JP2015071450A - Liquid feeding device for small capacity liquid - Google Patents

Liquid feeding device for small capacity liquid Download PDF

Info

Publication number
JP2015071450A
JP2015071450A JP2013218697A JP2013218697A JP2015071450A JP 2015071450 A JP2015071450 A JP 2015071450A JP 2013218697 A JP2013218697 A JP 2013218697A JP 2013218697 A JP2013218697 A JP 2013218697A JP 2015071450 A JP2015071450 A JP 2015071450A
Authority
JP
Japan
Prior art keywords
liquid
outer container
container
pressure
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013218697A
Other languages
Japanese (ja)
Inventor
里田 誠
Makoto Satoda
誠 里田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATODA SCIENCE KK
Original Assignee
SATODA SCIENCE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATODA SCIENCE KK filed Critical SATODA SCIENCE KK
Priority to JP2013218697A priority Critical patent/JP2015071450A/en
Publication of JP2015071450A publication Critical patent/JP2015071450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of feeding small capacity liquid with constant flow without a drive mechanism and without a pulsating flow.SOLUTION: A method comprises the steps of: pressing one or a plurality of inner containers at constant pressure in an outer container having sealing performance; and discharging liquid in the one or the plurality of inner containers to the outside of the outer container through one or a plurality of conduits penetrating from the inner container to the outer container.

Description

この発明は、小容量液体の送液装置に関するものである。  The present invention relates to a small volume liquid feeding device.

送液装置は数多く利用されているが、流量範囲は幅広く、送液原理は多岐にわたり、概観することさえ一筋縄ではいかない状況である。しかし、この発明は、小容量、無脈流、無駆動機構、定流量を主眼としているので、この観点から、従来技術の問題点を簡単に挙げることにする。
無駆動機構の送液方法としては、重力や、空気圧を利用するものが考えられる。重力を利用する場合、送液対象液体の液面と吐出口の圧力差によるものが利用されているが、送液に伴い液面が低下すると、流量が減少する問題点がある。
また、送液対象液体を入れた容器を空気で加圧する方法も利用されている。その場合、容器の耐圧性確保や、安全策を講じる必要がある。また、加圧する空気の圧力が変動すれば、吐出流量が変動するので、定流量性を重視するニーズには、そのままでは対応できないと言える。
Many liquid feeding devices are used, but the flow rate range is wide, the liquid feeding principles are wide-ranging, and even an overview is not easy. However, since the present invention focuses on a small capacity, no pulsating flow, no driving mechanism, and a constant flow rate, from this point of view, the problems of the prior art will be briefly cited.
As a liquid feeding method of the non-drive mechanism, a method using gravity or air pressure can be considered. When gravity is used, the difference between the liquid level of the liquid to be supplied and the pressure difference between the discharge ports is used. However, there is a problem that the flow rate decreases when the liquid level decreases with the liquid supply.
A method of pressurizing a container containing a liquid to be fed with air is also used. In that case, it is necessary to secure the pressure resistance of the container and to take safety measures. In addition, if the pressure of the air to be pressurized fluctuates, the discharge flow rate fluctuates, so it can be said that the needs for emphasizing constant flow rate cannot be met as it is.

無駆動機構という条件を除外して、無脈流を実現するという観点からは、注射筒のピストンを押す方式が存在する。ピストンを押す速度が一定であれば無脈流の定流量送液が可能となる。しかし、そのためには、駆動機構の精密な機械精度が必要となる。  There is a method of pushing the piston of the syringe barrel from the viewpoint of realizing a non-pulsating flow excluding the condition of the non-driving mechanism. If the speed at which the piston is pressed is constant, non-pulsating constant flow rate liquid feeding is possible. However, for that purpose, the precise mechanical accuracy of the drive mechanism is required.

