JP2015069692A - Fuel battery separator, and method for hydrophilic treatment thereof - Google Patents

Fuel battery separator, and method for hydrophilic treatment thereof Download PDF

Info

Publication number
JP2015069692A
JP2015069692A JP2013199842A JP2013199842A JP2015069692A JP 2015069692 A JP2015069692 A JP 2015069692A JP 2013199842 A JP2013199842 A JP 2013199842A JP 2013199842 A JP2013199842 A JP 2013199842A JP 2015069692 A JP2015069692 A JP 2015069692A
Authority
JP
Japan
Prior art keywords
fuel cell
base material
carbon
cell separator
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199842A
Other languages
Japanese (ja)
Other versions
JP6043262B2 (en
Inventor
鈴木 順
Jun Suzuki
順 鈴木
水野 雅夫
Masao Mizuno
雅夫 水野
佐藤 俊樹
Toshiki Sato
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013199842A priority Critical patent/JP6043262B2/en
Publication of JP2015069692A publication Critical patent/JP2015069692A/en
Application granted granted Critical
Publication of JP6043262B2 publication Critical patent/JP6043262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for imparting a hydrophilic property to a fuel battery separator having a metal base, and on its surface, a conductive layer of carbon superior in corrosion resistance and conductivity.SOLUTION: A method for a hydrophilic treatment of a fuel battery separator comprises the step of performing a thermal treatment on a fuel battery separator having a graphite-containing conductive layer on its surface at 150-500°C under an atmosphere with an oxygen density of 1% or more. As a result of the thermal treatment like this, oxygen atoms are bound to carbon atoms of part of crystalline graphite, and a hydrophilic property is imparted to the fuel battery separator while keeping the conductivity.

Description

本発明は、燃料電池に使用される燃料電池セパレータの表面に親水性を付与する方法に関し、特に表面に導電性材料としてグラファイトを備える燃料電池セパレータの親水化に関する。   The present invention relates to a method for imparting hydrophilicity to the surface of a fuel cell separator used in a fuel cell, and more particularly to hydrophilicization of a fuel cell separator having graphite as a conductive material on the surface.

水素等の燃料と酸素等の酸化剤を供給し続けることで継続的に電力を取り出すことができる燃料電池は、乾電池等の一次電池や鉛蓄電池等の二次電池とは異なり、発電効率が高くシステム規模の大小にあまり影響されず、また騒音や振動も少ないため、多様な用途や規模をカバーするエネルギー源として期待されている。燃料電池は、具体的には、固体高分子型燃料電池(PEFC)、アルカリ電解質型燃料電池(AFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、バイオ燃料電池等として開発されている。中でも、燃料電池自動車や、家庭用コジェネレーションシステム、携帯電話やパソコン等の携帯機器向けとして、固体高分子型燃料電池の開発が進められている。   Unlike primary batteries such as dry batteries and secondary batteries such as lead-acid batteries, fuel cells that can continuously extract power by continuing to supply fuel such as hydrogen and oxidants such as oxygen have high power generation efficiency. Since it is not affected by the size of the system, and it has little noise and vibration, it is expected to be an energy source covering various applications and scales. Specifically, the fuel cell includes a polymer electrolyte fuel cell (PEFC), an alkaline electrolyte fuel cell (AFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide. It has been developed as a type fuel cell (SOFC) and biofuel cell. In particular, solid polymer fuel cells are being developed for use in fuel cell vehicles, home cogeneration systems, mobile devices such as mobile phones and personal computers.

固体高分子型燃料電池(以下、燃料電池という)は、固体高分子電解質膜をアノードとカソードとで挟んだものを単セルとし、ガス(水素、酸素等)の流路となる溝が形成されたセパレータ(バイポーラプレートとも呼ばれる)を介して前記単セルを複数個重ね合わせて構成される。   A polymer electrolyte fuel cell (hereinafter referred to as a fuel cell) is a single cell in which a polymer electrolyte membrane is sandwiched between an anode and a cathode, and a groove serving as a gas (hydrogen, oxygen, etc.) channel is formed. A plurality of the single cells are overlapped via a separator (also called a bipolar plate).

セパレータは、燃料電池において発生した電流を外部へ取り出すための部品でもあるので、接触抵抗(電極とセパレータ表面との間で、界面現象のために電圧降下が生じることをいう。)が低い材料が適用される。また、セパレータは、燃料電池の内部がpH2〜4程度の酸性雰囲気であるために高耐食性が要求され、さらに前記の低接触抵抗(導電性)がこの酸性雰囲気での使用中に長期間維持されるという特性も要求される。これらの要求を満足するために適用される材料としてカーボンが挙げられる。具体的には、黒鉛粉末の成形体を削り出して製造されたり、黒鉛と樹脂の混合物成形体で形成された等のカーボン製のセパレータ(例えば特許文献1〜3)や、チタンやステンレス鋼等の金属材料からなる基材に、カーボン粒子を付着させたり(例えば特許文献4〜7)、化学気相成長(CVD)法等で炭素膜を成膜したセパレータが検討されている。   Since the separator is also a part for taking out the current generated in the fuel cell to the outside, a material having a low contact resistance (which means that a voltage drop occurs due to an interface phenomenon between the electrode and the separator surface). Applied. In addition, the separator is required to have high corrosion resistance because the inside of the fuel cell is an acidic atmosphere having a pH of about 2 to 4, and the low contact resistance (conductivity) is maintained for a long time during use in this acidic atmosphere. The characteristic that An example of a material applied to satisfy these requirements is carbon. Specifically, a carbon separator (for example, Patent Documents 1 to 3), such as a graphite powder produced by cutting out a molded product of graphite powder, or a mixture of graphite and resin, titanium, stainless steel, etc. A separator in which carbon particles are attached to a base material made of the above metal material (for example, Patent Documents 4 to 7) or a carbon film is formed by a chemical vapor deposition (CVD) method or the like has been studied.

さらに、前記の導電性の維持や高耐食性の他に、特に燃料電池のカソード(空気極)側に配されるセパレータは、表面が親水性であることが好ましい。詳しくは、燃料電池が発電するに伴い、カソード(空気極)側で水が生成し、この生成水がセパレータの表面に付着したままであると発電性能が劣化するため、セパレータの表面を親水性として、生成水を速やかに排水することが好ましい。ところが、炭素材料は一般的に撥水性を有する。そこで、炭素材料を有するセパレータについて、表面に親水性を付与する親水化処理に関する技術が開発されている。   Further, in addition to maintaining the conductivity and high corrosion resistance, it is preferable that the separator disposed on the cathode (air electrode) side of the fuel cell has a hydrophilic surface. Specifically, as the fuel cell generates power, water is generated on the cathode (air electrode) side, and if this generated water remains attached to the surface of the separator, the power generation performance deteriorates. As a result, it is preferable to drain the generated water quickly. However, carbon materials generally have water repellency. Therefore, a technique related to a hydrophilic treatment for imparting hydrophilicity to the surface of a separator having a carbon material has been developed.

炭素材料への親水化処理としては、オゾン処理、紫外線(UV)処理、プラズマ処理等が知られているが、これらの処理は、燃料電池のセパレータに適用するには効果の持続性が不十分であるといわれている。そこで、例えば、特許文献1には、カーボン粉末に酸化ケイ素等の親水性物質を混合して成形することにより親水性を付与されたセパレータを製造する方法が開示されている。特許文献2には、カーボン成形体を、フッ素と酸素を含有する混合ガス雰囲気に曝露して表面を処理することにより、表面を親水化する方法が開示されている。特許文献3には、カーボン成形体の表面をシリカ薄膜で被覆する方法が開示されている。   Known as hydrophilic treatments for carbon materials are ozone treatment, ultraviolet (UV) treatment, plasma treatment, etc., but these treatments have insufficient sustainability to be applied to fuel cell separators. It is said that it is. Thus, for example, Patent Document 1 discloses a method of manufacturing a separator imparted with hydrophilicity by mixing a carbon powder with a hydrophilic substance such as silicon oxide and molding the carbon powder. Patent Document 2 discloses a method of hydrophilizing a surface by exposing a carbon molded body to a mixed gas atmosphere containing fluorine and oxygen to treat the surface. Patent Document 3 discloses a method of coating the surface of a carbon molded body with a silica thin film.

特開平10−3931号公報Japanese Patent Laid-Open No. 10-3931 特許第4075343号公報Japanese Patent No. 4075343 特開2005−162550号公報JP 2005-162550 A 特許第3904690号公報Japanese Patent No. 3904690 特許第3904696号公報Japanese Patent No. 3904696 特許第4886885号公報Japanese Patent No. 4886885 特許第5108986号公報Japanese Patent No. 5108986

しかしながら、特許文献1に記載された方法は、絶縁性の酸化ケイ素等が混合されるためにカーボン成形体(燃料電池セパレータ)の導電性が低くなる。特許文献2に記載された方法は、反応性の高いフッ素を使用するため、特許文献4〜7に記載されたような金属材料からなる基材を備えた燃料電池セパレータには適用することができず、またフッ素に曝される処理室等も劣化し易い。特許文献3に記載された方法は、親水性が表面のシリカ薄膜の剥離で失われ易く長期間持続せず、また、シリカ薄膜の形成のためのシリコンアルコキシドの重縮合物溶液に塩酸等の酸触媒が添加されているため、特許文献2と同様、金属材料からなる基材を備えた燃料電池セパレータには適用することができない。   However, in the method described in Patent Document 1, since the insulating silicon oxide or the like is mixed, the conductivity of the carbon molded body (fuel cell separator) is lowered. Since the method described in Patent Document 2 uses highly reactive fluorine, it can be applied to a fuel cell separator provided with a base material made of a metal material as described in Patent Documents 4 to 7. In addition, processing chambers exposed to fluorine are likely to deteriorate. In the method described in Patent Document 3, the hydrophilicity is easily lost due to peeling of the silica thin film on the surface and does not last for a long period of time. In addition, the polycondensate solution of silicon alkoxide for forming the silica thin film contains acid such as hydrochloric acid. Since the catalyst is added, it cannot be applied to a fuel cell separator provided with a base material made of a metal material, as in Patent Document 2.

