JP2015071833A - Fused blend fiber and method for producing carbon fiber using the same - Google Patents

Fused blend fiber and method for producing carbon fiber using the same Download PDF

Info

Publication number
JP2015071833A
JP2015071833A JP2013206522A JP2013206522A JP2015071833A JP 2015071833 A JP2015071833 A JP 2015071833A JP 2013206522 A JP2013206522 A JP 2013206522A JP 2013206522 A JP2013206522 A JP 2013206522A JP 2015071833 A JP2015071833 A JP 2015071833A
Authority
JP
Japan
Prior art keywords
fiber
carbon precursor
melt
precursor
thermoplastic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013206522A
Other languages
Japanese (ja)
Inventor
正樹 藤江
Masaki Fujie
正樹 藤江
山田 輝之
Teruyuki Yamada
輝之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013206522A priority Critical patent/JP2015071833A/en
Publication of JP2015071833A publication Critical patent/JP2015071833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fused blend fiber capable of producing a carbon fiber precursor fiber at a low cost by subjecting a polymer based thermoplastic carbon precursor and a non-polymer based thermoplastic carbon precursor to fusion blend spinning, and to remarkably improve a carbonization yield by bringing the polymer based thermoplastic carbon precursor and the non-polymer based thermoplastic carbon precursor into cooperative carbonization reaction.SOLUTION: Provided is a fused blend fiber made of a mixture of a polymer based thermoplastic carbon precursor of 20 to 80 mass% and a non-polymer based thermoplastic carbon precursor of 80 to 20 mass%.

Description

本発明は、溶融ブレンド繊維及びそれを用いた炭素繊維の製造方法に関する。   The present invention relates to a melt blended fiber and a method for producing carbon fiber using the same.

炭素繊維は他の繊維に比べて優れた比強度と比弾性率を有し、その軽量性と優れた機械的特性により、複合材料を得る際の補強材として使用されている。従来からのスポーツや航空・宇宙用途に加え、自動車や土木・建築、圧力容器、風車ブレードなどの一般産業用途にも幅広く展開されつつある。   Carbon fiber has a specific strength and a specific elastic modulus which are superior to those of other fibers, and is used as a reinforcing material in obtaining a composite material due to its light weight and excellent mechanical properties. In addition to conventional sports and aerospace applications, it is also being widely deployed in general industrial applications such as automobiles, civil engineering / architecture, pressure vessels, and windmill blades.

特に近年、自動車用途への展開が大きな注目を集めており、一部の高級車向けに採用が進んでいる。しかし炭素繊維は高価であるため大衆車への採用についてはほとんど進展しておらず、炭素繊維の低コスト化が求められている。   In particular, in recent years, the development of automotive applications has attracted a great deal of attention, and its adoption is being promoted for some luxury vehicles. However, since carbon fiber is expensive, there has been little progress in adopting it in passenger cars, and there is a demand for cost reduction of carbon fiber.

ところで炭素繊維は原料の違いからアクリロニトリル系炭素繊維とピッチ系炭素繊維に大別されて、さらにピッチ系炭素繊維は紡糸に供するピッチの結晶状態により、メソフェーズピッチ系炭素繊維と等方性ピッチ系炭素繊維に分類される。   By the way, carbon fibers are roughly classified into acrylonitrile-based carbon fibers and pitch-based carbon fibers due to the difference in raw materials, and pitch-based carbon fibers are further divided into mesophase pitch-based carbon fibers and isotropic pitch-based carbons depending on the crystal state of pitch used for spinning. Classified as fiber.

アクリロニトリル系炭素繊維はピッチ系炭素繊維に比べて強度が出やすい特徴があるが、原料であるアクリロニトリルモノマーが高価であるため、アクリロニトリル系炭素繊維の低コスト化には限界がある。   Acrylonitrile-based carbon fiber has a characteristic that strength is easily obtained as compared with pitch-based carbon fiber. However, since acrylonitrile monomer as a raw material is expensive, there is a limit to reducing the cost of acrylonitrile-based carbon fiber.

一方、ピッチ系炭素繊維は石油、石炭、コールタールなどの副生成物を原料にこれを高温で炭化して作った繊維であり、原料が安価、炭化収率が高いことから製造コストを抑えられるという長所がある。しかし、ピッチは曳糸性が悪く紡糸が困難であるため、特に等方性ピッチを原料とした場合、長繊維で製造されることはほとんどない。   Pitch-based carbon fiber, on the other hand, is a fiber made by carbonizing by-products such as petroleum, coal, coal tar, etc. at high temperature, and the production cost can be reduced because the raw material is cheap and the carbonization yield is high. There is an advantage. However, since the pitch has poor spinnability and is difficult to spin, it is rarely produced with long fibers, particularly when isotropic pitch is used as a raw material.

アクリロニトリル系重炭素繊維の低コスト化に向けて、様々な検討がされている。例えばアクリロニトリル系重合体を溶融紡糸して得られた繊維を液相酸化処理することにより、耐熱性アクリロニトリル系繊維を得る方法が提案されている(特許文献1)。この方法では溶融紡糸をすることで紡糸段階でのコストは低下するが、液相処理に過マンガン酸カリウムと硝酸の混合水溶液中を用いる必要があり、工業化は極めて困難である。   Various studies have been conducted to reduce the cost of acrylonitrile heavy carbon fibers. For example, a method of obtaining heat-resistant acrylonitrile fibers by subjecting fibers obtained by melt spinning acrylonitrile polymers to liquid phase oxidation has been proposed (Patent Document 1). In this method, although melt spinning reduces the cost at the spinning stage, it is necessary to use a mixed aqueous solution of potassium permanganate and nitric acid for the liquid phase treatment, and industrialization is extremely difficult.

