JP2015070690A - Device and method for charging power storage device for driving work machine - Google Patents

Device and method for charging power storage device for driving work machine Download PDF

Info

Publication number
JP2015070690A
JP2015070690A JP2013202607A JP2013202607A JP2015070690A JP 2015070690 A JP2015070690 A JP 2015070690A JP 2013202607 A JP2013202607 A JP 2013202607A JP 2013202607 A JP2013202607 A JP 2013202607A JP 2015070690 A JP2015070690 A JP 2015070690A
Authority
JP
Japan
Prior art keywords
battery group
storage battery
voltage
charging
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013202607A
Other languages
Japanese (ja)
Inventor
竹内 健
Takeshi Takeuchi
健 竹内
到 納谷
Itaru Naya
到 納谷
伊君 高志
Takashi Ikimi
高志 伊君
津村 淳二
Junji Tsumura
淳二 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2013202607A priority Critical patent/JP2015070690A/en
Publication of JP2015070690A publication Critical patent/JP2015070690A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device and method for charging a power storage device for a work machine capable of securing the safety and shortening a charging time.SOLUTION: Provided is a device for charging a power storage device for a work machine, comprising one accumulator battery group 32 configured by series-connecting a plurality of accumulator batteries 31, and the other accumulator battery group 33 connected in parallel to the one accumulator battery group 32. The device for charging a power storage device for a work machine comprises: switches 36 and 37 switching an external power supply 100 and each accumulator battery group to an electrically-connected state or a disconnected state; voltage sensors 38 and 39 respectively detecting a voltage of each accumulator battery group; and a controller 41, in a case where it is determined that a voltage difference occurs between the one accumulator battery group 32 and the other accumulator battery group 33 on the basis of the detection value from each voltage sensor, controlling the switch of the low-voltage side accumulator battery group to a closing state and controlling the switch of the high-voltage side accumulator battery group to an opening state, and in a case where it is determined that a voltage of the one accumulator battery group 32 is substantially the same as a voltage of the other accumulator battery group 33, controlling each switch to the closing state.

Description

本発明は、作業機械駆動用蓄電装置の充電装置及び充電方法に関する。   The present invention relates to a charging device and a charging method for a power storage device for driving a work machine.

作業機械には、油圧ポンプを駆動する動力源として内燃機関に代えて電動機を採用し、電動機に電力を供給する蓄電装置を搭載した電気駆動式のものがある。電気駆動式作業機械の蓄電装置は、長時間の稼動を可能にするために、複数の蓄電池を直列接続して構成した蓄電池群を複数備え、各蓄電池群を並列に接続し、各蓄電池群を切り替えて電力を電動機に供給している。このような複数の蓄電池群を備えた蓄電装置では、一般的に各蓄電池群を切り替えて順番に充電するので、多大な充電時間を要する。そこで、充電時間の短縮のために、複数の蓄電池群を並列に接続して同時に充電する方法が考えられる。   Some work machines employ an electric drive instead of an internal combustion engine as a power source for driving a hydraulic pump, and are equipped with a power storage device that supplies electric power to the electric motor. In order to enable long-time operation, the power storage device of the electrically driven work machine includes a plurality of storage battery groups configured by connecting a plurality of storage batteries in series, and connects each storage battery group in parallel. The power is switched and supplied to the motor. In a power storage device provided with such a plurality of storage battery groups, each storage battery group is generally switched and charged in order, and therefore a long charging time is required. Therefore, in order to shorten the charging time, a method is conceivable in which a plurality of storage battery groups are connected in parallel and charged simultaneously.

複数の蓄電池(群)を並列に接続して充電する方法として、コストや手間をかけず、また昇降圧チョッパなどの特別な装置を用いなくとも、低圧電源から1回の充電操作で容易に効率良く充電するために、スイッチ装置によって全ての蓄電池を並列接続することにより、高電圧の蓄電池から低電圧の蓄電池へ電流を流して、複数の蓄電池の電圧が略同一の電圧になってから所定の時間経過後に充電を開始するものがある(特許文献1参照)。   As a method of charging by connecting multiple storage batteries (groups) in parallel, efficiency is easily achieved by a single charging operation from a low-voltage power source without the need for cost and labor and without using a special device such as a buck-boost chopper. In order to charge well, all the storage batteries are connected in parallel by the switch device, so that a current flows from the high-voltage storage battery to the low-voltage storage battery, and the voltage of the plurality of storage batteries becomes a predetermined voltage after the voltage becomes substantially the same. Some start charging after the passage of time (see Patent Document 1).

特開2006−67683号公報(段落0023、図3)JP 2006-67683 A (paragraph 0023, FIG. 3)

上記した特許文献1に記載された発明においては、蓄電池を並列接続することにより高電圧の蓄電池から低電圧の蓄電池へ電流を流して、複数の蓄電池の電圧が略同一の電圧になってから所定の時間経過後に充電を開始するため、複数の蓄電池の電圧が略同一の電圧になるまで充電せず、充電を開始するまでに多大な時間を要し、この間、建設機械の稼動を休止しなければならない。   In the invention described in Patent Document 1 described above, the current is passed from the high-voltage storage battery to the low-voltage storage battery by connecting the storage batteries in parallel, and the plurality of storage batteries have a predetermined voltage after the voltages become substantially the same. Since charging starts after a certain period of time, charging is not performed until the voltage of the plurality of storage batteries becomes substantially the same voltage, and it takes a lot of time to start charging. I must.

また、特許文献1に記載された発明においては、蓄電池を並列接続することにより高電圧の蓄電池から低電圧の蓄電池へ電流を流して、複数の蓄電池の電圧を略同一の電圧にするため、蓄電池間の電圧が大きく異なる場合には、高電圧の蓄電池から低電圧の蓄電池に大電流が流れ、接続配線や蓄電池が高温になり、安全性に問題が生じる場合がある。   Moreover, in the invention described in Patent Document 1, in order to flow current from a high-voltage storage battery to a low-voltage storage battery by connecting the storage batteries in parallel, the voltages of the plurality of storage batteries are set to substantially the same voltage. When the voltage between the two is greatly different, a large current flows from the high-voltage storage battery to the low-voltage storage battery, the connection wiring and the storage battery become high temperature, and a safety problem may occur.

本発明は、上述の事柄に基づいてなされたもので、その目的は、安全性を確保し、かつ、充電時間の短縮を図ることができる作業機械用蓄電装置の充電装置及び充電方法を提供するものである。   The present invention has been made based on the above-described matters, and an object of the present invention is to provide a charging device and a charging method for a power storage device for a working machine that can ensure safety and shorten the charging time. Is.

上記目的を達成するため、第1の発明は、外部電源からの電力供給により充電される複数の蓄電池を直列に接続して構成した一方の蓄電池群と、前記一方の蓄電池群と並列に接続した他方の蓄電池群とを備えた作業機械用蓄電装置の充電装置であって、前記外部電源と前記各蓄電池群とをそれぞれ電気的に接続した状態と遮断した状態とに切り換えるスイッチと、前記各蓄電池群の電圧をそれぞれ検出する電圧センサと、前記各電圧センサからの検出値に基づいて、前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断した場合に、低電圧側の蓄電池群のスイッチを閉状態に、高電圧側の蓄電池群のスイッチを開状態に制御し、前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断した場合に、前記各スイッチを閉状態に制御するコントローラとを備えたことを特徴とする。   In order to achieve the above object, according to a first aspect of the present invention, there is provided one storage battery group configured by connecting a plurality of storage batteries that are charged by power supply from an external power supply in series, and the one storage battery group connected in parallel. A storage device for a working machine comprising the other storage battery group, wherein the external power source and each of the storage battery groups are switched between a state of being electrically connected and a state of being shut off, and each of the storage batteries. When it is determined that there is a voltage difference between the one storage battery group and the other storage battery group based on the voltage sensor that detects the voltage of each group and the detection value from each voltage sensor, The switch of the low-voltage side storage battery group is closed and the switch of the high-voltage side storage battery group is controlled to be in the open state, and it is determined that the one storage battery group and the other storage battery group have substantially the same voltage. If, before Each switch characterized by comprising a controller for controlling a closed state.