本発明は前記問題点に鑑みてなされたものであり、導電性の維持および耐食性に優れた導電性材料として炭素を表面に備えた燃料電池セパレータ、特にカーボン製のセパレータよりも薄型化の容易な金属材料からなる基材を備えるセパレータについて、表面に親水性を付与する方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is easier to make thinner than a fuel cell separator having carbon as a conductive material having excellent conductivity and corrosion resistance, particularly a carbon separator. An object of the present invention is to provide a method for imparting hydrophilicity to the surface of a separator including a base material made of a metal material.

本発明者らは、鋭意研究により、炭素材料の中でも比較的導電性に優れた結晶性のグラファイトを適用し、大気等の酸素含有雰囲気における低温域での熱処理により、導電性を維持しつつ親水性が付与されることを見出した。   As a result of intensive research, the present inventors have applied crystalline graphite having relatively high conductivity among carbon materials, and by conducting heat treatment in a low temperature region in an oxygen-containing atmosphere such as the atmosphere, the hydrophilicity is maintained while maintaining conductivity. It was found that sex is imparted.

すなわち、本発明に係る燃料電池セパレータの親水化処理方法は、グラファイトを含有する導電層を表面に備えて前記導電層が金属からなる基材を被覆してなる燃料電池セパレータの前記表面に親水性を付与する方法であって、前記燃料電池セパレータに、酸素濃度1%以上の雰囲気で150〜500℃の熱処理を施すことを特徴とする。   That is, the method for hydrophilizing a fuel cell separator according to the present invention is characterized in that the surface of the fuel cell separator is provided with a conductive layer containing graphite on the surface and the conductive layer is coated with a metal substrate. The fuel cell separator is subjected to a heat treatment at 150 to 500 ° C. in an atmosphere having an oxygen concentration of 1% or more.

このように、所定範囲の温度での熱処理により、本来撥水性であるグラファイトに、導電性を維持しつつ親水性が付与される。さらに熱処理の温度が高過ぎず、チタン等の金属材料が変質し難いため、金属材料を基材に用いた燃料電池セパレータに適用することができる。   In this way, hydrophilicity is imparted to graphite, which is inherently water-repellent, while maintaining conductivity by heat treatment at a temperature within a predetermined range. Furthermore, since the temperature of the heat treatment is not too high, and a metal material such as titanium is hardly changed, it can be applied to a fuel cell separator using the metal material as a base material.

本発明に係る燃料電池セパレータは、グラファイトを含有する導電層を表面に備え、前記導電層が金属からなる基材を被覆してなり、25℃の環境下において、前記表面に水を滴下したときの接触角が70°以下であることを特徴とする。さらに本発明に係る燃料電池セパレータは、前記基材がチタンまたはチタン合金からなり、前記基材と前記導電層との間に炭化チタンを含有する中間層が形成されていることが好ましい。   The fuel cell separator according to the present invention has a conductive layer containing graphite on the surface, the conductive layer covers a base material made of metal, and water is dropped on the surface in an environment of 25 ° C. The contact angle is 70 ° or less. Furthermore, in the fuel cell separator according to the present invention, it is preferable that the base material is made of titanium or a titanium alloy, and an intermediate layer containing titanium carbide is formed between the base material and the conductive layer.

このように、金属からなる基材を備えることで薄型化され、結晶性のグラファイトで導電層を形成して表面を被覆することで導電性が長期間維持され、さらに表面における水の接触角を規定することで、生成水が排水され易い燃料電池セパレータとなる。さらに、基材がチタンやチタン合金で形成されることで、いっそう薄型化、軽量化され、また、基材と導電層の両方の成分からなる炭化チタンを含有する中間層が形成されていることで基材と導電層との密着性および基材へのバリア性が得られるので、燃料電池の内部環境における耐久性に優れた燃料電池セパレータとなる。   Thus, by providing a base material made of a metal, the thickness is reduced, and by forming a conductive layer with crystalline graphite and covering the surface, the conductivity is maintained for a long time, and the contact angle of water on the surface is further increased. By defining the fuel cell separator, the produced water is easily drained. Furthermore, the base material is made of titanium or a titanium alloy, so that it is made thinner and lighter, and an intermediate layer containing titanium carbide composed of both components of the base material and the conductive layer is formed. Thus, the adhesion between the base material and the conductive layer and the barrier property to the base material are obtained, so that the fuel cell separator is excellent in durability in the internal environment of the fuel cell.

本発明に係る燃料電池セパレータの親水化処理方法によれば、本来撥水性である炭素を表面に備えた燃料電池セパレータに、簡易な方法で親水性を付与することができ、特に金属材料を基材に備える燃料電池セパレータにも適用することができる。また、本発明に係る燃料電池セパレータによれば、薄型化が可能で、グラファイトを含有する導電層にて低い接触抵抗を長期間維持でき、燃料電池のカソード(空気極)側に好適に用いることができる。   According to the method for hydrophilizing a fuel cell separator according to the present invention, hydrophilicity can be imparted to the fuel cell separator provided with carbon, which is inherently water repellent, by a simple method, particularly based on a metal material. The present invention can also be applied to a fuel cell separator provided in the material. In addition, the fuel cell separator according to the present invention can be thinned, can maintain a low contact resistance for a long time with a conductive layer containing graphite, and is preferably used on the cathode (air electrode) side of the fuel cell. Can do.

接触抵抗の測定方法を説明する模式図である。It is a schematic diagram explaining the measuring method of contact resistance. 実施例に係る燃料電池セパレータの試験材の水接触角および接触抵抗の、親水化処理における温度依存性を示すグラフである。It is a graph which shows the temperature dependence in the hydrophilization process of the water contact angle and contact resistance of the test material of the fuel cell separator which concerns on an Example. 実施例に係る燃料電池セパレータの試験材の水接触角および接触抵抗の、親水化処理における酸素濃度依存性を示すグラフである。It is a graph which shows the oxygen concentration dependence in the hydrophilization of the water contact angle and contact resistance of the test material of the fuel cell separator which concerns on an Example.

以下、本発明の実施の形態について詳細に説明する。
本発明に係る燃料電池セパレータ、ならびに本発明に係る燃料電池セパレータの親水化処理方法により表面に親水性を付与された燃料電池セパレータは、一般的な燃料電池(固体高分子型燃料電池)に使用されるための、水素や酸素等の流路となる溝が形成された板状のセパレータである(図示省略)。
Hereinafter, embodiments of the present invention will be described in detail.
The fuel cell separator according to the present invention, and the fuel cell separator having hydrophilicity imparted to the surface by the hydrophilization method of the fuel cell separator according to the present invention are used for general fuel cells (solid polymer fuel cells). Therefore, the separator is a plate-like separator in which grooves serving as flow paths for hydrogen, oxygen, and the like are formed (not shown).

〔燃料電池セパレータ〕
本発明に係る燃料電池セパレータは、金属製の基材にグラファイトを含有する導電層(以下、炭素層)を被覆してなり、表面すなわち炭素層が親水性を有する。なお、燃料電池セパレータの親水性を有する表面とは、燃料電池に使用された際に、当該燃料電池の内部の雰囲気に曝される領域(両側の面や端面を含む)を指す。以下、本発明の実施形態に係る燃料電池セパレータを構成する各要素について説明する。
[Fuel cell separator]
The fuel cell separator according to the present invention is obtained by coating a metal base material with a conductive layer containing graphite (hereinafter referred to as a carbon layer), and the surface, that is, the carbon layer has hydrophilicity. The hydrophilic surface of the fuel cell separator refers to a region (including both side surfaces and end surfaces) exposed to the atmosphere inside the fuel cell when used in a fuel cell. Hereinafter, each element which comprises the fuel cell separator which concerns on embodiment of this invention is demonstrated.

(基材)
基材は、燃料電池セパレータの基材として、板材を当該燃料電池セパレータの形状に成形されたものである。基材には、加工性および強度に優れたアルミニウム、チタン、ニッケル、それらを基とする合金、あるいはステンレス鋼等の金属材料を適用することができる。特に、薄肉化および燃料電池セパレータの軽量化に好適で、また燃料電池セパレータが燃料電池に使用された際に、当該燃料電池の内部の酸性雰囲気に対して十分な耐酸性を有するチタン(純チタン)またはチタン合金で形成されることが好ましい。これは、後記するように、本実施形態においては、炭素層が完全に連続した膜ではない場合があり、基材表面の炭素層がない部分が燃料電池の内部の雰囲気に曝されるためである。本実施形態に係る燃料セパレータは、基材がチタンまたはチタン合金からなる構成として説明する。
(Base material)
The base material is obtained by forming a plate material into the shape of the fuel cell separator as the base material of the fuel cell separator. A metal material such as aluminum, titanium, nickel, an alloy based on them, or stainless steel excellent in workability and strength can be applied to the substrate. In particular, titanium (pure titanium) is suitable for reducing the thickness and weight of the fuel cell separator, and has sufficient acid resistance against the acidic atmosphere inside the fuel cell when the fuel cell separator is used in a fuel cell. ) Or a titanium alloy. This is because, as will be described later, in this embodiment, the carbon layer may not be a completely continuous film, and the portion of the base material surface where there is no carbon layer is exposed to the atmosphere inside the fuel cell. is there. The fuel separator according to this embodiment will be described as a configuration in which the base material is made of titanium or a titanium alloy.

