JP2015068606A - Immersion type liquid cooling device - Google Patents

Immersion type liquid cooling device Download PDF

Info

Publication number
JP2015068606A
JP2015068606A JP2013205402A JP2013205402A JP2015068606A JP 2015068606 A JP2015068606 A JP 2015068606A JP 2013205402 A JP2013205402 A JP 2013205402A JP 2013205402 A JP2013205402 A JP 2013205402A JP 2015068606 A JP2015068606 A JP 2015068606A
Authority
JP
Japan
Prior art keywords
refrigerant pipe
pipe
liquid cooling
center position
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013205402A
Other languages
Japanese (ja)
Inventor
真史 寺下
Masashi Terashita
真史 寺下
伸行 高林
Nobuyuki Takabayashi
伸行 高林
久士 張中
Hisashi Harinaka
久士 張中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013205402A priority Critical patent/JP2015068606A/en
Publication of JP2015068606A publication Critical patent/JP2015068606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that in a conventional immersion type liquid cooling device, sufficient coating may not be performed to the outer peripheral surface of an inside refrigerant pipeline and the inner peripheral surface of an outside refrigerant pipeline.SOLUTION: An immersion type liquid cooling device includes an inside refrigerant pipeline 17 (first refrigerant pipeline) wound into a spiral shape along a vertical direction (predetermined direction), and an outside refrigerant pipeline 18 (second refrigerant pipeline) surrounding the inside refrigerant pipeline 17 and wound into a spiral shape along the vertical direction. At a predetermined circumferential position, a pipe center position C1 of the inside refrigerant pipeline 17 and a pipe center position C2 of the outside refrigerant pipeline 18 are displaced in the vertical direction (predetermined direction).

Description

本発明は、蒸発器を液体に浸漬させて液体を冷却する浸漬型液冷却装置に関する。   The present invention relates to an immersion type liquid cooling apparatus that immerses an evaporator in a liquid and cools the liquid.

液冷却装置は、例えば研削盤やマシニングセンタなどの工作機械の研削液や主軸潤滑油など(以下「工作液」という)を冷却するための装置である。この液冷却装置は、圧縮機、凝縮器、膨張弁および蒸発器を接続した冷媒回路を備え、蒸発器において工作液(液体)を冷却する。   The liquid cooling device is a device for cooling, for example, a grinding fluid of a machine tool such as a grinding machine or a machining center, a spindle lubricating oil (hereinafter referred to as “machine fluid”). This liquid cooling device includes a refrigerant circuit connected to a compressor, a condenser, an expansion valve, and an evaporator, and cools the working fluid (liquid) in the evaporator.

従来の液冷却装置の一形態としては、装置内に蒸発器と工作液搬送用のポンプを収容するものがある(例えば特許文献1参照)。この液冷却装置は、工作液が溜められるタンクと離れた位置に配置されるとともに、工作液搬送用のポンプで工作液を循環させる循環型の液冷却装置である。したがって、この液冷却装置では、タンクから工作液を装置内に導いて、装置内で工作液を冷却する。   As one form of the conventional liquid cooling device, there is one in which an evaporator and a pump for conveying a working fluid are accommodated in the device (see, for example, Patent Document 1). The liquid cooling device is a circulation type liquid cooling device that is disposed at a position away from a tank in which the working fluid is stored and circulates the working fluid with a pump for conveying the working fluid. Therefore, in this liquid cooling device, the working fluid is guided from the tank into the device, and the working fluid is cooled in the device.

また、従来の液冷却装置の他の形態としては、蒸発器が、圧縮機、凝縮器、および膨張弁を収容する装置本体の底面よりも下方に配置されたコイル部を有し、コイル部がタンクに溜められた工作液に浸漬される浸漬型液冷却装置がある。この浸漬型液冷却装置では、タンク内において直接工作液を冷却する。   Moreover, as another form of the conventional liquid cooling device, the evaporator has a coil portion disposed below the bottom surface of the device main body that houses the compressor, the condenser, and the expansion valve. There is an immersion liquid cooling device that is immersed in a working fluid stored in a tank. In this immersion type liquid cooling device, the working fluid is directly cooled in the tank.

この浸漬型液冷却装置では、図7(a)に示すように、コイル部51が、上下方向に沿って螺旋状に巻回された内側冷媒配管52と、内側冷媒配管52を囲むとともに上下方向に沿って螺旋状に巻回された外側冷媒配管53とを有する。そして、所定の周方向位置において、内側冷媒配管52の管中心位置C11と外側冷媒配管53の管中心位置C12とが上下方向において略同一位置に配置される。   In this immersion type liquid cooling device, as shown in FIG. 7A, the coil portion 51 surrounds the inner refrigerant pipe 52 and the inner refrigerant pipe 52 that are spirally wound along the vertical direction, and the vertical direction. And an outer refrigerant pipe 53 that is spirally wound along. Then, at a predetermined circumferential position, the pipe center position C11 of the inner refrigerant pipe 52 and the pipe center position C12 of the outer refrigerant pipe 53 are arranged at substantially the same position in the vertical direction.

特公平8−22363号公報Japanese Patent Publication No. 8-22363

ところで、上記の浸漬型液冷却装置では、内側冷媒配管および外側冷媒配管に工作液に含まれる研削屑などの汚れが付着するのを防止するため、内側冷媒配管および外側冷媒配管に例えばフッ素塗料などの塗料が吹付塗装やハケ塗装によって塗装される。具体的には、内側冷媒配管の内側および外側冷媒配管の外側から塗料を略水平方向に吹き付ける、または内側冷媒配管の内側および外側冷媒配管の外側から塗料をハケで塗ることによって塗装される。しかし、上記の浸漬型液冷却装置では、所定の周方向位置において、内側冷媒配管の管中心位置と外側冷媒配管の管中心位置とが上下方向において略同一位置に配置されるので、内側冷媒配管の内側および外側冷媒配管の外側から塗料を塗装する場合に、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を十分に塗装できないおそれがある。   By the way, in the above immersion type liquid cooling device, in order to prevent dirt such as grinding dust contained in the working fluid from adhering to the inner refrigerant pipe and the outer refrigerant pipe, for example, fluorine paint or the like is applied to the inner refrigerant pipe and the outer refrigerant pipe. The paint is painted by spraying or brush painting. Specifically, the paint is applied by spraying a paint in a substantially horizontal direction from the inside of the inner refrigerant pipe and the outside of the outer refrigerant pipe, or by painting the paint from the inside of the inner refrigerant pipe and the outside of the outer refrigerant pipe. However, in the above immersion type liquid cooling device, the pipe center position of the inner refrigerant pipe and the pipe center position of the outer refrigerant pipe are arranged at substantially the same position in the vertical direction at a predetermined circumferential position. When the paint is applied from the inside and the outside of the outer refrigerant pipe, the paint may not be sufficiently applied to the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

