JP2015071144A - Original-position pollution countermeasure system - Google Patents

Original-position pollution countermeasure system Download PDF

Info

Publication number
JP2015071144A
JP2015071144A JP2013208360A JP2013208360A JP2015071144A JP 2015071144 A JP2015071144 A JP 2015071144A JP 2013208360 A JP2013208360 A JP 2013208360A JP 2013208360 A JP2013208360 A JP 2013208360A JP 2015071144 A JP2015071144 A JP 2015071144A
Authority
JP
Japan
Prior art keywords
water
hot water
groundwater
purification
pollution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208360A
Other languages
Japanese (ja)
Inventor
山内 直樹
Naoki Yamauchi
直樹 山内
純平 中丸
Jumpei Nakamaru
純平 中丸
長谷川 武
Takeshi Hasegawa
武 長谷川
正章 森川
Masaaki Morikawa
正章 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO RENAISSANCE ENTEC KK
Original Assignee
ECO RENAISSANCE ENTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO RENAISSANCE ENTEC KK filed Critical ECO RENAISSANCE ENTEC KK
Priority to JP2013208360A priority Critical patent/JP2015071144A/en
Publication of JP2015071144A publication Critical patent/JP2015071144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct pollution countermeasure system which is significantly different from conventional pollution countermeasures characterized by simple purification of polluted soil and underground water, and has a new concept that pollution purification is attempted based on regeneration of resource values including polluted underground water or the like, and reduction of environmental loads.SOLUTION: An original-position pollution countermeasure system has a water creation mechanism which comprises: forming a heat region at a soil and ground water polluted site; promoting growth of thermophilic bacteria so as to reduce pollution of soil and underground water by specified bacteria and/or chemicals while keeping the environmental load at a low level; storing pumped underground water in a storage hot-water unit so as to further reduce specified bacteria in the pumped water; and promoting reuse of the pumped water as general service water.

Description

本発明は、土壌地下水汚染によって資源価値を失した地下水の浄化対策と、浄化が図られた地下水の雑用水としての再資源化方法の提供を主たる目的とした汚染対策システムに関する。   The present invention relates to a pollution control system whose main purpose is to provide a purification measure for groundwater whose resource value has been lost due to soil groundwater contamination, and a recycling method as miscellaneous water for purification.

1990年代以降、土壌地下水汚染に関する社会的関心が高まり、汚染調査から浄化対策に至るまで様々な技術提案が図られ実用化が進められてきた(例えば、特許文献1から11参照)。一般に、地下水に汚染が発覚すれば、まずは地下水に飲用・利用制限が課せられ、次いで詳細な汚染調査が実施され、さらには汚染浄化が図られるが、汚染浄化完了をもってかかる飲用・利用制限が解除されるかといえば、解除される事例はほとんどない。即ち、今般実施されている汚染浄化の完了は、法定の汚染化学物質に対して概ね基準レベルを満たす浄化が図られたことを意味し、その地下水の飲用・利用に問題が無いことを保証するものではなかった。   Since the 1990s, social interest in soil and groundwater contamination has increased, and various technical proposals have been made from practical use of contamination investigations to purification measures (see, for example, Patent Documents 1 to 11). Generally, if contamination is detected in groundwater, drinking and use restrictions are imposed on groundwater first, then a detailed contamination survey is conducted, and further purification is performed. There are very few cases that are canceled. In other words, the completion of the pollution cleanup currently implemented means that the cleanliness of the legally polluted chemical substances has generally been achieved to meet the standard level, and that there is no problem in drinking and using the groundwater. It was not a thing.

この様に、従前の汚染浄化技術は、汚染地下水に対して、水資源としての価値の復活が図られるまでの浄化は必ずしも実施されていなかった。そればかりか、浄化技術によっては、法定の汚染化学物質に対する汚染浄化に多量の浄化資材を地下に投入して、更なる環境負荷を地下水に課し、その負荷によって地下水の飲用・利用をより困難な状況に貶めると懸念される技術も存在した。   In this way, the conventional pollution purification technology has not necessarily been carried out until the value of water resources is restored to the contaminated groundwater. In addition, depending on the purification technology, a large amount of purification material is put into the ground to purify pollution against legally polluted chemical substances, which imposes an additional environmental burden on the groundwater, which makes it more difficult to drink and use groundwater. There were also technologies that would be a concern if we gave up on the situation.

特表2002−513676号公報JP-T-2002-513676 特開2008−194590号公報JP 2008-194590 A 特開2006−150278号公報JP 2006-150278 A 特開平09−276841号公報JP 09-276841 A 特開平07−308660号公報Japanese Patent Application Laid-Open No. 07-308660 特開平08−112586号公報Japanese Patent Laid-Open No. 08-112586 特開2007−296527号公報JP 2007-296527 A 特開2002−11456号公報JP 2002-11456 A 特開2007−253057号公報JP 2007-253057 A 特開2004−305898号公報JP 2004-305898 A 特開平07−265845号公報Japanese Patent Application Laid-Open No. 07-265845

これら、多様な浄化対策技術は、法定汚染物質種や環境条件に応じてそれぞれで卓越した汚染浄化効果を有するが、一方で、法制化が図られず、多くの汚染浄化対策ではほとんど省みられることのない、浄化対策施工における環境側面や地下水の資源価値への影響に対し、次のような課題を有していた。   These various cleanup countermeasure technologies have excellent pollution cleanup effects depending on the types of legal pollutants and environmental conditions, but on the other hand, they are not legislated and are almost omitted in many pollution cleanup measures. There were the following problems with respect to the environmental aspects and the effect on the groundwater resource value in the cleanup construction.

先ず、特許文献1に示される、過マンガン酸塩等の酸化剤を用いた原位置浄化手法では、水質基準等にも規制物質として存在するマンガンを利用している点で、水資源としての地下水の資源価値を損じる課題があった。   First, the in-situ purification method using an oxidizing agent such as permanganate disclosed in Patent Document 1 uses groundwater as a water resource in that it uses manganese that exists as a regulated substance in water quality standards and the like. There was a problem that detracted from the resource value.

加えて、特許文献2に示される、他の酸化剤を用いた浄化対策手法においても、その多くは還元状態に維持される帯水層とその近傍を、酸化剤の注入によって、ことごとく極端な酸化条件に移行させ、場合によっては、還元的地下水や注入薬剤中に存在する溶存態金属塩が酸化され不溶態の沈殿物を生じ、この沈殿物による帯水層の閉塞等を促して、本来の地下水流向に変化をもたらす懸念があった。
この帯水層間隙の閉塞による地下水流向への影響は、残存する汚染をあらぬ方向に流下させて不用意に新たな汚染を生じる等、人為的な2次汚染被害を誘発する課題を有していた。
In addition, in the purification countermeasure method using other oxidizing agents shown in Patent Document 2, most of the aquifer maintained in the reduced state and its vicinity are completely oxidized by injecting the oxidizing agent. In some cases, dissolved metal salts present in reductive groundwater and infused chemicals are oxidized to form insoluble precipitates, which promote clogging of the aquifer by these precipitates, There were concerns about changes in the direction of groundwater flow.
The impact on the groundwater flow direction due to the clogging of the aquifer gap has the problem of inducing artificial secondary pollution damage such as inadvertently causing new contamination by causing the remaining contamination to flow in a direction that does not occur. It was.

また、特許文献3に示される嫌気脱塩素手法を用いた生物学的浄化手法等は、水溶性の有機物等を地下に注入し腐らせ、嫌気性微生物の増殖を促して還元環境を形成し、その還元環境下において汚染物質に対し脱塩素作用を呈する一部の細菌の働きを促して、有機塩素系汚染物質の無害化を図る手法である。   In addition, the biological purification method using the anaerobic dechlorination method shown in Patent Document 3 injects and rotifies water-soluble organic matter into the basement, promotes the growth of anaerobic microorganisms, forms a reducing environment, This is a technique for promoting the action of some bacteria that exhibit a dechlorination action on pollutants in the reducing environment to detoxify organochlorine pollutants.

本手法は、中温にて雑多な腐敗細菌の増殖を促すプロセス操作を有する為に、中温域を好むヒト等に対する病原細菌が増殖しその増大を伴うのではないかという課題を残していた。加えて、嫌気性微生物の代謝による副産物として、とりわけ悪臭物質として規制・認知される各種有機酸、揮発性脂肪酸の生成、また有害物質である硫化水素、メタン等の発生を少なからず伴うものであった。
総じて、衛生的な観点から水資源としての地下水の価値を損じることは勿論のこと、浄化対象域で発生した臭気/有害ガスが地上の住環境や自然界にもたらす影響への細心の注意を要する技術であった。
Since this technique has a process operation that promotes the growth of miscellaneous spoilage bacteria at medium temperature, there remains a problem that pathogenic bacteria may proliferate and increase with respect to humans who prefer a medium temperature range. In addition, as a by-product of the metabolism of anaerobic microorganisms, it is accompanied by the generation of various organic acids, volatile fatty acids that are regulated and recognized as malodorous substances, and the generation of harmful substances such as hydrogen sulfide and methane. It was.
Overall, this technology requires careful attention to the effects of odors / hazardous gases generated in the purification area on the living environment and the natural world, as well as sacrificing the value of groundwater as a water resource from a sanitary point of view. Met.

また、特許文献4に示される地下に酸素供給を実施して、中温域での好気的微生物を用いた生物学的浄化手法も、同様に、ヒト等に対する病原細菌の増大を伴うのではないかという懸念が存在し、衛生的な観点から水資源としての地下水の価値を損じる側面を有する浄化技術であった。   In addition, the biological purification method using aerobic microorganisms in the middle temperature range by supplying oxygen underground shown in Patent Document 4 is not accompanied by an increase in pathogenic bacteria for humans and the like. This is a purification technology having an aspect that impairs the value of groundwater as a water resource from a sanitary point of view.

このように、従前の原位置汚染浄化対策技術の中には、環境側面への影響に対し、何らかの技術的課題を有するものであった。特に、浄化をより短期に且つ効果的に実施する化学・生物学的手法では、地下の帯水層環境条件を強制的に浄化の最適条件に適合する様にシフトさせる傾向があり、その結果、酸化沈殿物等による帯水層の閉塞や地下水流向変動による2次被害の発生が懸念されている。その他、病原細菌増大の懸念、悪臭物質や有害ガスの発生等による環境負荷、水資源としての地下水の価値の減損等、我々の生活圏を含めた環境側面への影響に関する多くの課題を有していた。   Thus, some of the conventional in-situ pollution purification countermeasure technologies have some technical problems with respect to the environmental impact. In particular, chemical and biological methods that carry out purification in a shorter time and more effectively tend to shift the underground aquifer environmental conditions to force them to conform to the optimum conditions for purification. There are concerns about the occurrence of secondary damage due to clogging of the aquifer due to oxidation deposits and groundwater flow direction fluctuations. In addition, there are many issues regarding the impact on the environmental aspects including our living sphere, such as concerns about the increase of pathogenic bacteria, environmental impact due to the generation of malodorous substances and harmful gases, and the impairment of the value of groundwater as water resources. It was.

一方、特許文献5に示される揚水バッ気法は、汚染地下水を専ら揚水して除染後に下水放流を実施するので、かかる環境負荷がより少ない様に思える物理学的な浄化手法である。
しかしながら、本技術では、僅かな汚染水と共に360度周囲から水資源たる価値を有する非汚染地下水を大量に揚水して、結果として水資源たる価値を損ねた希釈汚染水を大量に作り出す側面を有する技術であり、浄化処理後の処理水を再利用する事例もほとんど存在せず、水資源としての地下水の価値と貴重な水資源の多くを損失している実情がある。
本技術は、従来から浄化期間や浄化の費用対効果に関する課題が指摘されていたが、さらに未利用非汚染水の資源価値を損失する課題を併せて有する、改善の余地を多く残す技術であった。
On the other hand, the pumped water method shown in Patent Document 5 is a physical purification method that seems to have less environmental load because it exclusively pumps contaminated groundwater and discharges sewage after decontamination.
However, this technology has the aspect of pumping a large amount of uncontaminated groundwater having a value as a water resource from around 360 degrees together with a slight amount of contaminated water, and as a result, producing a large amount of diluted contaminated water that impairs the value as a water resource. It is a technology, and there are almost no cases of reuse of treated water after purification treatment, and there is a fact that the value of groundwater as water resources and much of valuable water resources are lost.
Although this technology has been pointed out in the past as to the purification period and cost-effectiveness of purification, it also has a problem of losing the resource value of unused non-polluted water, and leaves much room for improvement. It was.