基材に用いるチタン、チタン合金としては、例えばJIS H 4600に規定される1〜4種の純チタンや、Ti−Al,Ti−Ta,Ti−6Al−4V,Ti−Pd等のTi合金を適用でき、中でも薄型化に特に好適な純チタンが好ましい。特に、チタン素材(母材)の冷間圧延のし易さ(中間焼鈍なしで総圧下率35%以上の冷間圧延を実施できる)や、その後のプレス成形性確保の観点から、O:1500ppm以下(より好ましくは1000ppm以下)、Fe:1500ppm以下(より好ましくは1000ppm以下)、C:800ppm以下、N:300ppm以下、H:130ppm以下であり、残部がTiおよび不可避的不純物からなるものが好ましく、例えばJIS 1種の冷間圧延板を使用することができる。ただし、基材に用いる純チタンまたはチタン合金としては、これらに限定されることはなく、他の金属元素等を含有してなる前記した純チタン相当またはチタン合金相当の組成を有するものであれば、好適に用いることができる。なお、以下、本明細書において、成分や元素としてのチタンおよび炭素は、それぞれ「Ti」、「C」と表記する。   Examples of titanium and titanium alloys used for the base material include 1 to 4 types of pure titanium specified in JIS H 4600, and Ti alloys such as Ti-Al, Ti-Ta, Ti-6Al-4V, and Ti-Pd. Pure titanium that can be applied and particularly suitable for thinning is preferable. In particular, from the viewpoint of ease of cold rolling of a titanium material (base material) (cold rolling with a total rolling reduction of 35% or more can be performed without intermediate annealing) and subsequent press formability securing, O: 1500 ppm Or less (more preferably 1000 ppm or less), Fe: 1500 ppm or less (more preferably 1000 ppm or less), C: 800 ppm or less, N: 300 ppm or less, H: 130 ppm or less, and the balance consisting of Ti and inevitable impurities is preferable. For example, a JIS type 1 cold rolled sheet can be used. However, the pure titanium or titanium alloy used for the base material is not limited to these, as long as it has a composition equivalent to the above pure titanium or titanium alloy containing other metal elements and the like. Can be preferably used. Hereinafter, in the present specification, titanium and carbon as components and elements are represented as “Ti” and “C”, respectively.

基材の厚さ(板厚)は特に限定されないが、燃料電池セパレータの基材としては、0.05〜1.0mmであることが好ましい。基材の厚さをこのような範囲とすれば、燃料電池セパレータの軽量化・薄型化の要求を満足し、板材としての強度やハンドリング性を備え、かつ、かかる厚さの板材に形成(圧延)することが容易であり、さらに炭素層を形成した後に、当該燃料電池セパレータの形状に加工することが比較的容易である。   Although the thickness (plate thickness) of a base material is not specifically limited, As a base material of a fuel cell separator, it is preferable that it is 0.05-1.0 mm. If the thickness of the base material is within such a range, the requirements for weight reduction and thinning of the fuel cell separator are satisfied, the strength and handling properties of the plate material are provided, and the plate material having such a thickness is formed (rolled) ), And after forming the carbon layer, it is relatively easy to process the fuel cell separator.

基材の製造方法の一例としては、前記したチタンまたはチタン合金を公知の方法で鋳造、熱間圧延し、必要に応じて間に焼鈍・酸洗処理等を行って、冷間圧延にて所望の厚さまで圧延して、板(条)材として製造することができる。なお、基材は冷間圧延後に焼鈍仕上げされていることが好ましいが、その仕上げ状態は問わず、例えば、前記焼鈍後に酸洗処理されていてもよく、あるいは真空熱処理仕上げ、光輝焼鈍仕上げ等のいずれの仕上げ状態であってもよい。   As an example of the manufacturing method of the base material, the above-mentioned titanium or titanium alloy is cast and hot-rolled by a known method, and if necessary, annealed / pickled, etc., and cold-rolled as desired. It can be rolled to a thickness of 10 mm to produce a plate (strip) material. The base material is preferably annealed after cold rolling, but the finish state is not limited, for example, it may be pickled after the annealing, vacuum heat treatment finish, bright annealing finish, etc. Any finished state may be used.

(炭素層)
炭素層は、基材を被覆して燃料電池セパレータの表面に設けられ、当該燃料電池セパレータに腐食環境下での導電性を付与する。炭素層は、耐食性を有する炭素(C)、特にグラファイトで形成され、導電性を有するものであればその構造は特に限定されないが、六方晶系のグラファイト構造を有する、詳しくはグラフェンシートが層状に多数積み重なった六角板状結晶であることが好ましい。結晶性のグラファイトは導電性に優れ、高温、酸性雰囲気の燃料電池の内部環境における耐久性に優れるため、前記導電性を維持することができる。このようなグラファイトである炭素層は、粒状または粉状に成形された黒鉛(グラファイト)やカーボンブラックのような炭素粉を基材に付着させて(塗布して)圧着することで形成できる(後記の燃料電池セパレータの製造方法にて詳細に説明する)。この他に、炭素層は、いわゆる炭のように、微小なグラファイト構造と立方晶系のダイヤモンド構造とが混在した非晶質(無定形)構造であってもよい。
(Carbon layer)
The carbon layer covers the base material and is provided on the surface of the fuel cell separator, and imparts conductivity to the fuel cell separator in a corrosive environment. The carbon layer is formed of corrosion-resistant carbon (C), particularly graphite, and the structure thereof is not particularly limited as long as it has conductivity, but has a hexagonal graphite structure. Specifically, the graphene sheet is layered. It is preferable that the hexagonal plate crystals are stacked in large numbers. Crystalline graphite is excellent in conductivity and excellent in durability in the internal environment of the fuel cell in a high temperature and acidic atmosphere, so that the conductivity can be maintained. Such a carbon layer, which is graphite, can be formed by adhering (coating) a carbon powder such as graphite or carbon black formed into a granular or powder form to a substrate (described later). The fuel cell separator manufacturing method will be described in detail). In addition, the carbon layer may have an amorphous (amorphous) structure in which a fine graphite structure and a cubic diamond structure are mixed like so-called charcoal.

燃料電池セパレータは、燃料電池の内部の雰囲気に曝される全表面(両側の面、端面を含む)において、炭素層が被覆する面積率が高いほど導電性が向上する。したがって、炭素層は、前記全表面を被覆していることがもっとも好ましいが、40%以上に形成されていればよく、50%以上に形成されていることが好ましい。本実施形態に係る燃料電池セパレータにおいては、前記した通り、基材はチタンまたはチタン合金からなり、腐食環境下で不働態皮膜を形成するため、基材自体が耐食性を有するので露出していても腐食することはない。したがって、炭素層は完全に連続した膜とする必要はなく、前記したように粒状または粉状に成形された炭素粉を基材に圧着することで形成できる。このような方法で形成されることで、炭素層は生産性よく十分な厚さに形成され、黒鉛やカーボンブラックによって優れた導電性が得られる。   The conductivity of the fuel cell separator increases as the area ratio covered by the carbon layer increases on the entire surface (including both side surfaces and end surfaces) exposed to the atmosphere inside the fuel cell. Therefore, it is most preferable that the carbon layer covers the entire surface, but it may be formed to be 40% or more, and is preferably formed to 50% or more. In the fuel cell separator according to the present embodiment, as described above, the base material is made of titanium or a titanium alloy, and forms a passive film in a corrosive environment. Therefore, even if the base material itself has corrosion resistance, it is exposed. There is no corrosion. Therefore, the carbon layer does not need to be a completely continuous film, and can be formed by press-bonding the carbon powder formed in a granular or powder form to the substrate as described above. By being formed by such a method, the carbon layer is formed to a sufficient thickness with high productivity, and excellent conductivity can be obtained by graphite or carbon black.

炭素層の厚さ(膜厚)は特に限定されないが、極端に薄いと導電性が十分に得られず、また、このような薄い膜は形成時の面積あたりの炭素粉の量すなわち個数が少ないために炭素層が隙間の多い膜となってバリア性が十分に得られず、基材の表面に微細に露出する領域が多くなり、このような領域に不働態皮膜が形成されるため、燃料電池セパレータの導電性がさらに劣化する。炭素層が燃料電池セパレータに十分な導電性を付与するためには、炭素の付着量に換算して2μg/cm2以上であることが好ましく、5μg/cm2以上がさらに好ましい。一方、炭素層の炭素の付着量が1mg/cm2を超えても、導電性はさらには向上しない。また、多量の炭素粉を圧着して炭素層を形成することが困難であり、さらに炭素層が極端に厚膜化されると基材との熱膨張率の差により後記の熱処理等で剥離し易くなることから、炭素の付着量は1mg/cm2以下であることが好ましい。炭素層の厚さおよび炭素の付着量は、当該炭素層の形成における基材への炭素粉の塗布量で制御することができる。 The thickness (film thickness) of the carbon layer is not particularly limited, but if it is extremely thin, sufficient conductivity cannot be obtained, and such a thin film has a small amount of carbon powder, that is, the number of carbon powders per area when formed. For this reason, the carbon layer becomes a film with many gaps, and sufficient barrier properties are not obtained, and there are many areas that are finely exposed on the surface of the base material, and a passive film is formed in such areas. The conductivity of the battery separator is further deteriorated. In order for the carbon layer to impart sufficient conductivity to the fuel cell separator, it is preferably 2 μg / cm 2 or more, more preferably 5 μg / cm 2 or more, in terms of the amount of carbon deposited. On the other hand, even if the carbon adhesion amount of the carbon layer exceeds 1 mg / cm 2 , the conductivity is not further improved. In addition, it is difficult to form a carbon layer by pressing a large amount of carbon powder, and when the carbon layer is extremely thick, it peels off due to the difference in thermal expansion coefficient with the base material due to the heat treatment described later. Since it becomes easy, it is preferable that the adhesion amount of carbon is 1 mg / cm < 2 > or less. The thickness of the carbon layer and the amount of carbon attached can be controlled by the amount of carbon powder applied to the substrate in forming the carbon layer.