そこで、本発明の目的は、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい蒸発器を備える浸漬型液冷却装置を提供することである。   Accordingly, an object of the present invention is to provide an immersion type liquid cooling apparatus including an evaporator that easily paints the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

第1の発明にかかる浸漬型液冷却装置は、圧縮機、凝縮器、膨張弁、および蒸発器を接続した冷媒回路を備え、前記蒸発器を液体に浸漬させて液体を冷却する浸漬型液冷却装置であって、前記蒸発器は、前記圧縮機、前記凝縮器および前記膨張弁を収容する装置本体の底面よりも下方に配置されたコイル部を備え、前記コイル部は、所定方向に沿って螺旋状に巻回された第1冷媒配管と、前記第1冷媒配管を囲むとともに前記所定方向に沿って螺旋状に巻回された第2冷媒配管とを有しており、所定の周方向位置において、前記第1冷媒配管の管中心位置と前記第2冷媒配管の管中心位置とが前記所定方向にずれていることを特徴とする。   An immersion liquid cooling apparatus according to a first aspect of the invention includes a refrigerant circuit connected to a compressor, a condenser, an expansion valve, and an evaporator, and the immersion liquid cooling is performed by immersing the evaporator in a liquid to cool the liquid. It is an apparatus, Comprising: The said evaporator is provided with the coil part arrange | positioned below the bottom face of the apparatus main body which accommodates the said compressor, the said condenser, and the said expansion valve, The said coil part is along a predetermined direction. A first refrigerant pipe wound spirally; and a second refrigerant pipe surrounding the first refrigerant pipe and spirally wound along the predetermined direction. The center position of the first refrigerant pipe and the center position of the second refrigerant pipe are shifted in the predetermined direction.

この浸漬型液冷却装置では、所定の周方向位置において、所定方向に沿って螺旋状に巻回された内側冷媒配管(第1冷媒配管)の管中心位置と外側冷媒配管(第2冷媒配管)の管中心位置とが所定方向にずれているので、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい。したがって、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい蒸発器を備える浸漬型液冷却装置を提供できる。   In this immersion liquid cooling device, the pipe center position of the inner refrigerant pipe (first refrigerant pipe) and the outer refrigerant pipe (second refrigerant pipe) wound spirally along the predetermined direction at a predetermined circumferential position. Since the center position of the pipe is shifted in a predetermined direction, it is easy to paint the outer peripheral surface of the inner refrigerant pipe and the inner peripheral face of the outer refrigerant pipe. Therefore, it is possible to provide an immersion type liquid cooling device including an evaporator that easily paints the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

第2の発明にかかる浸漬型液冷却装置は、第1の発明にかかる浸漬型液冷却装置において、所定の周方向位置において、前記第2冷媒配管の管中心位置と前記第1冷媒配管とが前記所定方向において重ならないことを特徴とする。   An immersion type liquid cooling apparatus according to a second aspect of the present invention is the immersion type liquid cooling apparatus according to the first aspect of the present invention, wherein the center position of the second refrigerant pipe and the first refrigerant pipe are at a predetermined circumferential position. It does not overlap in the predetermined direction.

この浸漬型液冷却装置では、所定の周方向位置において、外側冷媒配管(第2冷媒配管)の管中心位置と内側冷媒配管(第1冷媒配管)とが所定方向において重ならないので、所定方向において内側冷媒配管と外側冷媒配管が重なる部分を小さくできる。したがって、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい。   In this immersion liquid cooling device, the pipe center position of the outer refrigerant pipe (second refrigerant pipe) and the inner refrigerant pipe (first refrigerant pipe) do not overlap in the predetermined direction at the predetermined circumferential position. A portion where the inner refrigerant pipe and the outer refrigerant pipe overlap can be reduced. Therefore, it is easy to paint the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1の発明では、所定の周方向位置において、所定方向に沿って螺旋状に巻回された内側冷媒配管(第1冷媒配管)の管中心位置と外側冷媒配管(第2冷媒配管)の管中心位置とが所定方向にずれているので、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい。したがって、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい蒸発器を備える浸漬型液冷却装置を提供できる。   In the first invention, the pipe center position of the inner refrigerant pipe (first refrigerant pipe) and the pipe of the outer refrigerant pipe (second refrigerant pipe) wound spirally along the predetermined direction at a predetermined circumferential position. Since the center position is deviated in a predetermined direction, it is easy to paint the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe. Therefore, it is possible to provide an immersion type liquid cooling device including an evaporator that easily paints the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

第2の発明では、所定の周方向位置において、外側冷媒配管(第2冷媒配管)の管中心位置と内側冷媒配管(第1冷媒配管)とが所定方向において重ならないので、所定方向において内側冷媒配管と外側冷媒配管が重なる部分を小さくできる。したがって、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすい。   In the second invention, the pipe center position of the outer refrigerant pipe (second refrigerant pipe) and the inner refrigerant pipe (first refrigerant pipe) do not overlap in the predetermined direction at the predetermined circumferential position. A portion where the piping and the outer refrigerant piping overlap can be reduced. Therefore, it is easy to paint the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

本発明の実施形態にかかる浸漬型液冷却装置の構成図である。It is a block diagram of the immersion type liquid cooling device concerning embodiment of this invention. 浸漬型液冷却装置をタンクに設置したときの斜視図である。It is a perspective view when an immersion type liquid cooling device is installed in a tank. 浸漬型液冷却装置を側面から見たときの内部構成図である。It is an internal block diagram when an immersion type liquid cooling device is seen from the side. 浸漬型液冷却装置の平面図である。It is a top view of an immersion type liquid cooling device. 図3及び図4に示すV-V線断面図である。It is the VV sectional view taken on the line shown in FIG.3 and FIG.4. (a)は、図5に示す浸漬型液冷却装置の一部拡大図であり、(b)は、(a)の一部をより詳細に示した詳細図である。(A) is the elements on larger scale of the immersion type liquid cooling device shown in FIG. 5, (b) is the detailed figure which showed a part of (a) in detail. (a)は、従来における塗料の塗装の様子を説明した概略図であり、(b)は、本実施形態における塗料の塗装の様子を説明した概略図である。(A) is the schematic explaining the mode of the coating of the coating material in the past, (b) is the schematic explaining the mode of the coating of the coating in this embodiment. (a)は、従来におけるタンク内の工作液の流れの様子を示した概略図であり、(b)は、本実施形態におけるタンク内の工作液の流れの様子を示した概略図である。(A) is the schematic which showed the mode of the flow of the working fluid in the conventional tank, (b) is the schematic which showed the mode of the flow of the working fluid in the tank in this embodiment.

