylinder pressure measuring means with respect to the volume change of the combustion chamber in the compression stroke and the expansion stroke. By analyzing the in-cylinder pressure change, the heat generation rate in the combustion chamber is obtained, and the heat generation rate in the cylinder can be sequentially acquired in such a manner that the heat generation rate is integrated in the combustion process up to that time.

本発明に係る予混合圧縮着火式エンジンの更なる特徴構成は、
前記運転制御手段が、燃焼時期制御において、前記運転条件として、燃焼室へ吸気される新気の温度、燃焼室へ吸気される新気の圧力、燃焼室の実圧縮比、予混合気の当量比、排ガス再循環率、燃焼室に設けられた補助点火プラグの火花発生時期の少なくとも一つを調整する点にある。
A further characteristic configuration of the premixed compression ignition engine according to the present invention is as follows:
The operation control means, in the combustion timing control, as the operating conditions, the temperature of fresh air sucked into the combustion chamber, the pressure of fresh air sucked into the combustion chamber, the actual compression ratio of the combustion chamber, the equivalent of premixed gas This is to adjust at least one of the ratio, the exhaust gas recirculation rate, and the spark generation timing of the auxiliary spark plug provided in the combustion chamber.

本特徴構成によれば、燃焼室における予混合気の実際の燃焼位相に影響を与え、サイクル変動の抑制を図るための燃焼時期制御で調整される動作条件としては、燃焼室へ吸気される新気の温度(以下「吸気温度」と呼ぶ)、燃焼室へ吸気される新気の圧力(以下「吸気圧力」と呼ぶ)、燃焼室の実圧縮比、予混合気の当量比、燃焼室に設けられた補助点火プラグの火花発生時期の少なくとも一つを利用することができる。
例えば、吸気圧力を調整して、又は、吸気弁の閉時期を調整して実圧縮比を調整すれば、燃焼室における自己着火前の予混合気の圧力が変化して、その予混合気が自己着火する時期が変化するので、結果、予混合気の燃焼時期を調整することができる。
また、吸気温度を調整すれば、燃焼室における自己着火前の予混合気の温度が変化するので、結果、予混合気の燃焼時期を調整することができる。
また、新気に対する燃料の混合割合を調整して、予混合気の当量比を調整すれば、燃焼室における予混合気の自己着火の時期や燃焼速度が変化するので、結果、予混合気の燃焼時期を調整することができる。
また、排ガス再循環(EGR)を採用すると共に、吸気量に対する排ガスの再循環量の比率として求められる排ガス再循環率(EGR率)を調整すれば、予混合気における酸素濃度及び不活性ガス濃度が変化して、予混合気の自己着火の時期や燃焼速度が変化するので、結果、予混合気の燃焼時期を調整することができる。
また、燃焼室に火花を発生可能な補助点火プラグを設けると共に、その補助点火プラグの火花発生時期を調整すれば、燃焼室において予混合気の自己着火がその火花により誘発される時期が変化するので、結果、予混合気の燃焼時期を調整することができる。
According to this characteristic configuration, the operating condition that is adjusted by the combustion timing control to affect the actual combustion phase of the premixed gas in the combustion chamber and to suppress cycle fluctuations is the new intake air to the combustion chamber. The temperature of the air (hereinafter referred to as “intake air temperature”), the pressure of fresh air taken into the combustion chamber (hereinafter referred to as “intake pressure”), the actual compression ratio of the combustion chamber, the equivalence ratio of the premixed air, At least one of the spark generation times of the auxiliary spark plug provided can be used.
For example, if the intake pressure is adjusted, or if the actual compression ratio is adjusted by adjusting the closing timing of the intake valve, the pressure of the premixed gas before self-ignition in the combustion chamber changes, and the premixed gas Since the timing of self-ignition changes, as a result, the combustion timing of the premixed gas can be adjusted.
Further, if the intake air temperature is adjusted, the temperature of the premixed gas before self-ignition in the combustion chamber changes, and as a result, the combustion timing of the premixed gas can be adjusted.
Also, if the mixing ratio of fuel to fresh air is adjusted and the equivalence ratio of the premixed gas is adjusted, the timing of self-ignition of the premixed gas and the combustion speed in the combustion chamber will change. The combustion time can be adjusted.
Further, when exhaust gas recirculation (EGR) is adopted and the exhaust gas recirculation rate (EGR rate) obtained as a ratio of the exhaust gas recirculation amount to the intake air amount is adjusted, the oxygen concentration and the inert gas concentration in the premixed gas Changes, and the timing of self-ignition of the premixed gas and the combustion speed change. As a result, the combustion timing of the premixed gas can be adjusted.
In addition, by providing an auxiliary spark plug capable of generating sparks in the combustion chamber and adjusting the spark generation timing of the auxiliary spark plug, the timing at which self-ignition of the premixed gas is induced in the combustion chamber by the spark changes. As a result, the combustion timing of the premixed gas can be adjusted.

