JP2015070721A - Permanent magnet rotary electric machine - Google Patents

Permanent magnet rotary electric machine Download PDF

Info

Publication number
JP2015070721A
JP2015070721A JP2013203862A JP2013203862A JP2015070721A JP 2015070721 A JP2015070721 A JP 2015070721A JP 2013203862 A JP2013203862 A JP 2013203862A JP 2013203862 A JP2013203862 A JP 2013203862A JP 2015070721 A JP2015070721 A JP 2015070721A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
electric machine
outer peripheral
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013203862A
Other languages
Japanese (ja)
Other versions
JP6196864B2 (en
Inventor
中川 昌紀
Masanori Nakagawa
昌紀 中川
鈴木 伸
Shin Suzuki
伸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Electric Drive Systems Co Ltd
Original Assignee
Kokusan Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusan Denki Co Ltd filed Critical Kokusan Denki Co Ltd
Priority to JP2013203862A priority Critical patent/JP6196864B2/en
Publication of JP2015070721A publication Critical patent/JP2015070721A/en
Application granted granted Critical
Publication of JP6196864B2 publication Critical patent/JP6196864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet rotary electric machine in which distance between a permanent magnet of a rotor and a stator is reduced to obtain a large torque with a compact configuration, and the permanent magnet has stable falling-out prevention applied thereto.SOLUTION: A permanent magnet rotary electric machine includes: a stator composed of a laminated iron core around which a winding is wound; and a rotor whose outer periphery is separated from this stator by a gap and which has an annual laminated iron core whose inner peripheral side is fixed to a rotary shaft. The rotor incorporates a plurality of permanent magnets radially extending from the rotation center. The permanent magnet is located so that the end surface on the outer peripheral side of the rotor has almost the same surface as the outer peripheral surface of the rotor, and a cross sectional area in the axial direction is formed so as to be enlarged along the inner side in the radial direction of the rotor.

Description

本発明は、ロータ(回転子)に永久磁石を埋設した永久磁石回転電機に関し、特にロータの回転軸から放射状に伸びるスポーク状に埋め込まれる永久磁石を備えた永久磁石回転電機に関する。   The present invention relates to a permanent magnet rotating electric machine in which a permanent magnet is embedded in a rotor (rotor), and more particularly to a permanent magnet rotating electric machine including permanent magnets embedded in a spoke shape extending radially from a rotating shaft of a rotor.

永久磁石をスポーク状にロータに埋め込んだラジアルタイプのロータをもつ回転電機は、マグネットトルクとリラクタンストルクで駆動される複合トルクモータとして優れた構造である。この種回転電機は、特許文献1および2に示される。   A rotating electrical machine having a radial type rotor in which permanent magnets are embedded in spokes in a spoke shape has an excellent structure as a composite torque motor driven by magnet torque and reluctance torque. This type of rotating electrical machine is disclosed in Patent Documents 1 and 2.

特許文献1には、永久磁石が放射状に延びてロータコア(回転子鉄心)に挟持されたラジアルタイプのロータ構造が示されている。永久磁石は、ロータの回転に伴う遠心力により、ロータからラジアル方向に抜け出て行こうとする力が働く。これを防止するため、永久磁石はロータコアのスロットに挟持されるように構成される。   Patent Document 1 discloses a radial type rotor structure in which permanent magnets extend radially and are sandwiched between rotor cores (rotor cores). The permanent magnet is subjected to a force that tries to escape from the rotor in the radial direction due to the centrifugal force accompanying the rotation of the rotor. In order to prevent this, the permanent magnet is configured to be sandwiched between slots of the rotor core.

永久磁石をロータコアに挟持する回転電機の想定される構造を図8、図9に示す。回転電機は、巻線13が巻装された積層鉄心(コア)からなる複数のティース12を有するステータ(固定子)11と、上記ティース12の内側と隙間をもって対向する外周を有し、内周側が回転軸(図示せず)に固定された環状の積層鉄心からなるロータ14を備え、ロータ14には、複数本の永久磁石15が放射状に延びるように埋め込まれている。   FIGS. 8 and 9 show a possible structure of a rotating electrical machine that holds a permanent magnet between rotor cores. The rotating electrical machine has a stator (stator) 11 having a plurality of teeth 12 formed of a laminated iron core (core) around which a winding 13 is wound, and an outer periphery that opposes the inside of the teeth 12 with a gap therebetween. The rotor 14 is formed of an annular laminated iron core whose side is fixed to a rotating shaft (not shown), and a plurality of permanent magnets 15 are embedded in the rotor 14 so as to extend radially.

永久磁石15は、側面15a、15bが平行な直方体の形状を有し、側面15aがS極、側面15bがN極に磁化されており、半径方向外側端面15cが両側においてロータ14の外周付近に設けた突起14bに係止されている。永久磁石15は、この突起14bによって半径方向内側に押さえ付けられ、遠心力による永久磁石の抜けが防止される。図9で、FCが永久磁石に作用する遠心力で、Frがロータコアの反力を示している。   The permanent magnet 15 has a rectangular parallelepiped shape with side surfaces 15a and 15b parallel to each other, the side surface 15a is magnetized to the south pole and the side surface 15b is magnetized to the north pole, and the radially outer end surface 15c is near the outer periphery of the rotor 14 on both sides. It is locked to the provided protrusion 14b. The permanent magnet 15 is pressed inward in the radial direction by the projections 14b, and the permanent magnet 15 is prevented from coming off due to centrifugal force. In FIG. 9, Fr is the centrifugal force acting on the permanent magnet, and Fr indicates the reaction force of the rotor core.

しかしながら、上記構成では永久磁石15の半径方向先端面14cで磁性体の突起14bを介した磁束漏れφLが生じるため、永久磁石15からステータのティース12に流す磁束が減少する。また、突起14bの介在により、永久磁石15の半径方向先端面14cとティース12の距離が長くなるので、永久磁石15からティース12に流す磁束が減少する。さらに、突起14bの介在により、永久磁石15の放射方向の長さ15Lが短くなって永久磁石15の発生磁束が減少し、また、同じ磁束を発生させるためには永久磁石15の寸法を大きくする必要がある。さらに、積層鉄心からなるロータ14に突起14bを設けるために特殊な形状が必要となりコストアップになる。   However, in the above configuration, magnetic flux leakage φL through the magnetic protrusion 14b occurs on the distal end surface 14c in the radial direction of the permanent magnet 15, so that the magnetic flux flowing from the permanent magnet 15 to the stator teeth 12 decreases. Further, since the distance between the distal end surface 14c in the radial direction of the permanent magnet 15 and the tooth 12 is increased due to the protrusion 14b, the magnetic flux flowing from the permanent magnet 15 to the tooth 12 is reduced. Further, due to the protrusion 14b, the radial length 15L of the permanent magnet 15 is shortened to reduce the magnetic flux generated by the permanent magnet 15, and the size of the permanent magnet 15 is increased to generate the same magnetic flux. There is a need. Furthermore, a special shape is required to provide the protrusions 14b on the rotor 14 made of a laminated iron core, which increases costs.

