JP2015069072A - Color filter and manufacturing method of color filter - Google Patents

Color filter and manufacturing method of color filter Download PDF

Info

Publication number
JP2015069072A
JP2015069072A JP2013204406A JP2013204406A JP2015069072A JP 2015069072 A JP2015069072 A JP 2015069072A JP 2013204406 A JP2013204406 A JP 2013204406A JP 2013204406 A JP2013204406 A JP 2013204406A JP 2015069072 A JP2015069072 A JP 2015069072A
Authority
JP
Japan
Prior art keywords
conductive layer
transparent conductive
color filter
black matrix
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013204406A
Other languages
Japanese (ja)
Inventor
木村 健
Takeshi Kimura
健 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013204406A priority Critical patent/JP2015069072A/en
Publication of JP2015069072A publication Critical patent/JP2015069072A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive layer capable of maintaining conductivity that can secure voltage necessary for drive, originated from a border such as between pixels, with no occurrence of an ITO crack and having necessary transmissivity.SOLUTION: A color filter includes a black matrix 3, a pigmented layer 2 composed of three primary colors and a transparent conductive layer sequentially formed on a transparent substrate 1. The transparent conductive layer formed on the black matrix is thicker than the transparent conductive layer formed on the pigmented layer. Thickness of the transparent conductive layer formed on the black matrix is 1400Å or more.

Description

本発明は、テレビ、パソコン、携帯端末などに使用される、液晶表示素子、EL素子など、フラットパネルディスプレイやフレキシブルディスプレイなどに用いられるカラーフィルタに関する。   The present invention relates to a color filter used for a flat panel display, a flexible display, etc., such as a liquid crystal display element and an EL element, which are used for a television, a personal computer, a portable terminal and the like.

最近、OA機器や携帯用小型TV等の普及に伴い、液晶表示素子、EL素子が実用化されている。その中でも液晶表示素子は極度に軽量で薄型、低価低消費電力駆動で集積回路との整合性のよさなどの特徴を有している。   Recently, with the spread of OA equipment and portable small TVs, liquid crystal display elements and EL elements have been put into practical use. Among them, the liquid crystal display element has features such as extremely light weight and thinness, low price and low power consumption driving, and good compatibility with an integrated circuit.

液晶表示素子は、コモン駆動用基板とセグメント駆動用基板の2枚の導電性板材を平行に配置し、その間に液晶を注入して電気光学的効果により、任意の図案を表示するようになっている。   In a liquid crystal display element, two conductive plates, a common driving substrate and a segment driving substrate, are arranged in parallel, and liquid crystal is injected between them to display an arbitrary design by an electro-optic effect. Yes.

誘電異方性を有する物質が電界上に置かれると配向する性質を用いて画像表示をするようにしたものであって、ブラックマトリックス、着色層上に形成された透明電極と配向膜とが、積層された上下部ガラス基板の周囲を密封材で取り囲んでつくった液晶セルに、液晶を注入した構造となっている。   A material having dielectric anisotropy is arranged to display an image using the property of being oriented when placed on an electric field, and a transparent electrode and an alignment film formed on a black matrix, a colored layer, The structure is such that liquid crystal is injected into a liquid crystal cell formed by surrounding the laminated upper and lower glass substrates with a sealing material.

LCDが大型化するに従い、ストライプ形状に形成される透明電極が薄く長くなり、電圧の印加の際、電圧印加側(IC駆動側)とその反対側との間に電位差が生じる。前記電位差は透明電極のみを用いた場合透明導電層として使われるITO(酸化インジューム・スズ)それ自体が有している面抵抗が最小10〜30Ω/cmになるためライン電圧ドロップにより生じ、その結果、表示画面の両側間に画質の差が発生して画質不良の原因になる。 As the LCD becomes larger, the transparent electrodes formed in a stripe shape become thinner and longer, and a potential difference is generated between the voltage application side (IC drive side) and the opposite side when a voltage is applied. The potential difference is caused by a line voltage drop because ITO (indium tin oxide) itself used as a transparent conductive layer has a minimum surface resistance of 10 to 30 Ω / cm 2 when only a transparent electrode is used, As a result, a difference in image quality occurs between both sides of the display screen, causing image quality defects.