本実施形態に係る燃料電池セパレータの表面、すなわち炭素層は、少なくとも表面において親水性を有する。これは、後記にて説明する本発明に係る燃料電池セパレータの親水化処理方法により、炭素層の一部の炭素原子(C)が他の炭素原子との結合を維持しつつ、酸素(O)と、>C−O−C<、>C=O等の形で結合したことによると推測される。炭素層(グラファイト)は、このように酸素が結合しても導電性への影響は小さく、燃料電池セパレータの導電材料として問題ない。また、親水性を有するとは、具体的には、25℃の環境下において、燃料電池セパレータの表面に水を滴下したときの接触角が70°以下であることを指し、好ましくは接触角が50°未満である。   The surface of the fuel cell separator according to the present embodiment, that is, the carbon layer has hydrophilicity at least on the surface. This is because oxygen (O) is maintained while some carbon atoms (C) of the carbon layer maintain bonds with other carbon atoms by the method for hydrophilizing a fuel cell separator according to the present invention described later. It is presumed that this is due to bonding in the form of> C—O—C <,> C═O. The carbon layer (graphite) has little influence on conductivity even when oxygen is bonded in this way, and there is no problem as a conductive material for the fuel cell separator. Furthermore, having hydrophilicity specifically means that the contact angle when water is dropped on the surface of the fuel cell separator in an environment of 25 ° C. is 70 ° or less, preferably the contact angle is It is less than 50 °.

(中間層)
前記したように炭素粉で形成される炭素層は、硬質な基材に圧着されただけでは基材に押し付けられたことによって付着しているに過ぎず、基材との密着性が不十分である。また、基材の仕上げ状態(酸洗の有無)にかかわらず、基材の表面すなわち炭素層との界面にチタンの不働態皮膜(二酸化チタン、TiO2)が形成されているため、燃料電池セパレータの導電性が低くなる。そこで、本実施形態に係る燃料電池セパレータは、炭素層と基材との界面に、Ti,Cを含有する層(中間層)を有する。中間層においては、前記のTi,Cが、炭化チタン(チタンカーバイド、TiC)、あるいはさらに炭素固溶チタンとして存在する。このような中間層は、基材上に炭素層を形成した後に、非酸化性雰囲気(低酸素雰囲気)で熱処理を行うことにより、界面でC,Tiを互いに拡散させて形成される(後記の燃料電池セパレータの製造方法にて詳細に説明する)。
(Middle layer)
As described above, the carbon layer formed of carbon powder is only adhered by being pressed against the base material by being pressed onto the hard base material, and the adhesion with the base material is insufficient. is there. In addition, since a passive film of titanium (titanium dioxide, TiO 2 ) is formed on the surface of the substrate, that is, the interface with the carbon layer, regardless of the finished state of the substrate (whether or not pickling), the fuel cell separator The conductivity of the is lowered. Therefore, the fuel cell separator according to the present embodiment has a layer (intermediate layer) containing Ti and C at the interface between the carbon layer and the base material. In the intermediate layer, the Ti and C are present as titanium carbide (titanium carbide, TiC) or, further, carbon solid solution titanium. Such an intermediate layer is formed by diffusing C and Ti at the interface by performing a heat treatment in a non-oxidizing atmosphere (low oxygen atmosphere) after forming a carbon layer on the substrate (described later). This will be described in detail in the fuel cell separator manufacturing method).

ここで、中間層が形成されている、すなわち基材と炭素層との界面に炭化チタンが存在するということは、基材の表面に不働態皮膜がないということである。基材に炭素粉を圧着して炭素層を形成した時点での状態で、非酸化性雰囲気で熱処理を施されると、基材表面の不働態皮膜の厚さが薄くなって最終的には消失し得る。これは、不働態皮膜(TiO2)中の酸素(O)が、基材の母材(Ti)中に内方拡散したり、炭素層のCと反応して二酸化炭素(CO2)として放出されることによると推測される。そして、炭素層が基材の母材(Ti)に接触した状態になると、その接触した界面で、熱処理によりC,Tiが互いに拡散して反応するようになり、炭化チタンが生成する。 Here, that the intermediate layer is formed, that is, the presence of titanium carbide at the interface between the base material and the carbon layer means that there is no passive film on the surface of the base material. When heat treatment is performed in a non-oxidizing atmosphere at the time when a carbon layer is formed by press-bonding carbon powder to the substrate, the thickness of the passive film on the surface of the substrate decreases, and finally Can disappear. This is because oxygen (O) in the passive film (TiO 2 ) diffuses inward into the base material (Ti) of the base material or reacts with C in the carbon layer and is released as carbon dioxide (CO 2 ). It is presumed that When the carbon layer comes into contact with the base material (Ti) of the base material, C and Ti diffuse and react with each other by heat treatment at the contacted interface, and titanium carbide is generated.

したがって、中間層(炭化チタン)が形成された領域は、基材の不働態皮膜が消失した領域である。そして、このような領域では、炭素層が基材(母材)に導電性の中間層のみを介して被覆する状態となって、炭素層と基材が電気的に低抵抗で接続する。その結果、燃料電池セパレータは、基材、中間層、炭素層の積層体として低い接触抵抗が得られる。さらに、中間層が形成されることで、当該中間層を介して基材と炭素層とが強固に接合される。その結果、燃料電池セパレータは、当該燃料電池セパレータへの成形時、あるいは燃料電池に使用された際に、炭素層が剥離等しないだけでなく、基材と炭素層との間に間隙を生じないので、燃料電池内部の酸性雰囲気が浸入して基材表面に接触することがなく、新たな不働態皮膜の形成による接触抵抗の上昇が抑制され、耐久性が向上する。   Therefore, the region where the intermediate layer (titanium carbide) is formed is a region where the passive film of the substrate has disappeared. In such a region, the carbon layer covers the base material (base material) only through the conductive intermediate layer, and the carbon layer and the base material are electrically connected with low resistance. As a result, the fuel cell separator has a low contact resistance as a laminate of the base material, the intermediate layer, and the carbon layer. Furthermore, by forming the intermediate layer, the base material and the carbon layer are firmly bonded via the intermediate layer. As a result, when the fuel cell separator is molded into the fuel cell separator or used in the fuel cell, not only does the carbon layer not peel off, but also no gap is formed between the substrate and the carbon layer. Therefore, the acidic atmosphere inside the fuel cell does not enter and contact the surface of the base material, and an increase in contact resistance due to the formation of a new passive film is suppressed and durability is improved.

中間層は、基材と炭素層との間(界面)のすべてに形成されていることがもっとも好ましいが、当該界面の50%以上に形成されていれば基材と炭素層との密着性が十分に得られる。また、中間層の厚さは特に限定されないが、10nm以上であれば基材と炭素層との密着性が十分に得られて好ましい。一方、中間層の厚さが500nmを超えても、基材と炭素層との密着性がさらに向上することはなく、また熱処理時間が長くなって生産性が低下するため、500nm以下が好ましく、200nm以下がさらに好ましい。   The intermediate layer is most preferably formed at all (interface) between the substrate and the carbon layer. However, if the intermediate layer is formed at 50% or more of the interface, the adhesion between the substrate and the carbon layer is improved. Fully obtained. Further, the thickness of the intermediate layer is not particularly limited, but if it is 10 nm or more, the adhesion between the base material and the carbon layer can be sufficiently obtained, which is preferable. On the other hand, even if the thickness of the intermediate layer exceeds 500 nm, the adhesion between the base material and the carbon layer is not further improved, and the heat treatment time is prolonged and the productivity is lowered. More preferably, it is 200 nm or less.

以上、説明した通り、本発明の実施形態に係る燃料電池セパレータは、高強度で加工性に優れた金属材料を基材に備えているので、薄型化が容易であり、また、本来撥水性でありながら、その導電性を維持しつつ親水性を付与されたグラファイトを表面に備えているので、燃料電池のカソード(空気極)側に配されるセパレータに適用しても、発電性能を生成水により低下させない。   As described above, since the fuel cell separator according to the embodiment of the present invention includes a metal material having high strength and excellent workability in the base material, the fuel cell separator can be easily thinned and is inherently water-repellent. However, the surface is provided with hydrophilic graphite while maintaining its electrical conductivity, so even if it is applied to a separator placed on the cathode (air electrode) side of the fuel cell, it generates power generation performance. It is not lowered by.

〔燃料電池セパレータの製造方法〕
次に、本発明に係る燃料電池セパレータの親水化処理方法を、前記燃料電池セパレータの製造方法と共に説明する。
[Method for producing fuel cell separator]
Next, the method for hydrophilizing the fuel cell separator according to the present invention will be described together with the method for producing the fuel cell separator.

(基材製造工程)
前記した通り、公知の方法でチタンまたはチタン合金からなる所望の厚さの冷間圧延板(条材)を製造し、コイルに巻き取り、基材とする。さらに必要に応じて、冷間圧延板を焼鈍したり、フッ酸と硝酸の混合溶液等で酸洗してもよい。
(Substrate manufacturing process)
As described above, a cold-rolled sheet (strip material) having a desired thickness made of titanium or a titanium alloy is manufactured by a known method, wound around a coil, and used as a base material. Further, if necessary, the cold rolled sheet may be annealed or pickled with a mixed solution of hydrofluoric acid and nitric acid.

(炭素層形成工程)
基材の表面(片面または両面)に、炭素層を形成するための炭素粉を付着させる。付着方法は特に限定されないが、炭素粉を直接に基材に付着させたり、炭素粉をカルボキシメチルセルロース等の水溶液や樹脂成分を含有する塗料中に分散させたスラリーを、基材に塗布すればよい。あるいは、炭素粉と樹脂とを混練して作製した炭素粉含有フィルムを基材に貼り付けたり、ショットブラストにより炭素粉を基材表面に打ち込んで、基材に担持させたり、炭素粉末と樹脂粉末とを混合して、コールドスプレー法によって基材に付着させる方法等が挙げられる。また、スラリーを塗布した場合等、溶媒を使用した場合は、ブロー等にて乾燥させてから後続の圧着を行うことが好ましい。
(Carbon layer formation process)
Carbon powder for forming a carbon layer is attached to the surface (one side or both sides) of the substrate. The attachment method is not particularly limited, but it is only necessary to apply carbon powder directly to the base material, or apply a slurry in which carbon powder is dispersed in an aqueous solution such as carboxymethyl cellulose or a resin component containing a resin component to the base material. . Alternatively, a carbon powder-containing film prepared by kneading carbon powder and resin is affixed to a base material, carbon powder is shot onto the base material surface by shot blasting, and supported on the base material, or carbon powder and resin powder And a method of adhering to a substrate by a cold spray method. Further, when a solvent is used such as when slurry is applied, it is preferable to perform subsequent pressure bonding after drying by blowing or the like.