したがって、引用文献1に示される構造では、小型で大きなマグネットトルクを有する回転電機を得ることが困難である。   Therefore, with the structure shown in the cited document 1, it is difficult to obtain a rotating electric machine that is small and has a large magnet torque.

特許文献2には、永久磁石の抜けを防止すると共に永久磁石とロータを一体化した後にも永久磁石の磁化を可能とした回転機ロータが示されている。このロータでは、永久磁石の半径方向先端面からロータの外周面に至る空間に、非磁性体の本体部が埋め込まれ、この本体部により永久磁石と磁性材料のロータを一体構成している。   Patent Document 2 discloses a rotating machine rotor that prevents the permanent magnet from coming off and allows the permanent magnet to be magnetized even after the permanent magnet and the rotor are integrated. In this rotor, a non-magnetic main body is embedded in a space from the radial front end surface of the permanent magnet to the outer peripheral surface of the rotor, and the permanent magnet and the magnetic material rotor are integrally formed by the main body.

特開平4−255439号公報JP-A-4-255439 特開2001−136690号公報JP 2001-136690 A

しかしながら、特許文献2の回転機ロータでは、永久磁石の半径方向先端面からステータの内周面までの間に非磁性体の本体部で埋められていて永久磁石からステータまでの磁路が長くなるため、永久磁石からステータに流れる磁束が減少する。さらに、非磁性体の介在により、永久磁石の半径方向の長さが短くなって永久磁石の発生磁束が減少し、また、同じ磁束を発生させるためには永久磁石の寸法を大きくする必要がある。さらに、積層鉄心からなるロータに非磁性体の本体部を設けるために特殊な形状となりコストアップになる。   However, in the rotating machine rotor of Patent Document 2, the magnetic path from the permanent magnet to the stator is long because it is filled with the main body of the nonmagnetic material between the radial front end surface of the permanent magnet and the inner peripheral surface of the stator. Therefore, the magnetic flux flowing from the permanent magnet to the stator is reduced. Further, due to the presence of the non-magnetic material, the length of the permanent magnet in the radial direction is shortened, and the generated magnetic flux of the permanent magnet is reduced. In order to generate the same magnetic flux, it is necessary to increase the size of the permanent magnet. . Furthermore, a non-magnetic body portion is provided on a rotor made of a laminated iron core, resulting in a special shape and an increase in cost.

本発明は上記従来技術の問題点にかんがみ、ロータの永久磁石とステータをできるだけ接近させることで、コンパクトな構成で大きなトルクを得ると共に、永久磁石の安定的な抜け止めを施した永久磁石回転電機を提供するものである。   In view of the above-mentioned problems of the prior art, the present invention obtains a large torque with a compact configuration by bringing the permanent magnet of the rotor and the stator as close as possible, and at the same time provides a permanent magnet with a stable retaining mechanism. Is to provide.

上記目的を達成するために、本発明は、巻線が巻装された鉄心からなるステータと、
このステータに隙間をもって外周が離間し、内周側が回転軸に固定された鉄心を有するロータを備え、
前記ロータは回転中心から放射状に延びる複数の永久磁石を内蔵し、
前記永久磁石は、外周側の端面がロータの外周面に沿うように位置し、かつ永久磁石の周方向の断面幅がロータの半径方向内側に沿って大きくなるように形成されたことを特徴とする。
In order to achieve the above object, the present invention provides a stator comprising an iron core around which windings are wound,
The stator is provided with a rotor having an iron core whose outer periphery is spaced apart with a gap and whose inner peripheral side is fixed to the rotating shaft,
The rotor contains a plurality of permanent magnets extending radially from the center of rotation,
The permanent magnet is formed so that an outer peripheral end surface thereof is positioned along the outer peripheral surface of the rotor, and a circumferential cross-sectional width of the permanent magnet is increased along a radial inner side of the rotor. To do.

前記鉄心は、その外周面が前記永久磁石との境目で回転軸側に変形した凹部を有することを特徴とする。   The iron core has a concave portion whose outer peripheral surface is deformed to the rotating shaft side at the boundary with the permanent magnet.

前記永久磁石は、周方向の断面幅がロータの半径方向に沿って変化するように形成されたことを特徴とする。   The permanent magnet is formed so that a cross-sectional width in a circumferential direction changes along a radial direction of the rotor.

前記永久磁石は、周方向の断面がロータの半径方向中央部において大きくなるように、断面が樽型に形成されても良く、カマボコ型に形成されても良く、さらに、前記永久磁石は、放射状に沿って断面が円弧状に形成されても良い。   The permanent magnet may be formed in a barrel shape or in a kamaboko shape so that a circumferential cross section becomes larger at a central portion in the radial direction of the rotor. The cross section may be formed in a circular arc shape.

また、上記目的を達成するために本発明は、巻線が巻装された鉄心を有するステータと、
このステータに隙間をもって外周が離間し、内周側が回転軸に固定された鉄心を有するロータを備え、
前記ロータは回転中心から放射状に延びる複数の永久磁石を内蔵し、
前記永久磁石は、外周側の端面がロータの外周面に沿うように位置し、かつ放射状に沿って断面が円弧状に形成されたことを特徴とする。
In order to achieve the above object, the present invention provides a stator having an iron core around which windings are wound,
The stator is provided with a rotor having an iron core whose outer periphery is spaced apart with a gap and whose inner peripheral side is fixed to the rotating shaft,
The rotor contains a plurality of permanent magnets extending radially from the center of rotation,
The permanent magnet is characterized in that the outer peripheral end surface is positioned along the outer peripheral surface of the rotor, and the cross section is formed in an arc shape along a radial shape.

また、前記鉄心は、その外周面が前記永久磁石との境目で回転軸側に変形した凹部を有することを特徴とする。   Further, the iron core has a concave portion whose outer peripheral surface is deformed to the rotating shaft side at the boundary with the permanent magnet.

また、前記永久磁石は、両側面がそれぞれ中心位置が異なる円弧に形成されることが好ましい。   Moreover, it is preferable that the said permanent magnet is formed in the circular arc from which both side surfaces each differ in a center position.