また、この目的を達成するための本発明に係る予混合圧縮着火式エンジンの運転制御方法は、
燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行う予混合圧縮着火式エンジンにおいて、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理と、
前記燃焼時期検出処理で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御とを実行する予混合圧縮着火式エンジンの運転制御方法であって、
その特徴構成は、
前記燃焼時期検出処理において、1サイクル毎に燃焼室へ供給される燃料の発熱量の合計である総投入発熱量を導出すると共に、燃焼室での実際の熱発生量である筒内熱発生量を監視し、前記総投入発熱量に対して前記筒内熱発生量の割合である投入基準燃焼割合が所定の設定燃焼割合に達した時期を燃焼時期として検出する点にある。
Moreover, the operation control method of the premixed compression ignition engine according to the present invention for achieving this object is as follows:
In a premixed compression ignition type engine that performs premixed compression ignition combustion in which a premixed mixture of fresh air and fuel is compressed and self-ignited and combusted in a combustion chamber,
A combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Preliminary execution of combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected in the combustion timing detection processing is maintained within a predetermined target combustion timing range. An operation control method for a mixed compression ignition engine,
Its feature configuration is
In the combustion timing detection process, a total input calorific value that is the sum of the calorific values of the fuel supplied to the combustion chamber per cycle is derived, and an in-cylinder heat generation amount that is an actual heat generation amount in the combustion chamber And the time when the input reference combustion ratio, which is the ratio of the in-cylinder heat generation amount to the total input heat generation amount, reaches a predetermined set combustion ratio is detected as the combustion timing.

本特徴構成によれば、本発明に係る予混合圧縮着火式エンジンが実行するものと同じ燃焼時期検出処理及び燃焼時期制御が実行されるので、本発明に係る予混合圧縮着火式エンジンと同様に、予混合圧縮着火式エンジンにおいて、サイクル変動の変化を現すことができる適切な燃焼時期の制御指標として投入燃焼時期を用いることで、燃焼時期制御によるサイクル変動の抑制を確実且つ十分に実現することができる。   According to this characteristic configuration, the same combustion timing detection process and combustion timing control as those performed by the premixed compression ignition type engine according to the present invention are executed. Therefore, similarly to the premixed compression ignition type engine according to the present invention. In the premixed compression ignition type engine, by using the input combustion timing as an appropriate combustion timing control index that can show changes in cycle variation, the suppression of cycle variation by combustion timing control is realized reliably and sufficiently. Can do.

本実施形態における予混合圧縮着火式エンジンの概略構成図Schematic configuration diagram of a premixed compression ignition engine in the present embodiment 筒内基準燃焼時期と投入基準燃焼時期との定義を説明する図Diagram explaining the definition of in-cylinder reference combustion timing and input reference combustion timing 筒内基準燃焼時期と投入基準燃焼時期との夫々に対するサイクル変動係数の関係を示すグラフ図The graph which shows the relationship of the cycle variation coefficient with respect to each of the in-cylinder reference combustion timing and the input reference combustion timing 筒内基準燃焼時期におけるクランク角に対する熱発生速度の履歴を示すグラフ図The graph which shows the history of the heat generation rate with respect to the crank angle in the cylinder standard combustion timing 筒内基準時期と総筒内熱発生量の関係を示すグラフ図Graph showing the relationship between in-cylinder reference time and total in-cylinder heat generation

本発明の実施形態について図面に基づいて説明する。
図1に示す予混合圧縮着火式エンジン(以下、単に「エンジン」と略称する。)1は、シリンダ2と、シリンダ2の上部に連結されたシリンダヘッド3とを有し、シリンダ2内には、連結棒5を介しクランク軸6に連結されたピストン4が往復移動自在に収容されている。そして、ピストン4の頂面と、シリンダ2の内面と、シリンダヘッド3の下面とによって燃焼室10が形成されている。そして、燃焼室10には、吸気路21及び排気路31が開口され、燃焼室10の吸気路21側には吸気弁20が、燃焼室10の排気路31側には排気弁30が設けられている。
Embodiments of the present invention will be described with reference to the drawings.
A premixed compression ignition type engine (hereinafter simply referred to as “engine”) 1 shown in FIG. 1 has a cylinder 2 and a cylinder head 3 connected to the upper portion of the cylinder 2. The piston 4 connected to the crankshaft 6 via the connecting rod 5 is accommodated so as to be reciprocally movable. A combustion chamber 10 is formed by the top surface of the piston 4, the inner surface of the cylinder 2, and the lower surface of the cylinder head 3. An intake passage 21 and an exhaust passage 31 are opened in the combustion chamber 10, an intake valve 20 is provided on the intake passage 21 side of the combustion chamber 10, and an exhaust valve 30 is provided on the exhaust passage 31 side of the combustion chamber 10. ing.