ところで、近年、国土交通省、厚生労働省主導で、雨水、下水処理水、地下水等を雑用水として、その有効利用の推進が図られており、かかる基準・指針等として「建築物における衛生的環境の確保に関する法律施行規則」や「下水処理水の再利用水質基準等マニュアル」等が示されている。これら雑用水の再利用における基準には大腸菌群等が指定項目として挙げられており、糞便の混入指標たる大腸菌群や病原細菌等の特定の細菌類(以下、特定の細菌という。特定の細菌とは、大腸菌群、病原細菌、悪臭や有害物質を産生する細菌等、ヒトに対して有害な作用を及ぼす細菌であればいずれも該当するものとする。)の存在は、その雑用水の再利用の是非を判断する上で重要な指標として認識されている。   By the way, in recent years, the Ministry of Land, Infrastructure, Transport and Tourism and Ministry of Health, Labor and Welfare have led the promotion of effective use of rainwater, sewage treated water, groundwater, etc. as miscellaneous water. The Law Enforcement Regulations on Securing of Waste "and the" Manual on Recycling Water Quality Standards, etc. " The standard for the reuse of miscellaneous water includes coliforms and the like as designated items. Specific bacteria such as coliforms and pathogenic bacteria that are indicators of fecal contamination (hereinafter referred to as specific bacteria. Are any bacteria that have harmful effects on humans, such as coliform bacteria, pathogenic bacteria, bacteria producing odors and harmful substances, etc.) It is recognized as an important indicator for judging the pros and cons of.

総じて、この様な背景から本発明の目的を、土壌地下水汚染を単に浄化する、或いは浄化後の地下水を排水として廃棄するといった従前の汚染対策措置とは一線を画す、汚染された地下水等の資源価値の再生を前提とした汚染浄化を図るという、新たなコンセプトを有した汚染対策システムを構築することとした。   In general, the objective of the present invention from such a background is a resource such as contaminated groundwater, which is different from conventional pollution control measures such as simply purifying soil groundwater contamination or discarding groundwater after purification as wastewater. We decided to build a pollution control system with a new concept of purifying pollution premised on the regeneration of value.

尚、汚染された地下水等の資源価値の再生として雑用水の造水を前提とした汚染浄化を図るためには、特定の化学物質による汚染の他に、特定の細菌の汚染除去が重要となる。
この2つに大別される汚染群の浄化を本発明にて効率良く達成するために、特定の化学物質の浄化機能の他、特定の細菌の増殖や個体数の維持に寄与する地下(水中)の有機物の除去に注目した。
In addition, in order to purify pollution assuming the production of miscellaneous water as a regeneration of the resource value of contaminated groundwater etc., it is important to decontaminate specific bacteria in addition to contamination with specific chemical substances. .
In order to efficiently purify these two groups of pollutants efficiently in the present invention, in addition to the function of purifying specific chemical substances, underground (underwater) that contributes to the growth of specific bacteria and the maintenance of populations. We focused on the removal of organic matter.

例えば、この特定の細菌よりも高い増殖能を有し、地下(水中)の有機物の資化を巡る増殖競合等にて特定の細菌の個体数減少を期待できる微生物群を利用した地下(水中)の有機物除去を図ること、またその微生物群が多様な有機物に対する代謝機能を有し、特定の化学物質の浄化にも寄与する等の条件を満たす技術要求が想定される。   For example, underground (underwater) using a group of microorganisms that have a higher growth ability than this specific bacterium and can expect a decrease in the number of specific bacteria due to growth competition for the utilization of organic matter in the underground (underwater). It is assumed that there is a technical requirement that satisfies the conditions such as removal of organic substances, the microorganism group having a metabolic function for various organic substances, and contributing to purification of specific chemical substances.

この様な技術要求を満たすために、摂氏55度を超える高温環境で生育し、高代謝と高速増殖を特徴とする好熱菌に着目し、この好熱菌の利用を前提として、特定の化学物質ないし細菌による両汚染に対する浄化機能を有するシステムの構築を図ることを本発明の課題とした。   In order to meet such technical requirements, we focused on thermophilic bacteria that grow in a high temperature environment exceeding 55 degrees Celsius and are characterized by high metabolism and rapid growth. An object of the present invention is to construct a system having a purification function against both contaminations by substances or bacteria.

ところで、従前技術には、特許文献6から11に示される様な土壌地下水汚染部を加熱して高温領域を形成して汚染浄化を図る方法が提案されているが、いずれも、土壌地下水汚染を単に浄化する、或いは浄化後の地下水を排水として廃棄するといった従前の汚染対策コンセプトの範疇で括られる技術であった。
また、これらの特許文献に記載の技術は、少なくとも好熱菌を用いた特定の細菌ないし化学物質の両者に対する汚染低減を前提とした浄化技術では無く、本発明が目指す発明とは、基本コンセプトから技術手法の選択に至るまで、一致する技術は無かった。
By the way, the conventional techniques have proposed a method for purifying the contamination by heating the soil groundwater contaminated part as shown in Patent Documents 6 to 11 to form a high temperature region. It was a technology that was included in the category of conventional pollution control concepts such as simply purifying or discarding groundwater after purification as wastewater.
The technologies described in these patent documents are not purification technologies based on the premise of reducing contamination of both specific bacteria or chemical substances using at least thermophilic bacteria, and the invention aimed by the present invention is based on the basic concept. There was no matching technology until the choice of technology method.

前述の目的を達成するための本発明の要旨とするところは、請求項1に記載するところの、摂氏55度を超える湯温を保持した貯湯ユニット部を介して、地下の土壌地下水汚染部位に供給される温熱水の供給路、地層間隙中に温熱水を胚胎する地下温熱帯とその周縁、地下温熱帯からの揚水による貯湯ユニット部への復路、及び貯湯ユニット部から2次供給に至る経路を含む一連の温熱領域を形成して、少なくとも好熱菌の増殖を促して特定の細菌ないし化学物質による土壌地下水汚染の低減を図り、加えて揚水された地下水を前記貯湯ユニット部内に滞留させ揚水中の特定の細菌の更なる低減を図ることによって、かかる揚水に対し雑用水としての再利用を促すことを特徴とする原位置汚染対策システムである。   The gist of the present invention for achieving the above-described object is that, in the underground soil water contamination site, the hot water storage unit having a hot water temperature exceeding 55 degrees Celsius as described in claim 1 is used. Supply path of hot water supplied, underground warm tropics where hot water is embedded in the formation gap and its periphery, return path to hot water storage unit by pumping from underground warm tropics, and route from hot water storage unit to secondary supply A series of thermal regions including water is formed, and at least the growth of thermophilic bacteria is promoted to reduce soil groundwater contamination by specific bacteria or chemicals. In addition, the pumped groundwater is retained in the hot water storage unit. This is an in-situ pollution control system that promotes the reuse of such pumped water as miscellaneous water by further reducing specific bacteria therein.

更なる本発明の要旨とするところは、請求項2に記載するところの、前記貯湯ユニット部の一部が、炭化水素を用いた発電ユニット及び発電時の生成熱を温熱源として利用する貯湯ユニットからなる複合ユニットの一部として構成され、前記発電ユニット由来の電力を汚染浄化の装置電源として利用することを特徴とする、請求項1に記載の原位置汚染対策システムである。   Further, the gist of the present invention is that a part of the hot water storage unit portion described in claim 2 is a power generation unit using hydrocarbons and a hot water storage unit using heat generated during power generation as a heat source. The in-situ contamination countermeasure system according to claim 1, wherein the in-situ contamination countermeasure system is configured as a part of a composite unit comprising:

加えて本発明の要旨とするところは、請求項3に記載するところの、前記土壌地下水汚染が、未然の土壌地下水汚染であって、かかる土壌地下水汚染の発生が想定される部位に前記一連の温熱領域をあらかじめ形成して、揚水に由来する造水を実施すると共に、かかる揚水中の汚染モニタリングを定期的に実施することによって、土壌地下水汚染の発生を察知可能とする、請求項1または2に記載の原位置汚染対策システムである。   In addition, the gist of the present invention is that, as described in claim 3, the soil groundwater contamination is a soil groundwater contamination, and the series of soil groundwater contamination is assumed to occur in the site. The occurrence of soil groundwater contamination can be detected by forming a thermal region in advance, carrying out fresh water derived from pumped water, and periodically performing pollution monitoring in the pumped water. The in-situ pollution control system described in 1.

本発明のうち請求項1にかかる汚染地下水の原位置汚染対策システムによれば、一連の温熱領域を形成して、少なくとも好熱菌の増殖を促して特定の化学物質ないし細菌による土壌地下水汚染の低減を図ることができる。また、かかる温熱領域にて好熱菌による汚染浄化と共に、以下に示す高温環境ならではの種々の特徴を生かした浄化手法を併せて試みることにより、環境負荷の少ない原位置土壌地下水汚染の浄化と、かかる揚水に対し雑用水としての再利用を促す造水を効率良く実施することができる。   According to the in-situ pollution control system for contaminated groundwater according to claim 1 of the present invention, a series of thermal regions are formed to promote the growth of at least thermophilic bacteria and prevent soil groundwater contamination by specific chemical substances or bacteria. Reduction can be achieved. In addition, by purifying contamination methods by thermophilic bacteria in such a thermal region, and purifying the purification methods utilizing the various features unique to the high temperature environment shown below, It is possible to efficiently carry out fresh water that encourages reuse of such pumped water as miscellaneous water.

例えば、温熱水を汚染地層に注入し回収する経路を構成することにより、注入物の地下への残存を最少とし、地下環境への負荷を最少とすることができる。また、原位置浄化対策エリアに一定の温熱領域を形成することで、かかる領域の透水性を向上せしめ、効率の良い汚染水の回収や浄化資材の原位置浄化対策エリアへの供給と回収を容易に図ることができる。この供給と回収を容易とすることで、従前技術にて問題となっていた浄化資材の地下環境への残留を最少として、環境負荷の少ない汚染浄化を達成することができる。   For example, by constructing a route for injecting and collecting hot water into the contaminated formation, it is possible to minimize the residual of the injected material in the underground and the load on the underground environment. In addition, by forming a certain thermal area in the in-situ purification area, the water permeability of the area will be improved, allowing efficient collection of contaminated water and easy supply and recovery of purification materials to the in-situ area. Can be aimed at. By facilitating the supply and recovery, it is possible to minimize the residue of the purification material in the underground environment, which has been a problem in the prior art, and achieve pollution purification with a low environmental load.

また、温熱水の注入量と揚水量を適切とすることで、地下水流が存在する帯水層であっても、外部地下水流への影響を最少とする一定の温熱領域を形成することが可能であり、原位置浄化対策エリアをこの範疇とすることで、地下環境への負荷を、部分的、或いは一時的なものとして、最少とする浄化対策を実施できる。   In addition, by making the amount of hot water injected and pumped appropriately, even in an aquifer where a groundwater flow exists, it is possible to form a constant thermal region that minimizes the impact on the external groundwater flow. By setting the in-situ purification countermeasure area in this category, it is possible to implement a purification countermeasure that minimizes the load on the underground environment partially or temporarily.

加えて、重質油や切削油等を伴う有機物系の化学物質汚染では、原位置浄化対策エリアに一定の温熱領域を形成することで、重質油や切削油の粘度が低くなり、その流動性や可塑性の変化によって、油膜・油臭成分、BTEX成分や混在する揮発性有機塩素化合物成分等の油分からの脱着効果とそれを利用する好熱菌による代謝が促進され、効率の良い浄化を図ることができる。   In addition, for organic chemical contamination with heavy oil, cutting oil, etc., the viscosity of heavy oil and cutting oil is reduced by forming a constant thermal area in the in-situ purification area. The effect of desorption from oil components such as oil film / oil odor component, BTEX component and mixed volatile organochlorine compound component and metabolism by thermophilic bacteria using it is promoted by changes in properties and plasticity, and efficient purification is achieved. You can plan.