本発明によれば、より多くの磁束を永久磁石からステータに流すことで、コンパクトな構成で高トルク化を図るとともに、永久磁石の安定的な抜け止めを図ることができる。   According to the present invention, by flowing more magnetic flux from the permanent magnet to the stator, it is possible to achieve high torque with a compact configuration and to prevent the permanent magnet from coming off stably.

本発明実施例1の永久磁石回転電機の径方向の断面図である。It is sectional drawing of the radial direction of the permanent magnet rotary electric machine of this invention Example 1. FIG. 同じく断面の要部拡大図である。It is the principal part enlarged view of a cross section similarly. 本発明実施例1の変形例の断面の要部拡大図である。It is a principal part enlarged view of the cross section of the modification of this invention Example 1. FIG. 同じく径方向断面と軸方向断面の説明図である。It is explanatory drawing of a radial direction cross section and an axial direction cross section similarly. 同じく軸方向断面の詳細図である。It is the detail drawing of an axial direction cross section similarly. 本発明実施例2の永久磁石回転電機の径方向の断面図である。It is sectional drawing of the radial direction of the permanent magnet rotary electric machine of this invention Example 2. FIG. 同じく断面の要部拡大図である。It is the principal part enlarged view of a cross section similarly. 本発明実施例3の永久磁石回転電機の断面の要部拡大図である。It is a principal part enlarged view of the cross section of the permanent magnet rotary electric machine of this invention Example 3. FIG. 想定される従来技術の永久磁石回転電機の径方向の断面図である。It is sectional drawing of the radial direction of the permanent magnet rotary electric machine of the related art assumed. 同じく断面の要部拡大図である。It is the principal part enlarged view of a cross section similarly.

以下本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
まず、図1、図2を用いて実施例1の構造を説明する。図1は、永久磁石回転電機の径方向の断面図で、図2は同じく断面の要部拡大図である。
Example 1
First, the structure of Example 1 will be described with reference to FIGS. FIG. 1 is a radial sectional view of a permanent magnet rotating electric machine, and FIG.

本実施例の永久磁石回転電機は、12極の電機子巻線3を有するステータ(固定子)1と、円筒形のロータ(回転子)2により構成されている。ステータ1は電磁鋼板を積層した積層鉄心で構成され、内側周方向に12個のティース1aを一体に形成し、各ティース1aには巻線3が巻装されている。   The permanent magnet rotating electric machine of the present embodiment includes a stator (stator) 1 having a 12-pole armature winding 3 and a cylindrical rotor (rotor) 2. The stator 1 is composed of a laminated iron core in which electromagnetic steel plates are laminated. Twelve teeth 1a are integrally formed in the inner circumferential direction, and a winding 3 is wound around each tooth 1a.

ロータ2は電磁鋼板を積層した環状の積層鉄心4で構成され、外周が前記ステータのティース1aに対して所定隙間で対向し、内周側が回転軸(後述)に固定されている。ロータ2には、1つの磁極に1つのフェライト磁石からなる永久磁石5が積層鉄心4に挟まれるように埋設されている。各永久磁石5の極性は図示のように磁化されている。なお、ロータ2は積層鉄心ではなく、焼結材のようなブロック状の鉄心で構成しても良い。   The rotor 2 is composed of an annular laminated core 4 in which electromagnetic steel plates are laminated, the outer periphery thereof is opposed to the stator teeth 1a with a predetermined gap, and the inner peripheral side is fixed to a rotating shaft (described later). In the rotor 2, a permanent magnet 5 made of one ferrite magnet is embedded in one magnetic pole so as to be sandwiched between the laminated cores 4. The polarity of each permanent magnet 5 is magnetized as shown. The rotor 2 may be composed of a block-shaped iron core such as a sintered material instead of the laminated iron core.

上記構成において、永久磁石回転電機は、図1に示すように、破線矢印で示す電機子巻線3が発生する磁束φdによるリラクタンストルクと、実線矢印で示す永久磁石5が発生する磁束φqによるマグネットトルクとの複合トルクにより、ロータ2が回転駆動される。   In the above configuration, as shown in FIG. 1, the permanent magnet rotating electric machine has a reluctance torque generated by the magnetic flux φd generated by the armature winding 3 indicated by the broken arrow and a magnet generated by the magnetic flux φq generated by the permanent magnet 5 indicated by the solid arrow. The rotor 2 is rotationally driven by the combined torque with the torque.

図2によりロータ2の構造を説明する。ロータ2は円弧状の外周面4aをもつ積層鉄心4と、円弧状の外周側端面5cを持つ永久磁石5で構成される。積層鉄心4には永久磁石5と同一形状のスロット(図示せず)が設けられ、このスロットに各永久磁石5が嵌めこまれた状態で固定される。永久磁石5は、ロータ2の回転中心からスポーク状に放射方向に延びるように配置される。   The structure of the rotor 2 will be described with reference to FIG. The rotor 2 includes a laminated iron core 4 having an arcuate outer peripheral surface 4a and a permanent magnet 5 having an arcuate outer peripheral side end surface 5c. The laminated iron core 4 is provided with a slot (not shown) having the same shape as the permanent magnet 5, and each permanent magnet 5 is fixed in this slot. The permanent magnet 5 is disposed so as to extend in the radial direction in a spoke shape from the rotation center of the rotor 2.

永久磁石5は、両側面5a、5b、ロータの外周側端面5c、ロータの内周側端面5dとで構成される。外周側端面5cは積層鉄心4の外周面(ロータの外周面)4aとほぼ同一の円弧状を有している。永久磁石5は、外周側端面5cが積層鉄心4の外周面(ロータの外周面)4aに沿うように位置している。   The permanent magnet 5 is composed of both side surfaces 5a and 5b, an outer peripheral side end surface 5c of the rotor, and an inner peripheral side end surface 5d of the rotor. The outer peripheral side end face 5c has substantially the same arc shape as the outer peripheral face (outer peripheral face of the rotor) 4a of the laminated core 4. The permanent magnet 5 is positioned such that the outer peripheral side end surface 5 c is along the outer peripheral surface (the outer peripheral surface of the rotor) 4 a of the laminated core 4.