エンジン1の吸気路21には、吸気路21を流通する空気Aに、天然ガスである燃料Fを、燃料供給弁24による供給量調整を伴って混合して、予混合気Mを形成するミキサ23が設けられている。また、吸気路21におけるミキサ23の下流側には、開度調整により燃焼室10への予混合気Mの吸気量を調整可能なスロットルバルブ22が設けられている。また、吸気路21におけるスロットルバルブ22の下流側には、燃焼室10へ吸気される予混合気Mを比較的高温(例えば80℃)のエンジン冷却水CWとの熱交換により加熱する熱交換器25が設けられている。そして、この熱交換器25を通過した予混合気Mが燃焼室10に吸気される。   In the intake passage 21 of the engine 1, a mixer that forms a premixed gas M by mixing the fuel A, which is natural gas, with the air A flowing through the intake passage 21 together with the supply amount adjustment by the fuel supply valve 24. 23 is provided. In addition, a throttle valve 22 that can adjust the intake amount of the premixed gas M to the combustion chamber 10 by adjusting the opening is provided on the downstream side of the mixer 23 in the intake passage 21. Further, on the downstream side of the throttle valve 22 in the intake passage 21, a heat exchanger that heats the premixed gas M sucked into the combustion chamber 10 by heat exchange with a relatively high temperature (for example, 80 ° C.) engine cooling water CW. 25 is provided. Then, the premixed gas M that has passed through the heat exchanger 25 is sucked into the combustion chamber 10.

そして、吸気弁20を開動作させた状態でピストン4が上死点から下降することにより、吸気路21から燃焼室10に予混合気Mを吸気する吸気行程が行われ、次に、吸気弁20を閉動作させた状態でピストン4が上昇することにより、燃焼室10の予混合気Mを圧縮する圧縮行程が行われる。
この圧縮行程の後期では、予混合気Mが断熱圧縮により昇温して、燃料Fの酸化反応が進み、温度が連鎖分岐反応の発生する燃料Fの着火温度まで上昇すると、自己着火が発生し予混合気Mが燃焼する、所謂HCCI燃焼が行われる。
そして、圧縮行程に続く膨張行程では、予混合気Mの燃焼に伴う燃焼室10の容積増加によりピストン4が降下し、それに続く排気行程では、排気弁30を開動作させた状態でピストン4が上昇することにより、燃焼室10の排ガスEが排気路31に排出される。
このようにして、エンジン1は、吸気行程、圧縮行程、膨張行程、排気行程の順に各行程を行う一連の動作を繰り返し行うように構成されている。
Then, when the piston 4 is lowered from the top dead center with the intake valve 20 opened, an intake stroke for intake of the premixed gas M from the intake passage 21 to the combustion chamber 10 is performed. When the piston 4 rises in a state in which 20 is closed, a compression stroke for compressing the premixed gas M in the combustion chamber 10 is performed.
In the latter stage of the compression stroke, the premixed gas M is heated by adiabatic compression, the oxidation reaction of the fuel F proceeds, and when the temperature rises to the ignition temperature of the fuel F where the chain branching reaction occurs, self-ignition occurs. So-called HCCI combustion, in which the premixed gas M burns, is performed.
In the expansion stroke following the compression stroke, the piston 4 is lowered due to the increase in the volume of the combustion chamber 10 accompanying the combustion of the premixed gas M, and in the subsequent exhaust stroke, the piston 4 is opened with the exhaust valve 30 opened. By rising, the exhaust gas E in the combustion chamber 10 is discharged to the exhaust passage 31.
In this way, the engine 1 is configured to repeatedly perform a series of operations for performing each stroke in the order of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke.