また、重金属や有機塩素化合物による汚染においては、かかる温熱領域を形成し好熱菌の増殖を図ることにより、これら汚染の抽出促進を図ることができる。即ち、重金属や有機塩素化合物の地下での存在が、NAPLや地下水中の分布を除くと、その他の多くは地層中に含まれるフミン質等の難分解性有機物に吸着されている状況にある。
好熱菌が有する高代謝能力によって、この難分解性有機物の分解を促進することで、重金属や有機塩素化合物の吸着を抑制し、これら汚染の抽出促進と地下水流への移相が図られる。この移相が図られた汚染地下水を精度良く回収することで、効果的な汚染対策を実施することができる。
Further, in the case of contamination with heavy metals or organochlorine compounds, the extraction of these contaminations can be promoted by forming such a thermal region and promoting the growth of thermophilic bacteria. In other words, the presence of heavy metals and organochlorine compounds in the subsurface is in a state where most of them are adsorbed by refractory organic substances such as humic substances contained in the formation, excluding the distribution in NAPL and groundwater.
By promoting the decomposition of this hardly-degradable organic substance by the high metabolic ability of thermophilic bacteria, the adsorption of heavy metals and organochlorine compounds is suppressed, and the extraction of these contaminants is promoted and the phase is shifted to the groundwater flow. By effectively collecting the contaminated groundwater that has undergone this phase shift, it is possible to implement effective pollution countermeasures.

さらに、生/化学反応は、一般に温度が10度(摂氏)上昇するとその反応は概ね2倍になることが知られており、本発明での摂氏55度を超えた温度をこの温熱領域にて達成することにより、従前技術での地下水温(概ね摂氏10〜20度)で実施する生物学的浄化手法や化学的浄化手法と比べ、数倍から10倍程度の反応速度向上が達成され、従前技術と較べ極めて迅速なる浄化を図ることができる。   Furthermore, it is known that the bio / chemical reaction generally doubles when the temperature increases by 10 degrees (Celsius), and the temperature exceeding 55 degrees Celsius in the present invention is increased in this thermal region. By achieving this, the reaction speed is improved by several to 10 times compared with the biological purification method and the chemical purification method performed at the groundwater temperature (approximately 10 to 20 degrees Celsius) in the conventional technology. Compared with technology, purification can be performed very quickly.

また、本発明のうち請求項2にかかる汚染地下水の原位置汚染対策システムによれば、貯湯の温熱源として炭化水素を用いた発電ユニットより生じる生成熱を利用するが、この発電ユニットから発生する電気を浄化処理等に積極的に活用することができる。   Further, according to the in-situ contamination pollution control system according to claim 2 of the present invention, the generated heat generated from the power generation unit using hydrocarbons as a heat source for hot water storage is used, but the generated heat is generated from this power generation unit. Electricity can be positively used for purification processing.

例えば、重金属等は、Eh/pH条件に依存して、不動態/可動態の態様変化を生ずるが、注入する温熱水のEh/pH条件を、電気を用いた電気化学的操作によって、浄化対象とする重金属等の可動態域の条件とすれば、汚染地層からの積極的な抽出操作を実施することができる。続いて、抽出された重金属を含む揚水のEh/pH条件を、電気を用いた電気化学的操作によって、再度、かかる金属の不動態条件に移行させ凝集沈殿処理等を併用して、その回収を図ることにより、一連の重金属処理を達成することができる。   For example, heavy metals and the like cause a passive / passive mode change depending on the Eh / pH condition, but the Eh / pH condition of the hot water to be injected is subject to purification by electrochemical operation using electricity. If the conditions of the movable region, such as heavy metals, are used, it is possible to carry out a positive extraction operation from the contaminated formation. Subsequently, the Eh / pH condition of the pumped water containing the extracted heavy metal is transferred again to the passive condition of the metal by electrochemical operation using electricity, and the recovery is performed together with the coagulation sedimentation treatment. By doing so, a series of heavy metal treatments can be achieved.

なお、特にEh/pH条件を設定せずとも抽出が容易に図れるイオン性の重金属類にあっては、揚水後の地上部において、かかる発電ユニット等由来の電気とイオン交換膜やバイポーラ膜等を介したイオン選択処理によって、イオン性重金属等の浄化処理を効率的に図ることができる。   In particular, for ionic heavy metals that can be easily extracted without setting Eh / pH conditions, the electricity and ion exchange membranes, bipolar membranes, etc., derived from such power generation units are provided on the ground after pumping. By means of the ion selection process, it is possible to efficiently purify ionic heavy metals and the like.

同様に、注入する温熱水のEh/pH条件を、汚染分解能を有する好熱菌が好む条件に設定し、さらに、栄養塩や必要に応じて電子供与体/受容体を注入水に溶解させることで、その電子供与体/受容体を利用可能な好熱分解微生物を優占種とする効率的な生物学的汚染浄化を実施することができる。   Similarly, the Eh / pH condition of the hot water to be injected is set to a condition that is favored by a thermophilic bacterium having a contamination resolution, and further, a nutrient salt and, if necessary, an electron donor / acceptor are dissolved in the injected water. Thus, efficient biological decontamination can be carried out using a thermophilic degrading microorganism that can use the electron donor / acceptor as a dominant species.

この際、温熱領域において揚水の一部を再び注入する地下水循環系の設定が可能である場合には、揚水中の還元型電子受容体を、かかる発電ユニット等由来の電気にて酸化処理を施して酸化型の電子受容体とした後に注入を実施することで、電子受容体の電気による再生を介した繰返し利用を可能とした有効利用を図ることができる。   At this time, if it is possible to set up a groundwater circulation system in which a part of the pumped water is injected again in the thermal region, the reduced electron acceptor in the pumped water is oxidized with electricity derived from such a power generation unit. By performing injection after forming an oxidized electron acceptor, it is possible to effectively use the electron acceptor through repeated regeneration through electricity regeneration.

また、水の電気分解を利用して生じた水素を、電子供与体として原位置浄化対策エリアに注入を介して供給することにより、同様の効果を得るために有機物等を地下に大量注入していた従前技術の様に環境負荷を高めることなく、好熱分解菌の増殖を促すことができる。   In addition, by supplying hydrogen generated by electrolysis of water as an electron donor to the in-situ purification area via injection, a large amount of organic matter is injected underground to obtain the same effect. It is possible to promote the growth of thermophilic degrading bacteria without increasing the environmental load as in the prior art.

例えば、特に有機塩素化合物の浄化において、この有機塩素化合物を電子受容体、水素を電子供与体として利用可能な脱塩素細菌に特化した微生物増殖を促すことができる(なお、必要に応じて炭素源として酢酸等を、浄化促進にビタミンB12等を、それぞれ極少量を加えても良い)。
従来の嫌気脱塩素手法は、水素の代わりに、主として雑多な有機物を用いていた為に、病原細菌の存在が懸念される多種多様な雑菌を増殖させる病原リスクの高い浄化手法であったが、水素を用いることで、病原細菌ではない脱塩素細菌を優占種とした、環境影響が少なく効率的な汚染浄化を図ることができる。
For example, in the purification of organochlorine compounds, it is possible to promote the growth of microorganisms specialized in dechlorinating bacteria that can use this organochlorine compound as an electron acceptor and hydrogen as an electron donor. Acetic acid or the like may be added as a source, and vitamin B12 or the like may be added to promote purification.
The conventional anaerobic dechlorination method was a purification method with a high risk of pathogenicity that proliferates a wide variety of miscellaneous bacteria that are concerned about the presence of pathogenic bacteria because mainly miscellaneous organic substances were used instead of hydrogen. By using hydrogen, dechlorination bacteria that are not pathogenic bacteria are dominant species, and environmental pollution can be effectively purified with less environmental impact.

同様に、発生した酸素を、特定の好熱分解微生物の電子受容体として注入を介して供給することにより、特定の好気性好熱分解菌の増殖を促すことができる。   Similarly, by supplying the generated oxygen as an electron acceptor of a specific thermolytic microorganism, it is possible to promote the growth of the specific aerobic thermolytic bacteria.

またさらに、汚染が残存する地下水を揚水する場合は、かかる発電ユニット等由来の電気を用いて、光触媒と紫外線照射による浄化、オゾンによる浄化、電解電極表面での酸化/還元反応による浄化、電解由来の過酸化水素と紫外線照射による浄化、電解由来のオゾンと過酸化水素から生じたOHラジカルによる浄化等を実施することにより、揚水地下水中に残存する有機化合物系の除染を特に効率良く実施することができる。   Furthermore, when pumping up groundwater that remains contaminated, using electricity from such power generation units, etc., purification by photocatalyst and ultraviolet irradiation, purification by ozone, purification by oxidation / reduction reaction on the surface of the electrolytic electrode, origin of electrolysis Decontamination of organic compounds remaining in pumped groundwater is carried out particularly efficiently by purifying water with hydrogen peroxide and ultraviolet radiation, purifying with ozone derived from electrolysis and OH radicals generated from hydrogen peroxide, etc. be able to.

一方、原位置浄化対策エリアに一定の温熱領域を形成することにより、温熱領域に存在する有機物は、主として増殖の早い好熱菌によって使われるので、この有機物の競合によって特定の細菌の増殖を抑制することができる。
また、厳密に摂氏55度以上の温度に保たれた環境は、中温域にて生育が可能な大腸菌群や病原細菌等の特定の細菌にとっては死滅温度となるために、この殺菌効果によって、原位置浄化対策エリア及び2次利用に供する処理水の病原リスクを低減することができる。これにより、浄化施工中の作業員の安全衛生、地下水の資源価値を損ねることの無き浄化対策、処理水の2次利用における用途拡大を図ることができる。
On the other hand, by forming a certain thermal area in the in-situ purification area, organic substances present in the thermal area are mainly used by thermophilic bacteria that grow quickly, so the growth of specific bacteria is suppressed by competition of these organic substances. can do.
In addition, an environment maintained at a temperature of more than 55 degrees Celsius strictly becomes a killing temperature for specific bacteria such as coliform bacteria and pathogenic bacteria that can grow in an intermediate temperature range. It is possible to reduce the risk of pathogen treatment and the pathogenic risk of treated water used for secondary use. As a result, the safety and hygiene of workers during the purification construction, the purification measures without impairing the resource value of groundwater, and the use expansion in the secondary use of treated water can be achieved.

また、従前の揚水を伴う浄化手法では、揚水した汚染水はバッ気処理等を通じて処理されるのが一般的であるが、このバッ気処理の際に生じるミストに、かかる大腸菌群や病原細菌等の特定の細菌が移行し、以後、周辺大気や環境に拡散され、サイト周囲の広範な地域に亘り病原リスクを増大させる恐れがあったが、例えば本発明での摂氏55度以上の温度に保たれた環境を介して特定の細菌の殺菌を図った後に、揚水バッ気を実施することにより、かかる特定の細菌の周辺大気や環境への拡散を最少とすることができる。   In addition, in the conventional purification method with pumping, the pumped contaminated water is generally treated through a bubbling treatment, etc., but the coliforms and pathogenic bacteria etc. Specific bacteria migrated and subsequently diffused into the surrounding atmosphere and environment, which could increase the risk of pathogenicity over a wide area around the site. For example, in the present invention, the temperature is maintained at 55 ° C or higher. After the specific bacteria are sterilized through the stagnation environment, the pumping water is carried out to minimize the diffusion of the specific bacteria into the surrounding atmosphere and environment.

加えて、温熱水を用いたバッ気処理は、処理対象である揮発性汚染物質のバッ気空気への移相をその高温によって促進するので、従前技術での中温でのバッ気処理と較べて格段の浄化処理効率を得ることができる。   In addition, the bubbling treatment using hot water promotes the phase shift of the volatile pollutants to be treated to the bubbling air due to its high temperature, so compared to the bubbling treatment at the medium temperature in the prior art. Remarkable purification efficiency can be obtained.