図2では、永久磁石5の外周側端面5cと、積層鉄心4の外周面(ロータの外周面)4aがほぼ同一面となるように位置し、両者の境目に凹凸が生じないように積層鉄心4に固定される。このように、永久磁石5の外周側端面5cと、積層鉄心4の外周面(ロータの外周面)4aをほぼ同一面とすることにより、外周側端面5cをステータのティース1aに最も接近させることができるので、永久磁石5からティース1aまでの磁路が短くなり、永久磁石からステータに流れる磁束が減少することがない。さらに、外周側端面5cをロータの外周面4aまで延ばすことで永久磁石5の放射方向の長さ寸法を長くできるので、永久磁石の発生磁束を増加できる。また、同じ磁束を発生させる場合は、軸長を短くできるので、ロータを小型化できる。   In FIG. 2, the outer peripheral side end surface 5 c of the permanent magnet 5 and the outer peripheral surface (the outer peripheral surface of the rotor) 4 a of the laminated iron core 4 are positioned so as to be substantially the same surface, 4 is fixed. Thus, the outer peripheral side end surface 5c and the outer peripheral surface 4a of the laminated iron core 4 (the outer peripheral surface of the rotor) 4a are made substantially the same surface, so that the outer peripheral side end surface 5c is closest to the teeth 1a of the stator. Therefore, the magnetic path from the permanent magnet 5 to the tooth 1a is shortened, and the magnetic flux flowing from the permanent magnet to the stator is not reduced. Furthermore, since the length in the radial direction of the permanent magnet 5 can be increased by extending the outer peripheral side end face 5c to the outer peripheral face 4a of the rotor, the generated magnetic flux of the permanent magnet can be increased. Further, when the same magnetic flux is generated, the axial length can be shortened, so that the rotor can be reduced in size.

さらに、永久磁石5の外周側端面5cを円弧状にすれば、端面5cと積層鉄心4の外周面4aが同一面とすることができ、両者の境目は凹凸が生じないように形成されるので、ロータ2の回転において風切り音が生じることなく回転抵抗が少なくなる。   Further, if the outer peripheral side end face 5c of the permanent magnet 5 is formed in an arc shape, the end face 5c and the outer peripheral face 4a of the laminated iron core 4 can be made the same surface, and the boundary between them is formed so as not to be uneven. Rotational resistance is reduced without generating wind noise during the rotation of the rotor 2.

図3は本実施例の変形例を示す。永久磁石5は外周側端面5cがロータの外周面2aに沿うように位置しているが、積層鉄心4の外周面4aが、前記永久磁石との境目で、ロータの外周面2aより回転軸側に変形した凹部Aを有している。このような形状にすることにより、積層鉄心4と永久磁石5との境目での磁束の変化が緩和されるので、トルクリップルを緩和することができる。   FIG. 3 shows a modification of this embodiment. The permanent magnet 5 is positioned such that the outer peripheral side end surface 5c is along the outer peripheral surface 2a of the rotor, but the outer peripheral surface 4a of the laminated core 4 is on the rotational axis side from the outer peripheral surface 2a of the rotor at the boundary with the permanent magnet. It has the recessed part A which deform | transformed into. By adopting such a shape, the change in magnetic flux at the boundary between the laminated core 4 and the permanent magnet 5 is alleviated, so that torque ripple can be alleviated.

永久磁石5は、両側面5a、5bの中央部が外側に膨らんだ断面が樽型形状に形成されている。すなわち、永久磁石5の周方向の断面幅が、前記端面5cからロータの半径方向内側に向かって中央部まで大きくなり、中央部から内周側端面5dに向かって小さくなるように形成されている。具体的には、図2で、永久磁石5の前記外周側端面5cの幅をa、両側面中央部の幅をb、前記内周側端面5dの幅をcとすると、a<b、b>cとなるように形成される。そして、幅aからbへの拡大は、急激に拡大することなく連続的に滑らかに拡大し、幅bから幅cへの縮小も急激に縮小することなく連続的に滑らかに縮小している。   The permanent magnet 5 has a barrel-shaped cross section in which central portions of both side surfaces 5a and 5b bulge outward. That is, the circumferential width of the permanent magnet 5 is increased from the end surface 5c toward the center in the radial direction of the rotor, and is decreased from the center to the inner peripheral end surface 5d. . Specifically, in FIG. 2, when the width of the outer peripheral side end surface 5c of the permanent magnet 5 is a, the width of the central portion of both side surfaces is b, and the width of the inner peripheral side end surface 5d is c, a <b, b > C. The expansion from the width a to b is continuously and smoothly expanded without rapidly increasing, and the reduction from the width b to the width c is continuously and smoothly reduced without rapidly decreasing.

このように中央部が外側に膨らんだ断面樽型形状の永久磁石によれば、外周側端面5cから両側面5a、5bの中央部に至る部分の、永久磁石5と積層鉄心4との接触面において、永久磁石5に加わる遠心力Fcと、これに対抗する積層鉄心4の反力Frが作用し、永久磁石5の抜け止めが施される。そして、上記のように永久磁石の断面積が端面5cから中央部まで連続的に滑らかに拡大しているため、上記作用点は、永久磁石5と積層鉄心4との全接触面に分散される。上記作用点は、端面5cから中央部までの永久磁石5の長さの約半分の長さにわたって分散するため、各作用点に働く力はかなり小さくなる。   In this way, according to the barrel-shaped permanent magnet with the central portion bulging outward, the contact surface between the permanent magnet 5 and the laminated iron core 4 in the portion from the outer peripheral side end surface 5c to the central portion of the both side surfaces 5a, 5b. 2, the centrifugal force Fc applied to the permanent magnet 5 and the reaction force Fr of the laminated iron core 4 that counters the centrifugal force Fc act to prevent the permanent magnet 5 from coming off. Since the cross-sectional area of the permanent magnet continuously and smoothly expands from the end surface 5c to the central portion as described above, the action point is distributed over the entire contact surface between the permanent magnet 5 and the laminated iron core 4. . Since the above-mentioned action points are distributed over the length of about half the length of the permanent magnet 5 from the end face 5c to the central portion, the force acting on each action point becomes considerably small.

従って、永久磁石5と積層鉄心4は局部的な力が加わることが無いので、互いに損傷を受けることがなく、遠心力が作用する永久磁石に対し、長期間、安定的な抜け止めを施すことができる。   Therefore, since the permanent magnet 5 and the laminated iron core 4 are not subjected to local force, the permanent magnet 5 and the laminated iron core 4 are not damaged each other, and the permanent magnet on which the centrifugal force acts is provided with a stable retaining for a long time. Can do.