機械的駆動部を有する送液装置では、多くの場合、脈流が発生し、分析化学分野での測定に悪影響を及ぼしていた。また、重力利用の送液装置では、液面低下に伴い流量が減少し、かつ、吐出圧力が小さいという欠点がある。更に、注射筒のピストンを押す送液装置では、精密な駆動機構が必要になるという問題点があった。  In many cases, in a liquid delivery device having a mechanical drive unit, a pulsating flow is generated, which adversely affects measurement in the analytical chemistry field. In addition, the gravity-based liquid delivery device has the disadvantages that the flow rate decreases as the liquid level decreases and the discharge pressure is small. Furthermore, the liquid feeding device that pushes the piston of the syringe barrel has a problem that a precise drive mechanism is required.

密閉性を有する外側容器内にある、1個または複数個の内側容器を一定圧力の加圧媒体で加圧して、内側容器から外側容器を貫通する1個または複数個の導管を通じて、1個または複数個の内側容器内の液体を外側容器の外部に吐出すると、脈流がなく、駆動機構も不要の定流量送液装置が実現できて、問題点を解決できる。内側容器は密閉性を有する必要はないが、容積可変性を備える場合には、密閉して、加圧媒体との接触を防止することができる。  One or more inner containers in a sealed outer container are pressurized with a pressurized medium at a constant pressure, and one or more through one or more conduits that penetrate the outer container from the inner container. When the liquid in the plurality of inner containers is discharged to the outside of the outer container, a constant flow rate liquid feeding device that does not have a pulsating flow and does not require a driving mechanism can be realized, and the problem can be solved. The inner container does not need to have a sealing property, but when the inner container has a variable volume, it can be sealed to prevent contact with the pressurized medium.

密閉性を有する外側容器の内部を加圧すると、密閉性を有しない内側容器の場合、内側容器内の液体も加圧される。そこに導管が浸漬されていると、内側容器内の液体は同じ圧力で導管から吐出される。一方、内側容器が密閉性と容積可変性を有する場合は、内側容器の容積が減少し、内部の液体は導管を経由して外部に吐出される。
内側容器は送液対象液体を加圧媒体から隔離することにより、外側容器内部からの汚染を低減できるし、複数の内側容器を設置すると、相互の汚染を防止しつつ、同時に送液することが可能となる。また、密閉しない内側容器については、耐圧性を考慮する必要がないので、送液対象液体との適合性が高い材質を選定することが可能である。
更に、外側容器に圧力調整機構を付加すれば、送液対象液体に加圧される圧力が一定となるので、脈流が防止でき、吐出流量の安定性が増加する。
また、内側容器が密閉されていれば、加圧媒体と送液対象液体の接触を防止できるので、汚染される確率は更に低減される。
When the inside of the outer container having airtightness is pressurized, in the case of the inner container having no airtightness, the liquid in the inner container is also pressurized. When the conduit is immersed therein, the liquid in the inner container is discharged from the conduit at the same pressure. On the other hand, when the inner container has sealing properties and volume variability, the volume of the inner container decreases, and the liquid inside is discharged to the outside through a conduit.
The inner container can reduce the contamination from the inside of the outer container by isolating the liquid to be sent from the pressurized medium, and if multiple inner containers are installed, the liquid can be fed simultaneously while preventing mutual contamination. It becomes possible. In addition, since it is not necessary to consider pressure resistance for the inner container that is not sealed, it is possible to select a material that is highly compatible with the liquid to be fed.
Furthermore, if a pressure adjusting mechanism is added to the outer container, the pressure applied to the liquid to be delivered becomes constant, so that pulsating flow can be prevented and the stability of the discharge flow rate is increased.
Further, if the inner container is sealed, contact between the pressurized medium and the liquid to be fed can be prevented, so that the probability of contamination is further reduced.