このように、原位置浄化対策エリアに地上の貯湯ユニット部他を含めた一定の温熱領域を、温熱水を用いて形成することによって、好熱菌の増殖を促して汚染低減を図る作用に加え、温熱水の透過性の増大による注水/揚水効率の向上、注入物の回収が可能な揚水機構、エリアと温熱水における特定の細菌の温度殺菌、汚染化学物質の気液分配変化等の付帯効果を得られることで、環境負荷を低減しながら汚染地下水の水資源への再生を極めて効率良く図ることが可能となる。   In this way, in addition to the effect of promoting the growth of thermophilic bacteria and reducing pollution by forming a certain thermal area including the hot water storage unit on the ground in the in-situ purification measures area using hot water, , Improvement of water injection / pumping efficiency by increasing the permeability of hot water, pumping mechanism capable of recovering injections, temperature sterilization of specific bacteria in area and hot water, gas-liquid distribution change of pollutant chemicals, etc. As a result, it is possible to recycle the contaminated groundwater into an extremely efficient water resource while reducing the environmental burden.

ところで、貯湯ユニットと発電ユニットを組み合わせた複合ユニットには、家庭用の小型汎用ユニット(商品名:エネファーム、エコウィル等)も存在する。小規模の汚染であれば、この小型汎用ユニットを用いた小規模な汚染対策システムを構築することも可能であり、汚染状況や規模に鑑み様々な適用が可能である。   By the way, in the composite unit that combines the hot water storage unit and the power generation unit, there is a small general-purpose unit for home use (trade name: ENE-FARM, ECO-WILL, etc.). In the case of small-scale pollution, it is possible to construct a small-scale pollution countermeasure system using this small general-purpose unit, and various applications are possible in view of the pollution status and scale.

例えば、吹田市南吹田地区の有機塩素化合物による広域地下水汚染では、平成21年10月には幅数百m以上の広域に達し、その汚染の多くは住宅が密集する市街地に存在することが公表されているが、この様な市街地に存在する広域汚染の場合、地権/騒音/環境影響/健康リスク等の問題から、従前技術を用いた集約的な地下水汚染対策を前提とするとパブリックアクセプタンスを取得することが非常に困難であった。   For example, wide-area groundwater contamination by organochlorine compounds in the Minami Suita area of Suita City will reach a wide area of several hundred meters or more in October 2009, and most of the pollution is in urban areas where houses are densely packed. However, in the case of wide-area pollution existing in such urban areas, public acceptance is obtained on the premise of intensive groundwater pollution countermeasures using conventional technology due to problems such as land rights / noise / environmental impact / health risks It was very difficult to do.

この様な場合は、本発明であるところの、かかる家庭用の小型汎用ユニットを用いた極小規模の汚染対策システムを各戸に配置する分散型の地下水汚染対策を実施することにより、環境影響や健康リスクが少なく、また地権/騒音問題も分散型処理であるが故に大きな問題にはならず、かかるパブリックアクセプタンスの取得を容易とする優れた環境設定を図ることができるので、吹田市南吹田地区の様な市街地における広域汚染においても、特に効果的な汚染対策を展開できる。   In such a case, the environmental impact and health of the present invention can be reduced by implementing a distributed groundwater pollution countermeasure in which a very small pollution control system using such a small general-purpose unit for home use is placed in each house. Since there are few risks and the land rights / noise problem is a distributed process, it does not become a big problem, and it is possible to set up an excellent environment that makes it easy to obtain such public acceptance. Particularly effective pollution countermeasures can be developed for wide-area pollution in such urban areas.

また、本発明のうち請求項3にかかる汚染地下水の原位置汚染対策システムによれば、今後発生しうる汚染に対し、かかるシステムを汚染発覚以前に設置し運用を図ることによって、土壌地下水汚染の拡大を未然に防ぐ予防的措置を講ずることができる。   In addition, according to the in-situ contamination countermeasure system for contaminated groundwater according to claim 3 of the present invention, by installing and operating such a system before the detection of contamination, it is possible to prevent soil groundwater contamination. Preventive measures can be taken to prevent expansion.

土壌地下水汚染は、地上で使用される特定の化学物質が地表から地下に漏洩して発生するのが一般的である。この地上に存在する特定の化学物質は、各種法令によって、その保管や排出に関する指定があり、一般には数量管理下に置かれている。また、万が一の漏洩や不用意な取り扱いに備え、防水床や防油堤等の拡散防止の予防的措置が図られているケースが地上では一般的であった。   Soil groundwater contamination is generally caused by leakage of specific chemicals used on the ground from the surface to the ground. The specific chemical substances present on the ground are designated for storage and discharge by various laws and regulations, and are generally under quantity control. In addition, it is common on the ground that preventive measures are taken to prevent diffusion such as waterproof floors and oil breakwaters in case of leakage or careless handling.

請求項3は、前記の地上における防水床や防油堤などを用いた汚染拡散防止の予防措置と同様のコンセプトを有するものであり、本発明であるところの温熱領域を形成する揚水と注入による地下水の効率的運用をもって地下環境への汚染拡散を防ぐ予防措置と位置付けられる。   Claim 3 has the same concept as the above-mentioned preventive measures for preventing the diffusion of pollution using a waterproof floor or an oil breakwater on the ground, and the groundwater by pumping and injection forming the thermal region according to the present invention. It is positioned as a preventive measure that prevents the spread of pollution to the underground environment through efficient operation of the system.

また、汚染が予想されるエリアの地下土壌に含まれる難分解性有機物を好熱菌の高代謝作用にてあらかじめ分解除去しておくことで、汚染が生じた場合の土壌への汚染吸着を極力抑制することで、かかる揚水にて簡便に汚染を回収することができる。   In addition, by decomposing and removing persistent organic substances contained in underground soil in areas where contamination is expected by the high metabolic action of thermophilic bacteria, it is possible to absorb contamination to the soil as much as possible. By suppressing, contamination can be easily recovered by such pumping water.

本発明たる地下環境への汚染拡散の予防措置を運用することによって、汚染拡散によって生じるヒトの健康被害、環境影響、土地資産や地下水資源価値の逸損を予防することができる。またこの予防措置にて生じた揚水は、雑用水として再利用して水資源の有効活用を図ることができる。   By operating the preventive measures for pollution diffusion to the underground environment according to the present invention, it is possible to prevent human health damage, environmental impact, loss of land assets and groundwater resource value caused by pollution diffusion. In addition, the pumped water generated by this precaution can be reused as miscellaneous water for effective utilization of water resources.

また、先述の吹田市の市街地広域汚染事例のごとく、地下水流下による汚染の広域化が予想される場合には、既存の汚染エリアに対しては本発明の汚染対策システムを設置し、汚染の流下が今後に予想される汚染の未然エリアに対しては、請求項3に記載の予防的観点での汚染対策システムの運用を図ることで、広域汚染に対し総合的な汚染対策を講じることができる。   In addition, as in the case of Suita City's urban wide-area pollution described above, if it is anticipated that the pollution will be widespread due to groundwater flow, the pollution control system of the present invention will be installed in the existing contaminated area, However, it is possible to take comprehensive pollution countermeasures against wide-area pollution by operating the pollution countermeasure system from the preventive viewpoint according to claim 3 for areas where contamination is expected in the future. .

本発明であるところの原位置汚染対策システムの概念図である。It is a conceptual diagram of the in-situ pollution countermeasure system which is this invention.

以下、本発明を代表する実施の形態を説明する。また図1に本発明であるところの原位置汚染対策システムの概念図を示す。   Hereinafter, embodiments representative of the present invention will be described. FIG. 1 is a conceptual diagram of an in-situ contamination countermeasure system according to the present invention.

本実施の形態にかかる汚染地下水の原位置汚染対策システムは、摂氏55度を超える湯温を保持した貯湯ユニット部1を介して、当該貯湯ユニット部1に貯留する温熱水の注入2と、揚水3を実施し、かかる貯湯ユニット部1への返送を介して土壌地下水汚染部位である浄化対策エリア4を含む一連の温熱領域5を形成し、少なくとも好熱菌の増殖を促して特定の細菌ないし化学物質による汚染に対する低減を図ると共に、揚水を貯湯ユニット部1に滞留させ、揚水中の特定の細菌に対し、更に温度殺菌を施すことによって低減を図り、雑用水6の造水を併せて実施して、かかる揚水に対し雑用水としての再利用を促す。また、この注入2と揚水3の水量を、注入2<揚水3として、地下水7を揚水3によって余剰回収することで雑用水6を造水することを可能とする。   The in-situ contamination countermeasure system for contaminated groundwater according to the present embodiment includes an injection 2 of hot water stored in the hot water storage unit 1 and a pumping water via the hot water storage unit 1 that maintains a hot water temperature exceeding 55 degrees Celsius. 3 to form a series of thermal regions 5 including a purification countermeasure area 4 that is a soil groundwater contamination site through return to the hot water storage unit unit 1, and at least promotes the growth of thermophilic bacteria, In addition to reducing pollution caused by chemical substances, the pumped water stays in the hot water storage unit 1 and the specific bacteria in the pumped water are further sterilized by temperature sterilization. Thus, the pumped water is encouraged to be reused as miscellaneous water. Moreover, it becomes possible to make the miscellaneous water 6 by making the amount of water of this injection | pouring 2 and the pumping water 3 into the injection | pouring 2 <pumping water 3 and surplus collection | recovery of the groundwater 7 by the pumping water 3.

ここで貯湯ユニット部1は、直接・間接的な加熱によって注入水と揚水を容器内にて加温するシステム構成を有する。直接的な加熱方法としては、都市ガス、プロパンガス、電気、太陽熱等による造湯を、間接的な方法としては、蒸気やコジェネ等で生じた廃熱等の熱交換等による造湯機能を利用できる。   Here, the hot water storage unit 1 has a system configuration in which the injected water and the pumped water are heated in the container by direct and indirect heating. As a direct heating method, use hot water generation by city gas, propane gas, electricity, solar heat, etc. As an indirect method, use a hot water generation function by heat exchange such as waste heat generated by steam, cogeneration, etc. it can.

なお、貯湯ユニット部1は、貯湯ユニットを1槽のみで利用する(以下、一次貯湯ユニットという。)場合もあるが、その他、必要に応じて複数のサブユニット(以下、貯湯サブユニットという。)を併用して、特定の細菌ないし化学物質の浄化を効率良く図る、或いは汚染地下水を由来としない非汚染水の加温を実施する等により、貯湯ユニット部1の主たる機能を果たす。   The hot water storage unit 1 may use the hot water storage unit in only one tank (hereinafter referred to as a primary hot water storage unit), but in addition, a plurality of subunits (hereinafter referred to as hot water storage subunits) may be used as necessary. In combination, the main function of the hot water storage unit 1 is achieved by purifying specific bacteria or chemical substances efficiently, or by heating non-contaminated water not derived from contaminated groundwater.

後者の例では、水濁法で定められる特定施設等、汚染地下水を由来とする処理水の地下への再浸透が規制される場合が想定され、この様な場合は、雨水等の汚染地下水に由来しない水8に対しては、一次貯湯ユニットを介して温熱水としてから注入2に利用し、揚水3は貯湯サブユニットを介して雑用水6を製造する。
このように、一次貯湯ユニットと貯湯サブユニットの複数で構成される貯湯ユニット部1をシステムに組み込むことで、汚染地下水由来の水の再浸透を図らずとも、温熱領域5を維持した本発明を実施することができる。
In the latter example, it is assumed that re-penetration of treated water derived from contaminated groundwater, such as a specific facility defined by the Water Pollution Law, is regulated. In such cases, contaminated groundwater such as rainwater is used. The non-originating water 8 is used as the hot water through the primary hot water storage unit and then used for the injection 2, and the pumped water 3 produces the miscellaneous water 6 through the hot water storage subunit.
In this way, by incorporating the hot water storage unit 1 composed of a plurality of primary hot water storage units and hot water storage subunits into the system, the present invention in which the thermal region 5 is maintained without re-permeation of water derived from contaminated groundwater. Can be implemented.

なお、これら貯湯サブユニットの加熱は、各サブユニットにて単独の熱源による加温を実施しても良いし、一次貯湯ユニットの温熱水を熱源として熱交換器等を介して集中的に造湯を実施しても良く、貯湯ユニット部1内の湯温を摂氏55度以上の温度に保てる効果的な加温手法であれば、その手段を問うものではない。   The hot water storage sub-units may be heated by a single heat source in each sub-unit, or the hot water of the primary hot water storage unit is used as a heat source to concentrate hot water through a heat exchanger or the like. As long as it is an effective heating technique capable of maintaining the hot water temperature in the hot water storage unit 1 at a temperature of 55 degrees Celsius or higher, the means is not questioned.