以下、図面を参照しつつ本発明にかかる浸漬型液冷却装置の実施の形態について説明する。なお、図3の上下方向を単に上下方向、その上下方向に直交する方向を単に水平方向として、浸漬型液冷却装置について以下説明する。   Hereinafter, embodiments of an immersion liquid cooling apparatus according to the present invention will be described with reference to the drawings. The immersion liquid cooling apparatus will be described below with the vertical direction in FIG. 3 simply as the vertical direction and the direction orthogonal to the vertical direction as the horizontal direction.

本実施形態の液冷却装置は、図1に示すように、圧縮機3、凝縮器4、膨張弁5および蒸発器6を接続した冷媒回路7を有している。冷媒回路7において、圧縮機3の吐出口に凝縮器4が接続され、その凝縮器4に膨張弁5が接続される。そして、膨張弁5に蒸発器6の一端が接続され、その蒸発器6の他端にアキュームレータ8を介して圧縮機3の吸入口が接続される。この液冷却装置では、圧縮機3から吐出された冷媒が凝縮器4、膨張弁5、蒸発器6へと順に流れ、アキュームレータ8を介して圧縮機3に戻る冷却サイクルが形成される。   As shown in FIG. 1, the liquid cooling device of the present embodiment has a refrigerant circuit 7 in which a compressor 3, a condenser 4, an expansion valve 5, and an evaporator 6 are connected. In the refrigerant circuit 7, the condenser 4 is connected to the discharge port of the compressor 3, and the expansion valve 5 is connected to the condenser 4. Then, one end of the evaporator 6 is connected to the expansion valve 5, and the suction port of the compressor 3 is connected to the other end of the evaporator 6 via the accumulator 8. In this liquid cooling device, the refrigerant discharged from the compressor 3 sequentially flows to the condenser 4, the expansion valve 5, and the evaporator 6, and a cooling cycle is formed that returns to the compressor 3 via the accumulator 8.

この液冷却装置は、図2及び図3に示すように、蒸発器6が圧縮機3、凝縮器4、および膨張弁5を収容する装置本体1よりも下方に配置されるとともに、蒸発器6がタンクT内に溜められた工作液に浸漬される浸漬型の液冷却装置である。したがって、この液冷却装置では、タンクT内において工作液が冷却される。装置本体1は、略直方体形状であり、装置本体1の底面1fから下方に突出する複数の脚部2を有する。タンクTの上面には、蒸発器6をタンクT内の挿入するための開口が設けられており、装置本体1の底面1fはその開口の周囲に固定される。なお、このタンクTは、上記の開口以外の部分は閉塞されている。したがって、液冷却装置がタンクTに固定された状態において、液冷却装置の外側から蒸発器6を清掃することはできない。タンクTには、例えば工作液搬送用のポンプが設けられており、図1及び図2に示すように、このポンプが駆動されることによって、工作機械から排出された工作液がタンクT内に供給され、またタンクT内で冷却された工作液が工作機械に供給される。なお、タンクTの形状は一例であって、上記に限定されるものではない。   As shown in FIGS. 2 and 3, the liquid cooling apparatus is configured such that the evaporator 6 is disposed below the apparatus main body 1 that houses the compressor 3, the condenser 4, and the expansion valve 5. Is an immersion-type liquid cooling device that is immersed in the working fluid stored in the tank T. Therefore, in this liquid cooling device, the working fluid is cooled in the tank T. The apparatus main body 1 has a substantially rectangular parallelepiped shape, and has a plurality of legs 2 protruding downward from the bottom surface 1 f of the apparatus main body 1. An opening for inserting the evaporator 6 into the tank T is provided on the upper surface of the tank T, and the bottom surface 1f of the apparatus main body 1 is fixed around the opening. The tank T is closed except for the opening. Therefore, in a state where the liquid cooling device is fixed to the tank T, the evaporator 6 cannot be cleaned from the outside of the liquid cooling device. The tank T is provided with, for example, a pump for conveying the working fluid. As shown in FIGS. 1 and 2, the working fluid discharged from the machine tool is driven into the tank T by driving the pump. The machine fluid supplied and cooled in the tank T is supplied to the machine tool. The shape of the tank T is an example, and is not limited to the above.

この液冷却装置の凝縮器4は、図3に示すように、装置本体1内の正面1a側且つ底面1f上に配置される。装置本体1内には、凝縮器4に対して空気流を供給する送風ファン9が配置される。この送風ファン9は、例えば凝縮器4の空気流下流側において凝縮器4と対向するように配置される。凝縮器4および送風ファン9と装置本体1の上面1eとの間には、制御部などの電装品10が配置される。また、送風ファン9の空気流下流側には、圧縮機3およびアキュームレータ8(図1参照)が配置される。この圧縮機3およびアキュームレータ8は、装置本体1の例えば背面1bに取り付けられた支持台11上に配置される。したがって、この圧縮機3およびアキュームレータ8は、底面1f上には配置されず、支持台11と底面1fとの間には所定の大きさの空間S1が設けられる。   As shown in FIG. 3, the condenser 4 of the liquid cooling device is disposed on the front surface 1 a side and the bottom surface 1 f in the device main body 1. A blower fan 9 that supplies an air flow to the condenser 4 is disposed in the apparatus main body 1. The blower fan 9 is disposed so as to face the condenser 4 on the downstream side of the air flow of the condenser 4, for example. An electrical component 10 such as a control unit is disposed between the condenser 4 and the blower fan 9 and the upper surface 1 e of the apparatus main body 1. Moreover, the compressor 3 and the accumulator 8 (refer FIG. 1) are arrange | positioned in the airflow downstream of the ventilation fan 9. FIG. The compressor 3 and the accumulator 8 are disposed on a support base 11 attached to, for example, the back surface 1b of the apparatus main body 1. Therefore, the compressor 3 and the accumulator 8 are not disposed on the bottom surface 1f, and a space S1 having a predetermined size is provided between the support base 11 and the bottom surface 1f.

