JP2015068092A - Filter for asphalt mixture, and asphalt mixture - Google Patents

Filter for asphalt mixture, and asphalt mixture Download PDF

Info

Publication number
JP2015068092A
JP2015068092A JP2013204340A JP2013204340A JP2015068092A JP 2015068092 A JP2015068092 A JP 2015068092A JP 2013204340 A JP2013204340 A JP 2013204340A JP 2013204340 A JP2013204340 A JP 2013204340A JP 2015068092 A JP2015068092 A JP 2015068092A
Authority
JP
Japan
Prior art keywords
filler
ash
asphalt
sewage sludge
asphalt mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013204340A
Other languages
Japanese (ja)
Other versions
JP6323802B2 (en
Inventor
直人 ▲高▼田
直人 ▲高▼田
Naoto Takada
佳之 佐藤
Yoshiyuki Sato
佳之 佐藤
俊祐 羽原
Toshisuke Habara
俊祐 羽原
小山田 哲也
Tetsuya Oyamada
哲也 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAZAWA HODO KK
Iwate University
Iwate Industrial Research Institute
Original Assignee
KANAZAWA HODO KK
Iwate University
Iwate Industrial Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAZAWA HODO KK, Iwate University, Iwate Industrial Research Institute filed Critical KANAZAWA HODO KK
Priority to JP2013204340A priority Critical patent/JP6323802B2/en
Publication of JP2015068092A publication Critical patent/JP2015068092A/en
Application granted granted Critical
Publication of JP6323802B2 publication Critical patent/JP6323802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize a gap between aggregate and a gap of a filler itself as much as possible, and reduce asphalt usage to the utmost, and thereby reduce the cost of asphalt mixture raw material.SOLUTION: A filler of an asphalt mixture is manufactured by using aggregate, asphalt and filler as principal, which are heated and mixed. The filler uses pulverized ashes of sewage sludge incineration ashes obtained by pulverizing original ashes of the sewage sludge incineration ashes. The pulverized ashes of the sewage sludge incineration ashes are formed such that a ratio of passing a sieve mesh with an opening of 600 μm is 100 wt.%, the ratio of passing the sieve mesh with the opening of 75 μm is 60 wt.% or more and the ratio of passing the sieve mesh with the opening of 38 μm is 40 wt.% or more, and are mixed with other filler materials so that a flow value of the whole filler becomes 50% or less.

Description

本発明は、道路等の舗装に用いられるアスファルト混合物用フィラー及びアスファルト混合物に係り、特に、アスファルトの使用量の低減化を図ったアスファルト混合物用フィラー及びアスファルト混合物に関する。   The present invention relates to an asphalt mixture filler and an asphalt mixture used for paving roads and the like, and more particularly to an asphalt mixture filler and an asphalt mixture in which the amount of asphalt used is reduced.

一般に、アスファルト混合物は、砕石や砂等の骨材,アスファルト及びフィラーを主体としてこれらが加熱混合されて製造される。
従来、アスファルト混合物用フィラーとしては、例えば、セメント,フライアッシュ,消石灰なども用いられているが、天然の石灰石を粉砕した炭酸カルシウムを主成分とした石粉(いしこ)が多く用いられている。
また、従来においては、アスファルト混合物として、例えば、特開2000−160021号公報(特許文献1)に掲載された技術が知られている。このアスファルト混合物においては、アスファルト混合物用フィラーとして、下水汚泥焼却炉から取り出された微粉末状の下水汚泥焼却灰を用いており、廃棄物の有効利用を図るようにしている。
Generally, an asphalt mixture is produced by heating and mixing mainly aggregates such as crushed stone and sand, asphalt and filler.
Conventionally, as filler for asphalt mixture, for example, cement, fly ash, slaked lime, and the like have been used, but stone powder mainly composed of calcium carbonate obtained by pulverizing natural limestone is often used.
Conventionally, as an asphalt mixture, for example, a technique disclosed in Japanese Patent Laid-Open No. 2000-160021 (Patent Document 1) is known. In this asphalt mixture, fine powdered sewage sludge incineration ash taken out from the sewage sludge incinerator is used as a filler for the asphalt mixture, so that the waste is effectively used.

特開2000−160021号公報JP 2000-160021 A

ところで、従来から、アスファルト混合物においては、アスファルトの使用量が比較的多くなると、アスファルトは単価が高いので、コスト高になり、できるだけ使用量を抑えて、コストダウンを図りたいという要請がある。アスファルト混合物用フィラーは、骨材間の空隙に配置されて空隙を減少させる効果を奏するが、その粒度が大きいと、残る空隙も大きくなり、骨材,フィラーを結合するためのアスファルトの使用量が多くなる。特に、後者の下水汚泥焼却灰からなるフィラーにおいては、目開が75μmの篩目を通過する割合が例えば45.8重量%以上と比較的大きく、また、多孔質であることもあって、その分、アスファルトの使用量が多くなる。   By the way, conventionally, in an asphalt mixture, when the amount of asphalt used is relatively large, the unit price of asphalt is high. Therefore, there is a demand for increasing the cost and reducing the amount of use as much as possible to reduce the cost. The filler for asphalt mixture is arranged in the gaps between aggregates and has the effect of reducing the gaps, but when the particle size is large, the remaining gaps also increase, and the amount of asphalt used to bind aggregates and fillers is reduced. Become more. In particular, in the filler composed of the latter sewage sludge incinerated ash, the ratio of passing through a sieve having a mesh size of 75 μm is relatively large, for example, 45.8% by weight or more, and may be porous. The amount of asphalt used increases.

本発明は上記の点に鑑みて為されたもので、骨材間の空隙やフィラー自体の空隙をできるだけ小さくできるようにして、アスファルトの使用量を極力低減できるようにし、アスファルト混合物原料のコストの低減を図ったアスファルト混合物用フィラー及びアスファルト混合物を提供することを目的とする。   The present invention has been made in view of the above points, and it is possible to reduce the gap between the aggregates and the filler itself as much as possible so that the amount of asphalt used can be reduced as much as possible. An object of the present invention is to provide a filler for asphalt mixture and an asphalt mixture which are reduced.

このような目的を達成するための本発明のアスファルト混合物用フィラーは、骨材,アスファルトとともに加熱混合されるアスファルト混合物用フィラーにおいて、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が70重量%以上,目開が38μmの篩目を通過する割合が55重量%以上のもので構成している。フィラーとしては、例えば、市販の石粉を原料とし、この原料石粉を更にミルで細かく粉砕して製造する。この場合、目開が20μmの篩目を通過する割合が45重量%以上のもので構成することが有効である。
本発明において、篩目の目開に対応する通過割合は、レーザー回折法で得た粒度を篩通過分に換算した数値である。
In order to achieve such an object, the filler for asphalt mixture of the present invention is a filler for asphalt mixture that is heated and mixed together with aggregate and asphalt, and the ratio of passing through a sieve having an opening of 600 μm is 100% by weight. The rate of passing through a 75 μm sieve is 70% by weight or more, and the rate of passing through a 38 μm sieve is 55% by weight. As the filler, for example, commercially available stone powder is used as a raw material, and the raw material stone powder is further finely pulverized by a mill. In this case, it is effective that the ratio of passing through a sieve having an opening of 20 μm is 45% by weight or more.
In the present invention, the passage ratio corresponding to the mesh opening is a numerical value obtained by converting the particle size obtained by the laser diffraction method into the passage through the sieve.

これにより、フィラーの粒度が極めて細かくなるので、骨材間にある空隙が小さくなり、単位重量当たりのアスファルトの使用量が低減される。この場合、フィラーが骨材間に良く充填される分、アスファルト混合物の密度が僅かに大きくなり、単位重量あたりの体積が僅かに小さくなるが、後述の試験例から明らかなように、単位体積当たりに換算しても、アスファルトの使用量が減少する。これは、フィラーの粒度が細かくなることによる充填性の向上に起因しているものと考えられる。このため、フィラーを粉砕する等のコストはかかるが、アスファルト原材料の低減効果の方が大きいので、アスファルト混合物原料のコストの低減を図ることができる。   Thereby, since the particle size of a filler becomes very fine, the space | gap between aggregates becomes small and the usage-amount of asphalt per unit weight is reduced. In this case, as the filler is well filled between the aggregates, the density of the asphalt mixture is slightly increased and the volume per unit weight is slightly decreased, but as is clear from the test examples described later, Even if converted to, the amount of asphalt used decreases. This is considered to be due to the improvement of the filling property due to the finer particle size of the filler. For this reason, although the cost of grinding | pulverizing a filler etc. starts, since the reduction effect of an asphalt raw material is greater, the cost of an asphalt mixture raw material can be reduced.