また、請求項2に記載の炭化水素を用いた発電ユニットを擁するシステムを用いる場合、かかるシステムには、発電時に生じる廃熱を利用した造湯システムが貯湯タンクと共に備えられており、この貯湯タンクをかかる一次貯湯ユニットとして有効活用しても良い。
但し、発電ユニットを擁するシステムに内包される貯湯タンクによっては、地下水の通水が好ましくないとする機種もあり、その様な場合は、上述した貯湯サブユニットを用いて対処する。
Moreover, when using the system which has the electric power generation unit using the hydrocarbon of Claim 2, this system is equipped with the hot water generation system using the waste heat generated at the time of electric power generation with the hot water storage tank, This hot water storage tank It may be effectively used as a primary hot water storage unit.
However, depending on the hot water storage tank included in the system having the power generation unit, there is a model in which the passage of groundwater is not preferable. In such a case, the hot water storage subunit described above is used.

なお、揚水ポンプやバッ気ブロアー、或いは貯湯ユニット部1の加温等の電源を要する機材を長期に亘って使用する場合は、電気料金が嵩み、ランニングコストが増大する懸念がある。また、汚染地が更地にされている場合等、既存の商業電源利用が困難であって新たな引き込みを必要とする場合などは、その基本料金や電柱設置等は、浄化工事の初期コスト上昇に繋がる。   In addition, when using equipment which requires power supplies, such as a pumping pump, a blower blower, or the warming of the hot water storage unit 1, over a long period of time, there is a concern that an electric charge increases and a running cost increases. In addition, when it is difficult to use the existing commercial power source, such as when the contaminated area has been cleared, the basic charge and installation of the utility poles will increase the initial cost of the purification work. It leads to.

この様な場合は、請求項2に記載の炭化水素を用いた発電ユニットを擁するコジェネシステムの導入を積極的に図り、エネルギー効率の改善を図ることによって、係るランニングコスト、初期コストの低減を図る様にする。
本発明たる原位置汚染対策システムでは、造湯を多用する熱電比の高いシステムであり、浄化対策の必要電力量を得る為に、発電によって生じた廃熱を無駄なく造湯に利用できるコジェネシステムを有効活用することが望ましい。
In such a case, the introduction of a cogeneration system having a hydrocarbon-based power generation unit according to claim 2 is actively promoted to improve energy efficiency, thereby reducing the running cost and the initial cost. Like.
The in-situ pollution control system according to the present invention is a system with a high thermoelectric ratio that makes heavy use of hot water, and a cogeneration system that can use waste heat generated by power generation for hot water without waste in order to obtain the amount of power required for purification measures. It is desirable to make effective use of

また炭化水素を用いた発電ユニットは、都市ガス、LPガス等の供給路或いは販路が確立された燃料源を用いるので、国内であれば場所を問わず時間を問わずに安定的に活用することができる利点を有する。一方、産業用途のガスタービンの廃熱利用や他の廃熱や太陽熱の併用などのコジェネシステムでは、場所と時間が限定される場合も多く、連続運転が望ましい本発明たる原位置汚染対策システムの運用においては、極めて限定的な利用に限られる。   In addition, since the power generation unit using hydrocarbons uses a fuel source with established supply channels or sales channels for city gas, LP gas, etc., it should be used stably regardless of time regardless of location. Has the advantage that On the other hand, in cogeneration systems such as the use of waste heat from industrial gas turbines and other waste heat or solar heat, there are many cases where the location and time are limited. Operation is limited to very limited use.

この様に、炭化水素を用いた発電ユニットは、電力量と熱量の供給の安定性に優れた特徴を有するが、発電方法によって燃料電池式とエンジン発電機式の2種に大別される。現行機種の比較では、同型機では、電力量並びに熱量共にエンジン発電機式の出力が高い傾向が見られるが、これら方式による機種選定は、あくまでも個々の汚染サイトにおける汚染対策システムに依存し、かかるシステムの運転状況、熱電比等に応じて、適切に選択する必要がある。   As described above, power generation units using hydrocarbons have characteristics that are excellent in the stability of supply of electric power and heat, but are roughly classified into two types, fuel cell type and engine generator type, depending on the power generation method. In comparison with the current model, the same type of machine shows a tendency that the output of the engine generator type is high for both power and heat, but the model selection by these methods depends only on the pollution control system at each pollution site, and it takes It is necessary to select appropriately according to the operation status of the system, the thermoelectric ratio, and the like.

ところで、かかる原位置汚染対策システムは、貯湯ユニット部1に貯留する温熱水の注入2と揚水3を介して原位置浄化対策エリアに温熱領域5を形成することを特徴とするが、この注入2と揚水3は、浄化対策エリア4における汚染分布状況に応じて、それぞれの展開位置を適切とし、効率の良い浄化を実施する。   By the way, this in-situ contamination countermeasure system is characterized in that a hot region 5 is formed in the in-situ purification countermeasure area via injection 2 and pumped water 3 of hot water stored in the hot water storage unit 1. And the pumped water 3 implements efficient purification by making each deployment position appropriate according to the pollution distribution situation in the purification countermeasure area 4.

また、注入2を行う注水設備としては、具体的には例えば注入井戸とその配管(供給路)が該当し、揚水3を行う揚水設備としては、具体的には例えば揚水井戸とその配管(復路)が該当し、これらは貯湯ユニット部1に対してそれぞれ接続されている。   In addition, as the water injection facility for performing injection 2, specifically, for example, an injection well and its piping (supply path) are applicable. For the pumping facility for performing pumping 3, specifically, for example, a pumping well and its piping (return path) These are connected to the hot water storage unit 1 respectively.

例えば、汚染が帯水層に主として存在するホットスポットである場合は、地下水流向を考慮しつつ、注入温熱水等に対し高い回収率が図られる様に、注入井戸を揚水井戸に対して地下水流向の上流に設置し、汚染が存在する浄化対策エリア4を囲む様にして温熱領域5を形成して、汚染部位に集中した浄化が図れる様な設定を心掛ける。   For example, if the contamination is a hot spot that is mainly present in the aquifer, the injection well is connected to the pumping well so that a high recovery rate can be achieved with respect to the injection hot water while considering the direction of the groundwater flow. The thermal region 5 is formed so as to surround the purification countermeasure area 4 where contamination is present, and setting is made so that purification concentrated on the contaminated site can be achieved.

なお、汚染が帯水層に主として存在するホットスポットであり、その汚染浄化が中温を好む分解細菌以外での浄化選択肢が無き状況も想定されるが、この様な場合には、上述のごとく注入井戸を揚水井戸に対して地下水流向の上流に設置する1対の注入/揚水井戸によって、汚染が存在する浄化対策エリア4を囲む様にして温熱領域5を形成すると共に、この1対の注入/揚水井戸を結ぶ直線上の内側に、更にもう1対の注入/揚水井戸を設置して、内殻と外殻で形成される、それぞれの循環エリアを形成する。   It is assumed that contamination is a hot spot that mainly exists in the aquifer, and there are cases where there is no purification option other than degrading bacteria that prefer medium purification, but in such cases, injection is performed as described above. A pair of injection / pumping wells installed upstream of the pumping well in the direction of the groundwater flow form a thermal region 5 surrounding the purification area 4 where contamination is present, and this pair of injection / pumping / Inside the straight line connecting the pumping wells, another pair of injection / pumping wells is installed to form respective circulation areas formed by the inner shell and the outer shell.

この内殻エリアは、浄化対策エリア4を内包する中温通水エリアであり、内側で中温を好む分解細菌等でより効率の高い浄化を図る。一方、この中温通水エリアからは、拡散や流下を通じて特定の細菌ないし化学物質が外殻に一部漏洩するが、この外殻を形成する循環エリアを温熱領域5として、漏洩した特定の細菌ないし化学物質の低減を図ることで、環境影響を最少とした汚染浄化を図る。
また、特定の化学物質の浄化後は、内殻の注入2/揚水3を停止することで、外殻の注入2/揚水3が形成する温熱領域5は、かかる内殻のエリアに拡大されるので、この内殻エリアに残存する特定の細菌による地下水土壌汚染を効率良く低減することができる。
This inner shell area is a medium-temperature water-flowing area that encloses the purification countermeasure area 4, and achieves higher-efficiency purification with degrading bacteria or the like that prefer the inner temperature inside. On the other hand, specific bacteria or chemical substances partially leak into the outer shell through the diffusion and flow down from this medium temperature water-flowing area. By reducing chemical substances, we will attempt to purify pollution with minimal environmental impact.
Moreover, after purifying a specific chemical substance, by stopping the inner shell injection 2 / pumped water 3, the thermal region 5 formed by the outer shell injection 2 / pumped water 3 is expanded to the area of the inner shell. Therefore, groundwater soil contamination by specific bacteria remaining in the inner shell area can be efficiently reduced.

一方、汚染が帯水層に主として存在しホットスポットから離れた下流域に存在する場合は、揚水井戸を地下水流向上流に、また注入井戸を地下水流向に沿って揚水井戸より下流に設置する。揚水井戸にて汚染流を回収後、処理を経た後に下流の注入井戸より放出し、放出された処理水の一部は周囲の地下水流に沿って流下し、その他は揚水井戸に再び回収される様な温熱領域5を形成して、汚染流に対して指向性を有した回収を心掛け、清浄地下水を多量に巻き込む過剰揚水とならぬ様な設定を心掛ける。   On the other hand, when the contamination is mainly present in the aquifer and in the downstream area away from the hot spot, the pumping well is installed in the groundwater flow improvement flow, and the injection well is installed downstream of the pumping well along the direction of the groundwater flow. After collecting the contaminated stream in the pumping well, after processing, it is discharged from the downstream injection well, part of the discharged treated water flows down along the surrounding groundwater stream, and the other is recovered again in the pumped well. Such a thermal region 5 is formed, and recovery having directivity with respect to the contaminated flow is sought, and setting is made so as not to cause excessive pumping involving a large amount of clean groundwater.

また、汚染が不飽和帯を経由し飽和帯たる帯水層にまで達する状況にある場合は、例えば特許第3728510号公報に記載される様な、地下の飽和帯と不飽和帯の境界部周辺に沿って、互いに連通する数多の間隙を含む広域流体路層等を設置し、多様な注入2と揚水3の実施を本発明と併せて実施して、本発明である処の温熱領域5を多様に形成することで、汚染部分に特化した効率の良い浄化を実施する。   In addition, when the contamination reaches a saturated aquifer through the unsaturated zone, for example, as described in Japanese Patent No. 3728510, around the boundary between the underground saturated zone and the unsaturated zone A wide-area fluid path layer including a large number of gaps communicating with each other is installed along with the present invention, and various injections 2 and pumping 3 are carried out in conjunction with the present invention. By carrying out various forms, efficient purification specialized in contaminated parts is carried out.

なお、上述した注入2の設備と揚水3の設備の配位はごく限られた具体例を示したに過ぎず、本発明である処の、温熱水の注入2と揚水3をもって、土壌地下水汚染部位である浄化対策エリア4を含む一連の温熱領域5を形成するための流体操作を実施する方法であれば、本発明の範疇にあることはいうまでもない。また、温熱水とは加温された水のみに限らず、水に何らかの溶質ないし不溶物が含まれている液体も該当する。もちろん、温熱水にバッ気ないしエアレーションにより、空気や酸素等の気体を供給したものも含まれる。   In addition, the arrangement | positioning of the installation of the injection | pouring 2 mentioned above and the installation of the pumping water 3 is only a very limited example, and it is soil groundwater contamination with the hot water injection | pouring 2 and the pumping water 3 of this invention. Needless to say, the present invention is within the scope of the present invention as long as it is a method for performing a fluid operation for forming a series of thermal regions 5 including the purification countermeasure area 4 as a part. The hot water is not limited to heated water but also includes liquids containing some solute or insoluble matter in the water. Of course, the thing which supplied gas, such as air and oxygen by warm air or aeration, is also contained.