この液冷却装置の蒸発器6は、図3及び図4に示すように、装置本体1の底面1fより鉛直下方に配置されるコイル部12を有する。このコイル部12は、上下方向(所定方向)に沿って螺旋状に巻回された内側冷媒配管17(第1冷媒配管)と、内側冷媒配管17を囲むとともに上下方向に沿って螺旋状に巻回された外側冷媒配管18(第2冷媒配管)とを有している。すなわち、螺旋状に巻回された2本の冷媒配管17、18が水平方向に積層されている。その結果、コイル部12の上下方向長さが長くなるのを抑制しつつ、冷媒配管17、18の表面積を大きくして熱交換効率を向上させている。なお、冷媒配管17、18は、図1に示すように、圧縮機3の上流側および膨張弁5の下流側において1本の冷媒配管を2本に分岐させることによって形成されるものであり、冷媒配管17、18内の冷媒は、それぞれ膨張弁5から圧縮機3に向かって流れる。   As shown in FIGS. 3 and 4, the evaporator 6 of the liquid cooling device includes a coil portion 12 that is disposed vertically below the bottom surface 1 f of the device body 1. The coil portion 12 surrounds the inner refrigerant pipe 17 (first refrigerant pipe) wound spirally along the vertical direction (predetermined direction) and the inner refrigerant pipe 17 and spirally wound along the vertical direction. It has a rotated outer refrigerant pipe 18 (second refrigerant pipe). That is, the two refrigerant pipes 17 and 18 wound spirally are laminated in the horizontal direction. As a result, the heat exchanger efficiency is improved by increasing the surface area of the refrigerant pipes 17 and 18 while suppressing the length of the coil portion 12 from increasing in the vertical direction. The refrigerant pipes 17 and 18 are formed by branching one refrigerant pipe into two on the upstream side of the compressor 3 and the downstream side of the expansion valve 5, as shown in FIG. The refrigerant in the refrigerant pipes 17 and 18 flows from the expansion valve 5 toward the compressor 3.

また、装置本体1の底面1fには、タンクT内の工作液を攪拌するための攪拌機13が取り付けられている。攪拌機13は、装置本体1内に固定された攪拌モータ14と、攪拌モータ14から装置本体1の底面1fよりも下方に向かって延びる軸部15と、軸部15の先端に固定された攪拌部16とを有する。この攪拌機13は、乱流を生じさせて工作液を混ぜやすくする観点から、図4に示すように、平面視において、コイル部12よりも内側かつコイル部12の中心軸Oに対して僅かに偏心した位置に配置される。具体的には、攪拌機13の軸部15がコイル部12の中心軸Oよりも僅かに正面1a側に偏心配置されている。なお、図4においては、発明の理解を容易とするため、装置本体1、凝縮器4、及び攪拌機13を一点鎖線で記載し、その他装置本体1内に収容される構成を省略している。   An agitator 13 for agitating the working fluid in the tank T is attached to the bottom surface 1 f of the apparatus main body 1. The stirrer 13 includes a stirring motor 14 fixed in the apparatus main body 1, a shaft portion 15 extending downward from the bottom surface 1 f of the device main body 1 from the stirring motor 14, and a stirring portion fixed to the tip of the shaft portion 15. 16. From the viewpoint of facilitating mixing of the working fluid by generating turbulent flow, the stirrer 13 is slightly inward of the coil portion 12 and with respect to the central axis O of the coil portion 12 as shown in FIG. Arranged at an eccentric position. Specifically, the shaft portion 15 of the stirrer 13 is arranged slightly eccentrically on the front side 1 a side with respect to the central axis O of the coil portion 12. In FIG. 4, in order to facilitate understanding of the invention, the apparatus main body 1, the condenser 4, and the stirrer 13 are indicated by a one-dot chain line, and other configurations accommodated in the apparatus main body 1 are omitted.

次に、蒸発器6のコイル部12について以下詳しく説明する。図5及び図6に示すように、コイル部12の内側冷媒配管17は、全域(巻き始めから巻き終わり)において管径の大きさが同じであり(管径D1)、かつ等ピッチ(ピッチP1)である。また、コイル部12の外側冷媒配管18は、全域(巻き始めから巻き終わり)において管径の大きさが同じであり(管径D2)、かつ等ピッチ(ピッチP2)である。外側冷媒配管18の管径D2は内側冷媒配管17の管径D1と同じであり、外側冷媒配管18のピッチP2は内側冷媒配管17のピッチP1と同じである。また、外側冷媒配管18の巻き数は、内側冷媒配管17の巻き数と同じである。なお、図3に示すように、内側冷媒配管17および外側冷媒配管18は、その中心軸が同じ(中心軸O)であり、外側冷媒配管18の巻回半径r2は、内側冷媒配管17の巻回半径r1より大きい。   Next, the coil part 12 of the evaporator 6 will be described in detail below. As shown in FIGS. 5 and 6, the inner refrigerant pipe 17 of the coil portion 12 has the same pipe diameter (pipe diameter D1) in the entire region (from the start of winding to the end of winding) and an equal pitch (pitch P1). ). In addition, the outer refrigerant pipe 18 of the coil portion 12 has the same pipe diameter (pipe diameter D2) and an equal pitch (pitch P2) in the entire region (from the start of winding to the end of winding). The pipe diameter D2 of the outer refrigerant pipe 18 is the same as the pipe diameter D1 of the inner refrigerant pipe 17, and the pitch P2 of the outer refrigerant pipe 18 is the same as the pitch P1 of the inner refrigerant pipe 17. Further, the number of turns of the outer refrigerant pipe 18 is the same as the number of turns of the inner refrigerant pipe 17. As shown in FIG. 3, the inner refrigerant pipe 17 and the outer refrigerant pipe 18 have the same central axis (center axis O), and the winding radius r2 of the outer refrigerant pipe 18 is the winding of the inner refrigerant pipe 17. It is larger than the turning radius r1.