炭素層を形成するための炭素粉は、粉径または粒径(直径)が0.5〜100μmの範囲のものが好ましい。粒径が大き過ぎると、基材に付着させ難く、さらに圧延による基材への圧着においても付着し難い。反対に粒径が小さ過ぎると、圧延による基材への圧着において炭素粉が基材に押し付けられる力が弱くなるため、基材に付着し難くなる。   The carbon powder for forming the carbon layer preferably has a powder diameter or particle diameter (diameter) in the range of 0.5 to 100 μm. If the particle size is too large, it is difficult to adhere to the substrate, and it is also difficult to adhere even when crimping to the substrate by rolling. On the other hand, if the particle size is too small, the force with which the carbon powder is pressed against the base material in the press-bonding to the base material by rolling becomes weak, so that it is difficult to adhere to the base material.

炭素粉を付着させた基材を、さらに冷間圧延を行うことにより、炭素粉を基材に圧着(以下、圧延圧着という)して、炭素粉同士を接合して膜状の炭素層とする。このときの冷間圧延は、基材を製造したときの通常の冷間圧延と同様に圧延機にて行うことができるが、炭素粉が潤滑剤と同様の効果を有するので、圧延ロールには潤滑油を塗布しなくてよい。この圧延圧着における総圧延率(圧延圧着前の基材+炭素層(付着した炭素粉)の合計厚さに対する圧延圧着による変化率)は0.1%以上とすることが好ましい。かかる圧延圧着により、軟質の炭素粉が変形して炭素粉同士が接合されて膜状の炭素層を形成して、基材に付着する。総圧延率の上限は特に規定せず、基材製造工程完了時の基材の厚さに対して所望の厚さとなるように調整すればよい。ただし、基材については総圧延率が過大になると反りやうねりを生じるため、基材の総圧延率(圧延圧着前の基材の板厚に対する圧延圧着による基材の板厚変化率)が50%以下となるようにすることが好ましい。   The base material to which the carbon powder is adhered is further cold-rolled, so that the carbon powder is pressure-bonded to the base material (hereinafter referred to as rolling pressure bonding), and the carbon powders are joined to form a film-like carbon layer. . Cold rolling at this time can be performed by a rolling mill in the same manner as normal cold rolling at the time of manufacturing a base material, but since carbon powder has the same effect as a lubricant, Lubricating oil does not have to be applied. The total rolling rate in this rolling and pressing (the rate of change due to rolling and pressing with respect to the total thickness of the base material + carbon layer (attached carbon powder) before rolling and pressing) is preferably 0.1% or more. By such rolling and pressure bonding, the soft carbon powder is deformed and the carbon powders are bonded to each other to form a film-like carbon layer and adhere to the substrate. The upper limit of the total rolling rate is not particularly defined, and may be adjusted so as to be a desired thickness with respect to the thickness of the base material at the completion of the base material manufacturing process. However, since the warpage and undulation occur when the total rolling rate is excessive for the base material, the total rolling rate of the base material (the thickness change rate of the base material due to the rolling pressure bonding with respect to the thickness of the base material before the rolling pressure bonding) is 50. % Or less is preferable.

このように、炭素層は炭素粉を圧着して形成されることで、軟質な炭素粉同士では接合して一体の膜になるが、硬質な基材へは押し付けられたことによって付着しているので、炭素層の形成直後においては基材への密着性が不十分である。また、前記した通り、基材の表面すなわち炭素層との界面には不働態皮膜が形成されているために、全体として接触抵抗が高い。そこで、次の熱処理により、基材表面の不働態皮膜を消失させ、さらに炭素層との間に中間層を形成する。   In this way, the carbon layer is formed by press-bonding carbon powder, so that soft carbon powders are joined together to form an integral film, but are attached to the hard substrate by being pressed. Therefore, immediately after the formation of the carbon layer, the adhesion to the substrate is insufficient. Further, as described above, since a passive film is formed on the surface of the substrate, that is, the interface with the carbon layer, the contact resistance as a whole is high. Therefore, the passive film on the substrate surface is eliminated by the following heat treatment, and an intermediate layer is formed between the carbon layer and the carbon layer.

(中間層形成工程)
炭素層を形成した基材を、非酸化性雰囲気で熱処理を施すことにより、基材の不働態皮膜を薄くして少なくとも一部を消失させて、基材の母材(Ti)に炭素層が接触するようにし、さらに接触した界面に炭化チタンを生成させて中間層を形成する。非酸化性雰囲気とは、具体的には、真空中または窒素(N2)やAr等の不活性ガスに、好ましくは酸素分圧1.3×10-3Pa以下を指す。酸素分圧が十分に低い雰囲気でないと、熱処理で炭素層の炭素が酸化して二酸化炭素(CO2)として解離してしまい、炭素層の膜厚が減少する。
(Intermediate layer forming process)
By subjecting the substrate on which the carbon layer is formed to a heat treatment in a non-oxidizing atmosphere, the passive film on the substrate is thinned to at least partially disappear, and the carbon layer is formed on the base material (Ti) of the substrate. In addition, titanium carbide is generated at the contact interface and an intermediate layer is formed. The non-oxidizing atmosphere specifically refers to an oxygen partial pressure of 1.3 × 10 −3 Pa or less, preferably in a vacuum or an inert gas such as nitrogen (N 2 ) or Ar. If the oxygen partial pressure is not sufficiently low, the carbon of the carbon layer is oxidized by heat treatment and dissociated as carbon dioxide (CO 2 ), and the film thickness of the carbon layer is reduced.

中間層形成工程における熱処理温度は300〜850℃の範囲が好ましい。熱処理温度が低過ぎると、基材と炭素層の界面でのTiとCの反応が進行しないために中間層が形成されず、さらに低いと、基材の自然酸化膜(不働態皮膜)が、当該不働態皮膜中のOと炭素層のCとの反応が進行しないために残存する。温度が高いほど、これらの反応速度は速くなるので熱処理時間を短縮できる。熱処理時間は0.5〜120分間の範囲で、熱処理温度に応じて設定する。一方、熱処理温度が高過ぎるとTiの相変態が起こるため、基材の機械特性が変化する虞がある。   The heat treatment temperature in the intermediate layer forming step is preferably in the range of 300 to 850 ° C. If the heat treatment temperature is too low, the reaction between Ti and C at the interface between the base material and the carbon layer does not proceed, so the intermediate layer is not formed. If it is lower, the natural oxide film (passive film) of the base material It remains because the reaction between O in the passive film and C in the carbon layer does not proceed. The higher the temperature, the faster the reaction rate, so the heat treatment time can be shortened. The heat treatment time is set in the range of 0.5 to 120 minutes according to the heat treatment temperature. On the other hand, if the heat treatment temperature is too high, a phase transformation of Ti occurs, which may change the mechanical properties of the substrate.

中間層形成工程における熱処理は、前記範囲の所望の熱処理温度で行うことができ、かつ雰囲気調整ができる熱処理炉であれば、電気炉、ガス炉等、どのような熱処理炉でも用いることができる。また、連続式の熱処理炉であれば、炭素層を形成した基材をコイル状の条材のままで熱処理を行うことができる。一方、バッチ式の熱処理炉を用いる場合は、炉内に収容可能な長さに、あるいは燃料電池セパレータとするための所定の形状に切断してから、あるいはさらに燃料電池セパレータの形状に成形した(後記の成形工程)後に、熱処理を行えばよい。   The heat treatment in the intermediate layer forming step can be performed in any heat treatment furnace, such as an electric furnace or a gas furnace, as long as it can be performed at a desired heat treatment temperature within the above range and the atmosphere can be adjusted. Moreover, if it is a continuous heat processing furnace, it can heat-process with the base material in which the carbon layer was formed still with a coil-shaped strip. On the other hand, when a batch-type heat treatment furnace is used, it is cut into a length that can be accommodated in the furnace, a predetermined shape for forming a fuel cell separator, or further shaped into a fuel cell separator shape ( Heat treatment may be performed after the molding step described later.

(成形工程)
炭素層および中間層を形成した基材を、切断、プレス加工等により、所望の形状に成形して、燃料電池セパレータ(親水化処理前)とする。なお、成形工程は熱処理工程前に行うこともできる。すなわち中間層が形成される前であっても、加工等により炭素層が剥離しない程度に基材に密着していればよい。また、圧延圧着に代えて、基材のプレス加工と同時に炭素粉を圧着して炭素層を形成してもよい。
(Molding process)
The base material on which the carbon layer and the intermediate layer are formed is formed into a desired shape by cutting, pressing, or the like to obtain a fuel cell separator (before hydrophilization treatment). In addition, a shaping | molding process can also be performed before a heat treatment process. That is, even before the intermediate layer is formed, it may be in close contact with the substrate to such an extent that the carbon layer does not peel off due to processing or the like. Moreover, it may replace with rolling crimping | compression-bonding and may press-bond carbon powder simultaneously with the press processing of a base material, and may form a carbon layer.