また、上記目的を達成するための本発明のアスファルト混合物用フィラーは、骨材,アスファルト及びフィラーを主体としてこれらが加熱混合されて製造されるアスファルト混合物の当該フィラーであって、微粉末状の下水汚泥焼却灰を含むアスファルト混合物用フィラーにおいて、上記下水汚泥焼却灰として、下水汚泥焼却灰の原灰を粉砕した下水汚泥焼却灰の粉砕灰を用いる構成としている。
下水汚泥焼却灰の原灰は、例えば周知の流動床式焼却炉により下水汚泥を焼却し、飛灰として捕集された煤塵である。また、必要に応じ、砒素,セレン,フッ素,ホウ素等の有害物質の溶出抑制処理を行ったものを含む。
Further, the filler for asphalt mixture of the present invention for achieving the above object is an asphalt mixture filler produced by heating and mixing aggregates, asphalt, and filler as main components. In the asphalt mixture filler containing sludge incineration ash, the sewage sludge incineration ash pulverized ash obtained by pulverizing the raw ash of the sewage sludge incineration ash is used as the sewage sludge incineration ash.
The raw ash of sewage sludge incineration ash is dust collected by incineration of sewage sludge by, for example, a well-known fluidized bed incinerator. In addition, it includes those that have been subjected to a leaching suppression treatment for harmful substances such as arsenic, selenium, fluorine, and boron as required.

これにより、下水汚泥焼却灰の粉砕灰は、原灰に比較して粒度が極めて細かくなり、多孔質である下水汚泥焼却灰全体の空隙も小さくなるので、それだけ、アスファルトで充填すべき空隙が小さくなり、単位重量当たりのアスファルトの使用量が低減される。即ち、下水汚泥焼却灰の粉砕灰が骨材間に良く充填され、且つ、空隙が減少する分、アスファルト混合物の密度が僅かに大きくなり、単位重量あたりの体積が僅かに小さくなるが、後述の試験例から明らかなように、単位体積当たりに換算しても、従来の粉砕しない石粉,従来の粉砕しない下水汚泥焼却灰の原灰に比較して、アスファルトの使用量が減少する。これは、下水汚泥焼却灰の粒度が細かくなることによる充填性の向上及びアスファルトの吸収量の低下に起因しているものと考えられる。このため、下水汚泥焼却灰自体は廃棄物であるからそのコストは略ゼロであり、下水汚泥焼却灰の原灰を粉砕するコストはかかるが、アスファルト原材料はこの下水汚泥焼却灰の粉砕コストと比較しても、その低減効果の方が大きいので、アスファルト混合物原料のコストの低減を図ることができる。   As a result, the pulverized ash of sewage sludge incineration ash has a very fine particle size compared to the raw ash, and the voids of the entire sewage sludge incineration ash, which is porous, are also reduced. As a result, the amount of asphalt used per unit weight is reduced. That is, the pulverized ash of sewage sludge incineration ash is well packed between aggregates, and the density of the asphalt mixture is slightly increased and the volume per unit weight is slightly reduced by the amount of voids being reduced. As is clear from the test examples, even when converted per unit volume, the amount of asphalt used is reduced as compared with conventional unpulverized stone powder and conventional unground sewage sludge incineration ash. This is considered to be due to an improvement in filling property and a decrease in the amount of asphalt absorbed due to the finer particle size of the sewage sludge incineration ash. For this reason, since the sewage sludge incineration ash itself is a waste, its cost is almost zero, and the cost of crushing the raw ash of the sewage sludge incineration ash is high, but the asphalt raw material is compared with the crushing cost of this sewage sludge incineration ash However, since the reduction effect is greater, the cost of the asphalt mixture raw material can be reduced.

より具体的には、上記下水汚泥焼却灰の粉砕灰を、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が60重量%以上,目開が38μmの篩目を通過する割合が40重量%以上のもので構成している。   More specifically, the crushed ash of the sewage sludge incineration ash is 100% by weight when passing through a sieve having an opening of 600 μm, and 60% by weight or more when passing through a sieve having an opening of 75 μm. The ratio of passing through a 38 μm sieve mesh is 40% by weight or more.

そして、必要に応じ、上記下水汚泥焼却灰を、フィラー全体のフロー値が50%以下になるように、他のフィラー材料に混合した構成としている。ここで、フロー値(%)とは、周知のフロー試験において、即ち、フィラーを水で練って、その所定量を円板に載せてこれに衝撃を与え、直径200mmに広がるときの水の含水比から求められる。フロー値は、フィラーのアスファルト吸収性と関連があるとされており、フロー値が高いほど多くのアスファルト量を必要とし、アスファルト混合物の安定度等を低下させる傾向にある。そのため、舗装設計施工指針では、フロー値の目標値を上限50%としており、ユーザーも目標値を満たす材料の使用を要求することが多い。このため、後述の実施例から、下水汚泥焼却灰の粉砕灰では、そのフロー値が他のフィラー材料よりも高くなる傾向にあり、フィラーの全部を下水汚泥焼却灰の粉砕灰とした場合でもそれなりの効果が得られるが、本発明では、他のフィラー材料と混合することにより、フロー値を適正値にしている。   And if needed, it is set as the structure which mixed the said sewage sludge incineration ash with the other filler material so that the flow value of the whole filler may be 50% or less. Here, the flow value (%) is a water content in a well-known flow test, that is, when a filler is kneaded with water, and a predetermined amount of the filler is placed on a disk to give an impact and spread to a diameter of 200 mm. It is obtained from the ratio. The flow value is considered to be related to the asphalt absorbability of the filler. The higher the flow value, the more asphalt is required, and the stability of the asphalt mixture tends to be lowered. Therefore, in the pavement design and construction guidelines, the target value of the flow value is set to an upper limit of 50%, and the user often requests the use of a material that satisfies the target value. For this reason, from the examples described later, the sewage sludge incineration ash pulverized ash tends to have a higher flow value than other filler materials, and even when all of the filler is sewage sludge incineration ash crushed ash. In the present invention, the flow value is set to an appropriate value by mixing with other filler materials.

この場合、必要に応じ、上記他のフィラー材料を、石粉を含んで構成し、該石粉を、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が50重量%以上,目開が38μmの篩目を通過する割合が40重量%以上,目開が20μmの篩目を通過する割合が30重量%以上のもので構成している。石粉を用いることにより、確実にフロー値を適正なものにすることができる。
また、この場合、上記フィラーにおける下水汚泥焼却灰の粉砕灰の混合比を、10重量%〜50重量%にしたことが有効である。この範囲で、フロー値を適正なものにすることができる。
In this case, if necessary, the other filler material is composed of stone powder, and the stone powder passes through a sieve having a mesh size of 100 μm and a mesh opening of 75 μm. The ratio is 50% by weight or more, the ratio of passing through a 38 μm sieve is 40% by weight, and the ratio of passing through a 20 μm sieve is 30% by weight. By using stone powder, the flow value can be surely made appropriate.
In this case, it is effective that the mixing ratio of the crushed ash of the sewage sludge incineration ash in the filler is 10 wt% to 50 wt%. In this range, the flow value can be made appropriate.

更に、必要に応じ、上記下水汚泥焼却灰の粉砕灰を、目開が75μmの篩目を通過する割合が75重量%以上,目開が38μmの篩目を通過する割合が60重量%以上のもので構成している。この場合、上記下水汚泥焼却灰の粉砕灰を、目開が20μmの篩目を通過する割合が50重量%以上のもので構成したことが有効である。より一層、アスファルトの使用量を減少させることができる。   Further, if necessary, the sewage sludge incinerated ash has a crushed ash content of 75% by weight or more passing through a 75 μm sieve and 60% or more passing through a 38 μm sieve. Consists of things. In this case, it is effective that the crushed ash of the sewage sludge incineration ash is composed of a sewage sludge incineration ash having a ratio of passing through a sieve having a mesh size of 20 μm. The amount of asphalt used can be further reduced.

また、上記目的を達成するため、本発明のアスファルト混合物は、骨材,アスファルト及びフィラーが加熱混合されて製造されるアスファルト混合物において、上記フィラーとして、上記のアスファルト混合物用フィラーを用いた構成としている。上述したように、単位体積当たりのアスファルトの使用量を低減させることができ、アスファルト混合物原料のコストの低減を図ることができる。   Further, in order to achieve the above object, the asphalt mixture of the present invention has a configuration in which the filler for asphalt mixture is used as the filler in the asphalt mixture produced by heating and mixing aggregate, asphalt and filler. . As described above, the amount of asphalt used per unit volume can be reduced, and the cost of the asphalt mixture raw material can be reduced.

本発明によれば、粒度の極めて細かいフィラーを用い、あるいは、フィラーとして、下水汚泥焼却灰を含むものにおいて、下水汚泥焼却灰の原灰を粉砕した下水汚泥焼却灰の粉砕灰を用い、下水汚泥焼却灰の粒度を極めて細かくしたので、骨材間にある空隙を小さくして、単位体積当たりのアスファルトの使用量を低減させることができ、アスファルト混合物原料のコストの低減を図ることができる。   According to the present invention, a very fine particle size filler is used, or a sewage sludge incineration ash is used as a filler, and the sewage sludge incineration ash pulverized ash is used to sewage sludge. Since the incinerated ash has a very fine particle size, the gaps between the aggregates can be reduced to reduce the amount of asphalt used per unit volume, and the cost of the asphalt mixture raw material can be reduced.