また、吸気路21に設けられた熱交換器25へのエンジン冷却水の供給量を調整可能な冷却水供給量調整弁26が設けられている。この冷却水供給量調整弁26は、熱交換器25への冷却水の供給量を調整して熱交換器25の予混合気Mに対する加熱能力を調整することで、燃焼室10に新気として吸気される予混合気Mの温度である吸気温度を調整する吸気温度調整手段として機能する。
更に、この冷却水供給量調整弁26により、燃焼室10へ吸気される予混合気Mの温度を調整することで、燃焼室10における圧縮時の予混合気Mの温度が変化するので、結果、予混合気Mの燃焼時期を調整することができる。
即ち、冷却水供給量調整弁26により調整される予混合気Mの温度は、燃焼室10における予混合気Mの燃焼位相に影響を与える運転条件であると言え、この冷却水供給量調整弁26は、その運転条件を変化させて、燃焼室10における予混合気Mの燃焼時期を調整可能な燃焼時期調整手段であると言える。
Further, a cooling water supply amount adjusting valve 26 capable of adjusting the supply amount of engine cooling water to the heat exchanger 25 provided in the intake passage 21 is provided. The cooling water supply amount adjusting valve 26 adjusts the amount of cooling water supplied to the heat exchanger 25 to adjust the heating capacity of the heat exchanger 25 with respect to the premixed gas M, so that fresh air is supplied to the combustion chamber 10. It functions as an intake air temperature adjusting means for adjusting the intake air temperature, which is the temperature of the premixed air M to be sucked.
Further, by adjusting the temperature of the premixed gas M sucked into the combustion chamber 10 by the cooling water supply amount adjusting valve 26, the temperature of the premixed gas M at the time of compression in the combustion chamber 10 changes. The combustion timing of the premixed gas M can be adjusted.
That is, it can be said that the temperature of the premixed gas M adjusted by the cooling water supply amount adjusting valve 26 is an operating condition that affects the combustion phase of the premixed gas M in the combustion chamber 10. 26 can be said to be a combustion timing adjusting means capable of adjusting the combustion timing of the premixed gas M in the combustion chamber 10 by changing the operating conditions.

エンジン1には、各種センサとして、燃焼室10の圧力である筒内圧を計測する筒内圧センサ8(筒内圧計測手段の一例)、クランク軸6の角度であるクランク角を計測するクランク角センサ7、燃料供給弁24を通流する燃料Fの流量を燃焼室10への燃料供給量として計測する燃料供給量センサ9(燃料供給量計測手段の一例)等が設けられている。   In the engine 1, as various sensors, an in-cylinder pressure sensor 8 (an example of an in-cylinder pressure measuring unit) that measures an in-cylinder pressure that is a pressure in the combustion chamber 10, and a crank angle sensor 7 that measures a crank angle that is an angle of the crankshaft 6. A fuel supply amount sensor 9 (an example of a fuel supply amount measuring unit) that measures the flow rate of the fuel F flowing through the fuel supply valve 24 as a fuel supply amount to the combustion chamber 10 is provided.

エンジン1の各種制御は、ECU(エンジン・コントロール・ユニット)50によって行われ、かかるECU50は、所定のコンピュータープログラムを実行することにより、燃焼室10における予混合気Mの燃焼時期を検出する燃焼時期検出処理を実行する燃焼時期検出手段51、予混合気の燃焼位相に影響を与える所定の運転条件である吸気温度を調整して燃焼時期検出手段51で検出される燃焼時期を所定の目標燃焼時期範囲内に維持する燃焼時期制御等を実行する運転制御手段52等として機能する。   Various controls of the engine 1 are performed by an ECU (Engine Control Unit) 50. The ECU 50 executes a predetermined computer program to detect the combustion timing of the premixed gas M in the combustion chamber 10. Combustion timing detection means 51 for performing detection processing, and adjusting the intake air temperature, which is a predetermined operating condition that affects the combustion phase of the premixed gas, to determine the combustion timing detected by the combustion timing detection means 51 as a predetermined target combustion timing It functions as the operation control means 52 etc. for executing the combustion timing control etc. maintained within the range.

尚、運転制御手段52は、上記燃焼時期制御と同時に、酸素センサ(図示省略)で検出された排ガスEの酸素濃度に基づいて燃料供給弁24の開度を制御することによって、ミキサ23で生成される予混合気Mの当量比(空燃比)をHCCI燃焼に適した燃料リーンな所望の目標当量比に維持する空燃比制御や、クランク角センサ7の検出結果から求められるクランク軸6の回転速度が所望の回転速度に維持されるようにスロットルバルブ22の開度を制御する回転速度維持制御などの各種制御を実行するように構成されている。   The operation control means 52 is generated by the mixer 23 by controlling the opening of the fuel supply valve 24 based on the oxygen concentration of the exhaust gas E detected by an oxygen sensor (not shown) simultaneously with the combustion timing control. The air-fuel ratio control for maintaining the equivalent ratio (air-fuel ratio) of the premixed gas M to be a fuel-lean desired target equivalent ratio suitable for HCCI combustion, and the rotation of the crankshaft 6 obtained from the detection result of the crank angle sensor 7 Various controls such as rotational speed maintenance control for controlling the opening degree of the throttle valve 22 are performed so that the speed is maintained at a desired rotational speed.