(親水化処理工程)
本発明に係る燃料電池セパレータの親水化処理方法は、金属からなる基材の表面に炭素層を備える燃料電池セパレータに、酸素(O2)濃度1%以上の雰囲気で150〜500℃の熱処理を施す。以下、実施形態として、前記の製造方法により、チタンまたはチタン合金からなる基材に、炭素層、および基材と炭素層の間の中間層を形成された燃料電池セパレータについて、その親水化処理方法を詳細に説明する。
(Hydrophilic treatment process)
In the method for hydrophilizing a fuel cell separator according to the present invention, a heat treatment at 150 to 500 ° C. in an atmosphere having an oxygen (O 2 ) concentration of 1% or more is applied to a fuel cell separator having a carbon layer on the surface of a metal substrate. Apply. Hereinafter, as an embodiment, a hydrophilic treatment method for a fuel cell separator in which a carbon layer and an intermediate layer between the base material and the carbon layer are formed on a base material made of titanium or a titanium alloy by the manufacturing method described above. Will be described in detail.

親水化処理工程においては、酸素(O2)を含有する雰囲気で熱処理を行う。N2やAr等の不活性ガスにO2を混合してもよいし、通常の大気雰囲気(O2濃度約21%)でもよい。燃料電池セパレータは、このような雰囲気で熱処理を施されることにより、表面の炭素層(グラファイト)に酸素(O)が結合して、炭素層が親水化すると推測される。O2濃度1%未満の雰囲気では、炭素層の親水化の進行が遅過ぎて、生産性が低下したり十分な親水性を付与することが困難となり、さらにO2濃度が低いとほとんど親水化しない。したがって、熱処理雰囲気のO2濃度は1%以上とし、5%以上が好ましい。一方、O2濃度の上限は特に規定されないが、10%を超えて高くしても親水化のさらなる向上効果は得られないことから、大気雰囲気(O2濃度約21%)相当以下とすることが好ましい。 In the hydrophilic treatment step, heat treatment is performed in an atmosphere containing oxygen (O 2 ). O 2 may be mixed with an inert gas such as N 2 or Ar, or a normal air atmosphere (O 2 concentration of about 21%) may be used. It is assumed that the fuel cell separator is subjected to heat treatment in such an atmosphere, whereby oxygen (O) is bonded to the carbon layer (graphite) on the surface, and the carbon layer becomes hydrophilic. O The 2 concentration of less than 1% atmosphere, too slow the progress of hydrophilic carbon layer, it is difficult to productivity to impart sufficient hydrophilicity may decrease, most hydrophilic More O 2 concentration is lower do not do. Therefore, the O 2 concentration in the heat treatment atmosphere is 1% or more, preferably 5% or more. On the other hand, the upper limit of the O 2 concentration is not particularly defined, but even if it exceeds 10%, no further improvement effect of hydrophilization can be obtained. Therefore, the upper limit of the O 2 concentration should be less than or equal to the atmospheric atmosphere (O 2 concentration about 21%). Is preferred.

親水化処理工程における熱処理温度は150〜500℃の範囲とする。熱処理温度が150℃未満では親水化の進行が遅過ぎて、生産性が低下したり十分な親水性を付与することが困難となり、さらに温度が低いとほとんど親水化しない。熱処理温度は、好ましくは200℃以上、より好ましくは230℃以上、さらに好ましくは250℃以上である。一方、熱処理温度が高いほど炭素層の親水化の進行が速くなるが、ある程度の高温になると燃料電池セパレータの導電性が劣化するようになる。これは、温度が高いと基材表層の金属が酸素(O)と反応すなわち酸化するようになり、特に本実施形態に係る燃料電池セパレータにおいては、Oが中間層さらには基材表層に導入されて、中間層等の導電性が低下することによると推測される。特に熱処理温度が500℃を超えると、導電性の劣化が顕著になる傾向がある。さらに温度が高いと、炭素層の炭素が酸化して二酸化炭素(CO2)として解離してしまい、炭素層の膜厚が減少する。熱処理温度は、好ましくは450℃以下、より好ましくは400℃以下、さらに好ましくは400℃未満である。熱処理時間は約5秒〜10分間の範囲が好ましく、熱処理温度に応じて設定する。 The heat treatment temperature in the hydrophilization treatment step is in the range of 150 to 500 ° C. If the heat treatment temperature is less than 150 ° C., the progress of hydrophilization is too slow, and it becomes difficult to lower the productivity or impart sufficient hydrophilicity. The heat treatment temperature is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 250 ° C. or higher. On the other hand, the higher the heat treatment temperature, the faster the carbon layer becomes hydrophilic. However, the conductivity of the fuel cell separator deteriorates at a certain high temperature. This is because when the temperature is high, the metal on the surface of the base material reacts with oxygen (O), that is, oxidizes, and particularly in the fuel cell separator according to this embodiment, O is introduced into the intermediate layer and further onto the base material surface layer. Thus, it is presumed that the conductivity of the intermediate layer or the like is lowered. In particular, when the heat treatment temperature exceeds 500 ° C., the deterioration of conductivity tends to become remarkable. Further, when the temperature is high, carbon in the carbon layer is oxidized and dissociated as carbon dioxide (CO 2 ), and the film thickness of the carbon layer is reduced. The heat treatment temperature is preferably 450 ° C. or less, more preferably 400 ° C. or less, and further preferably less than 400 ° C. The heat treatment time is preferably in the range of about 5 seconds to 10 minutes, and is set according to the heat treatment temperature.

親水化処理工程における熱処理は、炉内に燃料電池セパレータを収容して、前記範囲の所望の熱処理温度で行うことができる熱処理炉であれば、電気炉、ガス炉等、どのような熱処理炉でも用いることができる。   The heat treatment in the hydrophilization treatment step can be performed in any heat treatment furnace such as an electric furnace or a gas furnace as long as the fuel cell separator is accommodated in the furnace and can be performed at a desired heat treatment temperature within the above range. Can be used.

前記したように、中間層形成工程は成形工程の後に行うこともできるため、例えば雰囲気調整ができるバッチ式の熱処理炉を用い、中間層形成工程と親水化処理工程を連続して行ってもよい。具体的には、非酸化性雰囲気での熱処理にて中間層形成工程を行った後、炉内に燃料電池セパレータを収容したままで温度を降下させて150〜500℃の範囲の範囲とし、あるいは500℃以下で中間層形成工程における熱処理を行った後に温度を保持したままとし、炉内に酸素(O2)を導入して所望のO2濃度として親水化処理工程を行う。 As described above, since the intermediate layer forming step can be performed after the molding step, the intermediate layer forming step and the hydrophilization processing step may be performed successively using, for example, a batch heat treatment furnace capable of adjusting the atmosphere. . Specifically, after the intermediate layer forming step is performed by heat treatment in a non-oxidizing atmosphere, the temperature is lowered while the fuel cell separator is housed in the furnace to be in the range of 150 to 500 ° C., or After performing the heat treatment in the intermediate layer forming step at 500 ° C. or lower, the temperature is kept, and oxygen (O 2 ) is introduced into the furnace to perform a hydrophilization treatment step with a desired O 2 concentration.

なお、親水化処理工程は、中間層形成工程の後に行う。親水化処理工程の後に非酸化性雰囲気での高温の熱処理を行うと、炭素層に結合した酸素(O)が解離して、親水性が失われる虞があるためである。また、炭素層は親水性を付与されると潤滑性が低下する傾向があるため、成形の仕様や加工量にもよるが、親水化処理工程は成形工程の後に行うことが好ましい。   The hydrophilic treatment process is performed after the intermediate layer forming process. This is because if high-temperature heat treatment is performed in a non-oxidizing atmosphere after the hydrophilization treatment step, oxygen (O) bonded to the carbon layer may be dissociated and the hydrophilicity may be lost. Further, since the lubricity of the carbon layer tends to decrease when hydrophilicity is imparted, the hydrophilic treatment process is preferably performed after the molding process, although it depends on the molding specifications and processing amount.

燃料電池セパレータの親水化処理は、本発明に係る燃料電池セパレータの親水化処理方法による処理(酸素含有雰囲気での熱処理)だけでなく、他の方法を組み合わせて行ってもよい。具体的には、オゾン処理、UV処理、プラズマ処理等が挙げられる。これらの処理は、酸素含有雰囲気での熱処理の後に行うことが好ましい。   The hydrophilization treatment of the fuel cell separator may be performed not only by the treatment by the hydrophilization treatment method of the fuel cell separator according to the present invention (heat treatment in an oxygen-containing atmosphere) but also by combining other methods. Specific examples include ozone treatment, UV treatment, and plasma treatment. These treatments are preferably performed after heat treatment in an oxygen-containing atmosphere.

本発明に係る燃料電池セパレータの親水化処理方法は、燃料電池セパレータの製造時だけでなく、燃料電池に使用された後、すなわち使用により親水性が劣化した燃料電池セパレータに適用することもできる。   The method for hydrophilizing a fuel cell separator according to the present invention can be applied not only at the time of production of the fuel cell separator but also to a fuel cell separator whose hydrophilicity has deteriorated after being used in the fuel cell, that is, by use.

本発明に係る燃料電池セパレータの親水化処理方法は、チタン等の金属材料からなる基材にグラファイトからなる炭素層(導電層)を被覆した燃料電池セパレータに限られず、カーボン(グラファイト)成形体からなる燃料電池セパレータにも適用することができる。カーボン成形体への親水化処理においては、基材の金属材料への酸素(O)の導入による導電性の低下の虞がないため、前記の範囲内において比較的高温で長時間の熱処理を施してよく、またこのような熱処理により、燃料電池セパレータ(カーボン成形体)の表層だけでなく内部まで親水化されるため、親水性が長期間維持される。   The method for hydrophilizing a fuel cell separator according to the present invention is not limited to a fuel cell separator in which a carbon layer (conductive layer) made of graphite is coated on a base material made of a metal material such as titanium, but from a carbon (graphite) molded body. The present invention can also be applied to a fuel cell separator. In the hydrophilization treatment of the carbon molded body, there is no risk of a decrease in conductivity due to the introduction of oxygen (O) into the metal material of the base material. Further, by such heat treatment, not only the surface layer of the fuel cell separator (carbon molded body) but also the inside is hydrophilized, so that the hydrophilicity is maintained for a long time.