特許文献2では熱可塑性樹脂と熱可塑性炭素前駆体の溶融ブレンド物を不融化処理して、繊維状炭素前駆体を炭素化して炭素繊維を得る方法が提案されている。しかしこの方法は極細の炭素繊維を得る方法であり、さらに炭素化工程の前に熱可塑性樹脂を除去する必要があるため、コストの増加に繋がるといった問題があった。   Patent Document 2 proposes a method in which a melt blend of a thermoplastic resin and a thermoplastic carbon precursor is infusibilized to carbonize the fibrous carbon precursor to obtain carbon fibers. However, this method is a method for obtaining ultrafine carbon fibers, and it is necessary to remove the thermoplastic resin before the carbonization step, which leads to an increase in cost.

特開昭62−149918号公報JP-A-62-149918 特開2010−31439号公報JP 2010-31439 A

本発明の目的は、低コストで製造可能な溶融ブレンド繊維及び炭素繊維を提供することである。   An object of the present invention is to provide melt blended fibers and carbon fibers that can be produced at low cost.

本発明により高分子系熱可塑性炭素前駆体20〜80質量パーセントと、非高分子系熱可塑性炭素前駆体80〜20質量パーセントとの混合物からなる、炭素繊維前駆体繊維が提供される。   According to the present invention, there is provided a carbon fiber precursor fiber comprising a mixture of 20 to 80 mass percent of a polymeric thermoplastic carbon precursor and 80 to 20 mass percent of a non-polymeric thermoplastic carbon precursor.

高分子系熱可塑性炭素前駆体がポリアクリロニトリル系重合体であり、非高分子系熱可塑性炭素前駆体がピッチであることが好ましい。   The polymer thermoplastic carbon precursor is preferably a polyacrylonitrile polymer, and the non-polymer thermoplastic carbon precursor is preferably pitch.

また本発明では高分子系熱可塑性炭素前駆体と非高分子熱可塑性前駆体が共連続構造である溶融ブレンド繊維が得られる。   In the present invention, a melt blended fiber in which a polymer thermoplastic carbon precursor and a non-polymer thermoplastic precursor have a co-continuous structure is obtained.

さらに重量比を制御することで高分子系熱可塑性炭素前駆体と非高分子熱可塑性前駆体が海島構造である溶融ブレンド繊維が得られる。   Further, by controlling the weight ratio, a melt blended fiber in which the polymer thermoplastic carbon precursor and the non-polymer thermoplastic precursor have a sea-island structure can be obtained.

これらの溶融ブレンド繊維を、不融化・焼成することで炭素繊維が提供される。   These melt blended fibers are infusibilized and fired to provide carbon fibers.

紡糸速度が20m/分以上である溶融ブレンド繊維が提供される。   A melt blended fiber having a spinning speed of 20 m / min or more is provided.

本発明によれば、高せん断で高分子系熱可塑性炭素前駆体と非高分子系熱可塑性炭素前駆体を溶融ブレンド紡糸することで炭素繊維前駆体繊維を低コストで製造できる。さらに高分子系熱可塑性炭素前駆体と、非高分子系熱可塑性炭素前駆体が協同的に炭素化反応することで、炭化収率を大幅に向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, a carbon fiber precursor fiber can be manufactured at low cost by carrying out melt blend spinning of a high molecular thermoplastic carbon precursor and a non-polymeric thermoplastic carbon precursor at high shear. Further, the carbonization yield can be greatly improved by the cooperative carbonization reaction of the high-molecular thermoplastic carbon precursor and the non-polymeric thermoplastic carbon precursor.

実施例1の操作で得られた溶融ブレンド繊維の断面TEM画像Cross-sectional TEM image of melt blended fiber obtained by the operation of Example 1 実施例4の操作で得られた溶融ブレンド繊維の断面TEM画像Cross-sectional TEM image of melt blended fiber obtained by the operation of Example 4

かかる溶融ブレンド繊維及び炭素繊維は、後述する本発明の製造方法により好適に得ることができる。   Such melt blended fibers and carbon fibers can be suitably obtained by the production method of the present invention described later.

以下に本発明の溶融ブレンド繊維及び炭素繊維の製造方法について詳しく説明する。   Below, the manufacturing method of the melt blend fiber and carbon fiber of this invention is demonstrated in detail.

本発明で得られる溶融ブレンド繊維は、高分子系熱可塑性炭素前駆体と、非高分子系熱可塑性炭素前駆体を溶融紡糸して得られる。   The melt blended fiber obtained in the present invention is obtained by melt spinning a polymer thermoplastic carbon precursor and a non-polymer thermoplastic carbon precursor.

本発明で使用する高分子系熱可塑性炭素前駆体は、溶融ブレンド繊維の紡糸安定性を保持できる高分子であり、分子量が10,000以上であり、不融化処理や化学処理を経て後の炭素化反応により繊維形態を保持できる高分子であれば何でも良い。容易に溶融混練できるという観点から、150度以上400度以下に軟化点を持つことが好ましい。   The polymer-based thermoplastic carbon precursor used in the present invention is a polymer that can maintain the spinning stability of the melt blended fiber, has a molecular weight of 10,000 or more, and has undergone infusibilization treatment and chemical treatment to obtain carbon after Any polymer can be used as long as it can maintain the fiber form by the reaction. From the viewpoint of easy melting and kneading, it is preferable to have a softening point of 150 ° to 400 °.

このような熱可塑性炭素前駆体として、溶融賦形可能なアクリロニトリル系重合体、溶融賦形可能なセルロース系重合体、フェノール樹脂、ポリ塩化ビニル、ポリビニルアルコール等が挙げられる。これらの中でも、後の炭素化反応での炭化収率の観点から溶融賦形可能なアクリロニトリル系重合体を用いることが好ましい。   Examples of such thermoplastic carbon precursors include melt-formable acrylonitrile-based polymers, melt-shaped cellulose polymers, phenol resins, polyvinyl chloride, and polyvinyl alcohol. Among these, it is preferable to use an acrylonitrile-based polymer that can be melt-shaped from the viewpoint of the carbonization yield in the subsequent carbonization reaction.