本発明の第一の実施の形態に係るアスファルト混合物用フィラーの製造工程を示す図である。It is a figure which shows the manufacturing process of the filler for asphalt mixtures which concerns on 1st embodiment of this invention. 本発明の第二の実施の形態に係るアスファルト混合物用フィラーの製造工程を示す図である。It is a figure which shows the manufacturing process of the filler for asphalt mixtures which concerns on 2nd embodiment of this invention. 本発明の実施例1に係るアスファルト混合物用フィラーの性状及び試験結果を比較例1のものとともに示す表図である。It is a table | surface figure which shows the property and test result of the filler for asphalt mixtures which concern on Example 1 of this invention with the thing of the comparative example 1. FIG. 本発明の実施例2に係るアスファルト混合物用フィラーの性状及び試験結果を比較例6のものとともに示す表図である。It is a table | surface figure which shows the property and test result of the filler for asphalt mixtures which concern on Example 2 of this invention with the thing of the comparative example 6. FIG. 本発明の実施例3乃至10に係るアスファルト混合物用フィラーの性状及び試験結果を比較例1乃至5のものとともに示す表図である。It is a table | surface figure which shows the property and test result of the filler for asphalt mixtures which concern on Example 3 thru | or 10 of this invention with the thing of Comparative Examples 1-5. 本発明の実施例11乃至19に係るアスファルト混合物用フィラーの性状及び試験結果を比較例6乃至8のものとともに示す表図である。It is a table | surface figure which shows the property and test result of the filler for asphalt mixtures which concern on Example 11 thru | or 19 of this invention with the thing of Comparative Examples 6-8. 本発明の実施例で用いた下水汚泥焼却灰の原灰(焼却灰A,B)及び石粉A,Bの成分を示す表図である。It is a table | surface figure which shows the component of the raw ash (incineration ash A, B) and the stone powder A, B of the sewage sludge incineration ash used in the Example of this invention. 本発明の実施例で用いた市販の石粉の粒子断面の顕微鏡写真である。It is a microscope picture of the particle cross section of the commercially available stone powder used in the Example of this invention. 本発明の実施例で用いた下水汚泥焼却灰を示し、(a)は下水汚泥焼却灰の原灰(焼却灰A)の粒子断面の顕微鏡写真、(b)はこれを粉砕した下水汚泥焼却灰の粉砕灰における粒子断面の顕微鏡写真である。The sewage sludge incineration ash used in the Example of this invention is shown, (a) is the micrograph of the particle | grain cross section of the raw ash (incineration ash A) of sewage sludge incineration ash, (b) is the sewage sludge incineration ash which crushed this It is the microscope picture of the particle | grain cross section in the pulverized ash of. 本発明の実施例で用いた下水汚泥焼却灰を示し、(a)は下水汚泥焼却灰の原灰(焼却灰B)の粒子断面の顕微鏡写真、(b)はこれを粉砕した下水汚泥焼却灰の粉砕灰における粒子断面の顕微鏡写真である。The sewage sludge incineration ash used in the Example of this invention is shown, (a) is the micrograph of the particle | grain cross section of the raw ash (incineration ash B) of a sewage sludge incineration ash, (b) is the sewage sludge incineration ash which crushed this It is the microscope picture of the particle | grain cross section in the pulverized ash of. 本発明の実施例に係るアスファルト混合物で用いた骨材の配合(配合1,配合2)を示す表図である。It is a table | surface figure which shows the mixing | blending (mixing 1, mixing | blending 2) of the aggregate used with the asphalt mixture which concerns on the Example of this invention. 本発明の実施例に係るアスファルト混合物で用いたアスファルトの性状を示す表図である。It is a table | surface figure which shows the property of the asphalt used with the asphalt mixture which concerns on the Example of this invention. 本発明の実施例に係るアスファルト混合物で用いた別のアスファルトの性状を示す表図である。It is a table | surface figure which shows the property of another asphalt used with the asphalt mixture which concerns on the Example of this invention.

以下、添付図面に基づいて、本発明の実施の形態に係るアスファルト混合物用フィラー及びアスファルト混合物について詳細に説明する。
先ず、本発明の第一の実施の形態に係るアスファルト混合物について説明する。これは、骨材,アスファルト及び本発明の第一の実施の形態に係り石粉で構成されるアスファルト混合物用フィラーが加熱混合されて製造される。
Hereinafter, based on an accompanying drawing, the filler for asphalt mixtures and asphalt mixture concerning an embodiment of the invention are explained in detail.
First, the asphalt mixture which concerns on 1st embodiment of this invention is demonstrated. This is produced by heating and mixing aggregate, asphalt and filler for asphalt mixture made of stone powder according to the first embodiment of the present invention.

第一の実施の形態に係るアスファルト混合物用フィラーは、石灰石を粉砕した石粉で構成されている。石粉は、図1に示すように、市販の石粉を、遊星ボールミル,転動ミル,振動ミル,ジェットミル等の粉砕機で更に粉砕して製造している。
そして、粉砕した石粉を、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が70重量%以上,目開が38μmの篩目を通過する割合が55重量%以上,目開が20μmの篩目を通過する割合が45重量%以上のもので構成している。フロー値は50%以下である。
The filler for asphalt mixture which concerns on 1st embodiment is comprised with the stone powder which grind | pulverized the limestone. As shown in FIG. 1, the stone powder is produced by further pulverizing commercially available stone powder with a pulverizer such as a planetary ball mill, a rolling mill, a vibration mill, or a jet mill.
The ratio of the crushed stone powder passing through a sieve having a mesh size of 600 μm is 100% by weight, the ratio of passing through a sieve having a mesh size of 75 μm is 70% by weight or more, and passing through a sieve having a mesh size of 38 μm. A ratio of 55% by weight or more and a ratio of passing through a sieve having an opening of 20 μm are 45% by weight or more. The flow value is 50% or less.

従って、第一の実施の形態に係るアスファルト混合物は、この第一の実施の形態に係るアスファルト混合物用フィラーを用い、骨材,アスファルトに添加して加熱混合されて製造される。アスファルト混合物においては、フィラーの粒度が極めて細かくなるので、骨材間にある空隙が小さくなり、単位重量当たりのアスファルトの使用量が低減される。この場合、フィラーが骨材間に良く充填される分、アスファルト混合物の密度が僅かに大きくなり、単位重量あたりの体積が僅かに小さくなるが、後述の試験例から明らかなように、単位体積当たりに換算しても、アスファルトの使用量が減少する。これは、フィラーの粒度が細かくなることによる充填性の向上に起因しているものと考えられる。このため、フィラーを粉砕する等のコストはかかるが、アスファルト原材料の低減効果の方が大きいので、アスファルト混合物原料のコストの低減を図ることができる。   Therefore, the asphalt mixture according to the first embodiment is manufactured by using the asphalt mixture filler according to the first embodiment, adding to the aggregate and asphalt and heating and mixing. In the asphalt mixture, the particle size of the filler is extremely fine, so that the gaps between the aggregates are reduced, and the amount of asphalt used per unit weight is reduced. In this case, as the filler is well filled between the aggregates, the density of the asphalt mixture is slightly increased and the volume per unit weight is slightly decreased, but as is clear from the test examples described later, Even if converted to, the amount of asphalt used decreases. This is considered to be due to the improvement of the filling property due to the finer particle size of the filler. For this reason, although the cost of grinding | pulverizing a filler etc. starts, since the reduction effect of an asphalt raw material is greater, the cost of an asphalt mixture raw material can be reduced.

次に、本発明の第二の実施の形態に係るアスファルト混合物について説明する。これは、骨材,アスファルト及び本発明の第二の実施の形態に係るアスファルト混合物用フィラーが加熱混合されて製造される。第二の実施の形態に係るアスファルト混合物用フィラーは、図2に示すように、微粉末状の下水汚泥焼却灰と市販の石粉との混合物である。
下水汚泥焼却灰の原灰は、例えば周知の流動床式焼却炉により下水汚泥を焼却し、飛灰として捕集された煤塵である。また、必要に応じ、砒素,セレン,フッ素,ホウ素等の有害物質の溶出抑制処理を行ったものを含む。
Next, the asphalt mixture which concerns on 2nd embodiment of this invention is demonstrated. This is manufactured by heating and mixing the aggregate, asphalt and the filler for asphalt mixture according to the second embodiment of the present invention. As shown in FIG. 2, the filler for asphalt mixture according to the second embodiment is a mixture of fine powder sewage sludge incineration ash and commercially available stone powder.
The raw ash of sewage sludge incineration ash is dust collected by incineration of sewage sludge by, for example, a well-known fluidized bed incinerator. In addition, it includes those that have been subjected to a leaching suppression treatment for harmful substances such as arsenic, selenium, fluorine, and boron as required.