以上、本発明に係る燃料電池セパレータ、およびその親水化処理方法について、本発明を実施するための形態について説明したが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して説明する。なお、本発明はこの実施例および前記形態に限定されるものではなく、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   As mentioned above, although the form for implementing this invention was demonstrated about the fuel cell separator which concerns on this invention, and its hydrophilization processing method, the Example which confirmed the effect of this invention below is the requirements of this invention. This will be described in comparison with a comparative example that is not satisfied. In addition, this invention is not limited to this Example and the said form, It cannot be overemphasized that what was variously changed and modified based on these description is also contained in the meaning of this invention.

〔試験材の作製〕
(基材作製)
基材材料としてJIS 1種、化学組成が、O:450ppm、Fe:250ppm、N:40ppm、C:200ppm、H:30ppm、残部がTiおよび不可避的不純物の純チタンを適用した。この純チタンを、公知の溶解、鋳造、熱間圧延、冷間圧延を施して、板厚0.1mmの条材を作製し、さらに焼鈍、酸洗仕上げとし、50mm×150mmに切り出して基材とした。
[Production of test materials]
(Base material production)
As the base material, JIS 1 type, chemical composition: O: 450 ppm, Fe: 250 ppm, N: 40 ppm, C: 200 ppm, H: 30 ppm, the balance being Ti and inevitable impurities pure titanium were applied. This pure titanium is subjected to known melting, casting, hot rolling, and cold rolling to produce a strip with a thickness of 0.1 mm, and further annealed and pickled, cut into a 50 mm × 150 mm base material It was.

(炭素層形成)
炭素層を形成する黒鉛(グラファイト)粉として、平均粒径10μm、純度99.9%の鱗片状黒鉛粉(SECカーボン社製、SNO−10)を用いた。この黒鉛粉を、1.0質量%カルボキシメチルセルロース水溶液中に12質量%となるように分散させてスラリーを作製した。そして、このスラリーを15番の番手のバーコーターを用いて前記の基材の両面に各200μg/cm2(乾燥後換算)塗布し、設定温度を100℃とした乾燥機の中で乾燥させた。そして、基材を、ワークロール径200mmの2段圧延機を用い、潤滑油を塗布していない圧延ロールにて、荷重2.5トンでロールプレスし、1パスで圧下率(=総圧延率)1.0%の冷間圧延を施して基材両面に炭素層を形成した。
(Carbon layer formation)
As the graphite (graphite) powder forming the carbon layer, scaly graphite powder having an average particle size of 10 μm and a purity of 99.9% (manufactured by SEC Carbon Co., SNO-10) was used. This graphite powder was dispersed in a 1.0% by mass carboxymethylcellulose aqueous solution so as to be 12% by mass to prepare a slurry. And this slurry was apply | coated to both surfaces of the said base material each 200 microgram / cm < 2 > (converted after drying) using the 15th count bar coater, and was dried in the dryer which set temperature as 100 degreeC. . Then, the base material was roll-pressed with a load of 2.5 tons using a two-stage rolling mill with a work roll diameter of 200 mm and a lubricant was not applied, and the rolling reduction (= total rolling ratio) in one pass. ) 1.0% cold rolling was applied to form carbon layers on both sides of the substrate.

(中間層形成)
炭素層を形成した基材を、熱処理炉を用いて、酸素分圧1.3×10-3Pa以下の真空(6.7×10-3Pa)雰囲気で、560℃で2時間保持して熱処理を行った。熱処理後は、真空雰囲気下で基材の温度が100℃以下になるまで冷却し、40mm×30mmに切り出して、燃料電池セパレータの試験材(親水化処理前)とした。
(Intermediate layer formation)
The base material on which the carbon layer is formed is held at 560 ° C. for 2 hours in a vacuum atmosphere (6.7 × 10 −3 Pa) with an oxygen partial pressure of 1.3 × 10 −3 Pa or less using a heat treatment furnace. Heat treatment was performed. After the heat treatment, the substrate was cooled in a vacuum atmosphere until the temperature of the substrate became 100 ° C. or lower, cut into 40 mm × 30 mm, and used as a fuel cell separator test material (before hydrophilization treatment).

(親水化処理)
得られた燃料電池セパレータの試験材を、大気炉にて、表1に示す温度で表1に示す時間保持して熱処理を施し、試験材No.2〜10とした。また、熱処理(親水化処理)を施さない試験材を比較例(試験材No.1)とした。
(Hydrophilic treatment)
The obtained fuel cell separator test material was subjected to heat treatment in an atmospheric furnace at the temperature shown in Table 1 for the time shown in Table 1, and subjected to heat treatment. It was set to 2-10. Moreover, the test material which does not give heat processing (hydrophilization treatment) was made into the comparative example (test material No. 1).

また、雰囲気調整が可能な急速加熱炉を用いて、窒素(N2)に表2に示す濃度の酸素(O2)を混合した雰囲気で、350℃で60秒間保持して熱処理を施し、試験材No.11〜16とした。 Also, using a rapid heating furnace capable of adjusting the atmosphere, heat treatment was performed by holding at 350 ° C. for 60 seconds in an atmosphere in which nitrogen (N 2 ) was mixed with oxygen (O 2 ) having the concentration shown in Table 2, and then performing the test. Material No. 11-16.

〔評価〕
(親水性)
試験材No.1〜16について、25℃の環境下で、試験材を水平に載置し、表面に約0.5μLの純水を滴下し、接触角測定器(協和界面科学社製、CA−A)を用いて接触角(水接触角)θを測定した。親水性の合格基準は、接触角θが70°以下とした。接触角θおよび試験材No.1との差Δθを表1、表2に示す。
[Evaluation]
(Hydrophilic)
Test material No. About 1-16, in a 25 degreeC environment, test material is mounted horizontally, about 0.5 microliters pure water is dripped on the surface, and a contact angle measuring device (the Kyowa Interface Science company make, CA-A) is used. The contact angle (water contact angle) θ was measured. The acceptance criterion for hydrophilicity was a contact angle θ of 70 ° or less. Contact angle θ and test material No. The difference Δθ with respect to 1 is shown in Tables 1 and 2.

(導電性)
試験材No.1〜16について、接触抵抗を、図1に示す接触抵抗測定装置を用いて測定した。試験材を両面から2枚のカーボンクロスで挟み、さらにその外側を接触面積1cm2の銅電極で荷重98N(10kgf)に加圧し、直流電流電源を用いて7.4mAの電流を通電し、両カーボンクロス間に印加される電圧を電圧計で測定して抵抗値を算出した。得られた抵抗値を接触抵抗として表1に示す。導電性の合格基準は、接触抵抗が5mΩ・cm2以下とした。
(Conductivity)
Test material No. About 1-16, the contact resistance was measured using the contact resistance measuring apparatus shown in FIG. The test material is sandwiched between two carbon cloths from both sides, and the outside is pressurized to a load of 98 N (10 kgf) with a copper electrode with a contact area of 1 cm 2 , and a current of 7.4 mA is applied using a direct current power source. The resistance value was calculated by measuring the voltage applied between the carbon cloths with a voltmeter. The obtained resistance value is shown in Table 1 as contact resistance. The electrical conductivity acceptance criterion was a contact resistance of 5 mΩ · cm 2 or less.

試験材No.1〜9の水接触角および接触抵抗について、親水化処理における温度依存性のグラフを図2に示す。なお、試験材No.1については熱処理温度0℃とした。また、試験材No.11〜16の水接触角および接触抵抗について、親水化処理におけるO2濃度依存性のグラフを図3に示す。 Test material No. FIG. 2 shows a graph of temperature dependence in the hydrophilization treatment for water contact angles and contact resistances of 1 to 9. The test material No. For No. 1, the heat treatment temperature was 0 ° C. In addition, test material No. FIG. 3 shows a graph of the O 2 concentration dependency in the hydrophilization treatment for water contact angles and contact resistances of 11 to 16.

Figure 2015069692
Figure 2015069692

Figure 2015069692
Figure 2015069692

表1および図2に示すように、酸素含有雰囲気である大気中で熱処理を施した試験材No.2〜10のすべてについて、試験材No.1よりも親水性が高くなった。特に熱処理温度が350〜400℃付近(試験材No.6,7)までは、温度が高くなるにしたがい親水性が高くなった。また、熱処理温度が400℃を超えても親水性にほとんど変化がない一方で、300℃以上で接触抵抗が漸増し始め、600℃の熱処理を施した試験材No.9は、導電性が不合格となった。一方、試験材No.2は、熱処理温度が低く、親水化が不十分であった。また、熱処理温度が本発明の範囲の下限(150℃)において処理時間を長くした試験材No.10は、同じ熱処理温度の試験材No.3と比較して、導電性が低下することはなかったが、親水化の進行が遅く、親水性が大きく向上することはなかった。   As shown in Table 1 and FIG. For all of Nos. 2 to 10, the test material No. The hydrophilicity was higher than 1. In particular, until the heat treatment temperature was around 350 to 400 ° C. (test material Nos. 6 and 7), the hydrophilicity increased as the temperature increased. Further, even when the heat treatment temperature exceeds 400 ° C., there is almost no change in hydrophilicity, but the contact resistance starts to gradually increase at 300 ° C. or higher, and the test material No. In No. 9, the conductivity was not acceptable. On the other hand, test material No. No. 2 had a low heat treatment temperature and insufficient hydrophilicity. In addition, the test material No. in which the heat treatment temperature was increased at the lower limit (150 ° C.) of the range of the present invention. 10 is a test material No. 10 having the same heat treatment temperature. Compared with 3, the conductivity did not decrease, but the progress of hydrophilization was slow, and the hydrophilicity was not greatly improved.