ITOに求められる主な特性は、透過率、抵抗値が挙げられ、ITO膜厚を薄くすることで、ITOの透過率が上がるが、反対にITO膜厚を薄くすることで、面抵抗が上昇してしまう。   The main characteristics required for ITO are transmittance and resistance. Increasing the ITO thickness increases the ITO transmittance, but conversely increases the sheet resistance by decreasing the ITO thickness. Resulting in.

また、ITO膜を薄くすることで、ITOクラックが発生しやすく、特にITO膜厚が1400Å未満であると、画素間等の境界を起点として、ITOクラックが発生し、抵抗値異常やムラの発生といったカラーフィルタとしての不具合の原因となる。   In addition, by making the ITO film thin, ITO cracks are likely to occur. Especially when the ITO film thickness is less than 1400 mm, ITO cracks occur starting from the boundary between pixels, etc., and abnormal resistance values and irregularities occur. This causes a problem as a color filter.

特開2005−84493号公報JP 2005-84493 A

本発明は、上記した事情に鑑みてなされたもので、駆動に必要な電圧を、確保できる導電性を維持し、画素間等の境界を起点するITOクラックの発生のない、しかも必要な透過率を持つ透明導電層を提供することにある。   The present invention has been made in view of the above-described circumstances, maintains the conductivity that can secure the voltage necessary for driving, does not generate ITO cracks starting from boundaries such as between pixels, and has the necessary transmittance. It is in providing the transparent conductive layer which has.

上記の課題を解決するための手段として、請求項1に記載の発明は、透明基板上ブラックマトリックス、三原色からなる着色層及び透明導電層を順次形成したカラーフィルタで
あって、
前記ブラックマトリックス上に設けられた透明導電層の厚みが、着色層上に設けられた透明導電層より厚いことを特徴とするカラーフィルタである。
As means for solving the above problems, the invention according to claim 1 is a color filter in which a black matrix on a transparent substrate, a colored layer composed of three primary colors and a transparent conductive layer are sequentially formed,
The color filter is characterized in that the transparent conductive layer provided on the black matrix is thicker than the transparent conductive layer provided on the colored layer.

また、請求項2に記載の発明は、前記ブラックマトリックス上に設けられた透明導電層の厚みが1400Å以上であることを特徴とする請求項1記載のカラーフィルタである。   The invention according to claim 2 is the color filter according to claim 1, wherein the transparent conductive layer provided on the black matrix has a thickness of 1400 mm or more.

また、請求項3に記載の発明は、請求項1または請求項2に記載のカラーフィルタの製造方法であって、
ブラックマトリックス、及び三原色からなる着色画素が形成された透明基板の全面に透明導電層を成膜した後、
前記透明導電層上にポジレジストを塗布し、透明基板側から、UV光を照射し、ポジレジストを現像後、着色画素上の透明導電層をエッチングすることを特徴とするカラーフィルタの製造方法である。
The invention according to claim 3 is a method for producing a color filter according to claim 1 or 2,
After forming the transparent conductive layer on the entire surface of the transparent substrate on which the black matrix and the colored pixels composed of the three primary colors are formed,
A method for producing a color filter, comprising: applying a positive resist on the transparent conductive layer; irradiating UV light from the transparent substrate side; developing the positive resist; and etching the transparent conductive layer on the colored pixels. is there.

また、請求項4に記載の発明は、請求項1または請求項2に記載のカラーフィルタの製造方法であって、
ブラックマトリックス、及び三原色からなる着色画素が形成された透明基板の全面に透明導電層を成膜した後、
前記透明導電層上にネガレジストを塗布し、前記ブラックマトリックス上のみに開口部を持つフォトマスクを通して、UV光を照射し、ネガレジストを現像後、着色画素上の透明導電層をエッチングすることを特徴とするカラーフィルタの製造方法である。
The invention according to claim 4 is the method for producing a color filter according to claim 1 or 2, wherein
After forming the transparent conductive layer on the entire surface of the transparent substrate on which the black matrix and the colored pixels composed of the three primary colors are formed,
Applying a negative resist on the transparent conductive layer, irradiating UV light through a photomask having an opening only on the black matrix, developing the negative resist, and etching the transparent conductive layer on the colored pixels It is a manufacturing method of the color filter characterized.