また、第2の発明は、第1の発明において、前記コントローラは、前記各電圧センサからの検出値の差の絶対値を演算し、この演算結果と予め記憶した閾値とを比較し、前記演算結果が前記閾値より小さい場合に前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断し、それ以外の場合に前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断することを特徴とする。   In a second aspect based on the first aspect, the controller calculates an absolute value of a difference between detection values from the voltage sensors, compares the calculation result with a prestored threshold value, and calculates the calculation result. When the result is smaller than the threshold value, it is determined that the one storage battery group and the other storage battery group have substantially the same voltage, and otherwise, between the one storage battery group and the other storage battery group It is characterized in that it is determined that there is a voltage difference.

さらに、第3の発明は、外部電源からの電力供給により充電される複数の蓄電池を直列に接続して構成した一方の蓄電池群と、前記一方の蓄電池群と並列に接続した他方の蓄電池群とを備えた作業機械用蓄電装置の充電方法であって、前記各蓄電池群の電圧を電圧センサでそれぞれ検出する手順と、前記電圧センサの検出値に基づいて、前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じているか又は前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であるかを判断する手順と、前記判断する手順において前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断した場合に、高電圧側の蓄電池群と前記外部電源とを電気的に遮断し、低電圧側の蓄電池群を前記外部電源と電気的に接続して充電する手順と、前記判断する手順において前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断した場合に、前記各蓄電池群を前記外部電源と電気的に接続して充電する手順とを備えたことを特徴とする。   Furthermore, the third aspect of the invention relates to one storage battery group configured by connecting a plurality of storage batteries charged by power supply from an external power supply in series, and the other storage battery group connected in parallel to the one storage battery group. A method for charging a power storage device for a working machine comprising: a step of detecting a voltage of each of the storage battery groups with a voltage sensor; and based on a detection value of the voltage sensor, the one storage battery group and the other storage battery group A procedure for determining whether there is a voltage difference with the storage battery group or whether the one storage battery group and the other storage battery group have substantially the same voltage, and the one storage battery group in the determining procedure; When it is determined that a voltage difference has occurred with the other storage battery group, the storage battery group on the high voltage side and the external power supply are electrically disconnected, and the storage battery group on the low voltage side is connected with the external power supply. Connect electrically to charge When it is determined that the one storage battery group and the other storage battery group have substantially the same voltage in the procedure and the determination procedure, the storage battery groups are electrically connected to the external power source and charged. And a procedure.

また、第4の発明は、第3の発明において、前記判断する手順は、前記各電圧センサからの検出値の差の絶対値を演算する手順と、この演算結果と予め記憶した閾値とを比較する手順とを含み、前記演算結果が前記閾値より小さい場合に前記一方の蓄電池群と前記他方の蓄電池群との間の電圧が略同一であると判断し、それ以外の場合に前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断する手順であることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the determining step is performed by comparing the step of calculating the absolute value of the difference between the detected values from the voltage sensors and the calculation result with a previously stored threshold value. And determining that the voltage between the one storage battery group and the other storage battery group is substantially the same when the calculation result is smaller than the threshold, and otherwise, the one storage battery It is a procedure for judging that a voltage difference is generated between the group and the other storage battery group.

本発明によれば、一方の蓄電池群と他方の蓄電池群との間に電圧差が生じている場合に低電圧側の蓄電池群のみを先行して充電し、一方の蓄電池群と他方の蓄電池群とが略同一の電圧になってから並列接続した各蓄電池群を同時に充電するので、高電圧側の蓄電池群から低電圧側の蓄電池群に大電流が流入することがなく、安全性を確保することができると共に、充電時間の短縮を図ることができる。   According to the present invention, when a voltage difference is generated between one storage battery group and the other storage battery group, only the storage battery group on the low voltage side is charged in advance, and one storage battery group and the other storage battery group are charged. Since the storage battery groups connected in parallel are charged at the same time after the voltage becomes substantially the same voltage, a large current does not flow from the storage battery group on the high voltage side to the storage battery group on the low voltage side, ensuring safety. In addition, the charging time can be shortened.

本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を適用した作業機械を示す側面図である。1 is a side view showing a working machine to which an embodiment of a charging device for a power storage device for driving a working machine of the present invention is applied. 図1に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を適用した作業機械を示す平面図である。It is a top view which shows the working machine which applied one Embodiment of the charging device of the electrical storage apparatus for working machine drive of this invention shown in FIG. 本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を蓄電装置と共に示す構成図である。It is a block diagram which shows one Embodiment of the charging device of the electrical storage apparatus for working machine drive of this invention with an electrical storage apparatus. 図3に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the charging method in one Embodiment of the charging device of the electrical storage apparatus for working machine drive of this invention shown in FIG. 図3に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法の一例での各蓄電池群の充電率の推移を示す模式図であり、(a)は低電圧側の蓄電池群のみを先行して充電する状態を示す図、(b)は略同一の電圧になった各蓄電池群を同時に充電する状態を示す図である。It is a schematic diagram which shows transition of the charging rate of each storage battery group in an example of the charging method in one Embodiment of the charging device of the electrical storage apparatus for working machine drive of this invention shown in FIG. 3, (a) is a low voltage side The figure which shows the state which charges only the storage battery group in advance, (b) is a figure which shows the state which charges each storage battery group used as the substantially the same voltage simultaneously.

以下、作業機械としてバッテリ式油圧ショベルを例に挙げて本発明の作業機械駆動用蓄電装置の充電装置及び充電方法の実施の形態を図面を用いて説明する。
なお、本発明は、電動機の電力源として蓄電装置を備えた作業機械に適用が可能であり、バッテリ式油圧ショベルに限定されるものではない。例えば、蓄電装置を主動力源とするバッテリ式フォークリフト等の作業機械や電動機を内燃機関の補助動力とする、所謂ハイブリッド式の作業機械にも適用可能である。
Hereinafter, a battery-type hydraulic excavator will be described as an example of a work machine, and an embodiment of a charging device and a charging method for a power storage device for driving a work machine according to the present invention will be described with reference to the drawings.
The present invention can be applied to a work machine including a power storage device as a power source of an electric motor, and is not limited to a battery-type hydraulic excavator. For example, the present invention can also be applied to a so-called hybrid work machine in which a work machine such as a battery-type forklift that uses a power storage device as a main power source or an auxiliary power of an internal combustion engine that uses an electric motor.

図1乃至図3は本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を示すもので、図1は本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を適用した作業機械を示す側面図、図2は図1に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を適用した作業機械を示す平面図、図3は本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を蓄電装置と共に示す構成図である。なお、図2中、図1に示した作業フロント4を一部省略している。   1 to 3 show an embodiment of a charging device for a power storage device for driving a work machine according to the present invention. FIG. 1 shows an embodiment of a charging device for a power storage device for driving a work machine according to the present invention. 2 is a side view showing the working machine, FIG. 2 is a plan view showing the working machine to which an embodiment of the charging device for the power storage device for driving the working machine of the present invention shown in FIG. 1 is applied, and FIG. 3 is the working machine of the present invention. It is a block diagram which shows one Embodiment of the charging device of the electrical storage apparatus for a drive with an electrical storage apparatus. In FIG. 2, the work front 4 shown in FIG. 1 is partially omitted.