燃焼時期検出手段51が実行する燃焼時期検出処理では、図2も参照して、クランク角センサ7で検出されるクランク角θを参照しながら、筒内圧センサ8で検出された筒内圧の変化状態を分析することで、燃焼室10での実際の熱発生量である筒内熱発生量Qを逐次導出し監視する。
詳しくは、下記[数1]の数式に示すように、クランク角θにより燃焼室10の容積Vを求め、圧縮行程及び膨張行程における容積変化(dV/dθ)と筒内圧変化(dP/dθ)とから、燃焼室10における熱発生速度(dQ/dθ)を求める。
そして、その熱発生速度(dQ/dθ)を、その時期のクランク角θまでの燃焼過程において積分する形態で、上記筒内熱発生量Qを逐次取得する。
In the combustion timing detection process executed by the combustion timing detection means 51, referring to FIG. 2 as well, the change state of the in-cylinder pressure detected by the in-cylinder pressure sensor 8 while referring to the crank angle θ detected by the crank angle sensor 7. By analyzing the above, the in-cylinder heat generation amount Q, which is the actual heat generation amount in the combustion chamber 10, is sequentially derived and monitored.
Specifically, as shown in the following [Equation 1], the volume V of the combustion chamber 10 is obtained from the crank angle θ, and the volume change (dV / dθ) and the in-cylinder pressure change (dP / dθ) in the compression stroke and the expansion stroke. From this, the heat generation rate (dQ / dθ) in the combustion chamber 10 is obtained.
Then, the in-cylinder heat generation amount Q is sequentially acquired in such a manner that the heat generation rate (dQ / dθ) is integrated in the combustion process up to the crank angle θ at that time.

Figure 2015071984
Figure 2015071984

同時に、燃焼時期検出手段51は、クランク角センサ7で検出されるクランク角θを参照しながら、燃料供給量センサ9で計測される燃焼室10への燃料供給量を1サイクル毎に積算して、燃料供給量の1サイクル毎の合計である総燃料供給量を算出し、その総燃料供給量に燃料Fの単位発熱量を乗算する形態で、1サイクル毎に燃焼室10へ供給される燃料Fの発熱量の合計である総投入発熱量Qiを導出することができる。
そして、燃焼時期検出手段51は、総投入発熱量に対するその時期までの筒内熱発生量の割合である投入基準燃焼割合が、50%等の所定の設定燃焼割合aに達した時期を、投入基準燃焼時期Tiとして検出する。
At the same time, while referring to the crank angle θ detected by the crank angle sensor 7, the combustion timing detection means 51 integrates the fuel supply amount to the combustion chamber 10 measured by the fuel supply amount sensor 9 for each cycle. The fuel supplied to the combustion chamber 10 every cycle is calculated by calculating the total fuel supply amount, which is the sum of the fuel supply amounts per cycle, and multiplying the total fuel supply amount by the unit heating value of the fuel F. A total input calorific value Qi, which is the total calorific value of F, can be derived.
Then, the combustion timing detection means 51 inputs the timing when the charging reference combustion ratio, which is the ratio of the in-cylinder heat generation amount up to that timing with respect to the total input heat generation amount, reaches a predetermined set combustion ratio a such as 50%. It is detected as the reference combustion time Ti.

次に、運転制御手段52が実行する燃焼時期制御では、冷却水供給量調整弁26により、予混合気Mの燃焼位相に影響を与える運転条件である吸気温度を調整して、燃焼時期検出手段51で検出される投入基準燃焼時期Tiを、上死点近傍の所定の目標燃焼時期範囲内(例えば8deg.ATDC〜12deg.ATDCの範囲内)に制御する。
具体的には、目標燃焼時期範囲に対して投入基準燃焼時期Tiが遅い場合には、冷却水供給量調整弁26の開度を拡大させて、吸気温度を上昇させ、予混合気Mの燃焼位相を早期化させる。逆に、目標燃焼時期範囲に対して投入基準燃焼時期Tiが早い場合には、冷却水供給量調整弁26の開度を縮小させて、吸気温度を低下させ、予混合気Mの燃焼位相を遅延化させる。このことにより、投入基準燃焼時期Tiは目標燃焼時期範囲内に維持されることになり、ノッキングや失火等が回避されてサイクル変動の抑制が図られることになる。
Next, in the combustion timing control executed by the operation control means 52, the intake air temperature, which is an operating condition that affects the combustion phase of the premixed gas M, is adjusted by the cooling water supply amount adjustment valve 26, and the combustion timing detection means. The injection reference combustion timing Ti detected at 51 is controlled within a predetermined target combustion timing range near top dead center (for example, within a range of 8 deg.ATDC to 12 deg.ATDC).
Specifically, when the input reference combustion timing Ti is late with respect to the target combustion timing range, the opening degree of the cooling water supply amount adjustment valve 26 is increased, the intake air temperature is increased, and the premixed gas M is burned. Make the phase early. Conversely, when the input reference combustion timing Ti is earlier than the target combustion timing range, the opening degree of the cooling water supply amount adjustment valve 26 is reduced, the intake air temperature is lowered, and the combustion phase of the premixed gas M is changed. Delay it. As a result, the input reference combustion timing Ti is maintained within the target combustion timing range, and knocking, misfire, etc. are avoided, and cycle fluctuations are suppressed.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.