ところで、かかる原位置汚染対策システムは、土壌汚染対策法にて定められる多くの特定有害物の浄化に対応可能であるが、特に第一種の揮発性有機化合物や第二種の重金属等の浄化に適している。また油汚染対策ガイドラインで規定される鉱物油由来の油膜・油臭や鉱物油等の汚染浄化に適している。   By the way, this in-situ pollution control system can cope with the purification of many specific harmful substances stipulated by the Soil Contamination Countermeasures Law, but in particular, the purification of the first type volatile organic compounds and the second type heavy metals. Suitable for It is also suitable for purification of oil films, oily odors, mineral oils, etc. derived from mineral oil as stipulated in the Guidelines for Countermeasures against Oil Pollution.

ここで浄化対象となる第一種の揮発性有機化合物とその類縁化合物としては、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,3-ジクロロプロペン、ジクロロメタン、テトラクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、トリクロロエチレン、ベンゼン、塩化ビニルモノマー、トルエン、キシレン、エチルベンゼン、1,4-ジオキサン、クロロホルム、トランス-1,2-ジクロロエチレン、1,2-ジクロロプロパン、p−ジクロロベンゼン等が挙げられる。   The first type of volatile organic compounds and related compounds to be purified here are carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,3-dichloro Propene, dichloromethane, tetrachloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, benzene, vinyl chloride monomer, toluene, xylene, ethylbenzene, 1,4-dioxane, chloroform, trans-1,2- Examples include dichloroethylene, 1,2-dichloropropane, p-dichlorobenzene and the like.

これら揮発性有機化合物とその類縁化合物の浄化は、本発明の原位置汚染対策システムにおける好熱菌による分解や抽出促進と共に、温熱水抽出、高温条件下における揚水バッ気法、化学的浄化法等を必要に応じて併用して図られる。汚染状況や地下環境条件等に鑑み適切な工法を選択し高効率な浄化を実施すると共に、その処理水の2次利用が可能な造水を本発明の原位置汚染対策システムにて図る。   Purification of these volatile organic compounds and related compounds can be achieved by the decomposition and acceleration of extraction by thermophilic bacteria in the in-situ pollution control system of the present invention, as well as hot water extraction, a pumped-bath method under high temperature conditions, a chemical purification method, etc. Is used in combination as necessary. An appropriate construction method is selected in view of the contamination status, underground environmental conditions, and the like, and highly efficient purification is performed. At the same time, the in-situ contamination countermeasure system of the present invention can be used to produce secondary water that can be treated.

また、第二種の重金属等とその類縁化合物としては、カドミウム、クロム、シアン、水銀、セレン、鉛、砒素、ふっ素、ほう素、マンガン、ニッケル、モリブデン、アンチモン、ウラン及びこれらの化合物等が挙げられる。   Examples of the second type heavy metals and related compounds include cadmium, chromium, cyan, mercury, selenium, lead, arsenic, fluorine, boron, manganese, nickel, molybdenum, antimony, uranium and their compounds. It is done.

これら第二種の重金属等とその類縁化合物の浄化は、本発明の原位置汚染対策システムにおける好熱菌による分解や抽出促進と共に、Eh/pH条件を設定する電気化学的抽出と凝集沈殿処理やイオン交換膜の組合せ等を利用した浄化法等を必要に応じて併用して図られる。汚染状況や地下環境条件等に鑑み適切な工法を選択し高効率な浄化を実施すると共に、その処理水の2次利用が可能な造水を本発明の原位置汚染対策システムにて図る。   Purification of these heavy metals of the second kind and related compounds can be achieved by the decomposition and the acceleration of extraction by thermophilic bacteria in the in-situ pollution control system of the present invention, as well as the electrochemical extraction and coagulation precipitation treatment for setting the Eh / pH conditions, A purification method using a combination of ion exchange membranes or the like can be used in combination as necessary. An appropriate construction method is selected in view of the contamination status, underground environmental conditions, and the like, and highly efficient purification is performed. At the same time, the in-situ contamination countermeasure system of the present invention can be used to produce secondary water that can be treated.

加えて、石油系燃料等の炭化水素成分や多環芳香族炭化水素化合物等が挙げられる。ここで浄化対象となる油分汚染としては、例えば、原油、重油、軽油、灯油、ガソリン相当の組成を有した油類、金属加工や装置メンテナンス等に用いられた廃切削油や廃潤滑油やグリース等の汚染を挙げることができる。また、多環芳香族炭化水素化合物としては、例えば、ナフタレン、アントラセン、フェナントレン、ピレン、フルオランテン、クリセン、ベンゾフルオランテン、ベンゾピレン等が挙げられる。また、本発明の土壌汚染対策システムは、これらの各種汚染物質中の低分子油分に起因する油膜や油臭はもとより、その油分含有量を低減する効果を有する。   In addition, hydrocarbon components such as petroleum-based fuels, polycyclic aromatic hydrocarbon compounds and the like can be mentioned. Examples of oil contamination to be purified here include crude oil, heavy oil, light oil, kerosene, oil having a composition equivalent to gasoline, waste cutting oil, waste lubricant oil and grease used for metal processing and equipment maintenance. And the like. Examples of the polycyclic aromatic hydrocarbon compound include naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, chrysene, benzofluoranthene, and benzopyrene. Moreover, the soil pollution countermeasure system of this invention has the effect of reducing the oil content not only from the oil film and oily odor resulting from the low molecular oil content in these various pollutants.

これら石油系燃料等の炭化水素成分とその類縁化合物の浄化は、本発明の原位置汚染対策システムにおける好熱菌による分解や抽出促進と共に、温熱水抽出、高温条件下における揚水バッ気法等を必要に応じて併用して図られる。汚染状況や地下環境条件等に鑑み適切な工法を選択し高効率な浄化を実施すると共に、その処理水の2次利用が可能な造水を本発明の原位置汚染対策システムにて図る。   The purification of hydrocarbon components such as petroleum-based fuels and related compounds can be carried out by decomposing and promoting extraction by thermophilic bacteria in the in-situ pollution control system of the present invention as well as hot water extraction, pumping of water under high temperature conditions, etc. Combined as necessary. An appropriate construction method is selected in view of the contamination status, underground environmental conditions, and the like, and highly efficient purification is performed. At the same time, the in-situ contamination countermeasure system of the present invention can be used to produce secondary water that can be treated.

なお、上述した特定の汚染化学物質以外においても、例えば、労働安全衛生法や化管法(特定の化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律)及びその関連法等で規定される化学物質群が地下環境中に漏洩して汚染として認知されるのであれば、好熱菌利用をベースに他の多様な浄化手法の利用が可能な本発明の原位置汚染対策システムの適用が有効であることはいうまでもない。   In addition to the above-mentioned specific pollutant chemical substances, for example, the Industrial Safety and Health Act and the PRTR Law (Act on Understanding the Release of Specific Chemical Substances to the Environment and Promotion of Improvements in Management) and Related Laws In-situ pollution countermeasures of the present invention in which various other purification methods can be used based on the use of thermophiles Needless to say, the application of the system is effective.

なお、本発明は、前出の汚染物質が単独で存在する場合のみならず、複数が混在する複合汚染が形成された汚染に対しても有効な汎用性のある原位置汚染対策システムと位置づけられる。   Note that the present invention is positioned as a versatile in-situ pollution control system that is effective not only when the above-described contaminants exist alone, but also for contamination in which multiple contaminants are mixed. .

また、本発明は、かかる温熱領域を形成して、少なくとも好熱菌の増殖を促して特定の細菌ないし化学物質による土壌地下水汚染の低減を図ることを特徴とするが、汚染サイトによっては、土着に特定の化学物質汚染を分解する好熱菌が存在せず、本発明の実施が困難な場合がある。その様な場合は、帯水層の通過性の良い好熱菌をあらかじめ地上にて培養し、注入水中に懸濁して地下の汚染領域に接種することで、土着菌が存在した場合と同様の効果を得ることができる。   Further, the present invention is characterized by forming such a thermal region and promoting at least the growth of thermophilic bacteria to reduce soil groundwater contamination by specific bacteria or chemical substances. However, there are no thermophilic bacteria that degrade specific chemical contamination, and it may be difficult to implement the present invention. In such a case, thermophilic bacteria with good permeability in the aquifer are cultured on the ground beforehand, suspended in the injection water and inoculated into the underground contaminated area, the same as when indigenous bacteria existed An effect can be obtained.

ここで注入対象となる特定の化学物質汚染を分解可能な好熱菌としては、ゲオバチルス・ステアロサーモフィラス(G. stearothermophilus)、ゲオバチルス・サーモデナイトリフィカンス(G.thermodenitrificans)、ゲオバチルス・サーモグルコシダンス(G.thermoglucosidans)、ゲオバチルス・サーモレオボランス(G.thermoleovorans)等からなる、ゲオバチルス属に含まれる好熱菌種等が挙げられる。   Here, thermophilic bacteria capable of degrading specific chemical contamination to be injected include G. stearothermophilus, G. thermomodenitrificans, and Geobacillus thermogluco. Examples include thermophilic bacterium species belonging to the genus Geobacillus, such as Sidan (G. thermoglucosidans), Geobacillus thermoleovorans (G. thermomoleovorans), and the like.

また、本発明は、汚染地下水の雑用水としての2次利用が可能な造水を目的の一つとする処であり、その雑用水として条件たる、大腸菌群数、pH、臭気、濁度及び外観等に関する所定の基準を満たす造水が可能であることは、いうまでもない。   In addition, the present invention is a process whose purpose is water production that can be secondarily used as miscellaneous water for contaminated groundwater, and the conditions for the miscellaneous water include the number of coliforms, pH, odor, turbidity, and appearance. Needless to say, it is possible to produce fresh water that meets the prescribed standards.

以下に、実施例により本発明について具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

〔実施例1〕
本実験では、浄化対策エリアの帯水層を模した汚染土壌カラムに、貯湯ユニット部を模したウォーターバスから摂氏55度の温熱水を供給して模擬温熱領域を形成させ、このカラムから流出する汚染水の浄化処理を実施後に、この処理水をウォーターバスに返送する、一連の温熱水循環系を構築した試験区と、この試験区の条件にて温度のみを摂氏15度とした対照区を設定して、両者の浄化性能の差異、及び処理水中の大腸菌群数の差異の比較を行った。なお、この摂氏15度の設定は一般的な地下水温を模したものである。この比較から、対照区たる従前技術にて主流たる中温での浄化方法に対する、実験区たる本発明での浄化方法の有効性と進歩性に関する考察を実施した。
[Example 1]
In this experiment, hot water of 55 degrees Celsius is supplied from a water bath simulating a hot water storage unit to a contaminated soil column simulating an aquifer in the purification countermeasure area to form a simulated temperate region, and flows out from this column. Set up a test zone in which a series of hot water circulation system is constructed to return this treated water to the water bath after purification of contaminated water, and a control zone where only the temperature is 15 degrees Celsius under the conditions of this test zone Thus, the difference in purification performance between the two and the difference in the number of coliform bacteria in the treated water were compared. The setting of 15 degrees Celsius simulates a general groundwater temperature. From this comparison, a study was conducted on the effectiveness and inventive step of the purification method of the present invention, which is an experimental group, with respect to the purification method at a medium temperature, which is the mainstream in the prior art as a control group.

試験手順を以下に示す。
(a)本試験装置は、摂氏55度と15度の恒温設定が可能なインキュベータ内に、貯湯ユニット部を模したウォーターバス、汚染帯水層を模したガラスカラム(有効長25cm)、注入/揚水井戸とその配管等を模したステンレス配管系の他、除染機能としてバッ気ユニット、イオン交換膜ユニットを主要設備として備える。
また、インキュベータ外部には、発電ユニットを模した交流100V電源装置とカラム通水向けのシリンジポンプを設置した。なお、シリンジポンプからカラム通水に至るステンレス配管は約5m長とし、インキュベータ中でコイル状の巻線状態にまとめ、カラム通水時には、通水液がインキュベータ内温度と同等になる様な熱交換が図られる設定とした。さらに、シリンジポンプ内にセットする通水液は、インキュベータ内のウォーターバスから原水を採取し、後述する所定の栄養塩を添加後に試験に供した。
総じて、本システムの流路は、シリンジポンプ→ガラスカラム→バッ気ユニット→イオン交換膜ユニット→ウォーターバスとなり、シリンジポンプ中の原水をウォーターバスから採取することで、通水の循環が図られる構造とした。
ところで、本来の浄化システムであれば、この栄養塩の添加と併せて、発電ユニット等由来の電気を用いた水の電解にて生成された酸素ガスを通水液に付加する操作が含まれるが、今回は試験系の都合でここでの操作を割愛し、その代わりにバッ気ユニットでのバッ気流体を空気ではなく酸素ガスとすることで、通水液への酸素付加作業を代行した。なお、実験で用いた模擬地下水は脱塩素水道水にて代用した。
The test procedure is shown below.
(A) This test apparatus has a water bath simulating a hot water storage unit, a glass column simulating a contaminated aquifer (effective length 25 cm), injection / injection in an incubator capable of constant temperature setting of 55 degrees Celsius and 15 degrees Celsius. In addition to a stainless steel piping system simulating a pumping well and its piping, it is equipped with a ventilation unit and an ion exchange membrane unit as main equipment as a decontamination function.
In addition, an AC 100V power supply device imitating a power generation unit and a syringe pump for column water flow were installed outside the incubator. In addition, the stainless steel pipe from the syringe pump to the column water is about 5m long, and it is put together in a coiled winding state in the incubator, and heat exchange is performed so that the water flow is equivalent to the temperature in the incubator when the column flows. Was set to be achieved. Furthermore, the water flow set in the syringe pump was subjected to the test after collecting raw water from a water bath in the incubator and adding a predetermined nutrient salt described later.
In general, the flow path of this system is syringe pump → glass column → air unit → ion exchange membrane unit → water bath, and the circulation of water flow is achieved by collecting raw water in the syringe pump from the water bath. It was.
By the way, if it is an original purification system, in addition to the addition of this nutrient salt, an operation of adding oxygen gas generated by electrolysis of water using electricity derived from a power generation unit or the like to the water solution is included. This time, the operation was omitted here for the convenience of the test system, and instead the oxygen gas was substituted for the water flow by replacing the air in the air unit with oxygen gas instead of air. The simulated groundwater used in the experiment was replaced with dechlorinated tap water.

(b)模擬汚染土壌の作成のため、六価クロムの溶出濃度として0.73mg/Lが検出された帯水層を形成する砂質土のボーリング試料を使用した。この砂質土の重量比1に対して、A重油とC重油を等重量で混合した混合油を0.005重量比で混合して汚染混合土Aを作成し、さらに、生牛糞(大腸菌群に代表される有害な細菌源として)、フスマ及び乾燥ホエーを等重量で混合したものを0.01重量比で汚染混合土Aに混合して、汚染混合土Bを作成した。加えて、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,3-ジクロロプロペン、ジクロロメタン、テトラクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、トリクロロエチレン、ベンゼンを含む標準溶液を用いて、汚染混合土Bに対して、それぞれが1×10のマイナス5乗重量比となる様に添加・混合して、複合汚染を有した供試汚染土壌を作成した。   (B) For the preparation of simulated contaminated soil, a sandy soil boring sample forming an aquifer in which 0.73 mg / L was detected as the elution concentration of hexavalent chromium was used. Contaminated soil A is prepared by mixing 0.005 weight ratio of mixed oil obtained by mixing A heavy oil and C heavy oil at equal weight with respect to the weight ratio 1 of this sandy soil. As a harmful bacterial source represented by 1), a mixture of bran and dry whey in equal weight was mixed in a contaminated mixed soil A at a weight ratio of 0.01 to prepare a contaminated mixed soil B. In addition, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,3-dichloropropene, dichloromethane, tetrachloroethylene, 1,1,1-trichloroethane, 1,1, Using a standard solution containing 2-trichloroethane, trichlorethylene, and benzene, the mixture was added to and mixed with the contaminated mixed soil B so that each would have a negative fifth power ratio of 1 × 10. Trial contaminated soil was created.

(c)続いて、供試汚染土壌をガラスカラムに充填し、カラム下部から上向流にてシリンジポンプからの通水を行った。通水速度は、カラム平均通過速度として50cm/日になる様に、その通水量と通水頻度を調整した。この通水は、ウォーターバス由来のものを原水として、それに硝酸、リン、カリウム塩を溶解させて供給した。なお、この栄養塩の添加は、カラムを介してウォーターバスに返送される返送液中の硝酸、リン酸、カリウム濃度を測定して過不足を判定し、その供給濃度、供給量、及び頻度を適時調整して、返送液中への栄養塩の流出が認められないことを目標に、その流出が最少となる様に設定した。   (C) Subsequently, the sample-contaminated soil was filled in a glass column, and water was passed from a syringe pump in an upward flow from the bottom of the column. The water flow rate and the water flow frequency were adjusted so that the water flow rate was 50 cm / day as the average column passage speed. The water was supplied from raw water derived from a water bath in which nitric acid, phosphorus and potassium salts were dissolved. This addition of nutrients is performed by measuring the concentration of nitric acid, phosphoric acid, and potassium in the return liquid returned to the water bath through the column to determine the excess and deficiency, and determining the supply concentration, supply amount, and frequency. Adjustment was made in a timely manner, and the target was set to minimize the outflow of nutrients in the return liquid.

(d)バッ気槽は、1段目として下降流の油分分離槽を配し、2、3、4段目は酸素ガスを用いたバッ気を実施し、また5段目として出水ポンプを併設し、オーバーフローにて4段目から流出する処理水の貯留とイオン交換膜ユニットへの処理水の移送を行った。イオン交換膜ユニットでは、陽イオン交換膜と陰イオン交換膜を介してイオン性の溶解物を除去し、ウォーターバスに返送した。   (D) The baffle tank is equipped with a downflow oil separation tank as the first stage, the baffle using oxygen gas is implemented in the second, third, and fourth stages, and a water discharge pump is provided as the fifth stage. Then, storage of treated water flowing out from the fourth stage due to overflow and transfer of treated water to the ion exchange membrane unit were performed. In the ion exchange membrane unit, the ionic lysate was removed through the cation exchange membrane and the anion exchange membrane and returned to the water bath.

(e)試験開始後、経時的にウォーターバスとカラム通過後の検水を採取し以下の分析を行った。重金属及び揮発性有機汚染物質の濃度を平成3年環境庁告示第46号に記載の方法にて、また、大腸菌群濃度を、コリターグEL-10(アテクト社製)を用いたMPN法(厚生労働省告示第二百六十一号「水質基準に関する省令の規定に基づき厚生労働大臣が定める方法」に準拠)にて、加えてpH、臭気、濁度を同法に従って測定し、さらに外観を目視にて判定した。
一方、試験前後の供試汚染土壌中の汚染濃度を上記分析に準じた溶出濃度として測定し、また土壌中の油分含有量及び油膜/油臭を環境省油汚染対策ガイドラインに示される定法により測定し、さらに大腸菌群数を上記に準じて測定した。
(E) After the test was started, the water bath and the sample water after passing through the column were collected over time, and the following analysis was performed. MPN method (Ministry of Health, Labor and Welfare) using the concentration of heavy metals and volatile organic pollutants in accordance with the method described in Notification No. 46 of the Environment Agency in 1991, and coliform group concentration using Corritage EL-10 (manufactured by Actec) In accordance with Notification No. 261, “Methods stipulated by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards”, pH, odor, and turbidity are measured according to the same method, and the appearance is visually observed. Was judged.
On the other hand, the contamination concentration in the test-contaminated soil before and after the test is measured as the elution concentration according to the above analysis, and the oil content and oil film / oil odor in the soil are measured by the usual method indicated in the Ministry of the Environment Oil Pollution Control Guidelines. Furthermore, the number of coliforms was measured according to the above.

(f)上記一連の試験系を2系作成し、一つの系は設定温度を摂氏55度とする実験区とし、またもう一つの系は地下水温に模した摂氏15度とする対照区として、並行した実験を行った。上記の実験結果を表1から4に示す。   (F) Two series of the above test systems were prepared, one system as an experimental section with a set temperature of 55 degrees Celsius, and the other system as a control section with 15 degrees Celsius imitating the groundwater temperature, A parallel experiment was conducted. The experimental results are shown in Tables 1 to 4.

Figure 2015071144
Figure 2015071144

Figure 2015071144
Figure 2015071144

Figure 2015071144
Figure 2015071144

Figure 2015071144
Figure 2015071144

結果、表1から明らかなように、本発明による摂氏55度の温熱領域を有する実験区では、従前技術たる摂氏15度での対照区と比較して、揮発性化合物や重金属汚染に対して、その浄化速度の面での有効性が示された。なお、ウォーターバス中の揮発性有機塩素化合物濃度および重金属濃度は、期間を通じて全て不検出であった(データ不載)。   As a result, as is clear from Table 1, in the experimental group having a thermal region of 55 degrees Celsius according to the present invention, compared with the control group at 15 degrees Celsius, which is a conventional technique, against volatile compounds and heavy metal contamination, The effectiveness in terms of the purification rate was shown. In addition, the volatile organochlorine compound concentration and heavy metal concentration in the water bath were not detected throughout the period (data not shown).

また、表2が示すところである雑用水として求められる基準項目、即ち、大腸菌群数、pH、臭気、濁度及び外観等に関するカラム通過後の処理水に対する評価において、摂氏55度恒温の実験区では、初期に大腸菌群の検出が見られた他は、それ以降の10日目、20日目の実験区の水質は、全て基準を満たすものであった。一方、対照区では大腸菌群が試験期間中の全ての検水にて検出された。   In addition, in the evaluation items for the treated water after passing through the column with respect to the standard items required as miscellaneous water as shown in Table 2, that is, the number of coliforms, pH, odor, turbidity and appearance, The water quality of the experimental plots on the 10th and 20th days after that, except for the detection of coliforms at an early stage, all met the criteria. On the other hand, in the control group, the coliform group was detected in all water samples during the test period.

上記試験の結果から、温熱領域を有する摂氏55度恒温の実験区は、揮発性化合物や重金属汚染に対する迅速な浄化を図る効果と共に、大腸菌群数の低減に対し、顕著な効果を有することが分かった。   From the results of the above test, it can be seen that the 55 ° C constant temperature experimental zone having a thermal region has a remarkable effect on the reduction of the number of coliforms as well as the effect of prompt purification against volatile compounds and heavy metal contamination. It was.

また表3が示すところである、摂氏55度での厳密なる高恒温設定がなされた貯湯ユニット部を模したウォーターバスでの造水結果であるが、表2の実験区1日目に観察された大腸菌群の検出が、ウォーターバス内では不検出となったことから、この厳密なる高恒温設定による大腸菌群数の殺菌効果とも言える低減効果があることが分かった。   In addition, Table 3 shows the results of water production in a water bath simulating a hot water storage unit portion set at a strictly high constant temperature at 55 degrees Celsius, and was observed on the first day of the experimental section in Table 2. Since the detection of coliforms was not detected in the water bath, it was found that there was an effect of reducing the number of coliforms by this strict high constant temperature setting.

加えて表4が示すところである、試験終了後のカラム内土壌の分析結果によって、温熱領域の効果たる実験区にて、特に油分の低減に対し従前技術たる対照区と較べ特段の浄化が図られることが分かった。加えた栄養塩類の消費(データ不載)と摂氏60度で生育する好熱菌の増加が併せて観察されたことから、好熱分解菌による油分の浄化が図られた可能性が示唆された。また大腸菌群に関しても、同様の殺菌効果たる低減効果を有することが分かった。   In addition, according to the analysis results of the soil in the column after the end of the test, as shown in Table 4, in the experimental zone, which is the effect of the thermal region, particularly purifying as compared with the control zone, which is a conventional technique, is achieved for reducing the oil content. I understood that. The consumption of added nutrients (data not shown) and the increase in thermophilic bacteria growing at 60 degrees Celsius were observed, suggesting the possibility of purifying oil by thermolytic bacteria. . It was also found that the coliform group has a similar bactericidal and reducing effect.

〔実施例2〕
本実施例は、トリクロロエチレンと切削油による複合汚染が発覚したサイトで実施した浄化工法の適用可能性を判定する事前簡易試験の結果を示す。フルスケールでの浄化事例ではないが、対照となり得る従来工法と並列実施された事例であり、比較結果が明瞭に示されたことを考慮して、ここに一事例として示す。
本試験では、従来工法として典型的な(1)常温油分解菌による微生物分解と揚水処理の組合せ処理と、本発明たる(2)高温条件での分解・揚水処理の、それぞれの浄化性能比較を実施した。
[Example 2]
This example shows the results of a simple preliminary test for determining the applicability of the purification method implemented at a site where complex contamination with trichlorethylene and cutting oil was detected. Although it is not a full-scale purification example, it is an example that was performed in parallel with a conventional method that could be used as a control.
In this test, we compared the purification performance of (1) the combination of microbial degradation by normal temperature oil-degrading bacteria and pumping treatment, and (2) the decomposition / pumping treatment under high temperature conditions, which is typical as a conventional construction method. Carried out.

試験手順を以下に示す。
(a)まず、両実験の初期条件を一致させるために、汚染中心部近傍にて、それぞれの試験系で用いる注入/揚水井戸セットを3m幅で近接させ、更に、それぞれを地下水流に沿って、上流には注入井戸を、5mを離して、その下流には揚水井戸を設置した。
The test procedure is shown below.
(A) First, in order to match the initial conditions of both experiments, the injection / pumping well set used in each test system is brought close to each other in the vicinity of the center of the contamination with a width of 3 m, and further, each is set along the groundwater flow. In the upstream, an injection well was separated by 5 m, and in the downstream, a pumping well was installed.

(b)また揚水処理を、水中ポンプ(AC100V駆動)によって地上に揚水された地下水に対し、油水分離器と活性炭槽を通じて実施し、続いて、この活性炭処理後の処理水を、注入井戸を通じて地下に再注入する地下水循環系を両試験系に構築した。なお、循環速度は3L/分を基本とし、注入井戸が閉塞した場合は、井戸の逆洗と希過酸化水素水による洗浄を実施した。加えて、両試験区共に、栄養塩添加及び管理手法は実施例1に準じて実施した。   (B) In addition, the pumping treatment is performed on the groundwater pumped to the ground by a submersible pump (AC100V drive) through an oil-water separator and an activated carbon tank, and then the treated water after the activated carbon treatment is underground through an injection well. The groundwater circulation system to be reinjected into the plant was constructed in both test systems. The circulation rate was basically 3 L / min. When the injection well was blocked, the well was backwashed and washed with dilute hydrogen peroxide. In addition, in both test sections, nutrient salt addition and management procedures were performed according to Example 1.

(c)またAC100V電源及び給湯源としてエコウィル(ECG-155:長府製作所社製)を用いた。なお、高温地下水の製造は、150L容のステンレス容器の周囲と底部に保温を施し、エコウィル由来の熱湯を用いて、熱交換器を通じて前記ステンレス容器内の地下水を温め、地下水温度を摂氏65度の恒温となる様な恒温機能を有する簡易貯湯ユニットにて実施した。またこの簡易貯湯ユニットの上部にオーバーフロー配管を設置し、このオーバーフローによって一定の連続した注入が図られる様に設定した。   (C) Moreover, Ecowill (ECG-155: manufactured by Nagafu Seisakusho) was used as an AC 100V power source and a hot water supply source. In the production of high-temperature groundwater, the periphery and bottom of a 150 L stainless steel container are kept warm, the groundwater in the stainless steel container is warmed through a heat exchanger using hot water derived from Eco Will, and the groundwater temperature is 65 degrees Celsius. It was carried out in a simple hot water storage unit with a constant temperature function that would be constant temperature. In addition, an overflow pipe was installed at the top of this simple hot water storage unit, and it was set so that a constant continuous injection was achieved by this overflow.

(d)試験スタート前と試験開始後30日の2回、それぞれの試験系における揚水井戸と注入井戸を結ぶ中点付近にてボーリングを実施し、汚染濃度と一般細菌数等を測定し、両工法の浄化性能を比較した。
また、それぞれの注入水を15日毎に採取し、トリクロロエチレン濃度、大腸菌群、pH、臭気、濁度、外観等を定法に従って測定した。上記の実験結果を表5と6に示す。
(D) Before the start of the test and 30 days after the start of the test, drilling is conducted near the midpoint connecting the pumping well and the injection well in each test system, and the contamination concentration and the number of general bacteria are measured. The purification performance of methods was compared.
Each injection water was collected every 15 days, and trichlorethylene concentration, coliform group, pH, odor, turbidity, appearance, etc. were measured according to a standard method. The experimental results are shown in Tables 5 and 6.

Figure 2015071144
Figure 2015071144

Figure 2015071144
Figure 2015071144

結果、表5及び6から明らかなように、本発明による温熱領域を形成した試験区は、常温での試験区と比較し、土壌地下水汚染に対し極めて高速な浄化が図られることが明らかとなった。また、高温試験区での循環水の水質は、少なくとも15日以降に関しては雑用水としての利用が可能な状況に転じており、極めて早期に雑用水として再利用が叶うことが実汚染サイトを用いた試験にて実証された。   As a result, as is apparent from Tables 5 and 6, it is clear that the test zone in which the thermal region according to the present invention is formed can purify the soil at a very high speed against soil groundwater contamination as compared with the test zone at room temperature. It was. In addition, the quality of the circulating water in the high-temperature test section has been changed to a state where it can be used as miscellaneous water for at least 15 days and later, and it can be reused as miscellaneous water very early. Has been demonstrated in a previous test.

以上、本発明の実施例を説明したが、具体的な構成は前述した実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。例えば、前記実施の形態では、特定の化学物質と大腸菌群等の細菌の両方を浄化の対象とするが、少なくともいずれか一方のみを浄化の対象としても良い。   As mentioned above, although the Example of this invention was described, a concrete structure is not restricted to the Example mentioned above, Even if it is a change and addition in the range which does not deviate from the summary of this invention, it is contained in this invention. For example, in the embodiment described above, both a specific chemical substance and bacteria such as coliform bacteria are targeted for purification, but at least one of them may be targeted for purification.

汚染された地下水等の資源価値の再生を前提とする等、環境影響等を考慮した汚染浄化を図る場合に、また摂氏55度以上の高温領域を用いた効率の良い汚染浄化を図る場合に、本発明を特に適用することができる。   When pursuing pollution purification that considers environmental impacts, such as on the premise of the restoration of the resource value of contaminated groundwater, etc., and when pursuing efficient pollution purification using a high temperature region of 55 degrees Celsius or higher, The present invention is particularly applicable.

1…貯湯ユニット部
2…注入
3…揚水
4…浄化対策エリア
5…温熱領域
6…雑用水
7…地下水
8…汚染地下水に由来しない水
DESCRIPTION OF SYMBOLS 1 ... Hot water storage unit 2 ... Injection 3 ... Pumping water 4 ... Purification measures area 5 ... Thermal area 6 ... Miscellaneous water 7 ... Ground water 8 ... Water which does not originate in contaminated ground water

Claims (3)

摂氏55度を超える湯温を保持した貯湯ユニット部を介して、地下の土壌地下水汚染部位に供給される温熱水の供給路、地層間隙中に温熱水を胚胎する地下温熱帯とその周縁、地下温熱帯からの揚水による貯湯ユニット部への復路、及び貯湯ユニット部から2次供給に至る経路を含む一連の温熱領域を形成して、
少なくとも好熱菌の増殖を促して特定の細菌ないし化学物質による土壌地下水汚染の低減を図り、加えて揚水された地下水を前記貯湯ユニット部内に滞留させ揚水中の特定の細菌の更なる低減を図ることによって、かかる揚水に対し雑用水としての再利用を促すことを特徴とする原位置汚染対策システム。
Via a hot water storage unit that maintains a hot water temperature of more than 55 degrees Celsius, the supply path of hot water supplied to the underground soil groundwater contamination site, the subterranean tropics and its periphery, Forming a series of thermal zones including a return path from the hot tropics to the hot water storage unit and a route from the hot water storage unit to the secondary supply,
At least promote the growth of thermophilic bacteria to reduce soil groundwater contamination by specific bacteria or chemical substances, and in addition, the pumped groundwater is retained in the hot water storage unit to further reduce specific bacteria in the pumped water In-situ pollution control system characterized by prompting reuse of such pumped water as miscellaneous water.
前記貯湯ユニット部の一部が、炭化水素を用いた発電ユニット及び発電時の生成熱を温熱源として利用する貯湯ユニットからなる複合ユニットの一部として構成され、前記発電ユニット由来の電力を汚染浄化の装置電源として利用することを特徴とする、請求項1に記載の原位置汚染対策システム。   Part of the hot water storage unit is configured as a part of a composite unit consisting of a power generation unit using hydrocarbons and a hot water storage unit that uses heat generated during power generation as a heat source, and purifies the power from the power generation unit. The in-situ contamination countermeasure system according to claim 1, wherein the in-situ contamination countermeasure system is used as an apparatus power source. 前記土壌地下水汚染が、未然の土壌地下水汚染であって、かかる土壌地下水汚染の発生が想定される部位に前記一連の温熱領域をあらかじめ形成して、揚水に由来する造水を実施すると共に、かかる揚水中の汚染モニタリングを定期的に実施することによって、土壌地下水汚染の発生を察知可能とする、請求項1または2に記載の原位置汚染対策システム。   The soil groundwater contamination is soil soil groundwater contamination, and the series of thermal regions are formed in advance in a site where the occurrence of such soil groundwater contamination is assumed, and water production derived from pumping is performed, and The in-situ pollution control system according to claim 1 or 2, wherein the occurrence of soil / groundwater pollution can be detected by periodically performing pollution monitoring in pumped water.
JP2013208360A 2013-10-03 2013-10-03 Original-position pollution countermeasure system Pending JP2015071144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208360A JP2015071144A (en) 2013-10-03 2013-10-03 Original-position pollution countermeasure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208360A JP2015071144A (en) 2013-10-03 2013-10-03 Original-position pollution countermeasure system

Publications (1)

Publication Number Publication Date
JP2015071144A true JP2015071144A (en) 2015-04-16

Family

ID=53013953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208360A Pending JP2015071144A (en) 2013-10-03 2013-10-03 Original-position pollution countermeasure system

Country Status (1)

Country Link
JP (1) JP2015071144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030821A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP2019030822A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030821A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP2019030822A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system

Similar Documents

Publication Publication Date Title
Camenzuli et al. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic
Uzoigwe et al. Microbiological quality of water collected from boreholes sited near refuse dumpsites in Port Harcourt, Nigeria
Ni et al. Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes
Palma et al. Anaerobic electrogenic oxidation of toluene in a continuous-flow bioelectrochemical reactor: process performance, microbial community analysis, and biodegradation pathways
Becker et al. Bioremediation of hazardous organics
Mishra et al. Application of horizontal flow constructed wetland and solar driven disinfection technologies for wastewater treatment in India
Mousa Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water
Zhao et al. Evaluation of bioaugmentation using multiple life cycle assessment approaches: a case study of constructed wetland
Rahim et al. A feasibility study for the treatment of 1, 2-dichloroethane-contaminated groundwater using reedbed system and assessment of its natural attenuation
Niu et al. Pretreatment of landfill leachate using deep shaft aeration bioreactor (DSAB) in cold winter season
Lu et al. Highly enhanced removal of nutrients and benzo [a] pyrene in a siphon constructed wetland with magnetite: Performance and mechanisms
JP2015071144A (en) Original-position pollution countermeasure system
Sadeq et al. Sustainable application of tubular photosynthesis microbial desalination cell for simultaneous desalination of seawater for potable water supply associated with sewage treatment and energy recovery
CN103771590A (en) Method and device for processing sewage by virtue of multistage alternative microbial generator
Igoud et al. Solar Wastewater Treatment: Advantages and Efficiency for Reuse in Agriculture and Industry
CN109913563A (en) The appraisal procedure of Natural Attenuation can occur by anaerobe degradation for chlorobenzene class organic contamination place
Hadibarata et al. Green engineering principles and application: bioremediation
Hyun et al. Bathroom wastewater treatment in constructed wetlands with planting, non-planting and aeration, non-aeration conditions
CN204529354U (en) A kind of separation system of vinylidene chloride
Sheehan et al. Distributed treatment systems
Dhir et al. Water Pollution Burden and Techniques for Control
Warren Toluene Removal from Produced Water by Biofilm Granular Activated Carbon System
CN203833710U (en) Multi-stage alternating microbial generator sewage treatment device
Verma Water Pollution: Sources, Control and Treatment Measures
Al Kholif et al. Removal of BOD5 and COD from Domestic Wastewater by Using a Multi-Media-Layering (MML) System.