表2および図3に示すように、酸素含有雰囲気で熱処理を施した試験材No.12〜16のすべてについて、試験材No.1(表1参照)よりも親水性が高くなった。特にO2濃度が5%(試験材No.14)までは、O2濃度が高くなるにしたがい親水性が顕著に高くなり、一方、O2濃度が5%を超えても親水性にほとんど変化がなく、また大気中で熱処理を施した試験材No.6(表1参照)とほとんど差がなかった。これに対して、同じ温度かつ保持時間であっても、窒素(N2)のみすなわち非酸化性雰囲気で熱処理を施した試験材No.11は、試験材No.1に対して親水性がほとんど変化しなかった。また、試験材No.12は、O2濃度が低く、親水化が不十分であった。また、接触抵抗については、O2濃度が1%以上で微増したが、O2濃度による依存性は極めて小さかった。 As shown in Table 2 and FIG. For all of Nos. 12-16, the test material No. The hydrophilicity was higher than 1 (see Table 1). Particularly O 2 concentration of 5% to (test material No.14), the hydrophilic accordance O 2 concentration increases is significantly higher, whereas, little change in hydrophilicity beyond the O 2 concentration of 5% No test material No. which was heat-treated in the air There was almost no difference from 6 (see Table 1). On the other hand, even with the same temperature and holding time, test material No. 1 subjected to heat treatment only in nitrogen (N 2 ), ie, in a non-oxidizing atmosphere. 11 is a test material No. With respect to 1, the hydrophilicity hardly changed. In addition, test material No. No. 12 had a low O 2 concentration and insufficient hydrophilization. The contact resistance slightly increased when the O 2 concentration was 1% or more, but the dependence on the O 2 concentration was very small.

導電層(グラファイト)のみに対する効果を観察するために、燃料電池セパレータの試験材として、厚さ5mmのグラファイト成形体(東洋カーボン製、G347B)に対して、本発明に係る親水化処理方法における熱処理を施した。実施例1の試験材No.2〜10と同様に大気中で、450℃で180秒間保持して熱処理を施し、試験材No.17とした。試験材No.17について、熱処理の前後で実施例1と同様に、接触角および接触抵抗を測定し、表3に示す。なお、表3のΔθは熱処理前との接触角θの差である。   In order to observe the effect only on the conductive layer (graphite), heat treatment in the hydrophilization treatment method according to the present invention was performed on a graphite molded body (G347B, manufactured by Toyo Carbon Co., Ltd.) having a thickness of 5 mm as a test material for a fuel cell separator. Was given. Test material No. 1 of Example 1 In the same manner as in Nos. 2 to 10, heat treatment was carried out in the air at 450 ° C. for 180 seconds. It was set to 17. Test material No. For No. 17, the contact angle and the contact resistance were measured in the same manner as in Example 1 before and after the heat treatment, and are shown in Table 3. In Table 3, Δθ is the difference in contact angle θ before heat treatment.

Figure 2015069692
Figure 2015069692

表3に示すように、全体がグラファイトからなる燃料電池セパレータについても、熱処理により親水性が高くなった。一方で、実施例1の熱処理において比較的高温かつ長時間の熱処理であっても、導電性の低下はほとんどなかった。   As shown in Table 3, the hydrophilicity of the fuel cell separator made entirely of graphite was also increased by the heat treatment. On the other hand, even if the heat treatment of Example 1 was a heat treatment at a relatively high temperature for a long time, there was almost no decrease in conductivity.

Claims (3)

グラファイトを含有する導電層を表面に備えて前記導電層が金属からなる基材を被覆してなる燃料電池セパレータの前記表面に、親水性を付与する燃料電池セパレータの親水化処理方法であって、
前記燃料電池セパレータに、酸素濃度1%以上の雰囲気で150〜500℃の熱処理を施すことを特徴とする燃料電池セパレータの親水化処理方法。
A fuel cell separator hydrophilization method for imparting hydrophilicity to the surface of a fuel cell separator comprising a conductive layer containing graphite on the surface and the conductive layer covering a substrate made of metal,
A method for hydrophilizing a fuel cell separator, comprising subjecting the fuel cell separator to a heat treatment at 150 to 500 ° C. in an atmosphere having an oxygen concentration of 1% or more.
グラファイトを含有する導電層を表面に備え、前記導電層が金属からなる基材を被覆してなる燃料電池セパレータであって、
25℃の環境下において、前記表面に水を滴下したときの接触角が70°以下であることを特徴とする燃料電池セパレータ。
A fuel cell separator comprising a conductive layer containing graphite on a surface, the conductive layer covering a base material made of metal,
A fuel cell separator having a contact angle of 70 ° or less when water is dropped on the surface in an environment of 25 ° C.
前記基材がチタンまたはチタン合金からなり、
前記基材と前記導電層との間に、炭化チタンを含有する中間層が形成されていることを特徴とする請求項2に記載の燃料電池セパレータ。
The substrate is made of titanium or a titanium alloy,
The fuel cell separator according to claim 2, wherein an intermediate layer containing titanium carbide is formed between the base material and the conductive layer.
JP2013199842A 2013-09-26 2013-09-26 Fuel cell separator and method for hydrophilic treatment thereof Expired - Fee Related JP6043262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199842A JP6043262B2 (en) 2013-09-26 2013-09-26 Fuel cell separator and method for hydrophilic treatment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199842A JP6043262B2 (en) 2013-09-26 2013-09-26 Fuel cell separator and method for hydrophilic treatment thereof

Publications (2)

Publication Number Publication Date
JP2015069692A true JP2015069692A (en) 2015-04-13
JP6043262B2 JP6043262B2 (en) 2016-12-14

Family

ID=52836200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199842A Expired - Fee Related JP6043262B2 (en) 2013-09-26 2013-09-26 Fuel cell separator and method for hydrophilic treatment thereof

Country Status (1)

Country Link
JP (1) JP6043262B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013105A (en) * 2015-07-27 2017-02-06 현대자동차주식회사 Coating method of seperator for fuel cell and seperator for fuel cell
KR101729037B1 (en) * 2015-12-17 2017-04-24 주식회사 포스코 Stainless steel with improved hydrophilicity and corrosion resistance for pemfc separator and method of manufacturing the same
JP2017130384A (en) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 Method of manufacturing separator for fuel battery
JP2018067450A (en) * 2016-10-19 2018-04-26 株式会社神戸製鋼所 Method for manufacturing carbon-coated separator material for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088034A1 (en) * 2005-02-16 2006-08-24 Toyo Boseki Kabushiki Kaisha Fuel cell separator and method for manufacturing same
JP2009087909A (en) * 2007-09-14 2009-04-23 Toyota Motor Corp Manufacturing method of separator for fuel cell
JP2011108547A (en) * 2009-11-19 2011-06-02 Toyota Motor Corp Fuel cell
JP2012186147A (en) * 2011-02-14 2012-09-27 Kobe Steel Ltd Fuel cell separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088034A1 (en) * 2005-02-16 2006-08-24 Toyo Boseki Kabushiki Kaisha Fuel cell separator and method for manufacturing same
JP2009087909A (en) * 2007-09-14 2009-04-23 Toyota Motor Corp Manufacturing method of separator for fuel cell
JP2011108547A (en) * 2009-11-19 2011-06-02 Toyota Motor Corp Fuel cell
JP2012186147A (en) * 2011-02-14 2012-09-27 Kobe Steel Ltd Fuel cell separator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170013105A (en) * 2015-07-27 2017-02-06 현대자동차주식회사 Coating method of seperator for fuel cell and seperator for fuel cell
KR101724456B1 (en) * 2015-07-27 2017-04-07 현대자동차 주식회사 Coating method of seperator for fuel cell and seperator for fuel cell
KR101729037B1 (en) * 2015-12-17 2017-04-24 주식회사 포스코 Stainless steel with improved hydrophilicity and corrosion resistance for pemfc separator and method of manufacturing the same
WO2017105142A1 (en) * 2015-12-17 2017-06-22 주식회사 포스코 Stainless steel for separation plate of polymer electrolyte membrane fuel cell having improved hydrophilic property and corrosion resistance, and manufacturing method therefor
US11398631B2 (en) 2015-12-17 2022-07-26 Posco Stainless steel for separation plate of polymer electrolyte membrane fuel cell having improved hydrophilic property and corrosion resistance, and manufacturing method therefor
JP2017130384A (en) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 Method of manufacturing separator for fuel battery
JP2018067450A (en) * 2016-10-19 2018-04-26 株式会社神戸製鋼所 Method for manufacturing carbon-coated separator material for fuel cell

Also Published As

Publication number Publication date
JP6043262B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6122589B2 (en) Fuel cell separator
KR101548064B1 (en) Fuel cell separator
EP2597710B1 (en) Polymer electrolyte fuel cell comprising titanium separator
JP5753830B2 (en) Fuel cell separator and manufacturing method thereof
JP4886885B2 (en) Titanium fuel cell separator
JP5342462B2 (en) Manufacturing method of fuel cell separator
JP5342518B2 (en) Method for producing titanium fuel cell separator
JP5968857B2 (en) Method for producing titanium fuel cell separator
JP5507496B2 (en) Manufacturing method of fuel cell separator
JP4823202B2 (en) Method for producing titanium substrate for fuel cell separator and method for producing fuel cell separator
JP6043262B2 (en) Fuel cell separator and method for hydrophilic treatment thereof
KR20180067708A (en) Titanium separator material for fuel cells, and method for producing titanium separator material for fuel cells
JP2010182593A (en) Corrosion resistant film for fuel cell separator, and fuel cell separator
JP6061702B2 (en) Material for fuel cell separator and method for producing fuel cell separator
WO2018084184A1 (en) Titanium material, constituent member for cells, cell, and solid polymer fuel cell
JP5575696B2 (en) Manufacturing method of fuel cell separator
JP5108986B2 (en) Fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161111

R150 Certificate of patent or registration of utility model

Ref document number: 6043262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees