JP2015067859A - Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material - Google Patents

Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material Download PDF

Info

Publication number
JP2015067859A
JP2015067859A JP2013202957A JP2013202957A JP2015067859A JP 2015067859 A JP2015067859 A JP 2015067859A JP 2013202957 A JP2013202957 A JP 2013202957A JP 2013202957 A JP2013202957 A JP 2013202957A JP 2015067859 A JP2015067859 A JP 2015067859A
Authority
JP
Japan
Prior art keywords
corrosion
ozone
concentration
ions
crevice corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013202957A
Other languages
Japanese (ja)
Inventor
勝美 馬渕
Katsumi Mabuchi
勝美 馬渕
山内 博史
Hiroshi Yamauchi
博史 山内
篤 雪田
Atsushi Yukita
篤 雪田
貴子 住谷
Takako Sumiya
貴子 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013202957A priority Critical patent/JP2015067859A/en
Publication of JP2015067859A publication Critical patent/JP2015067859A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence and progress of local corrosion, especially crevice corrosion, which occur in anticorrosive metallic materials such as stainless steel and the like, which are used in an environment where strong oxidizing agents such as ozone and the like coexist with chloride ions.SOLUTION: Provided is a method for suppressing crevice corrosion of anticorrosive metallic materials such as stainless steel and the like by having specific inorganic ions, especially nitrate ions, exist in a specific concentration or more relative to a concentration of chloride ions in an environment where ozone and chloride ions coexist. When performing the method, the nitrate ions are made to coexist in a molar concentration ratio of 0.2 or more relative to the chloride ions in an aqueous solution containing the chloride ions and the ozone.

Description

本発明は、オゾンを用いて有機物を分解する水環境において使用する耐食金属材料のすきま腐食に関して、そのすきま腐食を抑制する方法および抑制する処理設備に関するものである。   The present invention relates to a crevice corrosion suppressing method and a treatment facility for crevice corrosion of a corrosion-resistant metal material used in an aqueous environment where organic substances are decomposed using ozone.

産業活動により公共用水域に排出される排水の水質は水質汚濁防止法等により厳しく制限されている。排水中の有機物に関しては主にBOD(生物化学的酸素要求量)やCOD(化学的酸素要求量)、場合によってはTOC(全有機炭素)が排水中に含まれる有機物の濃度指標として用いられる。排水中の有機物を除去する従来からの方法には、活性汚泥、凝集分離、生分解、高温熱分解など、多くの手段が存在する。なかでもオゾンの酸化力を用いた分解方式は、以下のような長所から、オゾンを用いた有機物の分解システムの他に、脱臭、漂白、殺菌、化学合成などのプロセス向けにも広範囲に開発および商品化されている。
(1)有機物が分解して生成する物質は二酸化炭素のため、処理後の廃棄物が少ない。
(2)運転温度は常温付近の比較的低温のシステムであり、安全性、信頼性が高い。
(3)オゾンの原料に空気を用いることができるため、経済的である。
(4)余剰のオゾンは容易に分解除去できる。
The quality of wastewater discharged into public water bodies due to industrial activities is strictly limited by the Water Pollution Control Law. Regarding organic matter in wastewater, BOD (biochemical oxygen demand), COD (chemical oxygen demand), and in some cases TOC (total organic carbon) are used as a concentration index of organic matter contained in wastewater. Conventional methods for removing organic substances in wastewater include many means such as activated sludge, coagulation separation, biodegradation, and high-temperature pyrolysis. In particular, the decomposition method using the oxidizing power of ozone has been developed and developed extensively for processes such as deodorization, bleaching, sterilization, and chemical synthesis, as well as the organic matter decomposition system using ozone. It has been commercialized.
(1) Since the substance produced by the decomposition of organic matter is carbon dioxide, there is little waste after treatment.
(2) The operating temperature is a relatively low temperature system near normal temperature and has high safety and reliability.
(3) Since air can be used as a raw material for ozone, it is economical.
(4) Excess ozone can be easily decomposed and removed.

一般的にはSUS304やSUS316L鋼等のステンレス鋼が経済性と耐食性を兼ね備えた汎用材料であることから、さまざまな分野で使用されている。オゾンが共存する場合においても同様である。しかし、被処理水に塩化物イオンが含まれる場合に孔食やすきま腐食が発生することがある。場合によっては粒界腐食、さらに応力が加わると応力腐食割れに進行し、重大な機器損傷をもたらすこともある。特に、溶接部およびその熱影響部ならびにフランジやスラッジの溜まり部など、すきまが形成される部位の耐食性が低く、すきま腐食の対策が重要となる。   In general, stainless steel such as SUS304 and SUS316L steel is a general-purpose material having both economical efficiency and corrosion resistance, and is therefore used in various fields. The same applies when ozone coexists. However, when the water to be treated contains chloride ions, pitting corrosion and crevice corrosion may occur. In some cases, intergranular corrosion, and when stress is applied, progresses to stress corrosion cracking, which may cause serious equipment damage. In particular, the corrosion resistance of the welded portion and its heat-affected zone and the portion where the gap is formed, such as the flange and sludge pool, is low, and countermeasures against crevice corrosion are important.

ステンレス鋼のすきま腐食の抑制方法として、特許文献1には水系中の塩化物イオンのモル濃度以上のモル濃度で塩化物イオン以外のアニオンを(特に硫酸イオン)を水系に共存させる方法が提案されている。   As a method for suppressing crevice corrosion of stainless steel, Patent Document 1 proposes a method in which an anion other than chloride ions (especially sulfate ions) coexists in an aqueous system at a molar concentration equal to or higher than the molar concentration of chloride ions in the aqueous system. ing.