(1)上記実施形態では、吸気路21に設けられた熱交換器25へのエンジン冷却水の供給量を調整可能な冷却水供給量調整弁26の開度を調整することにより、燃焼室10に吸気される予混合気Mの温度である吸気温度を調整したが、例えば、吸気路21に設けた電気ヒータの加熱出力を調整することで、吸気温度を調整しても構わない。 (1) In the above embodiment, the combustion chamber 10 is adjusted by adjusting the opening of the cooling water supply amount adjustment valve 26 that can adjust the supply amount of engine cooling water to the heat exchanger 25 provided in the intake passage 21. The intake air temperature, which is the temperature of the premixed gas M sucked into the intake air, is adjusted. For example, the intake air temperature may be adjusted by adjusting the heating output of the electric heater provided in the intake passage 21.

(2)上記実施形態では、予混合気Mの燃焼位相に影響を与える所定の運転条件として吸気温度を用いたが、過給機の回転数調整により変更可能な燃焼室10へ吸気される予混合気Mの圧力や、吸気弁の閉時期の調整により変更可能な燃焼室10の実圧縮比や、燃料供給弁24の開度調整により変更可能な予混合気の当量比や、排ガス再循環率(EGR率)等についても、これらを変更することで予混合気Mの燃焼時期を調整できることから、予混合気Mの燃焼位相に影響を与える所定の運転条件として利用することができる。
また、燃焼室10に火花を発生可能な補助点火プラグを設けて、その補助点火プラグの火花発生時期を調整すれば、燃焼室10において予混合気の自己着火がその火花により誘発される時期が変化し、結果、予混合気Mの燃焼時期を調整できることから、この補助点火プラグの火花発生時期についても、予混合気Mの燃焼位相に影響を与える所定の運転条件として利用することができる。
(2) In the above embodiment, the intake air temperature is used as the predetermined operating condition that affects the combustion phase of the premixed gas M. However, the intake air temperature can be changed by adjusting the rotation speed of the supercharger. The actual compression ratio of the combustion chamber 10 that can be changed by adjusting the pressure of the mixture M, the closing timing of the intake valve, the equivalence ratio of the premixed gas that can be changed by adjusting the opening of the fuel supply valve 24, and exhaust gas recirculation The rate (EGR rate) and the like can also be used as predetermined operating conditions that affect the combustion phase of the premixed gas M since the combustion timing of the premixed gas M can be adjusted by changing these.
In addition, if an auxiliary spark plug capable of generating a spark is provided in the combustion chamber 10 and the spark generation timing of the auxiliary spark plug is adjusted, the timing at which self-ignition of the premixed gas is induced by the spark in the combustion chamber 10 is achieved. As a result, since the combustion timing of the premixed gas M can be adjusted, the spark generation timing of the auxiliary spark plug can also be used as a predetermined operating condition that affects the combustion phase of the premixed gas M.

(3)上記実施形態では、燃焼室10への燃料供給量を直接計測する燃料供給量センサ9を設けたが、燃料供給弁24の開度、スロットルバルブ22の開度、エンジン回転数及び負荷等の情報から、燃焼室10への燃料供給量を間接的に求めるように構成しても構わない。 (3) In the above embodiment, the fuel supply amount sensor 9 that directly measures the fuel supply amount to the combustion chamber 10 is provided, but the opening of the fuel supply valve 24, the opening of the throttle valve 22, the engine speed and the load From such information, the fuel supply amount to the combustion chamber 10 may be obtained indirectly.

(4)上記実施形態では、燃焼室10における筒内熱発生量を求めるための熱発生速度を、筒内圧センサ8で計測された筒内圧と燃焼室10の容積とを用いて求めたが、筒内圧センサ8の代わりに燃焼室10の温度を計測する温度センサを設け、その温度センサで計測された筒内温度と燃焼室10の容積とを用いて熱発生速度を求めても構わない。 (4) In the above embodiment, the heat generation rate for determining the in-cylinder heat generation amount in the combustion chamber 10 is determined using the in-cylinder pressure measured by the in-cylinder pressure sensor 8 and the volume of the combustion chamber 10. A temperature sensor that measures the temperature of the combustion chamber 10 may be provided instead of the in-cylinder pressure sensor 8, and the heat generation rate may be obtained using the in-cylinder temperature measured by the temperature sensor and the volume of the combustion chamber 10.

本発明は、燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行い、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理を実行する燃焼時期検出手段と、
燃焼時期検出手段で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御を実行する運転制御手段とを備えた予混合圧縮着火式エンジン及び運転制御方法として好適に利用可能である。
The present invention performs premixed compression ignition combustion in which a premixed gas of fresh air and fuel is compressed and self-ignited and burned in the combustion chamber,
Combustion timing detection means for executing a combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Operation control means for performing combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected by the combustion timing detection means is maintained within a predetermined target combustion timing range Can be suitably used as a premixed compression ignition type engine and an operation control method.