図1において、バッテリ式油圧ショベル1は、走行体2と、走行体2上に旋回可能に搭載された旋回体3と、旋回体3の前側に俯仰可能に装設した作業フロント4とを備えている。   In FIG. 1, a battery-type hydraulic excavator 1 includes a traveling body 2, a revolving body 3 that is turnably mounted on the traveling body 2, and a work front 4 that is installed on the front side of the revolving body 3 so as to be able to be raised and lowered. ing.

走行体2は、トラックフレーム5と、トラックフレーム5の後端(図1の右側)に回転可能に支持され、走行用電動モータ(図示せず)により駆動する駆動輪6と、トラックフレーム5の前端(図1の左側)に回転可能に支持された遊動輪7と、駆動輪6と遊動輪7とに掛け回された履帯8とを備えている。   The traveling body 2 is rotatably supported by a track frame 5, a rear end (right side in FIG. 1) of the track frame 5, and is driven by a traveling electric motor (not shown). An idler wheel 7 rotatably supported at the front end (left side in FIG. 1) and a crawler belt 8 wound around the drive wheel 6 and the idler wheel 7 are provided.

作業フロント4は、ブームシリンダ9aにより俯仰可能に旋回体3に取り付けたブーム9と、アームシリンダ10aにより回動可能にブーム9に取り付けたアーム10と、バケットシリンダ11aにより回動可能にアーム10の先端に設けたバケット11とを備えている。   The work front 4 includes a boom 9 attached to the revolving body 3 so as to be able to be lifted and lowered by a boom cylinder 9a, an arm 10 attached to the boom 9 so as to be rotatable by an arm cylinder 10a, and a arm 10 that can be turned by a bucket cylinder 11a. And a bucket 11 provided at the tip.

旋回体3は、図1及び図2に示すように、走行体2上に旋回可能に搭載した旋回フレーム12と、旋回フレーム12の前側(図1及び図2の左側)に設けられ、オペレータが操作を行う運転室13と、旋回フレーム12の後端部(図1及び図2の右側)に設けたカウンターウェイト14と、運転室13とカウンターウェイト14との間に設け、蓄電装置30を収納した蓄電装置収納部15と、運転室13の右側方(図2の上側)に設け、油圧ポンプ21及び油圧ポンプ用電動モータ22を収納した油圧ポンプ収納部16と、運転室13と油圧ポンプ収納部16との間に設け、旋回用電動モータ23を有する旋回機構17とを備えている。   As shown in FIGS. 1 and 2, the revolving unit 3 is provided on a revolving frame 12 that can be revolved on the traveling unit 2 and on the front side of the revolving frame 12 (left side in FIGS. 1 and 2). A cab 13 for operation, a counterweight 14 provided at the rear end (right side in FIGS. 1 and 2) of the revolving frame 12, and provided between the cab 13 and the counterweight 14 to store the power storage device 30. The power storage device storage portion 15, the hydraulic pump storage portion 16 provided on the right side of the cab 13 (upper side in FIG. 2) and storing the hydraulic pump 21 and the hydraulic motor 22 for the hydraulic pump, the cab 13 and the hydraulic pump storage. And a turning mechanism 17 having a turning electric motor 23.

バッテリ式油圧ショベル1は、油圧ポンプ用電動モータ22で油圧ポンプ21を駆動し、ブームシリンダ9a、アームシリンダ10a、及びバケットシリンダ11aにそれぞれ圧油を供給することにより、ブーム9、アーム10、及びバケット11をそれぞれ駆動させている。また、旋回用電動モータ23により旋回体3を旋回させ、走行用電動モータ(図示せず)により走行体2を前後進させている。これらの油圧ポンプ用電動モータ22、旋回用電動モータ23、走行用電動モータは、蓄電装置30から電力の供給を受けている。   The battery-type hydraulic excavator 1 drives the hydraulic pump 21 with a hydraulic pump electric motor 22 to supply pressure oil to the boom cylinder 9a, the arm cylinder 10a, and the bucket cylinder 11a. Each bucket 11 is driven. Further, the turning body 3 is turned by the turning electric motor 23, and the traveling body 2 is moved forward and backward by the running electric motor (not shown). The hydraulic pump electric motor 22, the turning electric motor 23, and the traveling electric motor are supplied with electric power from the power storage device 30.

次に、本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態を図3を用いて説明する。なお、図3において、図1及び図2に示す符号と同符合のものは、同一部分であるので、その詳細な説明は省略する。   Next, an embodiment of a charging device for a power storage device for driving a work machine according to the present invention will be described with reference to FIG. In FIG. 3, the same reference numerals as those shown in FIGS. 1 and 2 are the same parts, and detailed description thereof is omitted.

図3に示す充電装置は、外部電源100からの電力供給により蓄電装置30を充電するものである。蓄電装置30は、充電時にコネクタ25を介して外部電源100と電気的に接続される。   The charging device illustrated in FIG. 3 charges the power storage device 30 by supplying power from the external power supply 100. Power storage device 30 is electrically connected to external power supply 100 via connector 25 during charging.

蓄電装置30は、複数(例えば、図3では5個)の蓄電池31を直列に接続して構成した第1の蓄電池群32と、複数(例えば、図3では5個)の蓄電池31を直列に接続して構成した第2の蓄電池群33とを備え、第1の蓄電池群32と第2の蓄電池群33とを並列に接続したものである。   The power storage device 30 includes a first storage battery group 32 configured by connecting a plurality (for example, five in FIG. 3) of storage batteries 31 in series, and a plurality of (for example, five in FIG. 3) storage batteries 31 in series. The second storage battery group 33 is connected and configured, and the first storage battery group 32 and the second storage battery group 33 are connected in parallel.

蓄電装置30は、前述した油圧ポンプ用電動モータ22(図2参照)、旋回用電動モータ23(図2参照)、走行用電動モータ(図示せず)を含む車体駆動系24に電気的に接続されており、第1の蓄電池群32と第2の蓄電池群33とを切り換えて車体駆動系24の各電動モータ22、23に電力を供給している。   The power storage device 30 is electrically connected to the vehicle body drive system 24 including the hydraulic pump electric motor 22 (see FIG. 2), the turning electric motor 23 (see FIG. 2), and the traveling electric motor (not shown). The first storage battery group 32 and the second storage battery group 33 are switched to supply electric power to the electric motors 22 and 23 of the vehicle body drive system 24.

第1の蓄電池群32には、第1のスイッチ36が直列に接続されている。第1のスイッチ36は、第1の蓄電池群32と外部電源100とを電気的に接続された状態と遮断された状態とに切り換えるものである。第2の蓄電池群33には、第2のスイッチ37が直列に接続されている。第2のスイッチ37は、第2の蓄電池群33と外部電源100とを電気的に接続された状態と遮断された状態とに切り換えるものである。   A first switch 36 is connected in series to the first storage battery group 32. The first switch 36 switches the first storage battery group 32 and the external power source 100 between an electrically connected state and a disconnected state. A second switch 37 is connected in series to the second storage battery group 33. The second switch 37 switches the second storage battery group 33 and the external power source 100 between an electrically connected state and a disconnected state.

第1の蓄電池群32の両端には、第1の蓄電池群32の電圧を検出する第1の電圧センサ38が接続されている。第2の蓄電池群33の両端には、第2の蓄電池群33の電圧を検出する第2の電圧センサ39が接続されている。第1の電圧センサ38及び第2の電圧センサ39はそれぞれ、コントローラ41に接続され、検出した電圧に対応した検出信号V1、V2をコントローラ41に出力する。   A first voltage sensor 38 that detects the voltage of the first storage battery group 32 is connected to both ends of the first storage battery group 32. A second voltage sensor 39 that detects the voltage of the second storage battery group 33 is connected to both ends of the second storage battery group 33. Each of the first voltage sensor 38 and the second voltage sensor 39 is connected to the controller 41 and outputs detection signals V1 and V2 corresponding to the detected voltage to the controller 41.