また、前記樽型形状の永久磁石は、中央部より外周側端面5cに向かって幅が狭まっていて、積層鉄心4の外周側の幅W1を大きくすることができるので、磁束φqを増加させても磁気飽和を起こすことがなく、大きなリラクタンストルクを得ることができる。さらに、永久磁石の中央部より内周側端面5dにわたって幅が狭まっていて、積層鉄心4の内周側の幅W2をより大きくすることができるので、通過磁束の飽和が起こり難く、ロータを組み上げた状態で永久磁石を磁化するに際し、磁化効率が良くなる。   Further, the barrel-shaped permanent magnet has a width that is narrower from the center toward the outer peripheral side end face 5c and can increase the width W1 on the outer peripheral side of the laminated iron core 4, so that the magnetic flux φq is increased. However, magnetic reluctance torque can be obtained without causing magnetic saturation. Furthermore, since the width is narrower from the center part of the permanent magnet to the inner peripheral side end face 5d and the inner peripheral side width W2 of the laminated core 4 can be made larger, saturation of the passing magnetic flux hardly occurs and the rotor is assembled. When the permanent magnet is magnetized in the above state, the magnetization efficiency is improved.

図4は径方向断面と軸方向断面の説明図であり、図4(b)は図4(a)のB−B線に沿った断面を示し、上半分は永久磁石5の断面を示し、下半分は積層鉄心4の断面を示している。   FIG. 4 is an explanatory diagram of a radial cross section and an axial cross section, FIG. 4 (b) shows a cross section along line BB in FIG. 4 (a), the upper half shows a cross section of the permanent magnet 5, The lower half shows a cross section of the laminated core 4.

図5は軸方向断面の詳細を示しており、6はロータ2の積層鉄心4の両端を支持する側板、7は側板6と積層鉄心4を貫通して側板6を介して積層鉄心4を締め付けるボルト、8はロータ2の内周側が側板6を介して固定される回転軸である。なお、図1、図2ではボルト7は図示省略されている。   FIG. 5 shows details of the axial cross section, 6 is a side plate that supports both ends of the laminated core 4 of the rotor 2, and 7 is tightened to the laminated core 4 through the side plate 6 through the side plate 6 and the laminated core 4. A bolt 8 is a rotating shaft on which the inner peripheral side of the rotor 2 is fixed via the side plate 6. 1 and 2, the bolt 7 is not shown.

(実施例2)
次に、図6、図7を用いて実施例2の構造を説明する。図6は、永久磁石回転電機の径方向の断面図で、図7は断面の要部拡大図である。
(Example 2)
Next, the structure of the second embodiment will be described with reference to FIGS. FIG. 6 is a radial cross-sectional view of the permanent magnet rotating electric machine, and FIG. 7 is an enlarged view of a main part of the cross-section.

実施例2は、永久磁石5の外周側端面5cと、外周面(ロータの外周面)4aが同一面となる構成は実施例1と同じである。実施例1と異なる点は、永久磁石5の両側面5a、5bの一方が中央部で外側に膨らんで、断面がカマボコ型(状)に形成されている点である。図では、側面5aが直線(平面)に形成され、側面5bが膨らんだ形状に形成されている。図7で、永久磁石5の前記外周側端面5cの幅をa、中央部の幅をb、前記内周側端面5dの幅をcとすると、a<b、b>cとなるように形成される。そして、幅aからbへの側面5bの拡大は、急激に拡大することなく連続的に滑らかに拡大し、幅bから幅cへの側面5bの縮小も急激に縮小することなく連続的に滑らかに縮小している。   Example 2 is the same as Example 1 in that the outer peripheral side end surface 5c of the permanent magnet 5 and the outer peripheral surface (the outer peripheral surface of the rotor) 4a are the same surface. The difference from the first embodiment is that one of the both side surfaces 5a and 5b of the permanent magnet 5 bulges outward at the central portion, and the cross section is formed in a crumpled shape (shape). In the figure, the side surface 5a is formed in a straight line (plane), and the side surface 5b is formed in a swelled shape. In FIG. 7, when the width of the outer peripheral side end face 5c of the permanent magnet 5 is a, the width of the central part is b, and the width of the inner peripheral side end face 5d is c, the relationship is a <b, b> c. Is done. And the expansion of the side surface 5b from the width a to b is continuously and smoothly expanded without abrupt expansion, and the reduction of the side surface 5b from the width b to the width c is also continuously smooth without abrupt reduction. It has shrunk to.

本実施例2では、永久磁石5に加わる遠心力Fcと、これに対抗する積層鉄心4の反力Frは、永久磁石5の外周側端面5cから一方の側面5bの中央部に至る部分に作用する。そして、実施例1と同様に、永久磁石の断面幅が端面5cから中央部まで連続的に滑らかに拡大しているため、上記作用点は、上記端面5cから中央部までの部分に連続的に分散して生じ、各作用点に働く力はかなり小さくなる。   In the second embodiment, the centrifugal force Fc applied to the permanent magnet 5 and the reaction force Fr of the laminated core 4 that opposes the centrifugal force Fc act on the portion from the outer peripheral side end surface 5c of the permanent magnet 5 to the central portion of one side surface 5b. To do. And since the cross-sectional width of a permanent magnet is continuously and smoothly enlarged from the end surface 5c to the center part similarly to Example 1, the said action point is continuously on the part from the said end surface 5c to the center part. The force acting on each action point is considerably reduced.

従って、永久磁石5と積層鉄心4は局部的な力が加わることが無いので、互いに損傷を受けることがなく、遠心力が作用する永久磁石に対し、長期間、安定的な抜け止めを施すことができる。   Therefore, since the permanent magnet 5 and the laminated iron core 4 are not subjected to local force, the permanent magnet 5 and the laminated iron core 4 are not damaged each other, and the permanent magnet on which the centrifugal force acts is provided with a stable retaining for a long time. Can do.

実施例2では、側面5aが直線(平面)で、側面5bのみが膨らんだ形状に形成されているため、永久磁石5に加わる遠心力Fcと、これに対抗する積層鉄心4の反力Frが、側面5bのみでしか作用しないが、側面5aの直線(平面)の形成部分の加工性が良いので、加工コストを低減することができる。   In the second embodiment, since the side surface 5a is a straight line (plane) and only the side surface 5b is formed in a bulging shape, the centrifugal force Fc applied to the permanent magnet 5 and the reaction force Fr of the laminated iron core 4 that counters this are obtained. Although it works only on the side surface 5b, the processability of the straight line (plane) forming portion of the side surface 5a is good, so that the processing cost can be reduced.