溶融賦形可能なアクリロニトリル系重合体はアクリロニトリルのホモポリマーおよび/または他のモノマーとの共重合体を用いることができる。溶融賦形性を保持でれば良く、ホモポリマーを用いる場合には、ニトリル基に対して水を配位させて熱可塑性を付与しても良い。   As the acrylonitrile-based polymer that can be melt-shaped, a homopolymer of acrylonitrile and / or a copolymer with other monomers can be used. It is only necessary to maintain melt shapeability. When a homopolymer is used, water may be coordinated with the nitrile group to impart thermoplasticity.

アクリロニトリルの共重合体を用いる場合は、ホモポリマーと同様に水を配位させて熱可塑性を付与しても良いし、共重合量を制御して熱可塑性を付与しても良い。炭素繊維にした時の共重合成分に起因する欠陥点を少なくし、炭素繊維の品位並びに性能を向上させる目的からアクリロニトリルが80重量パーセント以上であることが好ましい。   In the case of using an acrylonitrile copolymer, water may be coordinated similarly to the homopolymer to impart thermoplasticity, or the amount of copolymerization may be controlled to impart thermoplasticity. It is preferable that acrylonitrile is 80 weight percent or more for the purpose of reducing defects caused by the copolymerization component when the carbon fiber is formed and improving the quality and performance of the carbon fiber.

アクリルニトリル系ポリマーの共重合成分モノマーとしては、特に制限はないが、例えばアクリル酸メチル、アクリル酸エチルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、スチレン、ビニルトルエンなどに代表される不飽和モノマー類;メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸及びこれらのアルカリ金属類などが挙げられる。これらは、1種でもよく、2種以上でもよい。溶融紡糸性を保持する点から、共重合量は5重量パーセント以上であることが好ましい。   The copolymerization component monomer of the acrylonitrile-based polymer is not particularly limited. For example, acrylic acid esters represented by methyl acrylate and ethyl acrylate; methacrylic acid represented by methyl methacrylate and ethyl methacrylate Esters; unsaturated monomers represented by acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, styrene, vinyltoluene, etc .; methallylsulfonic acid, allylsulfonic acid, styrenesulfonic acid and their alkali metals Is mentioned. These may be one type or two or more types. From the viewpoint of maintaining melt spinnability, the copolymerization amount is preferably 5 weight percent or more.

溶融賦形可能なアクリロニトリル系重合体は、通常の溶液重合法、懸濁重合法、乳化重合法等、いずれの方法によっても製造可能であるが、特にアニオン系界面活性剤として、脂肪族石鹸、アルキル硫酸塩、ジアルキルスルホコハク酸塩、スルホン化エステル、スルホン化アミドや、非イオン性界面活性剤としてポリエチレングリコール、ポリプロピレングリコール等の脂肪酸エステル類、ゾルビタン脂肪族エステル類などの乳化剤を用い、分子量調節剤としてプロピルメルカプタン、イソプロピルメルカプタン、ブチルメルカプタン、ベンジルメルカプタン、オクチルメルカプタン、ラウリルメルカプタン等を比較的多量用いた乳化重合法を用いることがより好ましい。   The melt-shaped acrylonitrile-based polymer can be produced by any of the usual solution polymerization method, suspension polymerization method, emulsion polymerization method and the like, but as an anionic surfactant, an aliphatic soap, Molecular weight regulators using emulsifiers such as alkyl sulfates, dialkyl sulfosuccinates, sulfonated esters, sulfonated amides, fatty acid esters such as polyethylene glycol and polypropylene glycol, and sorbitan aliphatic esters as nonionic surfactants It is more preferable to use an emulsion polymerization method using a relatively large amount of propyl mercaptan, isopropyl mercaptan, butyl mercaptan, benzyl mercaptan, octyl mercaptan, lauryl mercaptan, and the like.

非高分子系熱可塑性炭素前駆体は分子量が10、000未満であり、高分子系熱可塑性炭素前駆体の炭化収率より高い物質である。   The non-polymer thermoplastic carbon precursor is a substance having a molecular weight of less than 10,000 and higher than the carbonization yield of the polymer thermoplastic carbon precursor.

このような非高分子系熱可塑性炭素前駆体として、リグニン、光学的異方性を示すメソフェーズピッチ、光学的に等方性である等方性ピッチなどが挙げられる。これらの中でも比較的軟化点が低く、溶融賦形しやすいという観点から、等方性ピッチを用いることが好ましい。   Examples of such non-polymer thermoplastic carbon precursors include lignin, mesophase pitch exhibiting optical anisotropy, and isotropic pitch that is optically isotropic. Among these, it is preferable to use an isotropic pitch from the viewpoint that it has a relatively low softening point and is easily melt-shaped.

溶融ブレンド繊維に対する非高分子系熱可塑性炭素前駆体のブレンド比Xは20以上80重量パーセント以下であることが好ましい。非高分子系熱可塑性炭素前駆体ブレンド比Xが20重量パーセントより小さければ、溶融ブレンド繊維を不融化、炭素化して得られた炭素繊維の炭化収率が低くなり、非高分子系熱可塑性炭素前駆体ブレンド比Xが80重量パーセント以上であれば、溶融ブレンド繊維が脆弱になるため紡糸性が著しく低下して、得られる繊維も極めて脆弱になる。   The blend ratio X of the non-polymer thermoplastic carbon precursor to the melt blend fiber is preferably 20 or more and 80 weight percent or less. If the non-polymer thermoplastic carbon precursor blend ratio X is less than 20 percent by weight, the carbonized yield of the carbon fiber obtained by infusibilizing and carbonizing the melt blend fiber will be low, and the non-polymer thermoplastic carbon will be reduced. If the precursor blend ratio X is 80% by weight or more, the melt blend fiber becomes brittle, so that the spinnability is remarkably lowered, and the resulting fiber becomes extremely brittle.