コントローラ41は、各電圧センサ38、39の検出信号V1、V2を入力する入力部42と、閾値及び設定値を予め記憶する記憶部43と、所定の演算及び比較判断を行う演算部44と、演算部44の判断に基づき各スイッチ36、37に開指令信号又は閉指令信号を出力する出力部45とを備えている。   The controller 41 includes an input unit 42 that inputs the detection signals V1 and V2 of the voltage sensors 38 and 39, a storage unit 43 that stores a threshold value and a set value in advance, a calculation unit 44 that performs predetermined calculation and comparison determination, An output unit 45 that outputs an open command signal or a close command signal to each of the switches 36 and 37 based on the determination of the calculation unit 44 is provided.

記憶部43には、第1の蓄電池群32と第2の蓄電池群33との間に電圧差が生じているか又は第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であるかを判断するために、演算部44の後述する演算結果|δV|と比較する閾値Vtが記憶されている。また、充電中の第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達したか否かを判断するために、各電圧センサ38、39からの検出信号V1、V2と比較する設定値Vcが記憶されている。   In the storage unit 43, there is a voltage difference between the first storage battery group 32 and the second storage battery group 33, or the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage. In order to determine whether or not there is, a threshold value Vt to be compared with a calculation result | δV | to be described later of the calculation unit 44 is stored. Further, in order to determine whether or not the first storage battery group 32 and the second storage battery group 33 that are being charged have reached a fully charged state, comparison is made with the detection signals V1 and V2 from the voltage sensors 38 and 39. A set value Vc is stored.

演算部44は、後述するように、第1の電圧センサ38からの検出値V1と第2の電圧センサ39からの検出値V2の差の絶対値|δV|(=|V1−V2|)を演算し、この演算結果|δV|と記憶部43に記憶された閾値Vtを比較することで、第1の蓄電池群32と第2の蓄電池群33との間に電圧差が生じているか又は第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であるかを判断する。第1の蓄電池群32と第2の蓄電池群33との間に電圧差が生じていると判断した場合には、低電圧側の蓄電池群のみを充電するために、低電圧側の蓄電池群のスイッチの閉指令信号を出力する。一方、第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であると判断した場合には、並列接続された第1の蓄電池群32と第2の蓄電池群33とを同時に充電するために、各スイッチ36、37の閉指令信号を出力する。   As will be described later, the calculation unit 44 calculates the absolute value | δV | (= | V1−V2 |) of the difference between the detection value V1 from the first voltage sensor 38 and the detection value V2 from the second voltage sensor 39. By calculating and comparing the calculation result | δV | with the threshold value Vt stored in the storage unit 43, there is a voltage difference between the first storage battery group 32 and the second storage battery group 33, or the first It is determined whether the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage. When it is determined that there is a voltage difference between the first storage battery group 32 and the second storage battery group 33, only the storage battery group on the low voltage side is charged to charge only the storage battery group on the low voltage side. Outputs a switch close command signal. On the other hand, when it is determined that the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage, the first storage battery group 32 and the second storage battery group 33 connected in parallel are simultaneously connected. In order to charge, the close command signal of each switch 36 and 37 is output.

また、演算部44は、第1の蓄電池群32及び第2の蓄電池群33の同時充電中に、各電圧センサ38、39からの検出値V1、V2と記憶部43に記憶された設定値Vcを比較することで、第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達したか否かを判断する。満充電状態に達したと判断した場合に、各スイッチ36、37の開指令信号を出力する。   The calculation unit 44 also detects the detected values V1 and V2 from the voltage sensors 38 and 39 and the set value Vc stored in the storage unit 43 during simultaneous charging of the first storage battery group 32 and the second storage battery group 33. Are compared to determine whether or not the first storage battery group 32 and the second storage battery group 33 have reached a fully charged state. When it is determined that the fully charged state is reached, an open command signal for each of the switches 36 and 37 is output.

出力部45は、演算部44からの第1のスイッチ36の開指令信号又は閉指令信号を第1のスイッチ36に、演算部44からの第2のスイッチ37の開指令信号又は閉指令信号を第2のスイッチ37に出力する。   The output unit 45 receives the opening command signal or the closing command signal for the first switch 36 from the calculating unit 44 as the first switch 36, and the opening command signal or the closing command signal for the second switch 37 from the calculating unit 44. Output to the second switch 37.

次に、本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法を図3乃至図5を用いて説明する。
図4は図3に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法の一例を示すフローチャート図、図5は図3に示す本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法の一例での各蓄電池群の充電率の推移を示す模式図であり、(a)は低電圧側の蓄電池群のみを先行して充電する状態を示す図、(b)は略同一の電圧になった各蓄電池群を同時に充電する状態を示す図である。図5中、斜線の領域は蓄電池群の蓄電率を、矢印は蓄電率の上昇を、破線矢印は、蓄電池群への電力供給を示す。なお、図4及び図5において、図1乃至図3に示す符号と同符合のものは、同一部分であるので、その詳細な説明は省略する。
Next, a charging method in an embodiment of a charging device for a power storage device for driving a work machine according to the present invention will be described with reference to FIGS.
FIG. 4 is a flowchart showing an example of a charging method in the embodiment of the charging device for the power storage device for working machine drive of the present invention shown in FIG. 3, and FIG. 5 is the power storage device for driving the work machine of the present invention shown in FIG. It is a schematic diagram which shows transition of the charging rate of each storage battery group in an example of the charging method in one embodiment of this charging device, (a) shows the state of charging only the storage battery group on the low voltage side in advance. FIG. 4B is a diagram illustrating a state in which the storage battery groups having substantially the same voltage are charged simultaneously. In FIG. 5, the hatched area indicates the storage rate of the storage battery group, the arrow indicates the increase in the storage rate, and the broken line arrow indicates power supply to the storage battery group. 4 and FIG. 5, the same reference numerals as those shown in FIG. 1 to FIG. 3 are the same parts, and detailed description thereof will be omitted.

先ず、上述のように構成された蓄電装置30の蓄電状態について説明する。図3に示す蓄電装置30は、第1の蓄電池群32と第2の蓄電池群33とを切り換えて車体駆動系24に電力を供給しているので、第1の蓄電池群32と第2の蓄電池群33は、通常、その使用状況に応じて蓄電残量が大きく異なっている。そのため、第1の蓄電池群32と第2の蓄電池群33の電圧も蓄電残量に応じて大きく異なっている。   First, the power storage state of the power storage device 30 configured as described above will be described. Since the power storage device 30 shown in FIG. 3 switches the first storage battery group 32 and the second storage battery group 33 and supplies power to the vehicle body drive system 24, the first storage battery group 32 and the second storage battery The group 33 generally differs greatly in the remaining amount of electricity depending on the usage status. Therefore, the voltage of the 1st storage battery group 32 and the 2nd storage battery group 33 is also greatly different according to the electrical storage residual amount.

次に、本発明の作業機械駆動用蓄電装置の充電装置の一実施の形態における充電方法を説明する。この蓄電装置30を充電するために、外部電源100をコネクタ25を介して図3に示す充電装置に接続し、充電開始を指示するスイッチ(図示せず)の操作を行う。このことにより、コントローラ41は、第1の蓄電池群32及び第2の蓄電池群33の充電制御を開始する。   Next, a charging method in an embodiment of the charging device for the power storage device for driving a work machine according to the present invention will be described. In order to charge this power storage device 30, external power supply 100 is connected to the charging device shown in FIG. 3 via connector 25, and a switch (not shown) for instructing the start of charging is operated. As a result, the controller 41 starts charging control of the first storage battery group 32 and the second storage battery group 33.