また、実施例1と同様に、カマボコ型形状の永久磁石によれば、中央部より外周側端面5cの幅が狭まっていて、積層鉄心4の外周側の幅W1を大きくすることができるので、磁束φqを増加させても磁気飽和を起こすことがなく、大きなリラクタンストルクを得ることができる。さらに、永久磁石の中央部より内周側端面5dにわたって幅が狭まっていて、積層鉄心4の内周側の幅W2をより大きくすることができるので、通過磁束の飽和が起こり難く、ロータを組み上げた状態で永久磁石を磁化するに際し、磁化効率が良くなる。   Further, similarly to the first embodiment, according to the permanent magnet having a cone-shaped shape, the width of the outer peripheral side end face 5c is narrower than the central portion, and the width W1 on the outer peripheral side of the laminated core 4 can be increased. Even when the magnetic flux φq is increased, magnetic saturation does not occur and a large reluctance torque can be obtained. Furthermore, since the width is narrower from the center part of the permanent magnet to the inner peripheral side end face 5d and the inner peripheral side width W2 of the laminated core 4 can be made larger, saturation of the passing magnetic flux hardly occurs and the rotor is assembled. When the permanent magnet is magnetized in the above state, the magnetization efficiency is improved.

(実施例3)
次に、図8を用いて実施例3の構造を説明する。図8は、永久磁石回転電機の断面の要部拡大図である。
(Example 3)
Next, the structure of Example 3 will be described with reference to FIG. FIG. 8 is an enlarged view of a main part of a cross section of the permanent magnet rotating electric machine.

実施例3は、永久磁石5の外周側端面5cと、外周面(ロータの外周面)4aが同一面となるように位置する構成は実施例1、2と同じである。前記実施例と異なる点は、永久磁石5の両側面5a、5bの中央部がともに湾曲して、断面が円弧状に形成されている点である。図8では、側面5aの中央部が凹状で、側面5bの中央部が凸状に変形するように形成されている。そして、これらの変形は、連続的に滑らかに変化するように形成されている。   The configuration of the third embodiment is the same as the first and second embodiments in that the outer peripheral side end surface 5c of the permanent magnet 5 and the outer peripheral surface (the outer peripheral surface of the rotor) 4a are positioned on the same plane. A different point from the said Example is a point in which the center part of both the side surfaces 5a and 5b of the permanent magnet 5 both curves, and the cross section is formed in circular arc shape. In FIG. 8, the central portion of the side surface 5a is concave and the central portion of the side surface 5b is deformed into a convex shape. These deformations are formed so as to continuously and smoothly change.

図8で永久磁石5の周方向の断面幅がdで示されるが、幅dは中央部で両端(外周側端面5cの幅a、内周側端面5dの幅c)の幅より大きく設定されても良く、また、外周側端面5cから内周側端面5dまでの断面幅の全体を同一幅に設定されても良い。   In FIG. 8, the circumferential width of the permanent magnet 5 is indicated by d. The width d is set to be larger than the widths of both ends (the width a of the outer peripheral side end surface 5c and the width c of the inner peripheral side end surface 5d) at the center. Alternatively, the entire cross-sectional width from the outer peripheral side end face 5c to the inner peripheral side end face 5d may be set to the same width.

本実施例3の中央部が湾曲した円弧状の永久磁石では、永久磁石5に加わる遠心力Fcと、これに対抗する積層鉄心4の反力Frは、永久磁石5の外周側端面5cから一方の側面5bの中央部の凸状の頂部までの傾斜部分と、他方の側面5aの中央部の凹状の底部から内周側端面5dまでの傾斜部分とに作用する。   In the arc-shaped permanent magnet having a curved central portion according to the third embodiment, the centrifugal force Fc applied to the permanent magnet 5 and the reaction force Fr of the laminated iron core 4 that opposes the centrifugal force Fc are applied to the permanent magnet 5 from the outer peripheral side end face 5c. It acts on the sloped part from the concave top part to the inner peripheral side end face 5d of the central part of the other side face 5a.

そして、前記各傾部分は連続的に滑らかに変化しているため、上記作用点は、永久磁石5の側面5aの傾斜部分と積層鉄心4との接触面、および永久磁石5の側面5bの傾斜部分と積層鉄心4との接触面に分散される。このように、上記作用点は、永久磁石5の一方の側面の永久磁石5の約半分の長さと、永久磁石5他方の側面の永久磁石5の約半分の長さとの分散されるため、各作用点に働く力はかなり小さくなる。   And since each said inclination part is changing continuously smoothly, the said action point is the contact surface of the inclination part of the side surface 5a of the permanent magnet 5, and the laminated iron core 4, and the inclination of the side surface 5b of the permanent magnet 5. Dispersed on the contact surface between the portion and the laminated core 4. In this way, the operating point is distributed between about half the length of the permanent magnet 5 on one side of the permanent magnet 5 and about half the length of the permanent magnet 5 on the other side of the permanent magnet 5. The force acting on the point of action is much smaller.

従って、永久磁石5と積層鉄心4は局部的な力が加わることが無いので、互いに損傷を受けることがなく、遠心力が作用する永久磁石に対し、長期間、安定的な抜け止めを施すことができる。   Therefore, since the permanent magnet 5 and the laminated iron core 4 are not subjected to local force, the permanent magnet 5 and the laminated iron core 4 are not damaged each other, and the permanent magnet on which the centrifugal force acts is provided with a stable retaining for a long time. Can do.

永久磁石5は、両側面5a、5bを同一曲率半径に設定した場合、遠心力により、積層鉄心4のスロット内で移動する恐れがある。これを防止するには、永久磁石5を円弧状に形成するに際し、両側面5a、5bのそれぞれの円弧の中心位置が異なるように成形すれば良い。すなわち、図8に示すように、永久磁石5の側面5aの半径R1の円弧の中心位置と、側面5bの半径R2の円弧の中心位置を異ならせる。半径R1とR2は同一であっても、異なっても良い。   When the side surfaces 5a and 5b are set to have the same curvature radius, the permanent magnet 5 may move in the slot of the laminated core 4 due to centrifugal force. In order to prevent this, when the permanent magnet 5 is formed in an arc shape, it may be formed so that the center positions of the respective arcs of both side surfaces 5a and 5b are different. That is, as shown in FIG. 8, the center position of the arc of radius R1 of the side surface 5a of the permanent magnet 5 is different from the center position of the arc of radius R2 of the side surface 5b. The radii R1 and R2 may be the same or different.

このように、1つの永久磁石5の両側面をそれぞれ中心位置が異なる円弧に形成すれば、両側面の移動軌跡が異なるので永久磁石5は移動できず、抜け止めを施すことができる。   In this way, if both side surfaces of one permanent magnet 5 are formed in circular arcs having different center positions, the movement trajectories of both side surfaces are different, so that the permanent magnet 5 cannot move and can be prevented from coming off.