特開2009−270131JP2009-270131A

オゾンを用いた有機物分解システムでは、特にオゾン等の強酸化剤が塩化物イオンと共存する環境においてステンレス鋼等の耐食金属材料のすきま腐食の課題が顕著となる。このような有機物分解システムに使用される耐食金属材料のすきま腐食を防止する方法として、オゾン分解前に腐食を促進する化学物質(たとえば 塩化物イオン)を除去することが解決方法の一つではある。しかしながら、脱イオン器、濾過機、化学成分調整機などの追加設備が必要であること、追加設備からの廃棄物が増えることにより、全体的な廃棄物を減少させるというオゾンを使用するためのメリットと逆行することになる。この他の防食方法としては腐食抑制剤を添加する方法、電気防食、犠牲陽極防食も腐食対策の方法の一つとして挙げられるが、いずれも新たな廃棄物を生むとともに、仕組みが複雑で限定的など必ずしも満足な結果が得られないことが多い。そのため、経済的であって簡便な耐食性を維持できるシステムが望まれている。   In the organic matter decomposition system using ozone, the problem of crevice corrosion of corrosion-resistant metal materials such as stainless steel becomes remarkable particularly in an environment where a strong oxidizing agent such as ozone coexists with chloride ions. As a method of preventing crevice corrosion of corrosion resistant metal materials used in such organic matter decomposition systems, one of the solutions is to remove chemical substances (such as chloride ions) that promote corrosion before ozonolysis. . However, the benefits of using ozone that reduce the overall waste by requiring additional equipment such as deionizers, filters, chemical composition regulators, and increasing waste from the additional equipment. And go backwards. Other anticorrosion methods include the addition of corrosion inhibitors, cathodic protection, and sacrificial anode protection, which can be cited as one of the countermeasures against corrosion, all of which produce new waste and have a complicated and limited mechanism. In many cases, satisfactory results are not always obtained. Therefore, an economical and simple system that can maintain corrosion resistance is desired.

一方、特許文献1には、塩化物イオンの濃度が低濃度域の水系中において、特定の無機イオン(硫酸イオン)を水系中の塩化物イオン濃度に対して特定の濃度以上存在させることによって、ステンレス鋼のすきま腐食を抑制できることが示されている。しかしながら、オゾン等の強酸化剤が塩化物イオンと共存する環境では、特許文献1の方法ではステンレス鋼の局部腐食、特にすきま腐食の発生・進展を十分抑制することはできなかった。なお、特許文献1ではオゾンと塩化物イオンと共存する環境中での腐食については議論されていない。   On the other hand, Patent Document 1 discloses that in a water system in which the concentration of chloride ions is low, a specific inorganic ion (sulfate ion) is present at a specific concentration or higher than the chloride ion concentration in the water system. It has been shown that crevice corrosion of stainless steel can be suppressed. However, in an environment where a strong oxidizer such as ozone coexists with chloride ions, the method of Patent Document 1 cannot sufficiently suppress the occurrence and development of local corrosion of stainless steel, particularly crevice corrosion. Patent Document 1 does not discuss corrosion in an environment in which ozone and chloride ions coexist.

本発明は、オゾン等の強酸化剤が塩化物イオンと共存する環境において使用するステンレス鋼等の耐食金属材料に生じる局部腐食、特にすきま腐食の発生および進展を抑制できるすきま腐食防止方法、並びに、有機物分解システムを提供することを目的とする。   The present invention is a crevice corrosion prevention method capable of suppressing the occurrence and development of local corrosion, particularly crevice corrosion, which occurs in a corrosion-resistant metal material such as stainless steel used in an environment where a strong oxidizing agent such as ozone coexists with chloride ions, and The object is to provide an organic matter decomposition system.

本発明者らが鋭意研究を行った結果、オゾンと塩化物イオンが共存する環境においては硝酸イオンを水系中の塩化物イオン濃度に対して特定の濃度以上に存在させることにより、ステンレス鋼等の耐食金属材料のすきま腐食を抑制できることを見出し、本発明に至った。   As a result of intensive studies by the present inventors, in an environment where ozone and chloride ions coexist, nitrate ions are made to exist above a specific concentration with respect to the chloride ion concentration in the aqueous system, so that stainless steel, etc. The present inventors have found that crevice corrosion of a corrosion-resistant metal material can be suppressed, and have reached the present invention.

本発明により、オゾン等の強酸化剤が塩化物イオンと共存する環境において使用するステンレス鋼等の耐食金属材料に生じる局部腐食、特にすきま腐食の発生および進展を防止できる、すきま腐食防止方法、並びに、有機物分解システムを提供することができる。   According to the present invention, a crevice corrosion prevention method capable of preventing the occurrence and development of local corrosion, particularly crevice corrosion, which occurs in a corrosion-resistant metal material such as stainless steel used in an environment where a strong oxidizing agent such as ozone coexists with chloride ions, and An organic matter decomposition system can be provided.