非高分子系熱可塑性炭素前駆体のブレンド比Xが40以上60重量パーセント以下であることがさらに好ましい。非高分子系熱可塑性炭素前駆体のブレンド比Xが40重量パーセント未満であれば、高分子系熱可塑性炭素前駆体がマトリックスで非高分子系熱可塑性炭素前駆体が微分散した海島構造を形成する。またブレンド比Xが60重量パーセントより大きければ、非高分子系熱可塑性炭素前駆体がマトリックスで高分子系熱可塑性炭素前駆体が微分散した海島構造を形成する。   More preferably, the blend ratio X of the non-polymeric thermoplastic carbon precursor is 40 to 60 weight percent. If the blend ratio X of the non-polymer thermoplastic carbon precursor is less than 40 percent by weight, a sea island structure is formed in which the polymer thermoplastic carbon precursor is a matrix and the non-polymer thermoplastic carbon precursor is finely dispersed. To do. If the blend ratio X is greater than 60 weight percent, a sea-island structure is formed in which the non-polymer thermoplastic carbon precursor is a matrix and the polymer thermoplastic carbon precursor is finely dispersed.

一方、ブレンド比Xが40以上60重量パーセント以下であれば、高分子系熱可塑性炭素前駆体と非高分子系熱可塑性前駆体が共連続構造を形成するため、海島構造を形成する場合に比べて、高分子系熱可塑性前駆体と非高分子系熱可塑性前駆体の接触面積が著しく大きくなる。接触面積が大きければ、後の炭素化反応の際に高分子系熱可塑性前駆体と非高分子系熱可塑性前駆体が協同的に炭素化反応をする量が増加するため、炭化収率の向上に繋がる。   On the other hand, when the blend ratio X is 40 to 60 weight percent, the polymer thermoplastic carbon precursor and the non-polymer thermoplastic precursor form a co-continuous structure. Thus, the contact area between the polymeric thermoplastic precursor and the non-polymeric thermoplastic precursor is significantly increased. If the contact area is large, the amount of high-molecular thermoplastic precursor and non-polymeric thermoplastic precursor cooperatively carbonized during the subsequent carbonization reaction will increase, thus improving the carbonization yield. It leads to.

高分子系熱可塑性炭素前駆体と非高分子系熱可塑性炭素前駆体を混練する際の温度は、用いる物質にもよるが、150度以上400度以下であることが好ましい。150度未満では溶融が不十分となり、400度以上であれば高分子系熱可塑性炭素前駆体が熱分解して構造変化を起こしてしまう。高分子系熱可塑性前駆体が溶融賦形可能なアクリロニトリル系重合体で、非高分子系熱可塑性炭素前駆体が等方性ピッチの組み合わせであれば、軟化点の観点から混練温度は150度以上300度以下であることが好ましい。   The temperature at which the polymeric thermoplastic carbon precursor and the non-polymeric thermoplastic carbon precursor are kneaded is preferably 150 degrees or more and 400 degrees or less, although it depends on the substance used. If it is less than 150 degrees, melting becomes insufficient, and if it is 400 degrees or more, the polymer thermoplastic carbon precursor is thermally decomposed to cause a structural change. If the polymeric thermoplastic precursor is a melt-formable acrylonitrile polymer and the non-polymeric thermoplastic carbon precursor is a combination of isotropic pitches, the kneading temperature is 150 ° C. or more from the viewpoint of the softening point It is preferable that it is 300 degrees or less.

高分子系熱可塑性炭素前駆体と非高分子系熱可塑性炭素前駆体の溶融混練は、公知の方法によって行うことができ、例えば一軸溶融混練押出機、二軸溶融混練押出機、ミキシングロール、混合ミキサー等が挙げられる。これらの中で高せん断をかけて均一に混合する目的から、二軸コニカルスクリューで混練するのが好ましい。また溶融混練中の酸化反応を防ぐ目的で、不活性雰囲気下で行うのが好ましい。   Melting and kneading of the polymeric thermoplastic carbon precursor and the non-polymeric thermoplastic carbon precursor can be performed by a known method, for example, a uniaxial melt kneading extruder, a biaxial melt kneading extruder, a mixing roll, mixing A mixer etc. are mentioned. Among these, it is preferable to knead with a biaxial conical screw for the purpose of uniformly mixing with high shear. Moreover, it is preferable to carry out in inert atmosphere in order to prevent the oxidation reaction during melt-kneading.

溶融混練温度は150度以上400度以下で行うのが好ましい。溶融混練温度が150度未満であると可塑性が不十分になり均一な混練が困難となるため好ましくない。一方400度を超える場合、高分子系熱可塑性炭素前駆体と非高分子系熱可塑性炭素前駆体の熱分解が進行して、紡糸安定性が低下する。溶融混練時間は1〜20分、好ましくは1〜15分である。溶融混練の時間が1分未満の場合、混練が不十分となり均一な混練が困難となるため好ましくない。一方、20分を超える場合、溶融ブレンド繊維および炭素繊維の生産性が低下してしまう。 溶融紡糸は公知の方法によって行い、未延伸糸を得ることが出来る。未延伸糸の巻取速度は20m/min以上であることが好ましい。巻き取らずにそのまま引き続いて延伸処理を行っても良いし、または一旦巻き取った後に、巻き出しながら次の延伸処理を行っても良い。延伸処理は熱風炉、熱プレート、水蒸気雰囲気で行うことができ、1段で行っても良く多段で行っても良い。   The melt kneading temperature is preferably 150 to 400 degrees. When the melt kneading temperature is less than 150 ° C., the plasticity becomes insufficient and uniform kneading becomes difficult, which is not preferable. On the other hand, when it exceeds 400 degrees, the thermal decomposition of the polymer thermoplastic carbon precursor and the non-polymer thermoplastic carbon precursor proceeds, and the spinning stability is lowered. The melt kneading time is 1 to 20 minutes, preferably 1 to 15 minutes. When the melt kneading time is less than 1 minute, kneading is insufficient and uniform kneading becomes difficult, which is not preferable. On the other hand, when it exceeds 20 minutes, productivity of a melt blend fiber and carbon fiber will fall. Melt spinning is performed by a known method, and an undrawn yarn can be obtained. The winding speed of the undrawn yarn is preferably 20 m / min or more. The film may be continuously stretched without being wound, or may be wound and then subjected to the next stretching process while being unwound. The stretching treatment can be performed in a hot stove, a hot plate, or a steam atmosphere, and may be performed in one stage or in multiple stages.

以上のようにして得られた溶融ブレンド繊維について、引き続いて不融化反応を行う。不融化処理は公知の方法で行うことができる。空気中150度以上400度以下で行うのが好ましい。150度未満であれば不融化反応の進行が遅く、一方400度よりも高温では熱分解反応が進行してしまう。不融化処理は生産性の観点から5時間以下、好ましくは3時間以下で反応させるのが好ましい。   The melt blended fiber obtained as described above is subsequently subjected to an infusibilization reaction. The infusibilization treatment can be performed by a known method. It is preferable to carry out at 150 to 400 degrees in air. If it is less than 150 degrees, the progress of the infusibilization reaction is slow. On the other hand, if it is higher than 400 degrees, the thermal decomposition reaction proceeds. The infusibilization treatment is preferably performed for 5 hours or less, preferably 3 hours or less from the viewpoint of productivity.

不融化処理した溶融ブレンド繊維を引続き、炭素化もしくは黒鉛化反応を行う、炭素化もしくは不融化反応では窒素、アルゴン等の不活性ガス中で行い、温度は500度以上3500度以下 、好ましくは800度以上3000度以下である。   The infusible melt blended fiber is subsequently subjected to carbonization or graphitization reaction. In the carbonization or infusibility reaction, the reaction is performed in an inert gas such as nitrogen or argon, and the temperature is 500 ° C. or more and 3500 ° C. or less, preferably 800 It is not less than 3000 degrees and not more than 3000 degrees.

同条件で不融化、炭素化処理した際の非高分子系熱可塑性炭素前駆体単体の炭化収率をA、高分子系熱可塑性炭素前駆体単体の炭化収率をB、非高分子系熱可塑性炭素前駆体のブレンド比をXとしたときに、不融化、炭素化して得られた炭素繊維の収率Cは(A−B)X/100+B以上となる。これは溶融ブレンド繊維が海島構造または共連続構造を形成するため、高分子系熱可塑性炭素前駆体と、非高分子系熱可塑性炭素前駆体の接触面積が大きくなり、協同的に炭素化反応することで、炭化収率を大幅に向上する。   Carbonization yield of non-polymer thermoplastic carbon precursor when infusible and carbonized under the same conditions is A, carbonization yield of polymer thermoplastic carbon precursor is B, non-polymer heat When the blend ratio of the plastic carbon precursor is X, the yield C of the carbon fiber obtained by infusibilization and carbonization is (AB) X / 100 + B or more. This is because the melt-blended fibers form a sea-island structure or a co-continuous structure, so that the contact area between the polymeric thermoplastic carbon precursor and the non-polymeric thermoplastic carbon precursor increases, and the carbonization reaction occurs cooperatively. This significantly improves the carbonization yield.

かかる方法で高分子系熱可塑性炭素前駆体と非高分子系熱可塑性炭素前駆体を溶融ブレンド紡糸することで炭素繊維前駆体繊維を低コストで製造できる。さらに高分子系熱可塑性炭素前駆体と、非高分子系熱可塑性炭素前駆体が協同的に炭素化反応することで、炭化収率を大幅に向上させることができる。   By such a method, a carbon fiber precursor fiber can be produced at a low cost by melt blend spinning a polymer thermoplastic carbon precursor and a non-polymer thermoplastic carbon precursor. Further, the carbonization yield can be greatly improved by the cooperative carbonization reaction of the high-molecular thermoplastic carbon precursor and the non-polymeric thermoplastic carbon precursor.

以下に、実施例により本発明をより具体的に説明する。なお以下に述べる実施例は本発明における最良の実施形態の一例であるものの、本発明は、これら実施例により限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The examples described below are examples of the best mode of the present invention, but the present invention is not limited to these examples.

本発明での不融化、炭素化反応はSIIナノテクノロジー社製TG/DTA6300を用いて下記の3通りで実施し、炭化収率を算出した。
〔反応A〕
不融化反応は空気中(流量200ml)で200度まで昇温して60分間保持して、次に225度で30分保持して、次いで250度で30分保持した。昇温速度は全て10度/分で行った。引続いて炭素化反応は窒素中250度で10分間保持して置換してから、1000度まで50度/分で昇温した。1000度での重量減少を炭化収率とした。
〔反応B〕
不融化反応は空気中(流量200ml)で190度まで昇温して30分間保持して、次に210度で30分保持して、次いで230度で20分保持し、次に250度で20分間保持して、さらに270度で20分間保持し、最後に290度で20分間保持した。昇温速度は全て10度/分で行った。引続いて炭素化反応は窒素中290度で10分間保持して置換してから、1000度まで50度/分で昇温した。1000度での重量減少を炭化収率とした。
〔反応C〕
不融化反応は空気中(流量200ml)で190度まで昇温して30分間保持して、次に210度で30分保持して、次いで230度で20分保持し、次に250度で20分間保持して、さらに270度で10分間保持し、加えて290度で10分間保持して、最後に320度で10分間保持した。昇温速度は全て10度/分で行った。引続いて炭素化反応は窒素中290度で10分間保持して置換してから、1000度まで50度/分で昇温した。1000度での重量減少を炭化収率とした。
The infusibilization and carbonization reaction in the present invention was carried out in the following three ways using TG / DTA6300 manufactured by SII Nanotechnology, and the carbonization yield was calculated.
[Reaction A]
The infusibilization reaction was heated to 200 degrees in air (flow rate 200 ml), held for 60 minutes, then held at 225 degrees for 30 minutes, and then held at 250 degrees for 30 minutes. The heating rate was all 10 degrees / minute. Subsequently, the carbonization reaction was maintained at 250 ° C. for 10 minutes in nitrogen for replacement, and then the temperature was increased to 1000 ° C. at 50 ° / min. The weight loss at 1000 degrees was defined as the carbonization yield.
[Reaction B]
The infusibilization reaction was carried out in air (flow rate 200 ml), heated to 190 degrees and held for 30 minutes, then held at 210 degrees for 30 minutes, then held at 230 degrees for 20 minutes, and then at 250 degrees and 20 minutes. Held at 270 degrees for 20 minutes, and finally at 290 degrees for 20 minutes. The heating rate was all 10 degrees / minute. Subsequently, the carbonization reaction was carried out in nitrogen at 290 ° C. for 10 minutes for replacement, and then the temperature was increased to 1000 ° C. at 50 ° / min. The weight loss at 1000 degrees was defined as the carbonization yield.
[Reaction C]
The infusibilization reaction was carried out in air (flow rate 200 ml), heated to 190 degrees and held for 30 minutes, then held at 210 degrees for 30 minutes, then held at 230 degrees for 20 minutes, and then at 250 degrees and 20 minutes. Held at 270 ° C. for 10 minutes, and at 290 ° C. for 10 minutes, and finally at 320 ° C. for 10 minutes. The heating rate was all 10 degrees / minute. Subsequently, the carbonization reaction was carried out in nitrogen at 290 ° C. for 10 minutes for replacement, and then the temperature was increased to 1000 ° C. at 50 ° / min. The weight loss at 1000 degrees was defined as the carbonization yield.

溶融ブレンド繊維の断面TEM観察は日立社製H−7600を用いて行った。溶融ブレンド繊維をUV 硬化型PMMA 樹脂で重合包埋したのち、ガラスナイフを装着したミクロトームで横断面または縦断面が得られるように面出し・トリミングを行い、ダイヤモンドナイフによりで約70nm の厚さの切片を切り出した。得られた切片をTEM 観察用支持膜付グリッドに回収した。
〔実施例1〕
高分子系熱可塑性炭素前駆体として溶融賦形可能なアクリロニトリル系重合体を、非高分子系熱可塑性前駆体として等方性ピッチ(三菱樹脂株式会社製、軟化点約200度)を用いた。溶融賦形可能なアクリロニトリル系重合体は、アクリロニトリル85重量パーセント、アクリル酸メチル15重量パーセントの共重合体を乳化重合により得た。軟化点は約210度だった。
Cross-sectional TEM observation of the melt blended fiber was performed using H-7600 manufactured by Hitachi. After melt blended fibers are polymer-embedded with UV curable PMMA resin, they are surfaced and trimmed with a microtome equipped with a glass knife to obtain a horizontal or vertical cross section, and with a diamond knife, the thickness is about 70 nm. Sections were cut out. The obtained sections were collected on a grid with a support film for TEM observation.
[Example 1]
An acrylonitrile-based polymer that can be melt-shaped is used as the polymer thermoplastic carbon precursor, and an isotropic pitch (Mitsubishi Resin Co., Ltd., softening point of about 200 degrees) is used as the non-polymer thermoplastic precursor. As the acrylonitrile-based polymer capable of being melt-shaped, a copolymer of 85% by weight of acrylonitrile and 15% by weight of methyl acrylate was obtained by emulsion polymerization. The softening point was about 210 degrees.

DSM社製の小型混練機を用いて75重量パーセントの溶融賦形可能なアクリロニトリル系重合体と25重量パーセントの等方性ピッチを、220度の窒素雰囲気下、スクリュー速度200rpmで10分間混練した。そのまま0.3mmのノズルからスクリュー速度100rpmで溶融ブレンド物を押出し、26m/minで巻き取って溶融ブレンド繊維を得た。得られた繊維をTEM観察すると海島構造を形成していた(図1)。繊維の脆弱性は極めて良好だった。   Using a small kneader manufactured by DSM, 75% by weight of an acrylonitrile-based polymer capable of melt shaping and 25% by weight of an isotropic pitch were kneaded for 10 minutes at a screw speed of 200 rpm in a 220 ° nitrogen atmosphere. The melt blend was extruded from a 0.3 mm nozzle at a screw speed of 100 rpm and wound at 26 m / min to obtain a melt blend fiber. When the obtained fiber was observed by TEM, a sea-island structure was formed (FIG. 1). The fragility of the fiber was very good.

得られた溶融ブレンド繊維を1cm長に裁断して、TG/DTA測定装置に設置した。不融化、炭素化反応を反応A条件で行ったところ、炭化収率は58.0パーセントだった。
〔実施例2〕
不融化、炭素化反応を反応B条件で行った以外は、実施例1と同様の方法でおこなった。炭化収率は56.0パーセントだった。
〔実施例3〕
不融化、炭素化反応を反応C条件で行った以外は、実施例1と同様の方法でおこなった。炭化収率は53.2パーセントだった。
〔実施例4〕
50重量パーセントの溶融賦形可能なアクリロニトリル系重合体と50重量パーセントの等方性ピッチを、実施例1と同様の方法で紡糸した。巻取速度は105m/minだった。得られた繊維をTEM観察すると共連続構造を形成していた(図2)。繊維の脆弱性は極めて良好だった。
The obtained melt blended fiber was cut into a 1 cm length and installed in a TG / DTA measuring apparatus. When the infusibilization and carbonization reactions were carried out under reaction A conditions, the carbonization yield was 58.0 percent.
[Example 2]
The same procedure as in Example 1 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 56.0 percent.
Example 3
The same procedure as in Example 1 was performed except that the infusibilization and carbonization reactions were performed under the reaction C conditions. The carbonization yield was 53.2 percent.
Example 4
A 50 weight percent melt-formable acrylonitrile polymer and 50 weight percent isotropic pitch were spun in the same manner as in Example 1. The winding speed was 105 m / min. When the obtained fiber was observed by TEM, a co-continuous structure was formed (FIG. 2). The fragility of the fiber was very good.

得られた溶融ブレンド繊維を1cm長に裁断して、TG/DTA測定装置に設置した。不融化、炭素化反応を反応A条件で行ったところ、炭化収率は65.0パーセントだった。
〔実施例5〕
不融化、炭素化反応を反応B条件で行った以外は、実施例4と同様の方法でおこなった。炭化収率は68.3パーセントだった。
〔実施例6〕
不融化、炭素化反応を反応C条件で行った以外は、実施例4と同様の方法でおこなった。炭化収率は61.4パーセントだった。
〔実施例7〕
25重量パーセントの溶融賦形可能なアクリロニトリル系重合体と75重量パーセントの等方性ピッチを、実施例1と同様の方法で紡糸した。巻取速度は72m/minだった。得られた繊維をTEM観察すると海島構造を形成していた。繊維の脆弱性は良好だった。
The obtained melt blended fiber was cut into a 1 cm length and installed in a TG / DTA measuring apparatus. When the infusibilization and carbonization reactions were carried out under reaction A conditions, the carbonization yield was 65.0 percent.
Example 5
The same procedure as in Example 4 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 68.3 percent.
Example 6
The same procedure as in Example 4 was performed except that the infusibilization and carbonization reactions were performed under the reaction C conditions. The carbonization yield was 61.4 percent.
Example 7
A 25 weight percent melt-formable acrylonitrile polymer and 75 weight percent isotropic pitch were spun in the same manner as in Example 1. The winding speed was 72 m / min. When the obtained fiber was observed with a TEM, a sea-island structure was formed. The fragility of the fiber was good.

得られた溶融ブレンド繊維を1cm長に裁断して、TG/DTA測定装置に設置した。不融化、炭素化反応を反応A条件で行ったところ、炭化収率は62.0パーセントだった。
〔実施例8〕
不融化、炭素化反応を反応B条件で行った以外は、実施例7と同様の方法でおこなった。炭化収率は73.1パーセントだった。
〔実施例9〕
不融化、炭素化反応を反応C条件で行った以外は、実施例7と同様の方法でおこなった。炭化収率は65.6パーセントだった。
〔比較例1〕
溶融賦形可能なアクリロニトリル系重合体を、実施例1と同様の方法で紡糸した。巻取速度は40m/minだった。得られた繊維の脆弱性は極めて良好だった。
The obtained melt blended fiber was cut into a 1 cm length and installed in a TG / DTA measuring apparatus. When the infusibilization and carbonization reactions were carried out under Reaction A conditions, the carbonization yield was 62.0 percent.
Example 8
The same procedure as in Example 7 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 73.1 percent.
Example 9
The same procedure as in Example 7 was performed except that the infusibilization and carbonization reactions were performed under the reaction C conditions. The carbonization yield was 65.6 percent.
[Comparative Example 1]
A melt-shaped acrylonitrile polymer was spun in the same manner as in Example 1. The winding speed was 40 m / min. The brittleness of the resulting fiber was very good.

得られた溶融ブレンド繊維を1cm長に裁断して、TG/DTA測定装置に設置した。不融化、炭素化反応を反応A条件で行ったところ、炭化収率は36.3パーセントだった。
〔比較例2〕
不融化、炭素化反応を反応B条件で行った以外は、比較例1と同様の方法でおこなった。炭化収率は44.4パーセントだった。
〔比較例3〕
不融化、炭素化反応を反応C条件で行った以外は、比較例1と同様の方法でおこなった。炭化収率は45.2パーセントだった。
〔比較例4〕
等方性ピッチを、実施例1と同様の方法で紡糸した。巻取速度は15m/minだった。得られた繊維は極めて脆弱だった。
The obtained melt blended fiber was cut into a 1 cm length and installed in a TG / DTA measuring apparatus. When the infusibilization and carbonization reactions were carried out under reaction A conditions, the carbonization yield was 36.3 percent.
[Comparative Example 2]
The same procedure as in Comparative Example 1 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 44.4 percent.
[Comparative Example 3]
The same procedure as in Comparative Example 1 was performed except that the infusibilization and carbonization reactions were performed under the reaction C conditions. The carbonization yield was 45.2 percent.
[Comparative Example 4]
An isotropic pitch was spun in the same manner as in Example 1. The winding speed was 15 m / min. The resulting fiber was extremely fragile.

得られた溶融ブレンド繊維を1cm長に裁断して、TG/DTA測定装置に設置した。不融化、炭素化反応を反応A条件で行ったところ、炭化収率は58.2パーセントだった。
〔比較例5〕
不融化、炭素化反応を反応B条件で行った以外は、比較例4と同様の方法でおこなった。炭化収率は69.4パーセントだった。
〔比較例6〕
不融化、炭素化反応を反応B条件で行った以外は、比較例4と同様の方法でおこなった。炭化収率は66.1パーセントだった。
The obtained melt blended fiber was cut into a 1 cm length and installed in a TG / DTA measuring apparatus. When the infusibilization and carbonization reactions were carried out under reaction A conditions, the carbonization yield was 58.2 percent.
[Comparative Example 5]
The same procedure as in Comparative Example 4 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 69.4 percent.
[Comparative Example 6]
The same procedure as in Comparative Example 4 was performed except that the infusibilization and carbonization reactions were performed under the reaction B conditions. The carbonization yield was 66.1 percent.

Claims (6)

高分子系熱可塑性炭素前駆体20〜80質量パーセントと、非高分子系熱可塑性炭素前駆体80〜20質量パーセントとの混合物からなる、溶融ブレンド繊維。   A melt blended fiber comprising a mixture of 20 to 80 weight percent of a polymeric thermoplastic carbon precursor and 80 to 20 weight percent of a non-polymeric thermoplastic carbon precursor. 高分子系熱可塑性炭素前駆体がポリアクリロニトリル系重合体であり、非高分子系熱可塑性炭素前駆体がピッチである、請求項1に記載の溶融ブレンド繊維。   The melt blend fiber according to claim 1, wherein the high molecular weight thermoplastic carbon precursor is a polyacrylonitrile-based polymer, and the non-high molecular weight thermoplastic carbon precursor is pitch. 高分子系熱可塑性炭素前駆体と非高分子熱可塑性前駆体が共連続構造である、請求項1または2に記載の溶融ブレンド繊維。   The melt blend fiber according to claim 1 or 2, wherein the polymer thermoplastic carbon precursor and the non-polymer thermoplastic precursor have a co-continuous structure. 高分子系熱可塑性炭素前駆体と非高分子熱可塑性前駆体が海島構造である請求項1または2に記載の溶融ブレンド繊維。   The melt blend fiber according to claim 1 or 2, wherein the polymer thermoplastic carbon precursor and the non-polymer thermoplastic precursor have a sea-island structure. 請求項1から4のいずれか1項記載の溶融ブレンド繊維を、不融化・焼成して得られる炭素繊維。   Carbon fiber obtained by infusibilizing and firing the melt-blended fiber according to any one of claims 1 to 4. 紡糸速度が20m/分以上である請求項1〜4に記載の溶融ブレンド繊維の製造方法。 The method for producing a melt-blended fiber according to claim 1, wherein the spinning speed is 20 m / min or more.
JP2013206522A 2013-10-01 2013-10-01 Fused blend fiber and method for producing carbon fiber using the same Pending JP2015071833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206522A JP2015071833A (en) 2013-10-01 2013-10-01 Fused blend fiber and method for producing carbon fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206522A JP2015071833A (en) 2013-10-01 2013-10-01 Fused blend fiber and method for producing carbon fiber using the same

Publications (1)

Publication Number Publication Date
JP2015071833A true JP2015071833A (en) 2015-04-16

Family

ID=53014387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206522A Pending JP2015071833A (en) 2013-10-01 2013-10-01 Fused blend fiber and method for producing carbon fiber using the same

Country Status (1)

Country Link
JP (1) JP2015071833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110206A (en) * 2022-08-02 2022-09-27 清华大学 Preparation method of superfine activated carbon fiber film and superfine activated carbon fiber film prepared by same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110206A (en) * 2022-08-02 2022-09-27 清华大学 Preparation method of superfine activated carbon fiber film and superfine activated carbon fiber film prepared by same

Similar Documents

Publication Publication Date Title
Banerjee et al. Recent advancement in coal tar pitch-based carbon fiber precursor development and fiber manufacturing process
Frank et al. High-performance PAN-based carbon fibers and their performance requirements
KR101417217B1 (en) Method for preparing carbon fiber precursor
JP2010242248A (en) Method for producing superfine carbon fiber
KR20160125388A (en) Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
WO2004031461A1 (en) Process and composition for the production of carbon fiber and mats
CN102140706A (en) Perfluoro polymer fiber and preparation method thereof
JP2017008429A (en) Method for producing ultra fine carbon fiber and ultra fine carbon fiber, and carbon-based auxiliary conductive agent containing the ultra fine carbon fiber
Wang Carbon fibers and their thermal transporting properties
JP2015071833A (en) Fused blend fiber and method for producing carbon fiber using the same
JP2015030926A (en) Method of producing dope for acrylic fiber
Chernikova et al. Melt-Spinnable Polyacrylonitrile—An Alternative Carbon Fiber Precursor
JP5390240B2 (en) Carbon fiber manufacturing method
JP6922859B2 (en) Manufacturing method of carbon material
JP2017210705A (en) Method for producing ultrafine carbon fiber
JP6133091B2 (en) Pitch-based carbon fiber and method for producing the same
JP4342871B2 (en) Extra fine carbon fiber and method for producing the same
JP4339727B2 (en) Carbon fiber manufacturing method
JPH01282325A (en) Pitch-based carbon fibersheet and production thereof
JP2005264346A (en) Carbon fiber and method for producing the same
JP6899469B2 (en) Carbon fiber manufacturing method
JP7159563B2 (en) METHOD FOR MANUFACTURING CARBON MEMBRANE FOR GAS SEPARATION
JP4155936B2 (en) Method for producing ultrafine carbon fiber
KR102115967B1 (en) The manufacturing method of carbon fiber
JP2010024581A (en) Flameproof fiber and method for producing the same