また、永久磁石5の両側面は円弧で形成されるため滑らかに変形しているので、永久磁石5に加わる遠心力Fcと、積層鉄心4の反力Frとの作用点は分散させることができる。従って、永久磁石5と積層鉄心4には局部的な力が加わることが無く、互いに損傷を受けることがなく、遠心力が作用する永久磁石に対し、長期間、安定的な抜け止めを施すことができる。   In addition, since both side surfaces of the permanent magnet 5 are formed of circular arcs, they are smoothly deformed, so that the action points of the centrifugal force Fc applied to the permanent magnet 5 and the reaction force Fr of the laminated core 4 can be dispersed. . Therefore, no local force is applied to the permanent magnet 5 and the laminated iron core 4, and the permanent magnets are not damaged from each other. Can do.

以上説明したように、各実施例の永久磁石回転電機によれば、ロータの永久磁石とステータをできるだけ接近させることと、永久磁石の安定的な抜け止めの構成により、永久磁石からステータにより大きな磁束を流すことで、コンパクトな構成で大きなトルクを得ると共に、安定的な永久磁石の抜け止めが施され、長期間にわたり高性能な運転を安全に継続することができる。   As described above, according to the permanent magnet rotating electrical machine of each embodiment, a large magnetic flux is generated from the permanent magnet to the stator by bringing the permanent magnet of the rotor and the stator as close as possible to each other and by providing a stable retaining structure for the permanent magnet. As a result, a large torque can be obtained with a compact configuration, a stable permanent magnet can be prevented from coming off, and high-performance operation can be safely continued over a long period of time.

1…ステータ、1a…ティース、2…ロータ、2a…ロータの外周面、3…巻線、電機子巻線、4…鉄心、積層鉄心、4a…積層鉄心の外周面4a、5…永久磁石、5a、5b永久磁石の側面、5c…永久磁石の外周側端面、5d…永久磁石の内周側端面、8…回転軸、A…凹部、a、b、c…永久磁石の断面幅、Fc…永久磁石に加わる遠心力、Fr…積層鉄心4の反力、R1、R2…永久磁石の曲率半径、W1…外周側の積層鉄心の幅、W2…内周側の積層鉄心の幅。   DESCRIPTION OF SYMBOLS 1 ... Stator, 1a ... Teeth, 2 ... Rotor, 2a ... Outer peripheral surface of rotor, 3 ... Winding, armature winding, 4 ... Iron core, laminated iron core, 4a ... Outer circumferential surface of laminated iron core, 4 ... Permanent magnet, 5a, 5b Side surface of permanent magnet, 5c ... Outer peripheral end surface of permanent magnet, 5d ... Inner peripheral end surface of permanent magnet, 8 ... Rotating shaft, A ... Recess, a, b, c ... Section width of permanent magnet, Fc ... Centrifugal force applied to the permanent magnet, Fr: reaction force of the laminated core 4, R1, R2: radius of curvature of the permanent magnet, W1: width of the laminated core on the outer peripheral side, W2: width of the laminated core on the inner peripheral side.

Claims (9)

巻線が巻装された鉄心からなるステータと、
このステータに隙間をもって外周が離間し、内周側が回転軸に固定された鉄心を有するロータを備え、
前記ロータは回転中心から放射状に延びる複数の永久磁石を内蔵し、
前記永久磁石は、外周側の端面がロータの外周面に沿うように位置し、かつ永久磁石の周方向の断面幅がロータの半径方向内側に沿って大きくなるように形成されたことを特徴とする永久磁石回転電機。
A stator made of an iron core wound with windings;
The stator is provided with a rotor having an iron core whose outer periphery is spaced apart with a gap and whose inner peripheral side is fixed to the rotating shaft,
The rotor contains a plurality of permanent magnets extending radially from the center of rotation,
The permanent magnet is formed so that an outer peripheral end surface thereof is positioned along the outer peripheral surface of the rotor, and a circumferential cross-sectional width of the permanent magnet is increased along a radial inner side of the rotor. Permanent magnet rotating electric machine.
請求項1に記載の永久磁石回転電機において、
前記鉄心は、その外周面が前記永久磁石との境目で回転軸側に変形した凹部を有することを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 1,
The iron core has a concave portion whose outer peripheral surface is deformed toward the rotating shaft at the boundary with the permanent magnet.
請求項1または2に記載の永久磁石回転電機において、
前記永久磁石は、周方向の断面幅がロータの半径方向に沿って変化するように形成されたことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 1 or 2,
The permanent magnet rotating electric machine, wherein the permanent magnet is formed so that a cross-sectional width in a circumferential direction changes along a radial direction of a rotor.
請求項1〜3のいずれかに記載の永久磁石回転電機において、
前記永久磁石は、周方向の断面がロータの半径方向中央部において大きくなるように、断面が樽型に形成されたことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 1 to 3,
The permanent magnet rotating electric machine is characterized in that a cross section of the permanent magnet is formed in a barrel shape so that a cross section in a circumferential direction becomes large at a central portion in a radial direction of a rotor.
請求項1〜3のいずれかに記載の永久磁石回転電機において、
前記永久磁石は、周方向の断面がロータの半径方向中央部において大きくなるように、断面がカマボコ型に形成されたことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 1 to 3,
The permanent magnet rotating electric machine is characterized in that the cross section of the permanent magnet is formed in a scallop shape so that the cross section in the circumferential direction becomes large at a central portion in the radial direction of the rotor.
請求項1〜3のいずれかに記載の永久磁石回転電機において、
前記永久磁石は、放射状に沿って断面が円弧状に形成されたことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 1 to 3,
The permanent magnet rotating electric machine is characterized in that the permanent magnet has a circular cross section along a radial shape.
巻線が巻装された鉄心を有するステータと、
このステータに隙間をもって外周が離間し、内周側が回転軸に固定された鉄心を有するロータを備え、
前記ロータは回転中心から放射状に延びる複数の永久磁石を内蔵し、
前記永久磁石は、外周側の端面がロータの外周面に沿うように位置し、かつ放射状に沿って断面が円弧状に形成されたことを特徴とする永久磁石回転電機。
A stator having an iron core wound with windings;
The stator is provided with a rotor having an iron core whose outer periphery is spaced apart with a gap and whose inner peripheral side is fixed to the rotating shaft,
The rotor contains a plurality of permanent magnets extending radially from the center of rotation,
The permanent magnet rotating electrical machine is characterized in that the permanent magnet is positioned such that an outer peripheral end surface thereof is along the outer peripheral surface of the rotor, and a cross section is formed in an arc shape along a radial shape.
請求項7に記載の永久磁石回転電機において、
前記鉄心は、その外周面が前記永久磁石との境目で回転軸側に変形した凹部を有することを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 7,
The iron core has a concave portion whose outer peripheral surface is deformed toward the rotating shaft at the boundary with the permanent magnet.
請求項7または8に記載の永久磁石回転電機において、
前記永久磁石は、両側面がそれぞれ中心位置が異なる円弧に形成されたことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 7 or 8,
The permanent magnet rotating electric machine is characterized in that both side surfaces are formed in circular arcs having different center positions.
JP2013203862A 2013-09-30 2013-09-30 Permanent magnet rotating electric machine Active JP6196864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013203862A JP6196864B2 (en) 2013-09-30 2013-09-30 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203862A JP6196864B2 (en) 2013-09-30 2013-09-30 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015070721A true JP2015070721A (en) 2015-04-13
JP6196864B2 JP6196864B2 (en) 2017-09-13