硝酸イオンを含有していない塩化物水溶液中におけるSUS316L材の往復分極曲線Reciprocal polarization curve of SUS316L material in aqueous chloride solution containing no nitrate ion 硝酸イオンを含有している塩化物水溶液中におけるSUS316L材の往復分極曲線Reciprocal polarization curve of SUS316L material in aqueous chloride solution containing nitrate ion 各種濃度のオゾンを含有する塩化物水溶液中における種々のステンレス鋼の電位Potentials of various stainless steels in aqueous chloride solutions containing various concentrations of ozone. 硝酸イオンと塩化物イオンとのモル濃度比とすきま再不動態化電位との関係Relationship between molar ratio of nitrate ion and chloride ion and clearance repassivation potential. オゾンを用いた有機物分解システムの概要図Outline diagram of organic matter decomposition system using ozone オゾン濃度とすきま腐食を抑制するに必要な硝酸イオンと塩化物イオンとのモル濃度比との関係Relationship between ozone concentration and molar ratio of nitrate ion to chloride ion necessary to suppress crevice corrosion オゾン濃度とすきま再不動態化電位との関係Relationship between ozone concentration and gap repassivation potential.

前述したように、オゾンと塩化物イオンが共存する環境においては特定の無機イオン特に硝酸イオンを水系中の塩化物イオン濃度に対して特定の濃度以上に存在させることにより、ステンレス鋼等の耐食金属材料のすきま腐食を抑制できる。そのための最低の硝酸イオン濃度が塩化物イオンのモル濃度に対してモル濃度比で0.2以上のモル濃度である。   As described above, in the environment where ozone and chloride ions coexist, corrosion resistance metals such as stainless steel can be obtained by allowing specific inorganic ions, especially nitrate ions, to exist above a specific concentration relative to the chloride ion concentration in the aqueous system. Can suppress crevice corrosion of materials. For this purpose, the minimum nitrate ion concentration is a molar concentration of 0.2 or more in molar ratio with respect to the molar concentration of chloride ions.

従来技術では、アニオン、特に硫酸イオンを添加することによりすきま腐食を防止する方法が提案されている。アニオンを添加することによりすきま腐食が防止できる要因は以下の通りである。すきま内はプラスに帯電しており、電荷を中和するためにマイナス電荷がすきま内に泳動する。すきま腐食を起こす原因物質である塩化物イオンはマイナス電荷をもっており、塩化物イオンがすきま内に移動することよりすきま腐食が引き起こされる。これに対して、塩化物イオン以外のマイナスチャージを持ったイオン(アニオン)を共存させることで、相対的にすきま内に移動する塩化物イオン量が減少し、すきま腐食が抑制されるためである。本発明者らが検討した結果、硫酸イオンより硝酸イオンの方がすきま腐食を抑制する効果が非常に高かった。この理由は明確にはできていないが、硝酸イオンの方が硫酸イオンより不動態化皮膜を作りやすいためと考えられる。   The prior art has proposed a method for preventing crevice corrosion by adding anions, particularly sulfate ions. Factors that can prevent crevice corrosion by adding anions are as follows. The gap is positively charged, and a negative charge migrates into the gap to neutralize the charge. Chloride ions that cause crevice corrosion have a negative charge, and crevice corrosion is caused by movement of chloride ions into the crevice. On the other hand, the coexistence of negatively charged ions (anions) other than chloride ions reduces the amount of chloride ions that move relative to the gap and suppresses crevice corrosion. . As a result of investigations by the present inventors, nitrate ions were much more effective in suppressing crevice corrosion than sulfate ions. The reason for this is not clear, but it is thought that nitrate ions are easier to make a passivating film than sulfate ions.

添加する硝酸イオンの対になるカチオンに特に制限はないが、一般的にはナトリウム塩を使用することができる。すきま腐食を防止するために必要な硝酸イオン量(濃度)は、そこの場所におけるオゾン濃度によって変化する。注入する硝酸イオン量は、その場におけるオゾン濃度を測定し、その環境において必要な硝酸イオン量を注入することにより、すきま腐食を防止することができる。
(実施例1)
すきま腐食の評価方法には、その環境においてすきま腐食が発生するかしないかを電気化学的な手法で評価することができる。その詳細は、JIS G 0592:2002に記載されている。この方法に従ってすきま再不動態化電位を測定した。図1は、塩化物イオン濃度100ppm、硝酸イオン濃度0ppm、硫酸イオン濃度51.7ppm、50℃の条件で測定したSUS316L材のすきま再不動態化電位を求めるための往復分極曲線である。再不動態化電位は0.44V(vs.SHE)である。図2は、塩化物イオン濃度100ppm、硝酸イオン濃度176ppm、硫酸イオン濃度51.7ppm、50℃の条件で測定したSUS316L材のすきま再不動態化電位を求めるための往復分極曲線である。すきま再不動態化電位は1.10V(vs.SHE)である。硝酸イオンを添加することにより、すきま再不動態化電位は0.66Vほど貴側にシフトしている。すきま再不動態化電位が高ければ、その分だけ電位が貴側にある環境においてもすきま腐食を起こしにくいため、硝酸イオンを添加することによりすきま腐食が起こりにくくなっていることが分かる。
There are no particular restrictions on the cations that form a pair of nitrate ions to be added, but generally sodium salts can be used. The amount (concentration) of nitrate ions required to prevent crevice corrosion varies depending on the ozone concentration at the location. The amount of nitrate ions to be injected can prevent crevice corrosion by measuring the ozone concentration at the site and injecting the amount of nitrate ions required in the environment.
Example 1
As an evaluation method of crevice corrosion, it can be evaluated by an electrochemical method whether crevice corrosion occurs or not in the environment. The details are described in JIS G 0592: 2002. The clearance repassivation potential was measured according to this method. FIG. 1 is a reciprocal polarization curve for determining the clearance repassivation potential of a SUS316L material measured under the conditions of a chloride ion concentration of 100 ppm, a nitrate ion concentration of 0 ppm, a sulfate ion concentration of 51.7 ppm, and 50 ° C. The repassivation potential is 0.44 V (vs. SHE). FIG. 2 is a reciprocal polarization curve for determining the clearance repassivation potential of the SUS316L material measured under the conditions of a chloride ion concentration of 100 ppm, a nitrate ion concentration of 176 ppm, a sulfate ion concentration of 51.7 ppm, and 50 ° C. The clearance repassivation potential is 1.10 V (vs. SHE). By adding nitrate ions, the gap repassivation potential is shifted to the noble side by about 0.66V. If the crevice repassivation potential is high, crevice corrosion is less likely to occur even in an environment where the potential is on the noble side, so it can be seen that crevice corrosion is less likely to occur by adding nitrate ions.

図3にオゾンを注入した時の各種ステンレス鋼の腐食電位(定常電位)を示す。本評価では、塩化物イオン濃度100ppm、硝酸イオン濃度50ppm、硫酸イオン濃度15ppm、50℃の条件で、オゾン濃度を0ppm、0.1ppm、1ppm、10ppmに変化させた場合の各種ステンレス鋼の腐食電位(定常電位)を測定した。ステンレス鋼は、SUS304材、SUS316L材、SUS317L材、及び、SUS329J4L材である。図3に示すように、いずれのステンレス鋼においてもオゾン濃度が増加するにつれて、腐食電位が貴側にシフトしていくことが分かる。したがって、オゾンを含まない塩化物水溶液よりもオゾンと塩化物イオンが共存する塩化物水溶液の方がすきま腐食が発生しやすく、オゾン濃度が増えるほどすきま腐食が発生しやすくなることが分かる。   FIG. 3 shows the corrosion potential (steady potential) of various stainless steels when ozone is injected. In this evaluation, the corrosion potential of various stainless steels when the ozone concentration was changed to 0 ppm, 0.1 ppm, 1 ppm, and 10 ppm under the conditions of chloride ion concentration of 100 ppm, nitrate ion concentration of 50 ppm, sulfate ion concentration of 15 ppm, and 50 ° C. (Steady potential) was measured. Stainless steel is SUS304 material, SUS316L material, SUS317L material, and SUS329J4L material. As can be seen from FIG. 3, the corrosion potential shifts to the noble side as the ozone concentration increases in any stainless steel. Therefore, it can be understood that crevice corrosion is more likely to occur in a chloride aqueous solution in which ozone and chloride ions coexist than in a chloride aqueous solution that does not contain ozone, and crevice corrosion is more likely to occur as the ozone concentration increases.

次に、すきま再不動態化電位と硝酸濃度の依存性について評価した結果を説明する。図4に硝酸イオンを添加した場合のSUS304のすきま再不動態化電位の硝酸濃度依存性を示す。図4では、塩化物イオンと硫酸イオンの濃度を一定とし、硝酸イオン濃度を変化させた場合のすきま再不動態化電位を白抜きで示している。ここで、塩化物イオン濃度は100ppm、硫酸イオン濃度は51.7ppmである。また、図3に示したオゾン濃度が0.1ppm,1.0ppmおよび10ppmの場合のSUS304ステンレス鋼の腐食電位も併せて示している。白抜きで示したように、硝酸濃度を上昇させることによりすきま再不動態化電位は貴側にシフトしている。従って、ある濃度のオゾンが存在している場合、そのオゾン濃度での腐食電位より高い電位のすきま再不動態化電位を示す濃度の硝酸イオンを添加することによりすきま腐食を防止することができる。たとえばオゾン濃度が0.1ppmのときの腐食電位は約500mV、これより高いすきま再不動態化電位になるようにするには硝酸イオンを注入し硝酸濃度と塩化物イオン濃度の比を約0.2以上にすれば良いことが分かる。一方、硝酸濃度と塩化物イオン濃度の比が0.2より低い場合には、オゾンと塩化物イオンが共存する環境下ではすきま腐食を十分に抑制できないことが分かる。換言すると、この結果から硫酸イオンのみではすきま腐食を十分に抑制できないことが分かる。   Next, the results of evaluating the dependence between the clearance repassivation potential and the nitric acid concentration will be described. FIG. 4 shows the nitric acid concentration dependence of the clearance repassivation potential of SUS304 when nitrate ions are added. In FIG. 4, the gap repassivation potential when the concentration of chloride ion and sulfate ion is constant and the concentration of nitrate ion is changed is shown in white. Here, the chloride ion concentration is 100 ppm, and the sulfate ion concentration is 51.7 ppm. 3 also shows the corrosion potential of SUS304 stainless steel when the ozone concentration shown in FIG. 3 is 0.1 ppm, 1.0 ppm, and 10 ppm. As shown in white, the clearance repassivation potential is shifted to the noble side by increasing the nitric acid concentration. Therefore, when a certain concentration of ozone is present, crevice corrosion can be prevented by adding nitrate ions having a concentration indicating a crevice repassivation potential at a potential higher than the corrosion potential at that ozone concentration. For example, when the ozone concentration is 0.1 ppm, the corrosion potential is about 500 mV, and in order to obtain a higher clearance repassivation potential, nitrate ions are injected and the ratio of the nitric acid concentration to the chloride ion concentration is about 0.2. It can be seen that the above is sufficient. On the other hand, when the ratio between the nitric acid concentration and the chloride ion concentration is lower than 0.2, it is understood that crevice corrosion cannot be sufficiently suppressed in an environment where ozone and chloride ions coexist. In other words, it can be seen from this result that crevice corrosion cannot be sufficiently suppressed only by sulfate ions.