本発明により、カラーフィルタの大型化等による透明導電層の抵抗の影響とクラックの発生の防止、透明導電層を厚くしたときに、着色層部分が、黄色味を帯び透過率の低減するという問題も防止する事ができる。   According to the present invention, the influence of the resistance of the transparent conductive layer and the generation of cracks due to the increase in size of the color filter and the like, and when the transparent conductive layer is thickened, the colored layer portion becomes yellowish and the transmittance is reduced. Can also be prevented.

本発明のカラーフィルタの構成を示した概念図である。図1の上の図は平面図、下の図はA−A線の断面図である。It is the conceptual diagram which showed the structure of the color filter of this invention. The upper view of FIG. 1 is a plan view, and the lower view is a cross-sectional view taken along line AA. 本発明のカラーフィルタのポジレジストを用いた製造方法を示した工程概念図である。It is the process conceptual diagram which showed the manufacturing method using the positive resist of the color filter of this invention. 本発明のカラーフィルタのネガレジストを用いた製造方法を示した工程概念図である。It is the process conceptual diagram which showed the manufacturing method using the negative resist of the color filter of this invention. 従来のカラーフィルタの構成と、クラックの発生箇所を示した概念図である。図4の上の図は平面図、下の図はA−A線の断面図である。It is the conceptual diagram which showed the structure of the conventional color filter, and the generation | occurrence | production location of a crack. The upper drawing of FIG. 4 is a plan view, and the lower drawing is a cross-sectional view taken along line AA.

以下本発明を実施するための形態を、図面及び、実施例を用いて詳細に説明する。図1は本発明のカラーフィルタの構成を示しており、着色層2及びブラックマトリックス3上に、透明導電層4が設けられており、透明導電層4の厚みが、着色層2上の厚みに対してブラックマトリックス3上の厚みが厚くなっている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings and examples. FIG. 1 shows the configuration of the color filter of the present invention, in which a transparent conductive layer 4 is provided on the colored layer 2 and the black matrix 3, and the thickness of the transparent conductive layer 4 is the same as the thickness on the colored layer 2. On the other hand, the thickness on the black matrix 3 is increased.

図2は、本発明の実施例1の製造方法のフローを示している。透明基板1として、ガラスを用い、黒色感光性樹脂組成物を全面に塗布した。ついで、ブラックマトリックス形状のマスクを介してUV光(紫外線)8を露光し、アルカリ現像を行い、ブラックマトリックス3を形成した。   FIG. 2 shows a flow of the manufacturing method according to the first embodiment of the present invention. As the transparent substrate 1, glass was used and the black photosensitive resin composition was apply | coated to the whole surface. Next, UV light (ultraviolet light) 8 was exposed through a black matrix-shaped mask, and alkali development was performed to form a black matrix 3.

次に、赤色感光性樹脂組成物を全面に塗布した。ついで、着色層形状のマスクを介して紫外線を露光し、アルカリ現像を行い、赤色の着色層2を形成した。同様に、緑色と青色の着色層2を形成した(a)。   Next, a red photosensitive resin composition was applied to the entire surface. Subsequently, ultraviolet rays were exposed through a colored layer-shaped mask, and alkali development was performed to form a red colored layer 2. Similarly, green and blue colored layers 2 were formed (a).

次に、着色層2の全面に、透明導電層(ITO)4をスパッタリング法を用いて1500Åの膜厚で形成した。その上に、透明導電層上4にポジレジスト(光分解レジスト)5を塗布し、基板側から、露光光を照射した(b)。   Next, a transparent conductive layer (ITO) 4 having a thickness of 1500 mm was formed on the entire surface of the colored layer 2 by sputtering. On top of that, a positive resist (photolytic resist) 5 was applied on the transparent conductive layer 4 and irradiated with exposure light from the substrate side (b).