Family

ID=52836914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203862A Active JP6196864B2 (en) 2013-09-30 2013-09-30 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6196864B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189867A (en) * 2015-03-31 2016-11-10 京楽産業.株式会社 Game machine
CN106911239A (en) * 2015-12-23 2017-06-30 博泽沃尔兹堡汽车零部件有限公司 Motor
CN107666192A (en) * 2016-07-29 2018-02-06 艾塔尔公司 Rotor for synchronous motor
CN109474096A (en) * 2018-12-25 2019-03-15 南京埃斯顿自动化股份有限公司 A kind of servo motor of embedded spoke type p-m rotor
CN109861412A (en) * 2019-02-14 2019-06-07 江苏大学 Permanent magnetism top rake formula bearing-free flux switch permanent magnet motor
WO2022107713A1 (en) * 2020-11-19 2022-05-27 ミネベアミツミ株式会社 Motor and stator manufacturing method
KR20230053410A (en) * 2021-10-14 2023-04-21 엘지전자 주식회사 Flux concentrate type rotor and motor having the same
KR20230055120A (en) * 2021-10-18 2023-04-25 엘지전자 주식회사 Arc type permanent magnet and flux concentrate type rotor having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670494A (en) * 1992-08-08 1994-03-11 Yaskawa Electric Corp Field for cylindrical motor
JPH1189133A (en) * 1997-09-05 1999-03-30 Fujitsu General Ltd Permanent magnet type motor
JPH11289698A (en) * 1998-03-31 1999-10-19 Fuji Electric Co Ltd Rotor core for permanent magnet electric motor
JP2006516879A (en) * 2003-01-31 2006-07-06 カーチス−ライト・エレクトロ−メカニカル・コーポレイション Trapezoidal motor magnetic pole device that increases magnetic flux to improve motor torque density
WO2013135376A2 (en) * 2012-03-13 2013-09-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electrical machine with a high level of efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670494A (en) * 1992-08-08 1994-03-11 Yaskawa Electric Corp Field for cylindrical motor
JPH1189133A (en) * 1997-09-05 1999-03-30 Fujitsu General Ltd Permanent magnet type motor
JPH11289698A (en) * 1998-03-31 1999-10-19 Fuji Electric Co Ltd Rotor core for permanent magnet electric motor
JP2006516879A (en) * 2003-01-31 2006-07-06 カーチス−ライト・エレクトロ−メカニカル・コーポレイション Trapezoidal motor magnetic pole device that increases magnetic flux to improve motor torque density
WO2013135376A2 (en) * 2012-03-13 2013-09-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electrical machine with a high level of efficiency

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189867A (en) * 2015-03-31 2016-11-10 京楽産業.株式会社 Game machine
CN106911239B (en) * 2015-12-23 2020-04-28 博泽沃尔兹堡汽车零部件有限公司 Electric machine
KR101926850B1 (en) * 2015-12-23 2018-12-07 브로제 파르초이크타일레 게엠베하 운트 코. 콤만디트게젤샤프트 뷔르츠부르크 Electric Machine
CN106911239A (en) * 2015-12-23 2017-06-30 博泽沃尔兹堡汽车零部件有限公司 Motor
US11128185B2 (en) 2015-12-23 2021-09-21 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Electric machine, method of manufacturing the electric machine, rotor and adjustment device
CN107666192A (en) * 2016-07-29 2018-02-06 艾塔尔公司 Rotor for synchronous motor
CN107666192B (en) * 2016-07-29 2021-03-30 艾塔尔公司 Rotor for synchronous motor
CN109474096A (en) * 2018-12-25 2019-03-15 南京埃斯顿自动化股份有限公司 A kind of servo motor of embedded spoke type p-m rotor
CN109861412A (en) * 2019-02-14 2019-06-07 江苏大学 Permanent magnetism top rake formula bearing-free flux switch permanent magnet motor
WO2022107713A1 (en) * 2020-11-19 2022-05-27 ミネベアミツミ株式会社 Motor and stator manufacturing method
KR20230053410A (en) * 2021-10-14 2023-04-21 엘지전자 주식회사 Flux concentrate type rotor and motor having the same
KR102625653B1 (en) 2021-10-14 2024-01-17 엘지전자 주식회사 Flux concentrate type rotor and motor having the same
KR20230055120A (en) * 2021-10-18 2023-04-25 엘지전자 주식회사 Arc type permanent magnet and flux concentrate type rotor having the same
KR102654659B1 (en) * 2021-10-18 2024-04-05 엘지전자 주식회사 Arc type permanent magnet and flux concentrate type rotor having the same

Also Published As

Publication number Publication date
JP6196864B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6196864B2 (en) Permanent magnet rotating electric machine
JP5930253B2 (en) Permanent magnet embedded rotary electric machine
EP3323187B1 (en) Combination structure between stator and rotor in a brushless motor
US9071118B2 (en) Axial motor
JP5682600B2 (en) Rotating electrical machine rotor
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP4396537B2 (en) Permanent magnet type motor
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
JP5774081B2 (en) Rotating electric machine
JP6055725B2 (en) Axial type rotating electric machine using rotor and rotor
JP4844570B2 (en) Permanent magnet type motor
US20120074805A1 (en) Rotor
JP2017077044A (en) Rotating electric machine and manufacturing method of rotor core
JP2006509483A (en) Electric machines, especially brushless synchronous motors
JP2008271640A (en) Axial gap motor
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
WO2016060232A1 (en) Double stator-type rotary machine
JPWO2020194390A1 (en) Rotating machine
US10778052B2 (en) Synchronous reluctance type rotary electric machine
JP2008199846A (en) Permanent magnet type electric rotating machine
JP5041415B2 (en) Axial gap type motor
JP6012046B2 (en) Brushless motor
JP2005039909A (en) Permanent magnet embedded type motor
KR102390035B1 (en) Flux Concentrate Type Motor
JP2013093979A (en) Synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6196864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250