図4に塩化物イオン濃度が100ppm、硝酸イオン濃度と塩化物イオン濃度との比が0.28の条件において硫酸濃度を51.7ppmから15ppmに低下させた場合を黒塗りの点で示した。図4に示したように、硝酸イオン濃度と塩化物イオン濃度との比が同じ条件下で硫酸イオン濃度を低下させてもすきま再不動態化電位はほとんど変化していない。このことから、硫酸イオンはすきま再不動態化電位にほとんど寄与していないことが分かる。   In FIG. 4, the case where the sulfuric acid concentration was reduced from 51.7 ppm to 15 ppm under the condition that the chloride ion concentration was 100 ppm and the ratio of the nitrate ion concentration to the chloride ion concentration was 0.28 is indicated by black points. As shown in FIG. 4, the gap repassivation potential hardly changes even when the sulfate ion concentration is decreased under the same ratio of nitrate ion concentration to chloride ion concentration. This indicates that sulfate ions hardly contribute to the clearance repassivation potential.

以上の結果から、オゾンと塩化物イオンが共存する環境下おいては、硝酸イオンを水系中の塩化物イオン濃度に対して特定の濃度以上に存在させることにより、ステンレス鋼等の耐食金属材料のすきま腐食を抑制できる。
(実施例2)
塩化物イオン濃度80ppm、硝酸イオン濃度60ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.82であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは7μmであり、すきま腐食は進行していないといえる。
(実施例3)
塩化物イオン濃度150ppm、硝酸イオン濃度100ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.729であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは8μmであり、すきま腐食は進行していないといえる。
(実施例4)
塩化物イオン濃度180ppm、硝酸イオン濃度200ppm、及び、オゾン10ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。この時の[NO3 -]/[Cl-]モル濃度比は、1.15であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは2μmであり、すきま腐食は進行していないといえる。
(比較例1)
塩化物イオン濃度150ppm、重炭酸イオン、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。重炭酸イオンの濃度は、図6に示したすきま腐食抑制の領域のアニオン/塩化物イオンモル濃度比を満たすようにアニオン量を制御している。すきま最大浸食深さは120μmであり、すきま腐食は進行しているといえる。すなわち、図6に示すすきま腐食抑制の条件を満たす同じモル濃度でも、硝酸イオンはすきま腐食を抑制するが重炭酸イオンはすきま腐食を抑制しないといえる。
(比較例2)
塩化物イオン濃度150ppm、硫酸イオン、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。硫酸イオンの濃度は、図6に示したすきま腐食抑制の領域のアニオン/塩化物イオンモル濃度比を満たすようにアニオン量を制御している。すきま最大浸食深さは235μmであり、すきま腐食は進行しているといえる。すなわち、図6に示すすきま腐食抑制の条件を満たす同じモル濃度でも、硝酸イオンはすきま腐食を抑制するが硫酸イオンはすきま腐食を抑制しないといえる。
(比較例3)
塩化物イオン濃度100ppm、硝酸イオン濃度10ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表1に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.109であり、図6に示すすきま非腐食抑制の条件となっている。すきま最大浸食深さは85μmであり、すきま腐食は進行しているといえる。
From the above results, in an environment where ozone and chloride ions coexist, the presence of nitrate ions above a specific concentration relative to the chloride ion concentration in the aqueous system, the corrosion resistant metal material such as stainless steel Can suppress crevice corrosion.
(Example 2)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 80 ppm, a nitrate ion concentration of 60 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 1. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.82, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 7 μm, and it can be said that crevice corrosion has not progressed.
(Example 3)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 150 ppm, a nitrate ion concentration of 100 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 1. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.729, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 8 μm, and it can be said that crevice corrosion has not progressed.
Example 4
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 180 ppm, a nitrate ion concentration of 200 ppm, and ozone of 10 ppm coexisted. The results are shown in Table 1. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 1.15, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 2 μm, and it can be said that crevice corrosion has not progressed.
(Comparative Example 1)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 150 ppm, bicarbonate ion, and ozone of 1 ppm coexisted. The results are shown in Table 1. The concentration of bicarbonate ions is controlled so as to satisfy the anion / chloride ion molar concentration ratio in the crevice corrosion inhibition region shown in FIG. The crevice maximum erosion depth is 120 μm, and it can be said that crevice corrosion is progressing. That is, even at the same molar concentration that satisfies the conditions for crevice corrosion inhibition shown in FIG. 6, it can be said that nitrate ions inhibit crevice corrosion but bicarbonate ions do not inhibit crevice corrosion.
(Comparative Example 2)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 150 ppm, sulfate ions, and ozone of 1 ppm coexisted. The results are shown in Table 1. The concentration of sulfate ions is controlled so as to satisfy the anion / chloride ion molar concentration ratio in the crevice corrosion inhibition region shown in FIG. The crevice maximum erosion depth is 235 μm, and it can be said that crevice corrosion is in progress. That is, it can be said that even at the same molar concentration satisfying the condition of crevice corrosion inhibition shown in FIG. 6, nitrate ions inhibit crevice corrosion but sulfate ions do not inhibit crevice corrosion.
(Comparative Example 3)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 10 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 1. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.109, which is a condition for suppressing the non-corrosion of the clearance shown in FIG. The crevice maximum erosion depth is 85 μm, and it can be said that crevice corrosion is progressing.