図4において、コントローラ41は、図3に示す第1のスイッチ36及び第2のスイッチ37の両方に開指令信号を出力する(ステップS1)。これによって、第1のスイッチ36及び第2のスイッチ37は開状態に制御され、第1の蓄電池群32及び第2の蓄電池群33は外部電源100と電気的に遮断された状態になる。   In FIG. 4, the controller 41 outputs an open command signal to both the first switch 36 and the second switch 37 shown in FIG. 3 (step S1). Accordingly, the first switch 36 and the second switch 37 are controlled to be in the open state, and the first storage battery group 32 and the second storage battery group 33 are electrically disconnected from the external power source 100.

次に、図3に示す第1の電圧センサ38により検出された第1の蓄電池群32の電圧の検出信号V1及び第2の電圧センサ39により検出された第2の蓄電池群33の電圧の検出信号V2をそれぞれ取り込む(ステップS2)。   Next, the voltage detection signal V1 of the first battery group 32 detected by the first voltage sensor 38 shown in FIG. 3 and the voltage of the second battery group 33 detected by the second voltage sensor 39 are detected. Each of the signals V2 is captured (step S2).

次いで、コントローラ41は、第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であるかを判断する(ステップS3)。具体的には、第1の電圧センサ38からの検出信号V1と第2の電圧センサ39からの検出信号V2の差の絶対値|δV|(=|V1−V2|)を演算し、この演算結果|δV|が図3に示す記憶部43に予め記憶された閾値Vtより小さいか否かで判断する。演算結果|δV|が閾値Vtより小さい場合には、第1の蓄電池群32と第2の蓄電池群33は略同一の電圧であると判断し、ステップS16に進み、それ以外の場合には、第1の蓄電池群32と第2の蓄電池群33との間に電圧差が生じている判断し、ステップS4に進む。   Next, the controller 41 determines whether or not the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage (step S3). Specifically, the absolute value | δV | (= | V1−V2 |) of the difference between the detection signal V1 from the first voltage sensor 38 and the detection signal V2 from the second voltage sensor 39 is calculated, and this calculation is performed. Judgment is made based on whether or not the result | δV | is smaller than the threshold value Vt stored in advance in the storage unit 43 shown in FIG. If the calculation result | δV | is smaller than the threshold value Vt, it is determined that the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage, and the process proceeds to step S16. It is determined that there is a voltage difference between the first storage battery group 32 and the second storage battery group 33, and the process proceeds to step S4.

蓄電装置30が上述した蓄電状態にある場合、すなわち、第1の蓄電池群32と第2の蓄電池群33の電圧が大きく異なっている場合、ステップS3において、第1の電圧センサ38からの検出信号V1と第2の電圧センサ39からの検出信号V2との差の絶対値|δV|が閾値Vt以上である(NO)と判定し、第1の蓄電池群32が第2の蓄電池群33より低電圧であるか否かを判断する(ステップS4)。具体的には、第1の電圧センサ38からの検出信号V1が第2の電圧センサ39からの検出信号V2より小さいか否かで判断する。第1の電圧センサ38からの検出信号V1が第2の電圧センサ39からの検出信号V2より小さい場合には、第1の蓄電池群32が第2の蓄電池群33より低電圧であると判断し、ステップS5に進み、それ以外の場合には、第2の蓄電池群33が第1の蓄電池群32より低電圧である判断し、ステップS12に進む。   When the power storage device 30 is in the above-described power storage state, that is, when the voltages of the first storage battery group 32 and the second storage battery group 33 are greatly different, a detection signal from the first voltage sensor 38 in step S3. It is determined that the absolute value | δV | of the difference between V1 and the detection signal V2 from the second voltage sensor 39 is equal to or greater than the threshold value Vt (NO), and the first storage battery group 32 is lower than the second storage battery group 33. It is determined whether or not it is a voltage (step S4). Specifically, determination is made based on whether or not the detection signal V1 from the first voltage sensor 38 is smaller than the detection signal V2 from the second voltage sensor 39. When the detection signal V1 from the first voltage sensor 38 is smaller than the detection signal V2 from the second voltage sensor 39, it is determined that the first storage battery group 32 has a lower voltage than the second storage battery group 33. The process proceeds to step S5. Otherwise, it is determined that the second storage battery group 33 has a lower voltage than the first storage battery group 32, and the process proceeds to step S12.

ステップS4において、コントローラ41は、第1の電圧センサ38からの検出信号V1が第2の電圧センサ39からの検出信号V2より小さい(YES)と判定すると、第1の蓄電池群32が第2の蓄電池群33より低電圧であると判断し、第1のスイッチ36に閉指令信号を出力する(ステップS5)。これによって、第1のスイッチ36は閉状態に制御され、第1の蓄電池群32は外部電源100と電気的に接続された状態になる。すなわち、図5(a)に示すように、低電圧側の第1の蓄電池群32のみを先行して充電する。このとき、コントローラ41は、一方の蓄電池群のみを充電する場合に対応した充電電流となるように外部電源100を制御する。   In step S4, when the controller 41 determines that the detection signal V1 from the first voltage sensor 38 is smaller than the detection signal V2 from the second voltage sensor 39 (YES), the first storage battery group 32 is in the second state. It is determined that the voltage is lower than that of the storage battery group 33, and a close command signal is output to the first switch 36 (step S5). As a result, the first switch 36 is controlled to be closed, and the first storage battery group 32 is electrically connected to the external power source 100. That is, as shown in FIG. 5A, only the first storage battery group 32 on the low voltage side is charged in advance. At this time, the controller 41 controls the external power supply 100 so as to obtain a charging current corresponding to the case where only one storage battery group is charged.

その後、第1の蓄電池群32の充電率は上昇し、その電圧もその充電率に応じて上昇していく。この第1の蓄電池群32の充電中に、コントローラ41は、第1の電圧センサ38からの検出信号V1及び第2の電圧センサ39からの検出信号V2をそれぞれ取り込み(ステップS6)、第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であるか否かを判断する(ステップS7)。具体的には、ステップS3と同様に、検出信号V1と検出信号V2の差の絶対値|δV|を演算し、この演算結果|δV|が閾値Vtより小さいか否かで判断する。   Thereafter, the charging rate of the first storage battery group 32 increases, and the voltage also increases according to the charging rate. During charging of the first storage battery group 32, the controller 41 takes in the detection signal V1 from the first voltage sensor 38 and the detection signal V2 from the second voltage sensor 39, respectively (step S6). It is determined whether or not the storage battery group 32 and the second storage battery group 33 have substantially the same voltage (step S7). Specifically, as in step S3, the absolute value | δV | of the difference between the detection signal V1 and the detection signal V2 is calculated, and whether or not the calculation result | δV | is smaller than the threshold value Vt is determined.

ステップS7において、第1の蓄電池群32の電圧が第2の蓄電池群33の電圧と略同一になるまで上昇していない場合、コントローラ41は、演算結果|δV|が閾値Vt以上である(NO)と判定し、すなわち、第1の蓄電池群32と第2の蓄電池群33との間に電圧差が生じていると判断し、ステップS6に戻り、上述した手順を繰り返す。換言すると、低電圧側の第1の蓄電池群32の電圧が高電圧側の第2の蓄電池群33の電圧と略同一になるまで、第1の蓄電池群32のみの充電を継続する。   In step S7, when the voltage of the first storage battery group 32 has not increased until it becomes substantially the same as the voltage of the second storage battery group 33, the controller 41 determines that the calculation result | δV | is equal to or greater than the threshold value Vt (NO ), That is, it is determined that there is a voltage difference between the first storage battery group 32 and the second storage battery group 33, the process returns to step S6, and the above-described procedure is repeated. In other words, charging of only the first storage battery group 32 is continued until the voltage of the first storage battery group 32 on the low voltage side becomes substantially the same as the voltage of the second storage battery group 33 on the high voltage side.