ポジレジスト5を現像し、ブラックマトリックス上の透明導電層に、ポジレジスト5を形成した(c)。   The positive resist 5 was developed to form the positive resist 5 on the transparent conductive layer on the black matrix (c).

透明導電層上にポジレジスト5が形成されていない部分をシュウ酸を主成分とするエッチング液でエッチングし、着色層2上の透明導電層厚さを1200Åとし、ブラックマトリックス3上の透明導電層4厚さを1500Åとした。なお、この製造方法によれば、レジストの露光の際、フォトマスクが不要である。   The portion where the positive resist 5 is not formed on the transparent conductive layer is etched with an etching solution containing oxalic acid as a main component, the transparent conductive layer thickness on the colored layer 2 is set to 1200 mm, and the transparent conductive layer on the black matrix 3 The thickness of 4 was 1500 mm. In addition, according to this manufacturing method, a photomask is not necessary for resist exposure.

図3は、本発明の実施例1の製造方法のフローを示しており、透明基板1上に黒色感光性樹脂組成物を全面に塗布した。ついで、形状のフォトマスクを7介して紫外線を露光し、アルカリ現像を行い、ブラックマトリックス3を形成した。   FIG. 3 shows a flow of the manufacturing method of Example 1 of the present invention, and a black photosensitive resin composition was applied on the entire surface of the transparent substrate 1. Subsequently, ultraviolet rays were exposed through a photomask having a shape 7 and alkali development was performed to form a black matrix 3.

次いで、赤色感光性樹脂組成物を全面に塗布した。ついで、着色層形状のマスクを介して紫外線を露光し、アルカリ現像を行い、赤色の着色層2を形成し、同様に、緑色と青色の着色層を形成した。次に、着色層、ブラックマトリックスを含む全面に、透明導電層(ITO)4をスパッタリング法を用いて1500Åの膜厚で形成した(a)。   Subsequently, the red photosensitive resin composition was apply | coated to the whole surface. Subsequently, ultraviolet rays were exposed through a mask having a colored layer shape, and alkali development was performed to form a red colored layer 2. Similarly, green and blue colored layers were formed. Next, a transparent conductive layer (ITO) 4 having a thickness of 1500 mm was formed on the entire surface including the colored layer and the black matrix by a sputtering method (a).

その上に、透明導電層4上にネガレジスト6を塗布し、透明導電層の厚くする部分の形状の開口を有するフォトマスク7を介して、UV光8を照射した(b)。   On top of that, a negative resist 6 was applied on the transparent conductive layer 4 and irradiated with UV light 8 through a photomask 7 having an opening in the shape of the thickened portion of the transparent conductive layer (b).

ネガレジスト6を現像し、ブラックマトリックス3上に積層された、透明導電層4のラックマトリックス3上にネガレジスト6が形成した(c)。   The negative resist 6 was developed, and the negative resist 6 was formed on the rack matrix 3 of the transparent conductive layer 4 laminated on the black matrix 3 (c).

透明導電層上にネガレジスト6が形成されていない部分、すなわち、着色層2上の透明導電層4をシュウ酸を主成分とするエッチング液でエッチングし、着色層2上の透明導電層4の厚さを1200Åとした(d)。   A portion where the negative resist 6 is not formed on the transparent conductive layer, that is, the transparent conductive layer 4 on the colored layer 2 is etched with an etching solution mainly composed of oxalic acid, and the transparent conductive layer 4 on the colored layer 2 is etched. The thickness was 1200 mm (d).

この製造方法によれば、透明導電層4の厚くする部分の形状をブラックマトリックス3の形状と相違させることが可能となる。   According to this manufacturing method, the shape of the thickened portion of the transparent conductive layer 4 can be made different from the shape of the black matrix 3.