(実施例5)
塩化物イオン濃度80ppm、硝酸イオン濃度60ppm、及び、オゾン1ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.82であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは2μmであり、すきま腐食は進行していないといえる。すきま最大浸食深さは、SUS304の場合よりは小さい。
(実施例6)
塩化物イオン濃度150ppm、硝酸イオン濃度100ppm、及び、オゾン1ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.729であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは6μmであり、すきま腐食は進行していないといえる。すきま最大浸食深さは、SUS304の場合よりは小さい
(実施例7)
塩化物イオン濃度180ppm、硝酸イオン濃度200ppm、及び、オゾン10ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。この時の[NO3 -]/[Cl-]モル濃度比は、1.15であり、図6に示すすきま腐食抑制の条件を満たしている。すきま最大浸食深さは0μmであり、すきま腐食は進行していないといえる。すきま最大浸食深さは、SUS304の場合よりは小さい。
(比較例4)
塩化物イオン濃度150ppm、重炭酸イオン、及び、オゾン1ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。重炭酸イオンの濃度は、図6に示したすきま腐食抑制の領域のアニオン/塩化物イオンモル濃度比を満たすようにアニオン量を制御している。すきま最大浸食深さは80μmであり、すきま腐食は進行しているといえる。すなわち、図6に示すすきま腐食抑制の条件を満たす同じモル濃度でも、硝酸イオンはすきま腐食を抑制するが重炭酸イオンはすきま腐食を抑制しないといえる。
(比較例5)
塩化物イオン濃度150ppm、硫酸イオン、及び、オゾン1ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。硫酸イオンの濃度は、図6に示したすきま腐食抑制の領域のアニオン/塩化物イオンモル濃度比を満たすようにアニオン量を制御している。すきま最大浸食深さは165μmであり、すきま腐食は進行しているといえる。すなわち、図6に示すすきま腐食抑制の条件を満たす同じモル濃度でも、硝酸イオンはすきま腐食を抑制するが硫酸イオンはすきま腐食を抑制しないといえる。
(比較例6)
塩化物イオン濃度100ppm、硝酸イオン濃度10ppm、及び、オゾン1ppmが共存した水溶液中にSUS316L鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表2に示す。この時の[NO3 -]/[Cl-]モル濃度比は、0.109であり、図6に示すすきま非腐食抑制の条件となっている。すきま最大浸食深さは68μmであり、すきま腐食は進行しているといえる。
(Example 5)
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 80 ppm, a nitrate ion concentration of 60 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 2. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.82, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 2 μm, and it can be said that crevice corrosion has not progressed. The maximum clearance erosion depth is smaller than that of SUS304.
(Example 6)
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 150 ppm, a nitrate ion concentration of 100 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 2. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.729, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 6 μm, and it can be said that crevice corrosion has not progressed. The maximum clearance erosion depth is smaller than that of SUS304 (Example 7).
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 180 ppm, a nitrate ion concentration of 200 ppm, and ozone of 10 ppm coexisted. The results are shown in Table 2. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 1.15, which satisfies the conditions for suppressing crevice corrosion shown in FIG. The crevice maximum erosion depth is 0 μm, and it can be said that crevice corrosion has not progressed. The maximum clearance erosion depth is smaller than that of SUS304.
(Comparative Example 4)
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 150 ppm, bicarbonate ion, and ozone of 1 ppm coexisted. The results are shown in Table 2. The concentration of bicarbonate ions is controlled so as to satisfy the anion / chloride ion molar concentration ratio in the crevice corrosion inhibition region shown in FIG. The crevice maximum erosion depth is 80 μm, and it can be said that crevice corrosion is in progress. That is, even at the same molar concentration that satisfies the conditions for crevice corrosion inhibition shown in FIG. 6, it can be said that nitrate ions inhibit crevice corrosion but bicarbonate ions do not inhibit crevice corrosion.
(Comparative Example 5)
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 150 ppm, sulfate ions, and ozone of 1 ppm coexisted. The results are shown in Table 2. The concentration of sulfate ions is controlled so as to satisfy the anion / chloride ion molar concentration ratio in the crevice corrosion inhibition region shown in FIG. The crevice maximum erosion depth is 165 μm, and it can be said that crevice corrosion is in progress. That is, it can be said that even at the same molar concentration satisfying the condition of crevice corrosion inhibition shown in FIG. 6, nitrate ions inhibit crevice corrosion but sulfate ions do not inhibit crevice corrosion.
(Comparative Example 6)
The maximum clearance erosion depth was measured when SUS316L steel was immersed for 1000 h in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 10 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 2. The [NO 3 ] / [Cl ] molar concentration ratio at this time is 0.109, which is a condition for suppressing the non-corrosion of the clearance shown in FIG. The crevice maximum erosion depth is 68 μm, and it can be said that crevice corrosion is in progress.