実施の形態では、この下水汚泥焼却灰の原灰を、遊星ボールミル,転動ミル,振動ミル,ジェットミル等の粉砕機で更に粉砕し、下水汚泥焼却灰の粉砕灰としている。そして、粉砕された下水汚泥焼却灰の粉砕灰は、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が60重量%以上,目開が38μmの篩目を通過する割合が40重量%以上のもので構成されている。好ましくは、目開が75μmの篩目を通過する割合が75重量%以上,目開が38μmの篩目を通過する割合が60重量%以上,目開が20μmの篩目を通過する割合が50重量%以上のもので構成されている。   In the embodiment, the raw ash of the sewage sludge incineration ash is further pulverized by a pulverizer such as a planetary ball mill, a rolling mill, a vibration mill, a jet mill, etc. to obtain a crushed ash of the sewage sludge incineration ash. The pulverized ash of the sewage sludge incinerated ash is 100% by weight when passing through a sieve having a mesh size of 600 μm, more than 60% by weight when passing through a sieve having a mesh opening of 75 μm. The ratio of passing through a 38 μm sieve mesh is 40% by weight or more. Preferably, the ratio of passing through a 75 μm sieve is 75% by weight or more, the ratio of passing through a 38 μm sieve is 60% by weight, and the ratio of passing through a 20 μm sieve is 50%. It is composed of more than wt%.

また、下水汚泥焼却灰の粉砕灰は、フィラー全体のフロー値が50%以下になるように、他のフィラー材料に混合されている。他のフィラー材料は、市販の石粉で構成されている。この石粉は、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が50重量%以上,目開が38μmの篩目を通過する割合が40重量%以上,目開が20μmの篩目を通過する割合が30重量%以上のもので構成されている。   Moreover, the pulverized ash of sewage sludge incineration ash is mixed with other filler materials so that the flow value of the entire filler is 50% or less. Other filler materials are composed of commercially available stone powder. This stone powder has a ratio of passing through a sieve having a mesh opening of 600 μm, a ratio of passing through a sieve having a mesh opening of 75 μm is 50% by weight or more, and a ratio of passing through a sieve having a mesh opening of 38 μm is 40%. It is composed of a material having a weight percentage of 30% by weight or more and passing through a sieve having an opening of 20 μm.

ここで、フロー値(%)とは、周知のフロー試験において、即ち、フィラーを水で練って、その所定量を円板に載せてこれに衝撃を与え、直径200mmに広がるときの水の含水比から求められる。フロー値は、フィラーのアスファルト吸収性と関連があるとされており、フロー値が高いほど多くのアスファルト量を必要とし、アスファルト混合物の安定度等を低下させる傾向にある。そのため、舗装設計施工指針では、フロー値の目標値を上限50%としており、ユーザーも目標値を満たす材料の使用を要求することが多い。このため、後述の実施例から、下水汚泥焼却灰の粉砕灰では、そのフロー値が他のフィラー材料よりも高くなる傾向にあり、フィラーの全部を下水汚泥焼却灰の粉砕灰とした場合でもそれなりの効果が得られるが、本発明では、他のフィラー材料と混合することにより、フロー値を適正値にしている。そして、本実施の形態に係るフィラーにおいて、下水汚泥焼却灰の粉砕灰の混合比は、10重量%〜50重量%に設定されている。この範囲で、フロー値を適正なものにすることができる。   Here, the flow value (%) is a water content in a well-known flow test, that is, when a filler is kneaded with water, and a predetermined amount of the filler is placed on a disk to give an impact and spread to a diameter of 200 mm. It is obtained from the ratio. The flow value is considered to be related to the asphalt absorbability of the filler. The higher the flow value, the more asphalt is required, and the stability of the asphalt mixture tends to be lowered. Therefore, in the pavement design and construction guidelines, the target value of the flow value is set to an upper limit of 50%, and the user often requests the use of a material that satisfies the target value. For this reason, from the examples described later, the sewage sludge incineration ash pulverized ash tends to have a higher flow value than other filler materials, and even when all of the filler is sewage sludge incineration ash crushed ash. In the present invention, the flow value is set to an appropriate value by mixing with other filler materials. And in the filler which concerns on this Embodiment, the mixing ratio of the grinding | pulverization ash of a sewage sludge incineration ash is set to 10 weight%-50 weight%. In this range, the flow value can be made appropriate.

従って、第一の実施の形態に係るアスファルト混合物によれば、アスファルト混合物用フィラーを構成する下水汚泥焼却灰の粉砕灰は、原灰に比較して粒度が極めて細かくなり、多孔質である下水汚泥焼却灰全体の空隙も小さくなるので、それだけ、アスファルトで充填すべき空隙が小さくなり、単位重量当たりのアスファルトの使用量が低減される。即ち、下水汚泥焼却灰の粉砕灰が骨材間に良く充填され、且つ、空隙が減少する分、アスファルト混合物の密度が僅かに大きくなり、単位重量あたりの体積が僅かに小さくなるが、後述の試験例から明らかなように、単位体積当たりに換算しても、従来の粉砕しない石粉,従来の粉砕しない下水汚泥焼却灰の原灰に比較して、アスファルトの使用量が減少する。これは、下水汚泥焼却灰の粒度が細かくなることによる充填性の向上及びアスファルトの吸収量の低下に起因しているものと考えられる。このため、下水汚泥焼却灰自体は廃棄物であるからそのコストは略ゼロであり、下水汚泥焼却灰の原灰を粉砕するコストはかかるが、アスファルト原材料はこの下水汚泥焼却灰の粉砕コストと比較しても、その低減効果の方が大きいので、アスファルト混合物原料のコストの低減を図ることができる。   Therefore, according to the asphalt mixture according to the first embodiment, the pulverized ash of the sewage sludge incineration ash constituting the filler for the asphalt mixture has an extremely fine particle size compared to the raw ash, and is a porous sewage sludge. Since the voids of the entire incineration ash are also reduced, the gaps to be filled with asphalt are accordingly reduced, and the amount of asphalt used per unit weight is reduced. That is, the pulverized ash of sewage sludge incineration ash is well packed between aggregates, and the density of the asphalt mixture is slightly increased and the volume per unit weight is slightly reduced by the amount of voids being reduced. As is clear from the test examples, even when converted per unit volume, the amount of asphalt used is reduced as compared with conventional unpulverized stone powder and conventional unground sewage sludge incineration ash. This is considered to be due to an improvement in filling property and a decrease in the amount of asphalt absorbed due to the finer particle size of the sewage sludge incineration ash. For this reason, since the sewage sludge incineration ash itself is a waste, its cost is almost zero, and the cost of crushing the raw ash of the sewage sludge incineration ash is high, but the asphalt raw material is compared with the crushing cost of this sewage sludge incineration ash However, since the reduction effect is greater, the cost of the asphalt mixture raw material can be reduced.

次に、本発明の実施例に係るアスファルト混合物用フィラーを示す。
<実施例1>
図3に示すように、実施例1に係るフィラーは、市販の石粉A(比較例1)を原料とした。その成分を、図7に示し、性状を図3及び図5に示す(比較例1の欄)。
ここで、フロー値(%)とは、周知のフロー試験において、即ち、フィラーを水で練って、その所定量を円板に載せてこれに衝撃を与え、直径200mmに広がるときの水の含水比から求められる(以下同じ)。
また、粒子密度(g/cm3)は、フィラー全体の粒子の密度を示す(以下同じ)。
更に、D90(μm),D50(μm),D10(μm)は、積算%粒子径を示す。本実施例では、ヘキサメタリン酸ナトリウム0.1%水溶液を溶媒として、レーザー散乱式粒度分布測定装置(Malvern社製:MastersizerS型)を用いて湿式測定して粒度を得て、重量基準で累積粒度分布を作製し、この時の累積粒度分布の積算%が、細粒側からそれぞれ90%、50%、10%の積算値となる時の粒径(μm)とした(以下同じ)。
また、600μm〜10μmは、篩目の目開に対応する通過割合であり、周知のレーザー回折法で得た粒度を篩通過分に換算した数値である。本実施例では、上記と同様にヘキサメタリン酸ナトリウム0.1%水溶液を溶媒として、レーザー散乱式粒度分布測定装置(Malvern社製:MastersizerS型)を用いて湿式測定して粒度を得て、この粒度を篩通過分に換算した(以下同じ)。
図8に、市販の石粉Aの粒子断面の顕微鏡写真を示す。走査型電子顕微鏡(日本電子株式会社製JXA-8530F型)を用いて粒子の形状および表面状態を観察した。粒子内部の観察のため、適当量の粒子をエポキシ樹脂に包埋して硬化させた後、クロスセクションポリッシャーを用いて、アルゴンイオンビームでスパッタエッチングを施し、樹脂ごと粒子を切断して断面を得た。顕微鏡写真において、黒い部分が樹脂であり、灰色部分が粒子である(以下、他の顕微鏡写真において同じ)。
Next, the filler for asphalt mixtures which concerns on the Example of this invention is shown.
<Example 1>
As shown in FIG. 3, the filler which concerns on Example 1 made the commercially available stone powder A (comparative example 1) the raw material. The components are shown in FIG. 7, and the properties are shown in FIGS. 3 and 5 (column of Comparative Example 1).
Here, the flow value (%) is a water content in a well-known flow test, that is, when a filler is kneaded with water, and a predetermined amount of the filler is placed on a disk to give an impact and spread to a diameter of 200 mm. It is obtained from the ratio (the same applies hereinafter)
The particle density (g / cm 3 ) indicates the particle density of the entire filler (the same applies hereinafter).
Furthermore, D90 (μm), D50 (μm), and D10 (μm) indicate the cumulative% particle diameter. In this example, 0.1% aqueous solution of sodium hexametaphosphate was used as a solvent to obtain a particle size by wet measurement using a laser scattering particle size distribution analyzer (manufactured by Malvern: MastersizerS type), and cumulative particle size distribution on a weight basis The cumulative particle size distribution at this time is defined as the particle size (μm) when the cumulative percentage of the cumulative particle size distribution is 90%, 50%, and 10% from the fine grain side, respectively (the same applies hereinafter).
Further, 600 μm to 10 μm is a passage ratio corresponding to the mesh opening, and is a numerical value obtained by converting the particle size obtained by a well-known laser diffraction method into a sieve passage. In this example, as described above, a 0.1% aqueous solution of sodium hexametaphosphate was used as a solvent to obtain a particle size by wet measurement using a laser scattering particle size distribution analyzer (manufactured by Malvern: MastersizerS type). Was converted into a sieve passage (the same applies hereinafter).
In FIG. 8, the microscope picture of the particle | grain cross section of commercially available stone powder A is shown. The shape and surface state of the particles were observed using a scanning electron microscope (JXA-8530F type manufactured by JEOL Ltd.). For observation of the inside of the particle, an appropriate amount of the particle is embedded in an epoxy resin and cured, and then a cross section polisher is used to perform sputter etching with an argon ion beam to cut the particle together with the resin to obtain a cross section. It was. In the photomicrograph, the black part is the resin and the gray part is the particle (hereinafter the same in the other photomicrographs).

そして、遊星ボールミル(レッチェ社製:PM400型)を用い、容量500mLのアルミナポット中に市販の石粉A300gと20φのアルミナボールを25個投入し、公転速度300rpmで5分間粉砕した。
この遊星型ボールミルは、粉砕速度が速く、短時間で粉砕処理が可能である。粉砕した石粉の性状を図3に示す(実施例1(100)の欄)。
Then, using a planetary ball mill (manufactured by Lecce Co., Ltd .: PM400 type), 25 pieces of commercially available stone powder A300 g and 20 φ alumina balls were put into an alumina pot having a capacity of 500 mL, and pulverized for 5 minutes at a revolution speed of 300 rpm.
This planetary ball mill has a high pulverization speed and can be pulverized in a short time. The properties of the crushed stone powder are shown in FIG. 3 (column in Example 1 (100)).

<実施例2>
図4に示すように、実施例2に係るフィラーは、市販の石粉B(比較例6)を原料とした。その成分を、図7に示し、性状を図4及び図6に示す(比較例6の欄)。そして、この市販の石粉Bを、実施例1と同様にして粉砕した。粉砕した石粉の性状を図4に示す(実施例2(100)の欄)。
<Example 2>
As shown in FIG. 4, the filler according to Example 2 was made from commercially available stone powder B (Comparative Example 6). The components are shown in FIG. 7 and the properties are shown in FIGS. 4 and 6 (column of Comparative Example 6). And this commercially available stone powder B was ground in the same manner as in Example 1. The properties of the crushed stone powder are shown in FIG. 4 (column in Example 2 (100)).

<実施例3>
実施例3は、岩手県盛岡市にある都南浄化センターで発生する下水汚泥焼却灰(焼却灰A(比較例2))を原料とした。その成分を、図7に示し、その性状を図5に示す(比較例2原料(100)の欄)。
そして、上記と同様、遊星ボールミル(レッチェ社製:PM400型)を用い、容量500mLのアルミナポット中に原料の焼却灰A150gと20φのアルミナボールを25個投入し、公転速度300rpmで1分間粉砕した(「1min粉砕」)。粉砕した下水汚泥焼却灰の性状を図5に示す(実施例3原料(100)の欄)。
図9(a)に下水汚泥焼却灰A(原灰)の粒子断面の顕微鏡写真、図9(b)にこれを粉砕した下水汚泥焼却灰の粉砕灰における粒子断面の顕微鏡写真を示す。
<Example 3>
In Example 3, sewage sludge incineration ash (incineration ash A (Comparative Example 2)) generated at the Tonan Purification Center in Morioka City, Iwate Prefecture was used as a raw material. The components are shown in FIG. 7, and the properties are shown in FIG. 5 (column of comparative example 2 raw material (100)).
In the same manner as above, a planetary ball mill (manufactured by Lecce: PM400 type) was used and 25 g of alumina ash A 150 g and 20φ alumina balls as raw materials were put into an alumina pot with a capacity of 500 mL, and pulverized for 1 minute at a revolution speed of 300 rpm. ("1 min grinding"). The properties of the pulverized sewage sludge incineration ash are shown in FIG. 5 (column of Example 3 raw material (100)).
FIG. 9A shows a micrograph of the particle cross section of the sewage sludge incineration ash A (raw ash), and FIG. 9B shows a micrograph of the particle cross section of the crushed ash of the sewage sludge incineration ash obtained by pulverizing this.

<実施例4>
実施例4は、比較例1で用いる市販の石粉Aの総量のうち、30重量%を実施例3の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図5に示す(実施例4(30)の欄)。
<Example 4>
In Example 4, 30% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 was replaced with ground ash from sewage sludge incineration ash of Example 3. The properties are shown in FIG. 5 (column of Example 4 (30)).

<実施例5>
実施例5は、上記実施例3と同様、遊星ボールミルにて粉砕したが、実施例3と異なって5分間粉砕した(「5min粉砕」)。その性状を図5に示す(実施例5原料(100)の欄)。
<Example 5>
Example 5 was pulverized by a planetary ball mill in the same manner as in Example 3 above, but was pulverized for 5 minutes (“5 min pulverization”) unlike Example 3. The properties are shown in FIG. 5 (column of Example 5 raw material (100)).

<実施例6>
実施例6は、比較例1で用いる市販の石粉Aの総量のうち、15重量%を実施例5の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図5に示す(実施例6(15)の欄)。
<Example 6>
Example 6 was configured by replacing 15% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 with ground ash of sewage sludge incineration ash of Example 5. The properties are shown in FIG. 5 (column of Example 6 (15)).

<実施例7>
実施例7は、比較例1で用いる市販の石粉Aの総量のうち、30重量%を実施例5の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図5に示す(実施例7(30)の欄)。
<Example 7>
Example 7 was configured by replacing 30% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 with ground ash of sewage sludge incineration ash of Example 5. The properties are shown in FIG. 5 (column in Example 7 (30)).

<実施例8>
実施例8は、比較例1で用いる市販の石粉Aの総量のうち、45重量%を実施例5の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図5に示す(実施例8(45)の欄)。
<Example 8>
Example 8 was configured by replacing 45% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 with ground ash of sewage sludge incineration ash of Example 5. The properties are shown in FIG. 5 (column in Example 8 (45)).

<実施例9>
実施例9は、上記実施例3と同様、遊星ボールミルにて粉砕したが、実施例3と異なって30分間粉砕した(「30min粉砕」)。その性状を図5に示す(実施例9原料(100)の欄)。
<Example 9>
Example 9 was pulverized by a planetary ball mill as in Example 3 above, but was pulverized for 30 minutes (“30 min pulverization”) unlike Example 3. The property is shown in FIG. 5 (column of Example 9 raw material (100)).

<実施例10>
実施例10は、比較例1で用いる市販の石粉Aの総量のうち、30重量%を実施例9の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図5に示す(実施例10(30)の欄)。
<Example 10>
Example 10 was configured by replacing 30% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 with ground ash of sewage sludge incineration ash of Example 9. The properties are shown in FIG. 5 (column of Example 10 (30)).

<実施例11>
実施例11は、石川県金沢市にある城北水質管理センターで発生する下水汚泥焼却灰(焼却灰B(比較例7))を原料とした。その成分を、図7に示し、その性状を図6に示す(比較例7原料(100)の欄)。
そして、上記と同様、遊星ボールミル(レッチェ社製:PM400型)を用い、容量500mLのアルミナポット中に原料の焼却灰B150gと20φのアルミナボールを25個投入し、公転速度300rpmで1分間粉砕した(「1min粉砕」)。その性状を図6に示す(実施例11原料(100)の欄)。
図10(a)に下水汚泥焼却灰B(原灰)の粒子断面の顕微鏡写真、図10(b)にこれを粉砕した下水汚泥焼却灰の粉砕灰における粒子断面の顕微鏡写真を示す。
<Example 11>
In Example 11, sewage sludge incineration ash (incineration ash B (Comparative Example 7)) generated at the Johoku Water Quality Management Center in Kanazawa City, Ishikawa Prefecture was used as a raw material. The components are shown in FIG. 7, and the properties are shown in FIG.
In the same manner as above, a planetary ball mill (manufactured by Lecce: PM400 type) was used and 25 g of incinerated ash B 150 g and 20 φ alumina balls as raw materials were put into an alumina pot with a capacity of 500 mL, and pulverized for 1 minute at a revolution speed of 300 rpm. ("1 min grinding"). The property is shown in FIG. 6 (column of Example 11 raw material (100)).
FIG. 10 (a) shows a micrograph of the particle cross section of the sewage sludge incineration ash B (raw ash), and FIG. 10 (b) shows a micrograph of the particle cross section of the crushed ash of the sewage sludge incineration ash obtained by pulverizing it.

<実施例12>
実施例12は、比較例6で用いる市販の石粉Bの総量のうち、30重量%を実施例11の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例12(30)の欄)。
<Example 12>
Example 12 was configured by replacing 30% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with ground ash of sewage sludge incineration ash of Example 11. The property is shown in FIG. 6 (column of Example 12 (30)).

<実施例13>
実施例13は、上記実施例11と同様、遊星ボールミルにて粉砕したが、実施例11と異なって5分間粉砕した(「5min粉砕」)。その性状を図6に示す(実施例13原料(100)の欄)。
<Example 13>
Example 13 was pulverized by a planetary ball mill in the same manner as in Example 11, but was pulverized for 5 minutes ("5 min pulverization") unlike Example 11. The property is shown in FIG. 6 (column of Example 13 raw material (100)).

<実施例14>
実施例14は、比較例6で用いる市販の石粉Bの総量のうち、15重量%を実施例13の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例14(15)の欄)。
<Example 14>
Example 14 was configured by replacing 15% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with ground ash of sewage sludge incineration ash of Example 13. The property is shown in FIG. 6 (column of Example 14 (15)).

<実施例15>
実施例15は、比較例6で用いる市販の石粉Bの総量のうち、30重量%を実施例13の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例15(30)の欄)。
<Example 15>
Example 15 was configured by replacing 30% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with ground ash of sewage sludge incineration ash of Example 13. The properties are shown in FIG. 6 (column of Example 15 (30)).

<実施例16>
実施例16は、比較例6で用いる市販の石粉Bの総量のうち、45重量%を実施例13の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例16(45)の欄)。
<Example 16>
Example 16 was configured by replacing 45% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with ground ash of sewage sludge incineration ash of Example 13. The properties are shown in FIG. 6 (column of Example 16 (45)).

<実施例17>
実施例17は、上記実施例11と同様、遊星ボールミルにて粉砕したが、実施例11と異なって30分間粉砕した(「30min粉砕」)。その性状を図6に示す(実施例17原料(100)の欄)。
<Example 17>
Example 17 was pulverized by a planetary ball mill as in Example 11 above, but was pulverized for 30 minutes ("30 min pulverization") unlike Example 11. The property is shown in FIG. 6 (column of Example 17 raw material (100)).

<実施例18>
実施例18は、比較例6で用いる市販の石粉Bの総量のうち、30重量%を実施例17の下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例18(30)の欄)。
<Example 18>
Example 18 was configured by replacing 30% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with crushed ash of sewage sludge incineration ash of Example 17. The property is shown in FIG. 6 (column in Example 18 (30)).

<実施例19>
実施例19は、下水汚泥焼却灰(焼却灰B(比較例7))を、実用規模の振動ミル(株式会社阿部鐵工所製 バイブロエクスプローラー VMYC-400型)にロッドとともに投入して適時間粉砕して粉砕灰を作製し、比較例6で用いる市販の石粉Bの総量のうち、30重量%をこの下水汚泥焼却灰の粉砕灰で置換して構成した。その性状を図6に示す(実施例19(30)の欄)。
<Example 19>
In Example 19, sewage sludge incineration ash (incineration ash B (Comparative Example 7)) was put together with a rod into a practical-scale vibration mill (Vibro Explorer VMYC-400, manufactured by Abe Steel Co., Ltd.) and pulverized in a timely manner. Then, pulverized ash was prepared, and 30% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 was replaced with pulverized ash of this sewage sludge incinerated ash. The property is shown in FIG. 6 (column in Example 19 (30)).

また、以下に示す試験例のために、比較例を作製した。
<比較例1>
比較例1は、上記の市販の石粉Aである。その成分を、図7に示し、性状を図3及び図5に示す(比較例1の欄)。
Moreover, the comparative example was produced for the test example shown below.
<Comparative Example 1>
Comparative Example 1 is the above-described commercially available stone powder A. The components are shown in FIG. 7, and the properties are shown in FIGS. 3 and 5 (column of Comparative Example 1).

<比較例2>
比較例2は、上記の岩手県盛岡市にある都南浄化センターで発生する下水汚泥焼却灰(焼却灰A)である。その成分を、図7に示し、その性状を図5に示す(比較例2原料(100)の欄)。
<Comparative Example 2>
Comparative Example 2 is sewage sludge incineration ash (incineration ash A) generated at the Tonan Purification Center in Morioka City, Iwate Prefecture. The components are shown in FIG. 7, and the properties are shown in FIG. 5 (column of comparative example 2 raw material (100)).

<比較例3>
比較例3は、比較例1で用いる市販の石粉Aの総量のうち、15重量%を比較例2の下水汚泥焼却灰(焼却灰A)で置換して構成した。その性状を図5に示す(比較例3(15)の欄)。
<Comparative Example 3>
Comparative Example 3 was configured by replacing 15% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 with sewage sludge incinerated ash (incinerated ash A) of Comparative Example 2. The properties are shown in FIG. 5 (Comparative Example 3 (15) column).

<比較例4>
比較例4は、比較例1で用いる市販の石粉Aの総量のうち、30重量%を比較例2の下水汚泥焼却灰(焼却灰A)で置換して構成した。その性状を図5に示す(比較例4(30)の欄)。
<Comparative Example 4>
In Comparative Example 4, 30% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 was replaced with sewage sludge incinerated ash (incinerated ash A) of Comparative Example 2. The properties are shown in FIG. 5 (column of Comparative Example 4 (30)).

<比較例5>
比較例5は、比較例1で用いる市販の石粉Aの総量のうち、45重量%を比較例2の下水汚泥焼却灰(焼却灰A)で置換して構成した。その性状を図5に示す(比較例5(45)の欄)。
<Comparative Example 5>
In Comparative Example 5, 45% by weight of the total amount of commercially available stone powder A used in Comparative Example 1 was replaced with sewage sludge incinerated ash (incinerated ash A) of Comparative Example 2. The properties are shown in FIG. 5 (Comparative Example 5 (45) column).

<比較例6>
比較例6は、上記の市販の石粉Bである。その成分を、図7に示し、性状を図4及び図6に示す(比較例6の欄)。
<Comparative Example 6>
Comparative Example 6 is the above-described commercially available stone powder B. The components are shown in FIG. 7 and the properties are shown in FIGS. 4 and 6 (column of Comparative Example 6).

<比較例7>
比較例7は、上記の石川県金沢市にある城北水質管理センターで発生する下水汚泥焼却灰(焼却灰B)である。その成分を、図7に示し、その性状を図6に示す(比較例7原料(100)の欄)。
<Comparative Example 7>
Comparative Example 7 is sewage sludge incineration ash (incineration ash B) generated at the Johoku Water Quality Management Center in Kanazawa City, Ishikawa Prefecture. The components are shown in FIG. 7 and their properties are shown in FIG. 6 (column of comparative example 7 raw material (100)).

<比較例8>
比較例8は、比較例6で用いる市販の石粉Bの総量のうち、30重量%を比較例7の下水汚泥焼却灰(焼却灰B)で置換して構成した。その性状を図6に示す(比較例8(30)の欄)。
<Comparative Example 8>
Comparative Example 8 was configured by replacing 30% by weight of the total amount of commercially available stone powder B used in Comparative Example 6 with sewage sludge incinerated ash (incinerated ash B) of Comparative Example 7. The properties are shown in FIG. 6 (column of Comparative Example 8 (30)).

次に、試験例を示す。
この試験例は、実施例及び比較例に係るフィラーを用いて、予め算出した最適アスファルト量(OAC重量%)に基づいて、アスファルト混合物を作製し、市販の石粉(比較例1,比較例6)を用いて作製したアスファルト混合物と比較し、単位体積当たりのアスファルト低減率(%)を測定した。
ここで、アスファルトの使用量即ち最適アスファルト量(OAC%)は、以下のようにして決定した。試験を行うアスファルト混合物の配合種を、道路表層に用いられることの多い密粒度アスコン20Fとし、使用する骨材の配合比を図11の配合1及び配合2に示す通り決定した。その配合比を基にマーシャル安定度試験を行い、周知の方法で最適アスファルト量を決定した。この際、マーシャル安定度試験に対する基準値を用い、選定したアスファルト混合物の安定度などのそれぞれの基準を満たす範囲を決定し、これらの各実験値の共通部分を求め、この共通部分の中央値を最適アスファルト量とした。
Next, test examples are shown.
In this test example, an asphalt mixture was prepared based on the optimal asphalt amount (OAC weight%) calculated in advance using the fillers according to Examples and Comparative Examples, and commercially available stone powder (Comparative Examples 1 and 6). The asphalt reduction rate (%) per unit volume was measured in comparison with the asphalt mixture prepared using
Here, the amount of asphalt used, that is, the optimum amount of asphalt (OAC%) was determined as follows. The blending type of the asphalt mixture to be tested was a dense particle size ascon 20F often used for the road surface layer, and the blending ratio of the aggregate to be used was determined as shown in blending 1 and blending 2 in FIG. A Marshall stability test was performed based on the blending ratio, and the optimum amount of asphalt was determined by a well-known method. At this time, using the standard value for the Marshall stability test, determine the range that satisfies each standard such as the stability of the selected asphalt mixture, find the common part of these experimental values, and calculate the median value of this common part The optimum amount of asphalt was used.

アスファルト混合物の作製において、図5及び図6に示すように、フィラーの全部を下水汚泥焼却灰とした場合、そのフロー値が目標値の50%以下を外れるため、実施例13を除き、フィラーの全量を下水汚泥焼却灰としたアスファルト混合物の作製は行わなかった。
図11の配合1に、実施例1,実施例4,実施例6乃至8及び実施例10、比較例1,比較例4乃至5で用いた骨材及びアスファルトの配合を示す。また、用いたアスファルトの性状を図12に示す。
図11の配合2に、実施例2,実施例12,実施例14乃至16,実施例18及び実施例19、比較例1,比較例6及び比較例8で用いた骨材及びアスファルトの配合を示す。また、用いたアスファルトの性状を図13に示す。
In the preparation of the asphalt mixture, as shown in FIGS. 5 and 6, when all of the filler is sewage sludge incineration ash, the flow value deviates from 50% or less of the target value. An asphalt mixture was not prepared using the entire amount of sewage sludge incineration ash.
Formulation 1 in FIG. 11 shows the composition of aggregate and asphalt used in Examples 1, Example 4, Examples 6 to 8, and Example 10, Comparative Example 1, and Comparative Examples 4 to 5. The properties of the asphalt used are shown in FIG.
In the composition 2 of FIG. 11, the composition of the aggregate and asphalt used in Example 2, Example 12, Examples 14 to 16, Example 18 and Example 19, Comparative Example 1, Comparative Example 6 and Comparative Example 8 were used. Show. The properties of the asphalt used are shown in FIG.

結果を図5及び図6に示す。この結果は、先ず、アスファルト混合物の密度(As供試体密度(g/cm3))を測定した。次に、市販の石粉A,B(比較例1,比較例6)を用いて作製したアスファルト混合物に対する単位体積当たりのアスファルトの低減率(As低減率(%))を算出した。 The results are shown in FIGS. As a result, first, the density of the asphalt mixture (As specimen density (g / cm 3 )) was measured. Next, the reduction rate (As reduction rate (%)) of asphalt per unit volume with respect to the asphalt mixture produced using commercially available stone powders A and B (Comparative Examples 1 and 6) was calculated.

この結果から、実施例1,2の石粉と混合したフィラーは、比較例1,6の市販の石粉に比較し、いずれも、アスファルト量を低減させることが分かった。また、比較例3乃至5,比較例8に示されるように、原灰(焼却灰A,B)をそのまま石粉と混合しても、良い結果は得られないことが分かった。また、下水汚泥焼却灰は、1分粉砕したもの(実施例4,実施例12)に比較して、5分以上粉砕したもの(実施例6乃至8及び実施例10,実施例14乃至16及び実施例18)の方が、アスファルト使用量を低減させることが分かった。更に、フィラーの全部を下水汚泥焼却灰とした場合(実施例13)でも、それなりの効果が得られるが、フロー値が大きいので、他のフィラー材料と混合することが望ましい。これらの結果より、フィラーの適正範囲が導き出された。   From these results, it was found that the filler mixed with the stone powders of Examples 1 and 2 both reduced the amount of asphalt compared to the commercially available stone powders of Comparative Examples 1 and 6. Further, as shown in Comparative Examples 3 to 5 and Comparative Example 8, it was found that good results could not be obtained even if raw ash (incinerated ash A, B) was mixed with stone powder as it was. The sewage sludge incineration ash was pulverized for 5 minutes or more (Examples 6 to 8 and Examples 10, 14 to 16 and It was found that Example 18) reduced the amount of asphalt used. Further, even when all of the filler is sewage sludge incinerated ash (Example 13), a certain effect can be obtained, but since the flow value is large, it is desirable to mix with other filler materials. From these results, an appropriate range of the filler was derived.

また、実施例19のフィラーは、下水汚泥焼却灰(焼却灰B(比較例7))を、実機の振動ミルで適時間粉砕したものを用いているが、原灰(焼却灰B)をそのまま石粉と混合した比較例8に比較すると、アスファルト使用量が低減しており、従って、原灰を粉砕するだけでアスファルト使用量の低減効果があることが分かった。   In addition, the filler of Example 19 uses sewage sludge incineration ash (incineration ash B (Comparative Example 7)) pulverized with an actual vibration mill for an appropriate time, but the raw ash (incineration ash B) is used as it is. As compared with Comparative Example 8 mixed with stone powder, it was found that the amount of asphalt used was reduced. Therefore, it was found that there was an effect of reducing the amount of asphalt used simply by crushing raw ash.

尚、上記第一の実施の形態に係るフィラーは石粉のみで構成したが、必ずしもこれに限定されるものではなく、他のフィラー材料であっても良く、また、フィラー材料を複数種類混合したタイプのものであっても良く、適宜変更して差し支えない。また、上記第二の実施の形態に係るフィラーは、下水汚泥焼却灰の粉砕灰に混合した他のフィラー材料として、石粉を選択したが、必ずしもこれに限定されるものではなく、石粉以外の他のフィラー材料であって良く、また、他のフィラー材料を複数選択して混合しても良く、適宜変更して差し支えない。   In addition, although the filler which concerns on said 1st embodiment comprised only the stone powder, it is not necessarily limited to this, Other filler materials may be sufficient and the type which mixed multiple types of filler materials However, it may be changed as appropriate. Moreover, although the filler which concerns on said 2nd embodiment selected stone powder as another filler material mixed with the pulverized ash of sewage sludge incineration ash, it is not necessarily limited to this, Other than stone powder In addition, a plurality of other filler materials may be selected and mixed, and may be appropriately changed.

現在の試算の一例をあげると、アスファルト混合物の国内年間販売量は、5,000万t程度であり、アスファルト混合物単価は、およそ10,000円/tになり、国内市場規模は、5000億円/年になる。また、アスファルト単価は100,000円/tと極めて高く、本発明によれば、アスファルト量(バインダー量)を0.5%低減できると仮定することができ、これからすれば、アスファルト単価100,000円/t×低減量0.5%=500円/tの原価低減を図ることができ、極めて有用になる。   As an example of current estimation, the annual sales volume of asphalt mixture is about 50 million tons, the unit price of asphalt mixture is about 10,000 yen / t, and the domestic market size is 500 billion yen / year. . In addition, the asphalt unit price is extremely high at 100,000 yen / t, and according to the present invention, it can be assumed that the amount of asphalt (binder amount) can be reduced by 0.5%. Cost reduction of 0.5% = 500 yen / t can be achieved, which is extremely useful.

また、平成22年度のデータによれば、下水汚泥焼却灰は日本国内で年間約22万トン発生した。発生した焼却灰はセメント原料としての有効利用量が多いが、その他の有力な利用法は少なく、約4割はいまだ埋め立て処分されている。下水汚泥焼却灰をアスファルト混合物用フィラーとしてそのまま使用するとアスファルト使用量が増加するが、本発明によれば、下水汚泥焼却灰を使用してもアスファルト使用量を抑制または低減することができることから、下水汚泥焼却灰の有効利用量の向上が期待できる。   Moreover, according to the data for FY2010, about 220,000 tons of sewage sludge incineration ash was generated annually in Japan. The generated incineration ash has a large effective use amount as a raw material for cement, but there are few other effective uses, and about 40% is still disposed of in landfills. If the sewage sludge incineration ash is used as it is as a filler for asphalt mixture, the amount of asphalt used will increase, but according to the present invention, even if sewage sludge incineration ash is used, the amount of asphalt use can be suppressed or reduced. An improvement in the effective use of sludge incineration ash can be expected.

Claims (10)

骨材,アスファルトとともに加熱混合されるアスファルト混合物用フィラーにおいて、
目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が70重量%以上,目開が38μmの篩目を通過する割合が55重量%以上のもので構成したことを特徴とするアスファルト混合物用フィラー。
In the filler for asphalt mixture that is heated and mixed with aggregate and asphalt,
The rate of passing through a sieve with a mesh opening of 600 μm is 100% by weight, the rate of passing through a sieve with a mesh opening of 75 μm is 70% by weight or more, and the rate of passing through a sieve with a mesh opening of 38 μm is 55% by weight or more A filler for asphalt mixture, characterized by comprising.
目開が20μmの篩目を通過する割合が45重量%以上のもので構成したことを特徴とする請求項1記載のアスファルト混合物用フィラー。   The filler for an asphalt mixture according to claim 1, wherein a ratio of passing through a sieve having a mesh size of 20 µm is 45% by weight or more. 骨材,アスファルト及びフィラーを主体としてこれらが加熱混合されて製造されるアスファルト混合物の当該フィラーであって、微粉末状の下水汚泥焼却灰を含むアスファルト混合物用フィラーにおいて、
上記下水汚泥焼却灰として、下水汚泥焼却灰の原灰を粉砕した下水汚泥焼却灰の粉砕灰を用いることを特徴とするアスファルト混合物用フィラー。
In the filler for asphalt mixture containing asphalt, asphalt and filler mainly as they are heated and mixed, and containing fine powdered sewage sludge incineration ash,
A filler for asphalt mixture, characterized by using a pulverized ash of sewage sludge incineration ash obtained by pulverizing raw ash of sewage sludge incineration ash as the sewage sludge incineration ash.
上記下水汚泥焼却灰の粉砕灰を、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が60重量%以上,目開が38μmの篩目を通過する割合が40重量%以上のもので構成したことを特徴とする請求項3記載のアスファルト混合物用フィラー。   The sewage sludge incinerated ash crushed ash is 100% by weight when passing through a sieve having an opening of 600 μm, more than 60% by weight passing through a sieve having a opening of 75 μm, and having a opening of 38 μm. 4. The filler for asphalt mixture according to claim 3, wherein the filler is made of a material having a ratio of passing through 40% by weight or more. 上記下水汚泥焼却灰の粉砕灰を、フィラー全体のフロー値が50%以下になるように、他のフィラー材料に混合したことを特徴とする請求項3または4記載のアスファルト混合物用フィラー。   The asphalt mixture filler according to claim 3 or 4, wherein the pulverized ash of the sewage sludge incineration ash is mixed with another filler material so that the flow value of the entire filler is 50% or less. 上記他のフィラー材料を、石粉を含んで構成し、該石粉を、目開が600μmの篩目を通過する割合が100重量%,目開が75μmの篩目を通過する割合が50重量%以上,目開が38μmの篩目を通過する割合が40重量%以上,目開が20μmの篩目を通過する割合が30重量%以上のもので構成したことを特徴とする請求項5記載のアスファルト混合物用フィラー。   The other filler material is composed of stone powder, and the ratio of the stone powder passing through a sieve having a mesh size of 600 μm is 100% by weight, and the ratio of passing the sieve having a mesh size of 75 μm is 50% by weight or more. The asphalt according to claim 5, wherein the asphalt has a ratio of passing through a sieve having a mesh opening of 38 μm or more and a ratio of passing through a sieve having a mesh opening of 20 μm or more is 30% by weight or more. Filler for mixture. 上記フィラーにおける下水汚泥焼却灰の粉砕灰の混合比を、10重量%〜50重量%にしたことを特徴とする請求項6記載のアスファルト混合物用フィラー。   The filler for asphalt mixture according to claim 6, wherein a mixing ratio of pulverized ash of sewage sludge incineration ash in the filler is 10 wt% to 50 wt%. 上記下水汚泥焼却灰の粉砕灰を、目開が75μmの篩目を通過する割合が75重量%以上,目開が38μmの篩目を通過する割合が60重量%以上のもので構成したことを特徴とする請求項5乃至7何れかに記載のアスファルト混合物用フィラー。   The pulverized ash of the sewage sludge incineration ash is composed of a sewage sludge ash having a ratio of 75% by weight or more passing through a 75 μm sieve and a 60% or more by weight passing through a 38 μm sieve. The filler for asphalt mixtures according to any one of claims 5 to 7, wherein the filler is asphalt mixture. 上記下水汚泥焼却灰の粉砕灰を、目開が20μmの篩目を通過する割合が50重量%以上のもので構成したことを特徴とする請求項8記載のアスファルト混合物用フィラー。   9. The asphalt mixture filler according to claim 8, wherein the pulverized ash of the sewage sludge incineration ash is composed of a sewage sludge incinerated ash having a mesh ratio of 50% by weight or more. 骨材,アスファルト及びフィラーが加熱混合されて製造されるアスファルト混合物において、
上記フィラーとして、上記請求項1乃至9何れかに記載のアスファルト混合物用フィラーを用いたことを特徴とするアスファルト混合物。
In an asphalt mixture produced by heating and mixing aggregate, asphalt and filler,
An asphalt mixture, wherein the filler for asphalt mixture according to any one of claims 1 to 9 is used as the filler.
JP2013204340A 2013-09-30 2013-09-30 Filler for asphalt mixture and asphalt mixture Active JP6323802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204340A JP6323802B2 (en) 2013-09-30 2013-09-30 Filler for asphalt mixture and asphalt mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204340A JP6323802B2 (en) 2013-09-30 2013-09-30 Filler for asphalt mixture and asphalt mixture

Publications (2)

Publication Number Publication Date
JP2015068092A true JP2015068092A (en) 2015-04-13
JP6323802B2 JP6323802B2 (en) 2018-05-16

Family

ID=52835059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204340A Active JP6323802B2 (en) 2013-09-30 2013-09-30 Filler for asphalt mixture and asphalt mixture

Country Status (1)

Country Link
JP (1) JP6323802B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160021A (en) * 1998-11-24 2000-06-13 Kanazawa Hodo:Kk Asphalt mixture, its production and asphalt paving
US6190447B1 (en) * 1996-10-28 2001-02-20 Aggregate Industries, Inc. Process for removing of domestic waste incinerator residue
JP2001354466A (en) * 2000-04-13 2001-12-25 Tokyoto Gesuido Service Kk Cement milk
JP2011001782A (en) * 2009-06-19 2011-01-06 Tokyo Metropolitan Sewerage Service Corp Water-holding material composition, water-holding grout, water-holding pavement body, and construction method for water-holding pavement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190447B1 (en) * 1996-10-28 2001-02-20 Aggregate Industries, Inc. Process for removing of domestic waste incinerator residue
JP2000160021A (en) * 1998-11-24 2000-06-13 Kanazawa Hodo:Kk Asphalt mixture, its production and asphalt paving
JP2001354466A (en) * 2000-04-13 2001-12-25 Tokyoto Gesuido Service Kk Cement milk
JP2011001782A (en) * 2009-06-19 2011-01-06 Tokyo Metropolitan Sewerage Service Corp Water-holding material composition, water-holding grout, water-holding pavement body, and construction method for water-holding pavement

Also Published As

Publication number Publication date
JP6323802B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
KR100930658B1 (en) Heavy-weight aggregate and heavy-weight concrete
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP2013032568A (en) Method of manufacturing sintered ore using fine powder raw material
JP6323802B2 (en) Filler for asphalt mixture and asphalt mixture
WO2014024828A1 (en) Construction filler
Ben-Arfa et al. Guidelines to adjust particle size distributions by wet comminution of a bioactive glass determined by Taguchi and multivariate analysis
JP7462251B2 (en) Methods for deflocculating and classifying soil
JP4847056B2 (en) Concrete containing crushed shell
SATO et al. Applicability of sewage sludge ash (SSA) for paving materials: A study on using SSA as filler for asphalt mixture and base course material
JP6323579B1 (en) Coal ash production method
KR101148655B1 (en) Cement mixed soil with fly ash and bottom ash and manufacturing method of thereof
JP4156510B2 (en) Method and apparatus for pulverizing mineral particles
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP2004154727A (en) Method of manufacturing granular solid body using combustion ash as raw material
JP4904081B2 (en) Manufacturing plant for roadbed materials using excavated soil
JP2014001127A (en) Construction material composition and method for reducing amount of fluorine elution in the same
KR100990192B1 (en) Method for manufacturing of asphalt concrete packing material
JP2003261905A (en) Filler for asphalt mixture
JP5289380B2 (en) Method for producing granulated improved soil
JP6604817B2 (en) Manufacturing method of artificial ground material
JP6617777B2 (en) Cement composition
JP6456417B2 (en) Liquid-solidified composition and solidified body
JP7025616B2 (en) Waste material recycling method and recycled material
KR20190051260A (en) Grinding Method for Activating the fly ash in the vibration mill
JP3556155B2 (en) Granulated / hardened material of coal ash blended as supplementary material with roadbed material, method of manufacturing the same, roadbed material blended with granulated / hardened material of coal ash as supplementary material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6323802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250