外側容器として、耐圧性で、密閉型蓋を備えた、樹脂製、又は、ガラス製の広口瓶を使用し、その蓋に導管を通過させる穴と、加圧媒体を導入する穴と、圧力調整器を接続する穴をあける。それぞれの穴には密閉性を持たせるようなジョイントを取り付ける。
内側容器としては、外側容器内に設置できるものであれば、どのような形状でも材質でも可能である。密閉しない場合、導管が液体内部に浸漬できることが必要である。密閉する場合は、形状や設置方法により、導管の浸漬の要否が異なる。内側容器全体に液体が充填されている状態や、導管を下方に取り付ける場合には、導管を内側容器内部に挿入して浸漬することは不要である。
また、容積可変性を実現する方法についても特に制限はない。注射筒のようなものでも可能であるし、可撓性の容器でも可能である。材質については、注射筒の場合、ガラス製でも樹脂製でも可能である。可撓性容器の材質についても、塩化ビニルや低密度ポリエチレンなどが可能であり、制限はない。
加圧媒体としては、空気や水が可能である。空気を使用する場合、空気用ポンプで外側容器内部に供給する。そして、圧力調整器により、外側容器内部の圧力は一定に保たれる。水を採用する場合は、送液対象液体との接触を防止するため、内側容器を密閉化する必要がある。水圧調整は、圧力調整器でおこなう。
圧力調整器の方式に制限はないが、簡易なものでは、バネで可撓性流路を遮断する方式も可能である。すなわち、加圧媒体の圧力がバネによる遮断圧力より大きくなれば、流路が開き、過剰の加圧媒体が外部に放出される。圧力が減少すれば、遮断部分の流路が狭まったり遮断されたりするので加圧媒体の圧力が増加する。これにより圧力が一定範囲内に保持される。
なお、加圧媒体を供給するポンプの耐圧性能が低い場合には、ポンプからの流出があり、上記の圧力調整機構を不要とすることも可能である。
As the outer container, a resin or glass wide-mouth bottle with a pressure-resistant and sealed lid is used, a hole for allowing the conduit to pass through the lid, a hole for introducing a pressurized medium, and pressure adjustment Make a hole to connect the vessel. Each hole is fitted with a joint that provides a tight seal.
The inner container can be of any shape and material as long as it can be installed in the outer container. If not sealed, it is necessary that the conduit can be immersed in the liquid. When sealing, the necessity of immersion of a conduit changes with shapes and installation methods. When the entire inner container is filled with liquid or when the conduit is attached downward, it is not necessary to insert the conduit into the inner container and immerse it.
Further, there is no particular limitation on the method for realizing volume variability. It can be a syringe or a flexible container. The material of the syringe can be made of glass or resin. The material of the flexible container can be vinyl chloride or low density polyethylene, and is not limited.
The pressurizing medium can be air or water. When air is used, it is supplied inside the outer container with an air pump. And the pressure inside an outer side container is kept constant by a pressure regulator. When employing water, it is necessary to seal the inner container in order to prevent contact with the liquid to be delivered. The water pressure is adjusted with a pressure regulator.
Although there is no restriction | limiting in the system of a pressure regulator, In the simple thing, the system of interrupting | blocking a flexible flow path with a spring is also possible. That is, when the pressure of the pressurizing medium becomes larger than the shut-off pressure by the spring, the flow path is opened and an excessive pressurizing medium is discharged to the outside. If the pressure decreases, the pressure of the pressurized medium increases because the flow path of the blocking portion is narrowed or blocked. This keeps the pressure within a certain range.
In addition, when the pressure resistance performance of the pump that supplies the pressurized medium is low, there is an outflow from the pump, and the above-described pressure adjustment mechanism can be dispensed with.