その後、低電圧側の第1の蓄電池群32の電圧が上昇して高電圧側の第2の蓄電池群33の電圧と略同一になると、ステップS7において、コントローラ41は、演算結果|δV|が閾値Vtより小さい(YES)と判定し、第2のスイッチ37に閉指令信号を出力する(ステップS8)。これによって、第2のスイッチ37は閉状態に制御され、第1の蓄電池群32及び第2の蓄電池群33はそれぞれ外部電源100と電気的に接続された状態になる。すなわち、図5(b)に示すように、各スイッチ36、37を閉状態にして、並列に接続された第1の蓄電池群32と第2の蓄電池群33とを同時に充電する。   Thereafter, when the voltage of the first storage battery group 32 on the low voltage side rises and becomes substantially the same as the voltage of the second storage battery group 33 on the high voltage side, the controller 41 determines that the calculation result | δV | It determines with it being smaller than the threshold value Vt (YES), and outputs a close command signal to the 2nd switch 37 (step S8). Accordingly, the second switch 37 is controlled to be closed, and the first storage battery group 32 and the second storage battery group 33 are electrically connected to the external power source 100, respectively. That is, as shown in FIG. 5B, the switches 36 and 37 are closed, and the first storage battery group 32 and the second storage battery group 33 connected in parallel are simultaneously charged.

このとき、各蓄電池群32、33は略同一の電圧であるので、充電中に高電圧の蓄電池群から低電圧の蓄電池群に大電流が流れることはない。この充電中、コントローラ41は、両蓄電池群32、33を充電する場合に対応した充電電流となるように外部電源100を制御する。   At this time, since the storage battery groups 32 and 33 have substantially the same voltage, a large current does not flow from the high-voltage storage battery group to the low-voltage storage battery group during charging. During this charging, the controller 41 controls the external power supply 100 so as to obtain a charging current corresponding to the case where both the storage battery groups 32 and 33 are charged.

次に、両蓄電池群32、33を同時に充電している状態において、コントローラ41は、第1の電圧センサ38からの検出信号V1及び第2の電圧センサ39からの検出信号V2をそれぞれ取り込み(ステップS9)、第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達したか否かを判断する(ステップS10)。具体的には、各電圧センサ38、39からの検出信号V1、V2が記憶部43に予め記憶された設定値Vcより大きいか否かで判断する。   Next, in a state where both the storage battery groups 32 and 33 are charged at the same time, the controller 41 takes in the detection signal V1 from the first voltage sensor 38 and the detection signal V2 from the second voltage sensor 39 (steps). S9), it is determined whether or not the first storage battery group 32 and the second storage battery group 33 have reached full charge (step S10). Specifically, the determination is made based on whether or not the detection signals V1 and V2 from the voltage sensors 38 and 39 are larger than a set value Vc stored in the storage unit 43 in advance.

ステップS10において、コントローラ41は、各電圧センサ38、39からの検出信号V1、V2が設定値Vc以下である(NO)と判定した場合、第1の蓄電池群32及び第2の蓄電池群33は充電不足と判断し、ステップ9に戻り、上述した手順を繰り返す。換言すると、第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達するまで、並列に接続された第1の蓄電池群32と第2の蓄電池群33の同時充電を継続する。   In step S10, when the controller 41 determines that the detection signals V1 and V2 from the voltage sensors 38 and 39 are equal to or lower than the set value Vc (NO), the first storage battery group 32 and the second storage battery group 33 are It is determined that charging is insufficient, and the process returns to step 9 to repeat the above-described procedure. In other words, simultaneous charging of the first storage battery group 32 and the second storage battery group 33 connected in parallel is continued until the first storage battery group 32 and the second storage battery group 33 reach a fully charged state.

一方、ステップS10において、コントローラ41は、各電圧センサ38、39からの検出信号V1、V2が設定値Vcより大きい(YES)と判定した場合、両蓄電池群32、33は満充電状態に達したと判断し、第1のスイッチ36及び第2のスイッチ37にそれぞれ開指令信号を出力し(ステップS11)、充電制御を終了する。これによって、第1のスイッチ36及び第2のスイッチ37は開状態に制御され、第1の蓄電池群32及び第2の蓄電池群33はそれぞれ外部電源100と電気的に遮断された状態になる。   On the other hand, in step S10, when the controller 41 determines that the detection signals V1 and V2 from the voltage sensors 38 and 39 are larger than the set value Vc (YES), both the storage battery groups 32 and 33 have reached a fully charged state. Is determined, an open command signal is output to each of the first switch 36 and the second switch 37 (step S11), and the charging control is terminated. As a result, the first switch 36 and the second switch 37 are controlled to be in the open state, and the first storage battery group 32 and the second storage battery group 33 are electrically disconnected from the external power source 100, respectively.

また、ステップS4において、第2の蓄電池群33が第1の蓄電池群32より低電圧である場合、コントローラ41は、第1の電圧センサ38からの検出信号V1が第2の電圧センサ39からの検出信号V2より大きい(NO)と判定し、第2のスイッチ37に閉指令信号を出力する(ステップS12)。これによって、第2のスイッチ37は閉状態に制御され、第2の蓄電池群33は外部電源100と電気的に接続された状態になる。すなわち、低電圧側の第2の蓄電池群33のみを先行して充電する。   In step S 4, when the second storage battery group 33 has a lower voltage than the first storage battery group 32, the controller 41 indicates that the detection signal V 1 from the first voltage sensor 38 is output from the second voltage sensor 39. It determines with it being larger than the detection signal V2 (NO), and outputs a close command signal to the 2nd switch 37 (step S12). As a result, the second switch 37 is controlled to be in a closed state, and the second storage battery group 33 is in a state of being electrically connected to the external power source 100. That is, only the second storage battery group 33 on the low voltage side is charged in advance.

次に、コントローラ41は、前述した第1の蓄電池群32のみを充電する場合(ステップS6、S7)と同様に、第2の蓄電池群32の充電中に、各電圧センサ38、39からの検出信号V1、V2をそれぞれ取り込み(ステップS13)、第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧であるか否かを判断する(ステップS14)。   Next, the controller 41 detects from the voltage sensors 38 and 39 while the second storage battery group 32 is being charged, as in the case where only the first storage battery group 32 is charged (steps S6 and S7). Each of the signals V1 and V2 is captured (step S13), and it is determined whether or not the first storage battery group 32 and the second storage battery group 33 have substantially the same voltage (step S14).

コントローラ41は、低電圧側の第2の蓄電池群33の電圧が高電圧側の第1の蓄電池群32の電圧と略同一になるまで、ステップS14において演算結果|δV|が閾値Vt以上である(NO)と判定し、ステップS13に戻り、上述した手順を繰り返す。すなわち、第2の蓄電池群33のみの充電状態を継続する。   The controller 41 determines that the calculation result | δV | is greater than or equal to the threshold value Vt in step S14 until the voltage of the second storage battery group 33 on the low voltage side becomes substantially the same as the voltage of the first storage battery group 32 on the high voltage side. It determines with (NO), returns to step S13, and repeats the procedure mentioned above. That is, the charged state of only the second storage battery group 33 is continued.