1 :エンジン
7 :クランク角センサ
8 :筒内圧センサ(筒内圧計測手段)
9 :燃料供給量センサ(燃料供給量計測手段)
10 :燃焼室
24 :燃料供給弁
26 :冷却水供給量調整弁(吸気温度調整手段)
50 :ECU
51 :燃焼時期検出手段
52 :運転制御手段
A :空気
CW :エンジン冷却水
F :燃料
M :予混合気
1: Engine 7: Crank angle sensor 8: In-cylinder pressure sensor (in-cylinder pressure measuring means)
9: Fuel supply amount sensor (fuel supply amount measuring means)
10: Combustion chamber 24: Fuel supply valve 26: Cooling water supply amount adjusting valve (intake air temperature adjusting means)
50: ECU
51: Combustion timing detection means 52: Operation control means A: Air CW: Engine cooling water F: Fuel M: Premixed gas

Claims (5)

燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行い、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理を実行する燃焼時期検出手段と、
前記燃焼時期検出手段で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御を実行する運転制御手段とを備えた予混合圧縮着火式エンジンであって、
前記燃焼時期検出手段が、燃焼時期検出処理において、1サイクル毎に燃焼室へ供給される燃料の発熱量の合計である総投入発熱量を導出すると共に、燃焼室での実際の熱発生量である筒内熱発生量を監視し、前記総投入発熱量に対して前記筒内熱発生量の割合である投入基準燃焼割合が所定の設定燃焼割合に達した時期を燃焼時期として検出する予混合圧縮着火式エンジン。
In the combustion chamber, premixed compression ignition combustion is performed in which a premixed gas of fresh air and fuel is compressed and self-ignited to burn.
Combustion timing detection means for executing a combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Operation control for performing combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected by the combustion timing detection means is maintained within a predetermined target combustion timing range A premixed compression ignition engine comprising means,
In the combustion timing detection process, the combustion timing detection means derives a total input calorific value that is the sum of the calorific values of fuel supplied to the combustion chamber every cycle, and the actual heat generation amount in the combustion chamber. Premixing that monitors the amount of heat generated in a cylinder and detects when the input reference combustion ratio, which is the ratio of the amount of heat generated in the cylinder with respect to the total amount of generated heat, reaches a predetermined set combustion ratio as the combustion timing Compression ignition engine.
燃焼室への燃料供給量を計測する燃料供給量計測手段を備え、
前記燃焼時期検出手段が、燃焼時期検出処理において、前記燃料供給量計測手段で計測された燃料供給量の1サイクル毎の合計である総燃料供給量から前記総投入発熱量を導出する請求項1に記載の予混合圧縮着火式エンジン。
A fuel supply amount measuring means for measuring the fuel supply amount to the combustion chamber;
2. The combustion timing detection means derives the total input heat generation amount from a total fuel supply amount that is a total for each cycle of the fuel supply amount measured by the fuel supply amount measurement means in a combustion timing detection process. The premixed compression ignition engine described in 1.
燃焼室の圧力である筒内圧を計測する筒内圧計測手段を備え、
前記燃焼時期検出手段が、燃焼時期検出処理において、前記筒内圧計測手段で計測された筒内圧と燃焼室の容積とから求められる熱発生速度を燃焼過程において積分した積分量を前記筒内熱発生量として監視する請求項1又は2に記載の予混合圧縮着火式エンジン。
In-cylinder pressure measuring means for measuring the in-cylinder pressure that is the pressure of the combustion chamber,
In the combustion timing detection process, the combustion timing detection means integrates an integral amount obtained by integrating the heat generation rate obtained from the cylinder pressure measured by the cylinder pressure measurement means and the volume of the combustion chamber in the combustion process. The premixed compression ignition engine according to claim 1 or 2, which is monitored as a quantity.
前記運転制御手段が、燃焼時期制御において、前記運転条件として、燃焼室へ吸気される新気の温度、燃焼室へ吸気される新気の圧力、燃焼室の実圧縮比、予混合気の当量比、排ガス再循環率、燃焼室に設けられた補助点火プラグの火花発生時期の少なくとも一つを調整する請求項1〜3の何れか1項に記載の予混合圧縮着火式エンジン。   The operation control means, in the combustion timing control, as the operating conditions, the temperature of fresh air sucked into the combustion chamber, the pressure of fresh air sucked into the combustion chamber, the actual compression ratio of the combustion chamber, the equivalent of premixed gas The premixed compression ignition engine according to any one of claims 1 to 3, wherein at least one of a ratio, an exhaust gas recirculation rate, and a spark generation timing of an auxiliary spark plug provided in the combustion chamber is adjusted. 燃焼室において新気と燃料との予混合気を圧縮して自己着火させ燃焼させる予混合圧縮着火燃焼を行う予混合圧縮着火式エンジンにおいて、
燃焼室における予混合気の燃焼時期を検出する燃焼時期検出処理と、
前記燃焼時期検出処理で検出される燃焼時期が所定の目標燃焼時期範囲内に維持されるように予混合気の燃焼位相に影響を与える所定の運転条件を調整する燃焼時期制御とを実行する予混合圧縮着火式エンジンの運転制御方法であって、
前記燃焼時期検出処理において、1サイクル毎に燃焼室へ供給される燃料の発熱量の合計である総投入発熱量を導出すると共に、燃焼室での実際の熱発生量である筒内熱発生量を監視し、前記総投入発熱量に対して前記筒内熱発生量の割合である投入基準燃焼割合が所定の設定燃焼割合に達した時期を燃焼時期として検出する予混合圧縮着火式エンジンの運転制御方法。
In a premixed compression ignition type engine that performs premixed compression ignition combustion in which a premixed mixture of fresh air and fuel is compressed and self-ignited and combusted in a combustion chamber,
A combustion timing detection process for detecting the combustion timing of the premixed gas in the combustion chamber;
Preliminary execution of combustion timing control for adjusting predetermined operating conditions that affect the combustion phase of the premixed gas so that the combustion timing detected in the combustion timing detection processing is maintained within a predetermined target combustion timing range. An operation control method for a mixed compression ignition engine,
In the combustion timing detection process, a total input calorific value that is the sum of the calorific values of the fuel supplied to the combustion chamber per cycle is derived, and an in-cylinder heat generation amount that is an actual heat generation amount in the combustion chamber Operation of a premixed compression ignition engine that detects when the input reference combustion ratio, which is the ratio of the in-cylinder heat generation amount with respect to the total input heat generation amount, reaches a predetermined set combustion ratio as the combustion timing Control method.
JP2013208441A 2013-10-03 2013-10-03 Premixing compression ignition type engine, and operation control method thereof Pending JP2015071984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208441A JP2015071984A (en) 2013-10-03 2013-10-03 Premixing compression ignition type engine, and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208441A JP2015071984A (en) 2013-10-03 2013-10-03 Premixing compression ignition type engine, and operation control method thereof