(実施例8)
塩化物イオン濃度100ppm、硝酸イオン濃度50ppm、硫酸イオン濃度15ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは2μmであり、すきま腐食は生じていないといえる。この時の水溶液の電気伝導度は32mS/cmであった。また、[NO3 -]/[Cl-]モル濃度比は、0.65であり、図6に示すすきま腐食抑制の条件を満たしている。
(実施例9)
塩化物イオン濃度200ppm、硝酸イオン濃度50ppm、硫酸イオン濃度0ppm、及び、オゾン0.1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは5μmであり、すきま腐食は生じていないといえる。この時の水溶液の電気伝導度は25mS/cmであった。また、[NO3 -]/[Cl-]モル濃度比は、0.273であり、図6に示すすきま腐食抑制の条件を満たしている。
(実施例10)
塩化物イオン濃度100ppm、硝酸イオン濃度88ppm、硫酸イオン濃度0ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは1μmであり、すきま腐食は生じていないといえる。この時の水溶液の電気伝導度は30mS/cmであった。また、[[NO3 -]/[Cl-]モル濃度比は、1.10であり、図6に示すすきま腐食抑制の条件を満たしている。
(実施例11)
塩化物イオン濃度100ppm、硝酸イオン濃度60ppm、硫酸イオン濃度60ppm、及び、オゾン1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは2μmであり、すきま腐食は生じていないといえる。この時の水溶液の電気伝導度は40mS/cmであった。また、[NO3 -]/[Cl-]モル濃度比は、1.10であり、図6に示すすきま腐食抑制の条件を満たしている。
(比較例7)
塩化物イオン濃度100ppm、硝酸イオン濃度10ppm、硫酸イオン濃度15ppm、及び、オゾン0.1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは120μmであり、すきま腐食が進行しているのが分かる。この時の水溶液の電気伝導度は15mS/cmであった。また、[NO3 -]/[Cl-]モル濃度比は、0.11であり、図6に示すすきま腐食非抑制の条件となっている。
(比較例8)
塩化物イオン濃度100ppm、硝酸イオン濃度0ppm、硫酸イオン濃度60ppm、及び、オゾン0.1ppmが共存した水溶液中にSUS304鋼を1000h浸漬させた場合のすきま最大浸食深さを測定した。結果を表3に示す。すきま最大浸食深さは220μmであり、すきま腐食が進行しているのが分かる。この時の水溶液の電気伝導度は23mS/cmであった。また、[NO3 -]/[Cl-]モル濃度比は0であり、図6に示すすきま腐食非抑制の条件となっている
(Example 8)
The maximum erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 50 ppm, a sulfate ion concentration of 15 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 3. The crevice maximum erosion depth is 2 μm, and it can be said that crevice corrosion has not occurred. The electrical conductivity of the aqueous solution at this time was 32 mS / cm. The [NO 3 ] / [Cl ] molar concentration ratio is 0.65, which satisfies the conditions for inhibiting crevice corrosion shown in FIG.
Example 9
The maximum erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 200 ppm, a nitrate ion concentration of 50 ppm, a sulfate ion concentration of 0 ppm, and ozone of 0.1 ppm coexisted. The results are shown in Table 3. The crevice maximum erosion depth is 5 μm, and it can be said that crevice corrosion has not occurred. The electrical conductivity of the aqueous solution at this time was 25 mS / cm. The [NO 3 ] / [Cl ] molar concentration ratio is 0.273, which satisfies the conditions for suppressing crevice corrosion shown in FIG.
(Example 10)
The maximum clearance erosion depth was measured when SUS304 steel was immersed in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 88 ppm, a sulfate ion concentration of 0 ppm, and ozone of 1 ppm coexisted for 1000 hours. The results are shown in Table 3. The crevice maximum erosion depth is 1 μm, and it can be said that crevice corrosion has not occurred. The electrical conductivity of the aqueous solution at this time was 30 mS / cm. The [[NO 3 ] / [Cl ] molar concentration ratio is 1.10, which satisfies the conditions for inhibiting crevice corrosion shown in FIG.
(Example 11)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 60 ppm, a sulfate ion concentration of 60 ppm, and ozone of 1 ppm coexisted. The results are shown in Table 3. The crevice maximum erosion depth is 2 μm, and it can be said that crevice corrosion has not occurred. The electrical conductivity of the aqueous solution at this time was 40 mS / cm. The [NO 3 ] / [Cl ] molar concentration ratio is 1.10, which satisfies the conditions for crevice corrosion inhibition shown in FIG.
(Comparative Example 7)
The maximum erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 10 ppm, a sulfate ion concentration of 15 ppm, and ozone of 0.1 ppm coexisted. The results are shown in Table 3. The maximum erosion depth of the crevice is 120 μm, and it can be seen that crevice corrosion is in progress. The electrical conductivity of the aqueous solution at this time was 15 mS / cm. The [NO 3 ] / [Cl ] molar concentration ratio is 0.11, which is a condition for preventing crevice corrosion as shown in FIG.
(Comparative Example 8)
The maximum clearance erosion depth was measured when SUS304 steel was immersed for 1000 hours in an aqueous solution in which a chloride ion concentration of 100 ppm, a nitrate ion concentration of 0 ppm, a sulfate ion concentration of 60 ppm, and ozone of 0.1 ppm coexisted. The results are shown in Table 3. The crevice maximum erosion depth is 220 μm, and it can be seen that crevice corrosion is in progress. The electrical conductivity of the aqueous solution at this time was 23 mS / cm. Further, the [NO 3 ] / [Cl ] molar concentration ratio is 0, which is a condition for preventing crevice corrosion as shown in FIG.