<比較例1>
実施例1および実施例2と同様に、ブラックマトリックス3および着色層2を形成した後、全面に、透明導電層(ITO)4をスパッタリング法を用いて1500Åの膜厚で形成した。次いで、透明導電層4上にレジストを設けずに、シュウ酸を主成分とするエッチング液でエッチングし、透明導電層4の厚さを1200Åとした(図4参照)。
<Comparative Example 1>
In the same manner as in Example 1 and Example 2, after forming the black matrix 3 and the colored layer 2, a transparent conductive layer (ITO) 4 was formed on the entire surface with a thickness of 1500 mm using a sputtering method. Next, without providing a resist on the transparent conductive layer 4, etching was performed with an etching solution containing oxalic acid as a main component, so that the thickness of the transparent conductive layer 4 was 1200 mm (see FIG. 4).

<比較例2>
実施例1および実施例2と同様に、ブラックマトリックス3および着色層2を形成した後、全面に、透明導電層(ITO)4をスパッタリング法を用いて1500Åの膜厚で形成した。
<Comparative Example 2>
In the same manner as in Example 1 and Example 2, after forming the black matrix 3 and the colored layer 2, a transparent conductive layer (ITO) 4 was formed on the entire surface with a thickness of 1500 mm using a sputtering method.

<評価>
作製した実施例1、2および比較例1、2に対して、顕微鏡観察と着色層2部分の透過分光特性を測定した。その結果を表1に示す。
<Evaluation>
With respect to the produced Examples 1 and 2 and Comparative Examples 1 and 2, the microscopic observation and the transmission spectral characteristics of the colored layer 2 part were measured. The results are shown in Table 1.

ブラックマトリックス3上の透明導電層4の厚みを1500Åにしたものは、画素間の境界を起点としたITOクラックを含めITOクラックに発生は見られなかった。また、着色層2上の透明導電層4の厚みを1200Åに調整したものは、分光特性の測定で、黄色成分は無かったが、1500Åのままのものは、黄色成分の影響が見られた。 In the case where the thickness of the transparent conductive layer 4 on the black matrix 3 was 1500 mm, no generation of the ITO crack was observed including the ITO crack starting from the boundary between the pixels. Further, in the case where the thickness of the transparent conductive layer 4 on the colored layer 2 was adjusted to 1200 mm, the yellow component was not found in the measurement of the spectral characteristics, but in the case where the thickness was 1500 mm, the influence of the yellow component was observed.

1・・・透明基板
2・・・着色層
3・・・ブラックマトリックス
4・・・透明導電層
5・・・ポジレジスト
6・・・ネガレジスト
7・・・フォトマスク
8・・・UV光
9・・・クラック
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Colored layer 3 ... Black matrix 4 ... Transparent conductive layer 5 ... Positive resist 6 ... Negative resist 7 ... Photomask 8 ... UV light 9 ···crack

Claims (4)