第2の蓄電池群33のみの充電により第2の蓄電池群33の電圧が第1の蓄電池群32の電圧と略同一になると、コントローラ41は、演算結果|δV|が閾値Vtより小さい(YES)と判定し(ステップS14)、第1のスイッチ36に閉指令信号を出力する(ステップS15)。これによって、第1のスイッチ36は閉状態に制御され、各蓄電池群32、33はそれぞれ外部電源100と電気的に接続された状態になる。すなわち、並列に接続された第1の蓄電池群32と第2の蓄電池群33とを同時に充電する。   When the voltage of the second storage battery group 33 becomes substantially the same as the voltage of the first storage battery group 32 by charging only the second storage battery group 33, the controller 41 determines that the calculation result | δV | is smaller than the threshold value Vt (YES). (Step S14), and a close command signal is output to the first switch 36 (step S15). As a result, the first switch 36 is controlled to be closed, and the storage battery groups 32 and 33 are electrically connected to the external power source 100, respectively. That is, the first storage battery group 32 and the second storage battery group 33 connected in parallel are charged simultaneously.

次に、コントローラ41は、両蓄電池群32、33を同時に充電している状態において、前述と同様に、ステップS9〜ステップS11の手順を実行した後、充電制御を終了する。   Next, the controller 41 ends the charging control after executing the procedure of Steps S9 to S11 in the same manner as described above in the state where both the storage battery groups 32 and 33 are charged simultaneously.

また、ステップS3において、蓄電装置30が前述した蓄電状態と異なり、充電前の第1の蓄電池群32と第2の蓄電池群33とが略同一の電圧である場合には、コントローラ41は、演算結果|δV|が閾値Vtより小さい(YES)と判定し、第1のスイッチ36及び第2のスイッチ37にそれぞれ閉指令信号を出力する(ステップS16)。これによって、第1のスイッチ36及び第2のスイッチ37はそれぞれ閉状態に制御され、並列に接続された第1の蓄電池群32と第2の蓄電池群33とが同時に充電される。   Further, in step S3, when the power storage device 30 is different from the power storage state described above, when the first storage battery group 32 and the second storage battery group 33 before charging have substantially the same voltage, the controller 41 calculates It is determined that the result | δV | is smaller than the threshold value Vt (YES), and a close command signal is output to each of the first switch 36 and the second switch 37 (step S16). As a result, the first switch 36 and the second switch 37 are controlled to be closed, and the first storage battery group 32 and the second storage battery group 33 connected in parallel are charged simultaneously.

次に、コントローラ41は、両蓄電池群32、33を同時に充電している状態において、前述と同様に、ステップS9〜ステップS11の手順を実行した後、充電制御を終了する。   Next, the controller 41 ends the charging control after executing the procedure of Steps S9 to S11 in the same manner as described above in the state where both the storage battery groups 32 and 33 are charged simultaneously.

上述したように、本発明の作業機械駆動用蓄電装置の充電装置及び充電方法の一実施の形態によれば、一方の蓄電池群32(33)と他方の蓄電池群33(32)との間に電圧差が生じている場合に低電圧側の蓄電池群のみを先行して充電し、一方の蓄電池群32(33)と他方の蓄電池群33(32)とが略同一の電圧になってから並列接続した各蓄電池群32、33を同時に充電するので、高電圧側の蓄電池群から低電圧側の蓄電池群に大電流が流入することがなく、安全性を確保することができると共に、充電時間の短縮を図ることができる。   As described above, according to the embodiment of the charging device and the charging method for the power storage device for driving a work machine of the present invention, between one storage battery group 32 (33) and the other storage battery group 33 (32). When there is a voltage difference, only the low-voltage storage battery group is charged in advance, and one of the storage battery groups 32 (33) and the other storage battery group 33 (32) become substantially the same voltage in parallel. Since the connected storage battery groups 32 and 33 are simultaneously charged, a large current does not flow into the storage battery group on the low voltage side from the storage battery group on the high voltage side, and safety can be ensured, and charging time can be reduced. Shortening can be achieved.

なお、上述した実施の形態においては、第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達したか否かを判断するのに、第1の電圧センサ38及び第2の電圧センサ39からの検出信号V1、V2が記憶部43に予め記憶された設定値Vcより大きいか否かで判断した例を示したが、第1の蓄電池群32及び第2の蓄電池群33の充電電流と記憶部43に予め記憶された設定値に基づいて第1の蓄電池群32及び第2の蓄電池群33が満充電状態に達したか否かを判断することもできる。この場合、各蓄電池群32、33の電流値を検出する電流センサを各蓄電池群32、33に直列にそれぞれ接続する。   In the above-described embodiment, the first voltage sensor 38 and the second voltage are used to determine whether or not the first storage battery group 32 and the second storage battery group 33 have reached the fully charged state. Although an example in which the detection signals V1 and V2 from the sensor 39 are determined based on whether or not the detection signals V1 and V2 are larger than the set value Vc stored in advance in the storage unit 43 is shown, the charging of the first storage battery group 32 and the second storage battery group 33 is performed. It is also possible to determine whether or not the first storage battery group 32 and the second storage battery group 33 have reached a fully charged state based on the current and a preset value stored in the storage unit 43. In this case, current sensors for detecting the current values of the storage battery groups 32 and 33 are connected in series to the storage battery groups 32 and 33, respectively.

また、上述した実施の形態においては、2つの蓄電池群32、33が並列接続された場合を例に説明したが、蓄電池群を3つ以上並列に接続した場合にも適用することができる。この場合、コントローラ41は、最も低電圧の蓄電池群及び最も低電圧の蓄電池群と略同一の電圧である蓄電池群を先行して同時に充電する。その後、充電により上昇した蓄電池群の電圧と略同一の電圧である蓄電池群をさらに外部電源に接続して同時に充電する。さらに、すべての蓄電池群が略同一の電圧となるまでこの手順を繰り返して充電する。このことにより、上述した実施の形態と同様の効果を得ることができる。   Moreover, in embodiment mentioned above, although the case where the two storage battery groups 32 and 33 were connected in parallel was demonstrated to the example, it is applicable also when three or more storage battery groups are connected in parallel. In this case, the controller 41 precedes and simultaneously charges the storage battery group having the lowest voltage and the storage battery group having substantially the same voltage as the lowest voltage storage battery group. Thereafter, the storage battery group having substantially the same voltage as the voltage of the storage battery group increased by charging is further connected to an external power source and simultaneously charged. Further, this procedure is repeated until all the storage battery groups have substantially the same voltage. As a result, the same effects as those of the above-described embodiment can be obtained.

1 バッテリ式油圧ショベル(作業機械)
30 蓄電装置
31 蓄電池
32 第1の蓄電池群
33 第2の蓄電池群
36 第1のスイッチ
37 第2のスイッチ
38 第1の電圧センサ
39 第2の電圧センサ
41 コントローラ
100 外部電源
1 Battery-powered excavator (work machine)
30 power storage device 31 storage battery 32 first storage battery group 33 second storage battery group 36 first switch 37 second switch 38 first voltage sensor 39 second voltage sensor 41 controller 100 external power source

Claims (4)