このコイル部12では、図5及び図6に示すように、所定の周方向位置において、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とが上下方向(所定方向)にずれている。図6では、例えば図4に示す周方向位置S(所定の周方向位置の一例)において、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とが上下方向にずれていることを示している。このコイル部12では、内側冷媒配管17の管径D1及びピッチP1と外側冷媒配管18の管径D2及びピッチP2とがそれぞれ同じであるので、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とは、所定の周方向位置において、内側冷媒配管17及び外側冷媒配管18の全域(巻き始めから巻き終わり)において常に一定の大きさ上下方向にずれている。なお、本実施形態では、所定の周方向位置とは、任意の周方向位置を指す。   In the coil portion 12, as shown in FIGS. 5 and 6, the pipe center position C1 of the inner refrigerant pipe 17 and the pipe center position C2 of the outer refrigerant pipe 18 are in the vertical direction (predetermined direction) at a predetermined circumferential position. It is shifted to. In FIG. 6, for example, at the circumferential position S shown in FIG. 4 (an example of a predetermined circumferential position), the pipe center position C1 of the inner refrigerant pipe 17 and the pipe center position C2 of the outer refrigerant pipe 18 are shifted in the vertical direction. It shows that. In this coil part 12, since the pipe diameter D1 and pitch P1 of the inner refrigerant pipe 17 and the pipe diameter D2 and pitch P2 of the outer refrigerant pipe 18 are the same, the pipe center position C1 of the inner refrigerant pipe 17 and the outer refrigerant pipe, respectively. The pipe center position C2 is always deviated from the pipe center position C2 by a certain amount in the vertical direction in the entire area of the inner refrigerant pipe 17 and the outer refrigerant pipe 18 (from the start of winding to the end of winding) at a predetermined circumferential position. In the present embodiment, the predetermined circumferential position indicates an arbitrary circumferential position.

このコイル部12では、図6に示すように、例えば図4に示す周方向位置Sにおいて、外側冷媒配管18の管中心位置C2と内側冷媒配管17とが上下方向において重ならない。具体的には、図6(b)に示すように、外側冷媒配管18の管中心位置C2が、上下方向において上下に隣接する内側冷媒配管17の間の範囲Wに配置される。したがって、上下方向において内側冷媒配管17と外側冷媒配管18が重なる部分が小さい。   In the coil portion 12, as shown in FIG. 6, for example, at the circumferential position S shown in FIG. 4, the pipe center position C2 of the outer refrigerant pipe 18 and the inner refrigerant pipe 17 do not overlap in the vertical direction. Specifically, as shown in FIG. 6B, the pipe center position C2 of the outer refrigerant pipe 18 is disposed in a range W between the inner refrigerant pipes 17 adjacent in the vertical direction. Therefore, the portion where the inner refrigerant pipe 17 and the outer refrigerant pipe 18 overlap in the vertical direction is small.

ここで、図7は、従来と本実施形態における塗料の塗装の様子を説明した概略図である。図7中のドットで示す部分は、内側冷媒配管および外側冷媒配管に塗装された塗料(フッ素塗料)である。従来からこの液冷却装置では、図7に矢印で示すように、内側冷媒配管の内側および外側冷媒配管の外側からフッ素塗料を略水平方向に吹き付けることによって、内側冷媒配管および外側冷媒配管に対してフッ素塗料を塗装している。しかし、従来の液冷却装置では、図7(a)に示すように、内側冷媒配管52の管中心位置C11と外側冷媒配管53の管中心位置C12とが上下方向において略同一位置に配置されるので、内側冷媒配管52の内側および外側冷媒配管53の外側からフッ素塗料を吹付塗装したときに、内側冷媒配管52の内周面および外側冷媒配管53の外周面にはフッ素塗料が塗装されるが、内側冷媒配管52の外周面52aおよび外側冷媒配管53の内周面53aには、フッ素塗料が十分に塗装されないおそれがある。一方、本実施形態の液冷却装置では、図7(b)に示すように、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とが上下方向にずれているので、内側冷媒配管17の内側および外側冷媒配管18の外側からフッ素塗料を吹付塗装したときに、フッ素塗料が内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aの間に吹き付けられやすい。したがって、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに、フッ素塗料が十分に塗装される。   Here, FIG. 7 is a schematic diagram illustrating the state of painting of the paint in the conventional and the present embodiment. A portion indicated by a dot in FIG. 7 is a paint (fluorine paint) painted on the inner refrigerant pipe and the outer refrigerant pipe. Conventionally, in this liquid cooling device, as shown by arrows in FIG. 7, fluorine paint is sprayed in a substantially horizontal direction from the inside of the inner refrigerant pipe and from the outer side of the outer refrigerant pipe, so that the inner refrigerant pipe and the outer refrigerant pipe are directed. Painted with fluorine paint. However, in the conventional liquid cooling device, as shown in FIG. 7A, the pipe center position C11 of the inner refrigerant pipe 52 and the pipe center position C12 of the outer refrigerant pipe 53 are arranged at substantially the same position in the vertical direction. Therefore, when the fluorine paint is sprayed from the inside of the inner refrigerant pipe 52 and the outside of the outer refrigerant pipe 53, the fluorine paint is applied to the inner peripheral surface of the inner refrigerant pipe 52 and the outer peripheral face of the outer refrigerant pipe 53. The outer peripheral surface 52a of the inner refrigerant pipe 52 and the inner peripheral surface 53a of the outer refrigerant pipe 53 may not be sufficiently coated with fluorine paint. On the other hand, in the liquid cooling device of the present embodiment, as shown in FIG. 7B, the pipe center position C1 of the inner refrigerant pipe 17 and the pipe center position C2 of the outer refrigerant pipe 18 are shifted in the vertical direction. When the fluorine paint is sprayed from the inside of the inner refrigerant pipe 17 and the outside of the outer refrigerant pipe 18, the fluorine paint is likely to be sprayed between the outer peripheral surface 17 a of the inner refrigerant pipe 17 and the inner peripheral face 18 a of the outer refrigerant pipe 18. . Therefore, the fluorine paint is sufficiently applied to the outer peripheral surface 17 a of the inner refrigerant pipe 17 and the inner peripheral surface 18 a of the outer refrigerant pipe 18.