Publications (1)

Publication Number Publication Date
JP2015071984A true JP2015071984A (en) 2015-04-16

Family

ID=53014515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208441A Pending JP2015071984A (en) 2013-10-03 2013-10-03 Premixing compression ignition type engine, and operation control method thereof

Country Status (1)

Country Link
JP (1) JP2015071984A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202233A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Engine system
JP2013181519A (en) * 2012-03-05 2013-09-12 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202233A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Engine system
JP2013181519A (en) * 2012-03-05 2013-09-12 Toyota Motor Corp Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
Maurya et al. Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters
JP6262957B2 (en) Operation method of internal combustion engine
KR102494233B1 (en) dual fuel burning intensity
JP4741987B2 (en) Control method for compression self-ignition internal combustion engine
JP5858971B2 (en) Control device and method for internal combustion engine
JP2014037835A (en) Operation method for internal combustion engine
US10125716B2 (en) Control apparatus for diesel engine and control method for diesel engine
Andwari et al. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine
JP2015094339A (en) Control device for internal combustion engine
KR20160075309A (en) Method for operating a spark ignited engine
US11125180B2 (en) Auto-ignition control in a combustion engine
Andwari et al. An experimental study on the influence of EGR rate and fuel octane number on the combustion characteristics of a CAI two-stroke cycle engine
JP5907748B2 (en) Multi-cylinder mixed combustion engine
Yang et al. Control-oriented modeling of soot emissions in gasoline partially premixed combustion with pilot injection
JP2015071984A (en) Premixing compression ignition type engine, and operation control method thereof
Rrustemi et al. Investigation of boost pressure and spark timing on combustion and NO emissions under lean mixture operation in hydrogen engines
Mehresh et al. Experimental and numerical investigation of effect of fuel on ion sensor signal to determine combustion timing in homogeneous charge compression ignition engines
JP6338362B2 (en) Premixed compression ignition type engine and its operation control method
JP2015004324A (en) Control device for internal combustion engine
JP7238459B2 (en) engine controller
Judith et al. Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine
JP6128895B2 (en) Premixed compression ignition engine and operation control method thereof
JP2012180817A (en) Device for calculating air-fuel ratio of internal combustion engine
JP2015074983A (en) Premixing compression ignition type engine, and operation control method thereof
Neher et al. Controlled hot surface ignition in stationary petrol and natural gas operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530