外部電源からの電力供給により充電される複数の蓄電池を直列に接続して構成した一方の蓄電池群と、前記一方の蓄電池群と並列に接続した他方の蓄電池群とを備えた作業機械用蓄電装置の充電装置であって、
前記外部電源と前記各蓄電池群とをそれぞれ電気的に接続した状態と遮断した状態とに切り換えるスイッチと、
前記各蓄電池群の電圧をそれぞれ検出する電圧センサと、
前記各電圧センサからの検出値に基づいて、前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断した場合に、低電圧側の蓄電池群のスイッチを閉状態に、高電圧側の蓄電池群のスイッチを開状態に制御し、前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断した場合に、前記各スイッチを閉状態に制御するコントローラとを備えた
ことを特徴とする作業機械用蓄電装置の充電装置。
A power storage device for a working machine comprising one storage battery group configured by connecting a plurality of storage batteries that are charged by power supply from an external power supply in series, and the other storage battery group connected in parallel to the one storage battery group Charging device,
A switch for switching between a state in which the external power source and each storage battery group are electrically connected to each other, and a state in which they are shut off;
A voltage sensor for detecting a voltage of each of the storage battery groups,
When it is determined that there is a voltage difference between the one storage battery group and the other storage battery group based on the detection value from each voltage sensor, the switch of the low voltage side storage battery group is closed. In addition, the switches of the storage battery group on the high voltage side are controlled to be in the open state, and when it is determined that the one storage battery group and the other storage battery group have substantially the same voltage, the switches are controlled to be in the closed state. A charging device for a power storage device for a working machine.
請求項1に記載の作業機械用蓄電装置の充電装置において、
前記コントローラは、前記各電圧センサからの検出値の差の絶対値を演算し、この演算結果と予め記憶した閾値とを比較し、前記演算結果が前記閾値より小さい場合に前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断し、それ以外の場合に前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断する
ことを特徴とする作業機械用蓄電装置の充電装置。
In the charging device of the electrical storage device for work machines according to claim 1,
The controller calculates an absolute value of a difference between detection values from the voltage sensors, compares the calculation result with a previously stored threshold value, and if the calculation result is smaller than the threshold value, It is determined that the other storage battery group has substantially the same voltage, and otherwise, it is determined that a voltage difference is generated between the one storage battery group and the other storage battery group. A power storage device charging device for a working machine.
外部電源からの電力供給により充電される複数の蓄電池を直列に接続して構成した一方の蓄電池群と、前記一方の蓄電池群と並列に接続した他方の蓄電池群とを備えた作業機械用蓄電装置の充電方法であって、
前記各蓄電池群の電圧を電圧センサでそれぞれ検出する手順と、
前記電圧センサの検出値に基づいて、前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じているか又は前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であるかを判断する手順と、
前記判断する手順において前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断した場合に、高電圧側の蓄電池群と前記外部電源とを電気的に遮断し、低電圧側の蓄電池群を前記外部電源と電気的に接続して充電する手順と、
前記判断する手順において前記一方の蓄電池群と前記他方の蓄電池群とが略同一の電圧であると判断した場合に、前記各蓄電池群を前記外部電源と電気的に接続して充電する手順とを備えた
ことを特徴とする作業機械用蓄電装置の充電方法。
A power storage device for a working machine comprising one storage battery group configured by connecting a plurality of storage batteries that are charged by power supply from an external power supply in series, and the other storage battery group connected in parallel to the one storage battery group Charging method,
A procedure for detecting the voltage of each storage battery group with a voltage sensor, and
Based on the detection value of the voltage sensor, there is a voltage difference between the one storage battery group and the other storage battery group, or the one storage battery group and the other storage battery group have substantially the same voltage. A procedure to determine if it exists,
When it is determined that a voltage difference is generated between the one storage battery group and the other storage battery group in the determining procedure, the high-voltage side storage battery group and the external power source are electrically disconnected, A procedure for electrically connecting a storage battery group on the low voltage side with the external power source and charging the battery group;
When it is determined in the determining procedure that the one storage battery group and the other storage battery group have substantially the same voltage, a procedure for electrically connecting each storage battery group with the external power source and charging A method for charging a power storage device for a work machine, comprising:
請求項3に記載の作業機械用蓄電装置の充電方法において、
前記判断する手順は、前記各電圧センサからの検出値の差の絶対値を演算する手順と、この演算結果と予め記憶した閾値とを比較する手順とを含み、前記演算結果が前記閾値より小さい場合に前記一方の蓄電池群と前記他方の蓄電池群との間の電圧が略同一であると判断し、それ以外の場合に前記一方の蓄電池群と前記他方の蓄電池群との間に電圧差が生じていると判断する手順である
ことを特徴とする作業機械用蓄電装置の充電方法。
The method for charging the power storage device for a work machine according to claim 3,
The determining step includes a step of calculating an absolute value of a difference between detection values from the voltage sensors, and a step of comparing the calculation result with a prestored threshold value, and the calculation result is smaller than the threshold value. In this case, it is determined that the voltage between the one storage battery group and the other storage battery group is substantially the same, and in other cases, there is a voltage difference between the one storage battery group and the other storage battery group. A method of charging a power storage device for a work machine, characterized in that the procedure is to determine that it occurs.
JP2013202607A 2013-09-27 2013-09-27 Device and method for charging power storage device for driving work machine Pending JP2015070690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202607A JP2015070690A (en) 2013-09-27 2013-09-27 Device and method for charging power storage device for driving work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202607A JP2015070690A (en) 2013-09-27 2013-09-27 Device and method for charging power storage device for driving work machine

Publications (1)

Publication Number Publication Date
JP2015070690A true JP2015070690A (en) 2015-04-13

Family

ID=52836895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202607A Pending JP2015070690A (en) 2013-09-27 2013-09-27 Device and method for charging power storage device for driving work machine

Country Status (1)

Country Link
JP (1) JP2015070690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856332B1 (en) 2016-06-28 2018-05-09 현대자동차주식회사 Junction Apparatus and Charging Method for High Voltage Battery
JP2020532268A (en) * 2018-05-09 2020-11-05 エルジー・ケム・リミテッド Battery controller and energy storage system including it
CN114586210A (en) * 2019-08-28 2022-06-03 斯巴克充电公司 Battery module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856332B1 (en) 2016-06-28 2018-05-09 현대자동차주식회사 Junction Apparatus and Charging Method for High Voltage Battery
JP2020532268A (en) * 2018-05-09 2020-11-05 エルジー・ケム・リミテッド Battery controller and energy storage system including it
JP7045570B2 (en) 2018-05-09 2022-04-01 エルジー エナジー ソリューション リミテッド Battery control device and energy storage system including it
US11381094B2 (en) 2018-05-09 2022-07-05 Lg Energy Solution, Ltd. Battery control apparatus and energy storage system including same
CN114586210A (en) * 2019-08-28 2022-06-03 斯巴克充电公司 Battery module
EP4022704A4 (en) * 2019-08-28 2023-11-08 Sparkcharge, Inc. Battery module

Similar Documents

Publication Publication Date Title
US9637890B2 (en) Power transmission device and hybrid construction machine provided therewith
CN110418731B (en) Power storage device controller, electric system, and construction machine
WO2010087363A1 (en) Hybrid working machine and electricity storage control apparatus
EP2383880A1 (en) Hybrid working machine and servo control system
WO2013021988A1 (en) Electric construction machine
EP2672023A1 (en) Rotation-type working machine
KR20120022707A (en) Construction machine and industrial vehicle provided with power supply system
JP6173564B2 (en) Work machine
JP4949288B2 (en) Hybrid construction machine
JP5493135B2 (en) Construction machinery
CN102953406A (en) Electric drive control for a machine
US20150211212A1 (en) Shovel and method of controlling shovel
EP2501015B1 (en) Power supply system
JP2015070690A (en) Device and method for charging power storage device for driving work machine
JP5122509B2 (en) Hybrid work machine
US11085172B2 (en) Construction machine
US10329737B2 (en) Hybrid construction machine
CN114128132A (en) Working machine
CN106605028B (en) Hybrid construction machine
US11964569B2 (en) Construction machine
CN106337456A (en) Control device of construction machine
US11149409B2 (en) Construction machine
JP2020141477A (en) Work machine