また、図8は、従来と本実施形態における工作液の流れの様子を説明した概略図である。図8中の実線矢印は、工作液の流れである。従来の液冷却装置では、図8(a)に示すように、内側冷媒配管52の管中心位置C11と外側冷媒配管53の管中心位置C12とが上下方向において同一位置に配置されるので、攪拌機が駆動されると、タンク内の工作液は、実線矢印で示すように、例えば内側冷媒配管52の内側から外側冷媒配管53の外側に向かって略水平方向に流れる。したがって、内側冷媒配管52の外周面52aと外側冷媒配管53の内周面53aとの間は工作液の流れがあまり多くなく、内側冷媒配管52の外周面52aおよび外側冷媒配管53の内周面53aにおいて、効率よく熱交換できないおそれがある。一方、本実施形態の液冷却装置では、図8(b)に示すように、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とが上下方向にずれているので、攪拌機13が駆動されると、タンク内の工作液は、実線矢印で示すように、例えば内側冷媒配管17の内側から外側に略水平方向に流れたあと、外側冷媒配管18の内周面18aに衝突して、外側冷媒配管18の上方及び下方に分岐する。したがって、内側冷媒配管17の外周面17aと外側冷媒配管18の内周面18aとの間にも工作液が多く流れ、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aにおいて、効率よく熱交換できる。   FIG. 8 is a schematic diagram for explaining the flow of the working fluid in the prior art and the present embodiment. The solid line arrow in FIG. 8 is the flow of the working fluid. In the conventional liquid cooling apparatus, as shown in FIG. 8A, the pipe center position C11 of the inner refrigerant pipe 52 and the pipe center position C12 of the outer refrigerant pipe 53 are arranged at the same position in the vertical direction. Is driven, the working fluid in the tank flows in a substantially horizontal direction from the inner side of the inner refrigerant pipe 52 toward the outer side of the outer refrigerant pipe 53, for example, as indicated by solid arrows. Therefore, the flow of the working fluid is not so much between the outer peripheral surface 52 a of the inner refrigerant pipe 52 and the inner peripheral surface 53 a of the outer refrigerant pipe 53, and the outer peripheral surface 52 a of the inner refrigerant pipe 52 and the inner peripheral surface of the outer refrigerant pipe 53. In 53a, there is a possibility that heat cannot be exchanged efficiently. On the other hand, in the liquid cooling device of the present embodiment, as shown in FIG. 8B, the pipe center position C1 of the inner refrigerant pipe 17 and the pipe center position C2 of the outer refrigerant pipe 18 are shifted in the vertical direction. When the agitator 13 is driven, the working fluid in the tank flows in a substantially horizontal direction from the inner side to the outer side of the inner refrigerant pipe 17, for example, as indicated by a solid arrow, and then flows to the inner peripheral surface 18 a of the outer refrigerant pipe 18. Colliding and branching above and below the outer refrigerant pipe 18. Accordingly, a large amount of working fluid also flows between the outer peripheral surface 17 a of the inner refrigerant pipe 17 and the inner peripheral surface 18 a of the outer refrigerant pipe 18, and the outer peripheral surface 17 a of the inner refrigerant pipe 17 and the inner peripheral surface 18 a of the outer refrigerant pipe 18. Efficient heat exchange.

また、図示は省略するが、従来から浸漬型液冷却装置では、内側冷媒配管および外側冷媒配管をブラシ等で清掃している。そのため、従来の液冷却装置では、内側冷媒配管の管中心位置と外側冷媒配管の管中心位置とが上下方向において略同一位置または同一位置に配置されるので、内側冷媒配管の外周面および外側冷媒配管の内周面にブラシ等が届きにくく、内側冷媒配管の外周面および外側冷媒配管の内周面の清掃が難易である。しかし、本実施系形態の液冷却装置では、内側冷媒配管の管中心位置と外側冷媒配管の管中心位置とが上下方向にずれているので、内側冷媒配管の外周面および外側冷媒配管の内周面を清掃しやすい。   Moreover, although illustration is abbreviate | omitted, in the immersion type liquid cooling device conventionally, the inner side refrigerant | coolant piping and the outer side refrigerant | coolant piping are cleaned with the brush. Therefore, in the conventional liquid cooling device, the pipe center position of the inner refrigerant pipe and the pipe center position of the outer refrigerant pipe are arranged at substantially the same position or the same position in the vertical direction. It is difficult for brushes or the like to reach the inner peripheral surface of the pipe, and it is difficult to clean the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe. However, in the liquid cooling device of the present embodiment, the pipe center position of the inner refrigerant pipe and the pipe center position of the outer refrigerant pipe are shifted in the vertical direction, so the outer peripheral surface of the inner refrigerant pipe and the inner circumference of the outer refrigerant pipe Easy to clean the surface.

<本実施形態の浸漬型液冷却装置の特徴>
本実施形態の浸漬型液冷却装置には、以下の特徴がある。
<Characteristics of Submerged Liquid Cooling Device of this Embodiment>
The immersion type liquid cooling apparatus of the present embodiment has the following characteristics.

本実施形態の浸漬型液冷却装置では、所定(任意)の周方向位置において、内側冷媒配管17(第1冷媒配管)の管中心位置C1と外側冷媒配管18(第2冷媒配管)の管中心位置C2とが上下方向にずれているので、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに対して塗料を塗装しやすい。したがって、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに対して塗料を塗装しやすい蒸発器6を備える浸漬型液冷却装置を提供できる。また、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とが上下方向にずれているので、熱交換効率を向上できるとともに、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aをブラシ等で清掃しやすい。   In the immersion type liquid cooling apparatus of the present embodiment, the pipe center position C1 of the inner refrigerant pipe 17 (first refrigerant pipe) and the pipe center of the outer refrigerant pipe 18 (second refrigerant pipe) at a predetermined (arbitrary) circumferential position. Since the position C2 is displaced in the vertical direction, it is easy to paint the outer peripheral surface 17a of the inner refrigerant pipe 17 and the inner peripheral surface 18a of the outer refrigerant pipe 18. Therefore, it is possible to provide an immersion type liquid cooling device including the evaporator 6 that easily paints the outer peripheral surface 17a of the inner refrigerant pipe 17 and the inner peripheral surface 18a of the outer refrigerant pipe 18. In addition, since the pipe center position C1 of the inner refrigerant pipe 17 and the pipe center position C2 of the outer refrigerant pipe 18 are displaced in the vertical direction, the heat exchange efficiency can be improved, and the outer peripheral surface 17a of the inner refrigerant pipe 17 and the outer refrigerant. It is easy to clean the inner peripheral surface 18a of the pipe 18 with a brush or the like.