透明基板上ブラックマトリックス、三原色からなる着色層及び透明導電層を順次形成したカラーフィルタであって、
前記ブラックマトリックス上に設けられた透明導電層の厚みが、着色層上に設けられた透明導電層より厚いことを特徴とするカラーフィルタ。
A color filter in which a black matrix, a colored layer composed of three primary colors, and a transparent conductive layer are sequentially formed on a transparent substrate,
A color filter, wherein the transparent conductive layer provided on the black matrix is thicker than the transparent conductive layer provided on the colored layer.
前記ブラックマトリックス上に設けられた透明導電層の厚みが1400Å以上であることを特徴とする請求項1記載のカラーフィルタ。   The color filter according to claim 1, wherein the transparent conductive layer provided on the black matrix has a thickness of 1400 mm or more. 請求項1または請求項2に記載のカラーフィルタの製造方法であって、
ブラックマトリックス、及び三原色からなる着色画素が形成された透明基板の全面に透明導電層を成膜した後、
前記透明導電層上にポジレジストを塗布し、透明基板側から、UV光を照射し、ポジレジストを現像後、着色画素上の透明導電層をエッチングすることを特徴とするカラーフィルタの製造方法。
A method for producing a color filter according to claim 1 or 2,
After forming the transparent conductive layer on the entire surface of the transparent substrate on which the black matrix and the colored pixels composed of the three primary colors are formed,
A method for producing a color filter, comprising: applying a positive resist on the transparent conductive layer; irradiating UV light from the transparent substrate side; developing the positive resist; and etching the transparent conductive layer on the colored pixels.
請求項1または請求項2に記載のカラーフィルタの製造方法であって、
ブラックマトリックス、及び三原色からなる着色画素が形成された透明基板の全面に透明導電層を成膜した後、
前記透明導電層上にネガレジストを塗布し、前記ブラックマトリックス上のみに開口部を持つフォトマスクを通して、UV光を照射し、ネガレジストを現像後、着色画素上の透明導電層をエッチングすることを特徴とするカラーフィルタの製造方法。
A method for producing a color filter according to claim 1 or 2,
After forming the transparent conductive layer on the entire surface of the transparent substrate on which the black matrix and the colored pixels composed of the three primary colors are formed,
Applying a negative resist on the transparent conductive layer, irradiating UV light through a photomask having an opening only on the black matrix, developing the negative resist, and etching the transparent conductive layer on the colored pixels A method for producing a color filter.
JP2013204406A 2013-09-30 2013-09-30 Color filter and manufacturing method of color filter Pending JP2015069072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204406A JP2015069072A (en) 2013-09-30 2013-09-30 Color filter and manufacturing method of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204406A JP2015069072A (en) 2013-09-30 2013-09-30 Color filter and manufacturing method of color filter

Publications (1)

Publication Number Publication Date
JP2015069072A true JP2015069072A (en) 2015-04-13

Family

ID=52835766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204406A Pending JP2015069072A (en) 2013-09-30 2013-09-30 Color filter and manufacturing method of color filter

Country Status (1)

Country Link
JP (1) JP2015069072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560741A (en) * 2015-10-05 2017-04-12 三星显示有限公司 Liquid Crystal Display Comprising Transparent Conductive Film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560741A (en) * 2015-10-05 2017-04-12 三星显示有限公司 Liquid Crystal Display Comprising Transparent Conductive Film
CN106560741B (en) * 2015-10-05 2021-05-25 三星显示有限公司 Liquid crystal display including transparent conductive film

Similar Documents

Publication Publication Date Title
US9445506B2 (en) Preparation method of patterned film, display substrate and display device
WO2011004521A1 (en) Display panel
WO1992004654A1 (en) Color filter, method of producing the same, color liquid crystal panel and method of driving the same
US9483148B2 (en) Method for manufacturing touch substrate
JP2014010457A (en) Liquid crystal display
US20190265544A1 (en) Mask plate, display substrate and method for manufacturing the same, display panel and display device
CN105278171A (en) A display panel
JP6232769B2 (en) Display device substrate manufacturing method, display device substrate, and display device
CN103901659A (en) Light filter plate for liquid crystal display panel in IPS (in-plane switching) mode and liquid crystal display device
JP2009175272A (en) Liquid crystal display device
JP2012234180A (en) Color filter substrate, and manufacturing method and apparatus for the same
KR102484136B1 (en) Display substrate, liquid crystal display comprising the same, and manufacturing method the same
TWI502242B (en) Lens structure
WO2016082239A1 (en) Colour filter substrate and liquid crystal display panel
TW201629589A (en) Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate
JP4889209B2 (en) Color filter substrate, manufacturing method thereof, and liquid crystal display device
WO2020107537A1 (en) Display panel and manufacturing method therefor, and display apparatus
JP2015069072A (en) Color filter and manufacturing method of color filter
WO2007129480A1 (en) Translucent liquid crystal display device and its manufacturing method
WO2019085005A1 (en) Liquid crystal display panel and liquid crystal display apparatus
JP2011107379A (en) Color filter, method for manufacturing the same, and liquid crystal display panel using the same
US8264644B2 (en) Color filter substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
KR100325119B1 (en) Method for fabricating color filter substrate
US20160274404A1 (en) Display panel, display device, and method for manufacturing display panel
CN105549793A (en) Manufacturing method for embedded touch panel