実施例1: 外側容器として、直径9cm、高さ18cmの円筒形ガラス瓶を採用した。蓋は、樹脂製で、ガラス瓶とネジで接続し、シール材を挟むことにより密閉性を付与した。また、ガラス瓶外側には、衝撃予防の保護フィルムを巻きつけた。蓋には、導管と加圧用チューブ、及び、圧力調整用の穴をあけた。それぞれの穴に密閉性を付与するために、パネル用貫通コネクターを使用した。
内側容器として、樹脂製広口瓶を採用し、その蓋に導管用の穴をあけた。その穴のシールは、パネル用貫通コネクターを使用した。導管は、PFAチューブ(内径2mm、外径3mm)で、内側容器の底面付近から、内側容器蓋、及び、外側容器の蓋を経由して、その外側まで達する長さとした。その端部は、外部機器等の送液目的システムに接続できるようにした。
加圧は、空気ポンプを使用して、PFAチューブ(内径2mm、外径3mm)で外側容器内部に空気を送り込む方式とした。圧力調整器は、ブリード型の市販品を使用した。
Example 1 As an outer container, a cylindrical glass bottle having a diameter of 9 cm and a height of 18 cm was adopted. The lid was made of resin, connected to a glass bottle with a screw, and provided with a sealing property by sandwiching a sealing material. Further, a protective film for preventing impact was wound around the outside of the glass bottle. The lid was drilled with a conduit, a pressurizing tube, and a pressure adjusting hole. In order to give each hole a sealing property, a through connector for a panel was used.
A resin wide-mouth bottle was adopted as the inner container, and a hole for a conduit was made in the lid. The through hole connector for the panel was used for the seal of the hole. The conduit is a PFA tube (inner diameter: 2 mm, outer diameter: 3 mm) and has a length that reaches from the vicinity of the bottom surface of the inner container to the outside through the inner container lid and the outer container lid. The end portion can be connected to a liquid feeding purpose system such as an external device.
The pressurization was carried out by using an air pump to send air into the outer container with a PFA tube (inner diameter 2 mm, outer diameter 3 mm). As the pressure regulator, a bleed-type commercial product was used.

実施例1の使用方法: 内側容器内部に送液対象液体を入れて、導管付き蓋を締めて、それを外側容器内部に置いて、外側容器蓋を締めて密閉した。空気ポンプを稼働させて、空気を外側容器に送りこんだ。その後、圧力調整器で圧力を設定すると、外側容器内部の圧力が上昇し、密閉されていない内側容器の内部も圧力が上昇し、送液対象液体の吐出が開始された。流量調整は、空気流量の変更や、圧力調整器による圧力変更で可能となった。送液は、内側容器内の液体がほぼ空になるまで、定流量で可能であった。  Method of using Example 1: The liquid to be fed was placed inside the inner container, the lid with the conduit was tightened, it was placed inside the outer container, and the outer container lid was tightened and sealed. The air pump was activated and air was sent to the outer container. After that, when the pressure was set with the pressure regulator, the pressure inside the outer container increased, the pressure inside the inner container that was not sealed up also increased, and the discharge of the liquid-sending target was started. The flow rate can be adjusted by changing the air flow rate or changing the pressure with a pressure regulator. Liquid feeding was possible at a constant flow rate until the liquid in the inner container was almost empty.

実施例2: 内側容器として注射筒を採用した。構成や使い方は、実施例1と同様であるが、外側容器内部の圧力が上昇すると、注射筒ピストンが押しこまれて、送液が開始された。注射筒を採用すると、汚染防止が容易であり、複数の注射筒をセットすることが簡単に実現できた。この場合、導管は各注射筒の出口に接続した。  Example 2: A syringe barrel was adopted as the inner container. The configuration and usage are the same as in Example 1, but when the pressure inside the outer container increased, the syringe barrel piston was pushed in and liquid feeding was started. When the syringe barrel was adopted, it was easy to prevent contamination, and it was easy to set a plurality of syringe barrels. In this case, the conduit was connected to the outlet of each syringe barrel.

実施例3: 内側容器として低密度ポリエチレン製の容器を採用した。内側容器の蓋は密閉した。その他の構成部品、及び、使用方法は、実施例1と同様である。  Example 3: A low density polyethylene container was used as the inner container. The lid of the inner container was sealed. Other components and the usage method are the same as those in the first embodiment.

本発明の実施例1である。It is Example 1 of this invention. 本発明の実施例2である。It is Example 2 of this invention.

1 外側容器
2 外側容器蓋
3 内側容器
4 導管
5 加圧媒体入口
6 圧力調整器
DESCRIPTION OF SYMBOLS 1 Outer container 2 Outer container lid 3 Inner container 4 Conduit 5 Pressurization medium inlet 6 Pressure regulator

Claims (4)

密閉性を有する外側容器内にある、1個または複数個の内側容器を加圧して、内側容器から外側容器を貫通する1個または複数個の導管を通じて、1個または複数個の内側容器内の液体を外側容器の外部に吐出する送液装置。  One or more inner containers in a sealed outer container are pressurized and through one or more conduits that penetrate the outer container from the inner container. A liquid delivery device that discharges liquid to the outside of the outer container. 内側容器が密閉可能で容積可変性を有することを特徴とする請求項1記載の送液装置。  The liquid feeding device according to claim 1, wherein the inner container is sealable and has volume variability. 加圧方法として外側容器内に空気、又は、水を供給することを特徴とする請求項1または請求項2記載の送液装置。  The liquid feeding device according to claim 1 or 2, wherein air or water is supplied into the outer container as a pressurizing method. 外側容器内の空気、又は、水の圧力を調整する機構を有する請求項1、又は、請求項2、又は、請求項3記載の送液装置。  The liquid feeding device according to claim 1, claim 2, or claim 3 having a mechanism for adjusting the pressure of air or water in the outer container.
JP2013218697A 2013-10-01 2013-10-01 Liquid feeding device for small capacity liquid Pending JP2015071450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218697A JP2015071450A (en) 2013-10-01 2013-10-01 Liquid feeding device for small capacity liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218697A JP2015071450A (en) 2013-10-01 2013-10-01 Liquid feeding device for small capacity liquid

Publications (1)

Publication Number Publication Date
JP2015071450A true JP2015071450A (en) 2015-04-16

Family

ID=53014151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218697A Pending JP2015071450A (en) 2013-10-01 2013-10-01 Liquid feeding device for small capacity liquid

Country Status (1)

Country Link
JP (1) JP2015071450A (en)

Similar Documents

Publication Publication Date Title
US9126749B2 (en) Connectors for liner-based dispense containers
WO2011112835A3 (en) Vent tube apparatus and method
US20100237169A1 (en) Powdered and liquid chemical dispensing and distribution system
US10725062B2 (en) Dispensing device
WO2010115504A3 (en) Filling system
EP2751020B1 (en) Portable apparatus with aerosol refill cartridge and method of dispensing a material
WO2008103826A3 (en) Bottle for containing and dispensing liquids
US9731955B2 (en) Mixed liquid dispensing system
JP2006008249A (en) Fluid dispenser cartridge having bag means
JP2015071450A (en) Liquid feeding device for small capacity liquid
KR20160002365A (en) Hardware for the separation and degassing of dissolved gases in semiconductor precursor chemicals
US20180345176A1 (en) Subsea oil storage tank pre-separation
JP2016203073A (en) Device for stably supplying minute amount of concentrated hydrogen peroxide solution
PH12019501365A1 (en) System and apparatus for discahrging sterile media
WO2014115062A3 (en) Device for protecting a liquid from oxidation
US11617971B2 (en) Method for degassing flowable fluids
KR102145808B1 (en) Pressure assisted liquid supply assembly
MX2020013308A (en) Reservoir devices, methods and systems.
WO2020003205A3 (en) Treatment system having dedicated pressure reservoirs
WO2016133200A1 (en) Long flow path member, plastic container, and viscous-liquid discharge device
EP2943433B1 (en) Multiple channel single spike for a liquid dispensing system
US9947454B2 (en) Modular insulation fluid handling system
EP3675979A1 (en) Air trapping device and nozzle therefore
CN104023832A (en) Ozone liquid generation device
WO2012068352A3 (en) Mixing tank and method of use