また、本実施形態の浸漬型液冷却装置では、所定(任意)の周方向位置において、外側冷媒配管18(第2冷媒配管)の管中心位置C2と内側冷媒配管17(第1冷媒配管)とが上下方向(所定方向)において重ならないので、上下方向において内側冷媒配管17と外側冷媒配管18が重なる部分を小さくできる。したがって、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに対して塗料を塗装しやすい。   Further, in the immersion type liquid cooling apparatus of the present embodiment, the pipe center position C2 of the outer refrigerant pipe 18 (second refrigerant pipe) and the inner refrigerant pipe 17 (first refrigerant pipe) at a predetermined (arbitrary) circumferential position. Are not overlapped in the vertical direction (predetermined direction), the portion where the inner refrigerant pipe 17 and the outer refrigerant pipe 18 overlap in the vertical direction can be reduced. Therefore, it is easy to paint the outer peripheral surface 17 a of the inner refrigerant pipe 17 and the inner peripheral surface 18 a of the outer refrigerant pipe 18.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

上記実施形態では、内側冷媒配管17の管径D1及びピッチP1と外側冷媒配管18の管径D2及びピッチP2とがそれぞれ同じであるので、内側冷媒配管17の管中心位置C1と外側冷媒配管18の管中心位置C2とは、所定(任意)の周方向位置において、内側冷媒配管17及び外側冷媒配管18の全域(巻き始めから巻き終わり)において上下方向にずれている。ただし、本発明における「所定の周方向位置において、内側冷媒配管(第1冷媒配管)の管中心位置と外側冷媒配管(第2冷媒配管)の管中心位置とが上下方向(所定方向)にずれている」とは、上記に限られず、例えば以下の場合も含む。例えば、内側冷媒配管のピッチと外側冷媒配管のピッチとが異なっており、それにより、内側冷媒配管の管中心位置と外側冷媒配管の管中心位置とが、所定の周方向位置において、内側冷媒配管及び外側冷媒配管の全域または一部において上下方向にずれていてもよい。また、上記実施形態では、内側冷媒配管17が等ピッチ(ピッチP1)であり、かつ外側冷媒配管18も等ピッチ(ピッチP2)であるが、内側冷媒配管17及び外側冷媒配管18の少なくとも一方が等ピッチでなく、それにより、所定の周方向位置において、内側冷媒配管の管中心位置と外側冷媒配管の管中心位置とが、所定の周方向位置において、内側冷媒配管及び外側冷媒配管の全域または一部において上下方向にずれていてもよい。   In the above embodiment, since the pipe diameter D1 and pitch P1 of the inner refrigerant pipe 17 and the pipe diameter D2 and pitch P2 of the outer refrigerant pipe 18 are the same, the pipe center position C1 of the inner refrigerant pipe 17 and the outer refrigerant pipe 18 respectively. The pipe center position C2 is shifted in the vertical direction in the entire area of the inner refrigerant pipe 17 and the outer refrigerant pipe 18 (from the start of winding to the end of winding) at a predetermined (arbitrary) circumferential position. However, in the present invention, “the center position of the inner refrigerant pipe (first refrigerant pipe) and the center position of the outer refrigerant pipe (second refrigerant pipe) are shifted in the vertical direction (predetermined direction) at a predetermined circumferential position. The phrase “has” is not limited to the above, and includes, for example, the following cases. For example, the pitch of the inner refrigerant pipe is different from the pitch of the outer refrigerant pipe, so that the pipe center position of the inner refrigerant pipe and the pipe center position of the outer refrigerant pipe are the inner refrigerant pipe at a predetermined circumferential position. In addition, the whole or part of the outer refrigerant pipe may be displaced in the vertical direction. In the above embodiment, the inner refrigerant pipe 17 has an equal pitch (pitch P1) and the outer refrigerant pipe 18 has an equal pitch (pitch P2). However, at least one of the inner refrigerant pipe 17 and the outer refrigerant pipe 18 is Instead of equal pitches, the tube center position of the inner refrigerant pipe and the tube center position of the outer refrigerant pipe at the predetermined circumferential position are the entire area of the inner refrigerant pipe and the outer refrigerant pipe at the predetermined circumferential position or Some may be displaced in the vertical direction.

また、上記実施形態では、内側冷媒配管17の巻き数と外側冷媒配管18の巻き数とが同じであるが、外側冷媒配管18に比べて内側冷媒配管17の巻き数が多くてもよいし、内側冷媒配管17に比べて外側冷媒配管18の巻き数が多くでもよい。   Further, in the above embodiment, the number of turns of the inner refrigerant pipe 17 and the number of turns of the outer refrigerant pipe 18 are the same, but the number of turns of the inner refrigerant pipe 17 may be larger than that of the outer refrigerant pipe 18, The winding number of the outer refrigerant pipe 18 may be larger than that of the inner refrigerant pipe 17.

また、上記実施形態では、塗料を吹付塗装により塗装する際に、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに対して塗料を塗装しやすいことを説明した。しかし、塗料をハケ塗装により塗装する場合でも、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aにハケが届きやすいので、内側冷媒配管17の外周面17aおよび外側冷媒配管18の内周面18aに対して塗料を塗装しやすい効果を得ることができる。   Moreover, in the said embodiment, when coating a coating material by spray coating, it demonstrated that it was easy to paint a coating material with respect to the outer peripheral surface 17a of the inner side refrigerant | coolant piping 17, and the inner peripheral surface 18a of the outer side refrigerant | coolant piping 18. FIG. However, even when the paint is applied by brush painting, the brush can easily reach the outer peripheral surface 17a of the inner refrigerant pipe 17 and the inner peripheral surface 18a of the outer refrigerant pipe 18, so that the outer peripheral surface 17a and the outer refrigerant pipe 18 of the inner refrigerant pipe 17 can be obtained. The effect that it is easy to paint the inner peripheral surface 18a of the paint can be obtained.

また、上記実施形態では、外側冷媒配管18の管中心位置C2と内側冷媒配管17とが上下方向において重ならないが、重なっていてもよい。   Moreover, in the said embodiment, although pipe center position C2 of the outer side refrigerant | coolant piping 18 and the inner side refrigerant | coolant piping 17 do not overlap in an up-down direction, they may overlap.

また、上記実施形態では、内側冷媒配管17及び外側冷媒配管18が、上下方向に沿って螺旋状に巻回されたものであるが、それに限られず、例えば水平方向に沿って螺旋状に巻回されたものであってもよい。すなわち、本発明において「所定方向」とは、どの方向であってもよい。   Moreover, in the said embodiment, although the inner side refrigerant | coolant piping 17 and the outer side refrigerant | coolant piping 18 are spirally wound along the up-down direction, it is not restricted to it, For example, it winds helically along a horizontal direction It may be what was done. That is, in the present invention, the “predetermined direction” may be any direction.

また、上記実施形態では、内側冷媒配管17および外側冷媒配管18は、その中心軸が同じ(中心軸O)であるが、内側冷媒配管17の中心軸と外側冷媒配管18の中心軸とが異なっていてもよい。   In the above embodiment, the inner refrigerant pipe 17 and the outer refrigerant pipe 18 have the same central axis (central axis O), but the central axis of the inner refrigerant pipe 17 and the central axis of the outer refrigerant pipe 18 are different. It may be.

本発明を利用すれば、内側冷媒配管の外周面および外側冷媒配管の内周面に対して塗料を塗装しやすくできる。   If the present invention is used, it is possible to easily paint the outer peripheral surface of the inner refrigerant pipe and the inner peripheral surface of the outer refrigerant pipe.

1 装置本体
1f 底面
3 圧縮機
4 凝縮器
5 膨張弁
6 蒸発器
7 冷媒回路
12 コイル部
17 内側冷媒配管(第1冷媒配管)
18 外側冷媒配管(第2冷媒配管)
DESCRIPTION OF SYMBOLS 1 Apparatus main body 1f Bottom face 3 Compressor 4 Condenser 5 Expansion valve 6 Evaporator 7 Refrigerant circuit 12 Coil part 17 Inner refrigerant | coolant piping (1st refrigerant | coolant piping)
18 Outer refrigerant piping (second refrigerant piping)

Claims (2)

圧縮機、凝縮器、膨張弁、および蒸発器を接続した冷媒回路を備え、前記蒸発器を液体に浸漬させて液体を冷却する浸漬型液冷却装置であって、
前記蒸発器は、前記圧縮機、前記凝縮器および前記膨張弁を収容する装置本体の底面よりも下方に配置されたコイル部を備え、
前記コイル部は、
所定方向に沿って螺旋状に巻回された第1冷媒配管と、
前記第1冷媒配管を囲むとともに前記所定方向に沿って螺旋状に巻回された第2冷媒配管とを有しており、
所定の周方向位置において、前記第1冷媒配管の管中心位置と前記第2冷媒配管の管中心位置とが前記所定方向にずれていることを特徴とする浸漬型液冷却装置。
A submerged liquid cooling device comprising a refrigerant circuit connected to a compressor, a condenser, an expansion valve, and an evaporator, wherein the evaporator is immersed in a liquid to cool the liquid,
The evaporator includes a coil portion disposed below the bottom surface of the apparatus main body that houses the compressor, the condenser, and the expansion valve,
The coil portion is
A first refrigerant pipe spirally wound along a predetermined direction;
A second refrigerant pipe surrounding the first refrigerant pipe and spirally wound along the predetermined direction;
An immersion type liquid cooling apparatus, wherein a pipe center position of the first refrigerant pipe and a pipe center position of the second refrigerant pipe are shifted in the predetermined direction at a predetermined circumferential position.
所定の周方向位置において、前記第2冷媒配管の管中心位置と前記第1冷媒配管とが前記所定方向において重ならないことを特徴とする請求項1に記載の浸漬型液冷却装置。
2. The immersion liquid cooling apparatus according to claim 1, wherein a pipe center position of the second refrigerant pipe and the first refrigerant pipe do not overlap in the predetermined direction at a predetermined circumferential position.
JP2013205402A 2013-09-30 2013-09-30 Immersion type liquid cooling device Pending JP2015068606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205402A JP2015068606A (en) 2013-09-30 2013-09-30 Immersion type liquid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205402A JP2015068606A (en) 2013-09-30 2013-09-30 Immersion type liquid cooling device

Publications (1)

Publication Number Publication Date
JP2015068606A true JP2015068606A (en) 2015-04-13

Family

ID=52835441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205402A Pending JP2015068606A (en) 2013-09-30 2013-09-30 Immersion type liquid cooling device

Country Status (1)

Country Link
JP (1) JP2015068606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026170A (en) * 2015-07-16 2017-02-02 ダイキン工業株式会社 Liquid cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026170A (en) * 2015-07-16 2017-02-02 ダイキン工業株式会社 Liquid cooling device

Similar Documents

Publication Publication Date Title
JP7412064B2 (en) electronic equipment cooling system
JP2005229672A (en) Rotary electric machine
US10830510B2 (en) Heat exchanger for a vapor compression system
JP2011101584A (en) Cooling device for electromechanical apparatus, electromechanical apparatus, and vehicle
CN104019498A (en) Air duct machine
US20200263685A1 (en) Hydraulic unit
JP2017181024A (en) Compressed air cooling method and compressed air cooling device
JP2015068606A (en) Immersion type liquid cooling device
JP5832752B2 (en) Cooling device for rotating electric machine
JP2012222904A (en) Distributed winding rotary electric machine
JP6191364B2 (en) Filter device for liquid cooling device and liquid cooling device
KR101809915B1 (en) Hydraulic oil cooling apparatus for vibrator
US7367292B2 (en) Fuel cooler with lamellar inner structures for connecting to an air-conditioning system of a vehicle
JP2017120172A (en) Heat exchange module
KR102101030B1 (en) Air conditioner using thermoelement module
US20180003447A1 (en) Heat-exchange element suitable for a heat exchange between first and second fluids, an exchanger core including the heat-exchange element and a heat exchanger including the exchanger core
JP2015068523A (en) Immersion type liquid cooling system
CN109842242A (en) The cooling structure of rotating electric machine and the vehicle for having the cooling structure
JP2021019397A (en) Cooling device
JP2015068524A (en) Liquid cooling device
JPH05118773A (en) Oil cooling device
US8362659B2 (en) Linear motor mover with heat dissipation unit
JP4554850B2 (en) Beverage supply equipment
US20220232731A1 (en) Tank and cooling unit
US20220034590A1 (en) Method and system for cooling a fluid with a microchannel evaporator