実施例8−11及び比較例7,8の結果から、硫酸イオン濃度がおおよそ30ppm以下である場合、少なくとも溶液の電気伝導度が25mS/cm以上になるように硝酸イオン濃度([NO3 -]/[Cl-]モル濃度比)を制御すれば、すきま腐食を防止することができる。SUS316L等の他のステンレス鋼に関しても同様のことが言える。
(実施例12)
図5は、本発明を適用したオゾンによる有機物分解システムの一例を示したものである。オゾン発生装置102は、コロナ放電などの放電式オゾン発生器で、放電時に酸素が一部オゾンへと化学変化する。所定の濃度になったオゾン含有気体は金属製の反応層105に送られる。有機物含有被分解物(タンク)104には有機物を含む被処理水が蓄えられており、反応槽105内でのオゾンによる分解反応の進行程度や液量に応じて適宜処理水が反応槽105に送液される。反応層105では注入されたオゾン含有気体によって有機物が分解される。また反応槽105には濃度、電位、電導度検出部(システム)が備えられており、その情報(信号)が液量制御部に送られ、その情報を元に薬液タンクから硝酸イオンを含む液が反応層に注入される。注入する硝酸量はたとえばオゾン濃度に基づく情報で制御する場合、濃度、電位、電導度検出部においてオゾン濃度、塩化物イオン濃度および硝酸イオン濃度を検出する。図6は、図3に示したSUS304またはSUS316L(両者に明確な差は見られない)基づいて作成したオゾン濃度とすきま腐食を防止するために必要な[NO3 -]/[Cl-]モル比との関係を示したものである。この図に基づいて、測定されたオゾン濃度と塩化物濃度の測定値から、すきま腐食を抑制するために必要な硝酸イオン濃度を求めることができる。この値と測定された硝酸イオン濃度とを比較して、足りない場合は薬液タンクから硝酸イオンを含む液が反応層に注入される。
From the results of Examples 8-11 and Comparative Examples 7 and 8, when the sulfate ion concentration is approximately 30 ppm or less, the nitrate ion concentration ([NO 3 ]) is set so that at least the electric conductivity of the solution is 25 mS / cm or more. / [Cl ] molar concentration ratio) can be controlled to prevent crevice corrosion. The same can be said for other stainless steels such as SUS316L.
(Example 12)
FIG. 5 shows an example of an organic matter decomposition system using ozone to which the present invention is applied. The ozone generator 102 is a discharge type ozone generator such as corona discharge, and oxygen partially changes into ozone during discharge. The ozone-containing gas having a predetermined concentration is sent to the metal reaction layer 105. Water to be treated containing organic matter is stored in the organic matter-containing material to be decomposed (tank) 104, and the treated water is appropriately supplied to the reaction tank 105 according to the degree of progress of the decomposition reaction by ozone in the reaction tank 105 and the amount of liquid. The liquid is sent. In the reaction layer 105, organic substances are decomposed by the injected ozone-containing gas. In addition, the reaction tank 105 is provided with a concentration, potential, and conductivity detection unit (system), and the information (signal) is sent to the liquid volume control unit. Is injected into the reaction layer. When the amount of nitric acid to be injected is controlled by information based on, for example, ozone concentration, the concentration, potential, and conductivity detectors detect the ozone concentration, chloride ion concentration, and nitrate ion concentration. FIG. 6 shows the ozone concentration and the [NO 3 ] / [Cl ] mole necessary for preventing crevice corrosion prepared based on SUS304 or SUS316L shown in FIG. 3 (there is no clear difference between them). It shows the relationship with the ratio. Based on this figure, the nitrate ion concentration required to suppress crevice corrosion can be obtained from the measured values of the ozone concentration and the chloride concentration. When this value is compared with the measured nitrate ion concentration, if it is insufficient, a liquid containing nitrate ions is injected from the chemical tank into the reaction layer.

電気伝導度を使用して、制御する場合も同様である。すなわち注入する硝酸量はたとえばオゾン濃度に基づく情報で制御する場合、濃度、電位、電導度検出部において電気伝導度を検出する。電気伝導度が25mS/cmに達していない場合は、その濃度に達するまで薬液タンクから硝酸イオンを含む液を反応層に注入することによりすきま腐食を防止することができる。   The same applies to the case of controlling using electric conductivity. That is, when the amount of nitric acid to be injected is controlled by information based on the ozone concentration, for example, the electrical conductivity is detected by the concentration, potential, and electrical conductivity detector. When the electrical conductivity does not reach 25 mS / cm, crevice corrosion can be prevented by injecting a liquid containing nitrate ions from the chemical tank into the reaction layer until the concentration is reached.

硝酸イオン濃度を測定するためには、隔膜式のイオン選択電極によるセンサーを適用できる。ただし、被処理水のイオン強度の影響や妨害イオンの存在が正確な値に至らないときがあるので、その場合は、測定された値の誤差範囲を把握し、データベースに反映するか、あるいは他の手段を用いる。塩化物イオン濃度も硝酸イオン同様に隔膜式のイオン選択電極を用いることができる。オゾン濃度は紫外線吸収法や比色法等が適用できるが、被処理水に溶解している溶存オゾン濃度を簡便に測定できる比色法を用いるのが好ましい。   In order to measure the nitrate ion concentration, a sensor using a diaphragm type ion selective electrode can be applied. However, the influence of the ionic strength of the water to be treated and the presence of interfering ions may not reach an accurate value. In that case, grasp the error range of the measured value and reflect it in the database, or other Is used. As for the chloride ion concentration, a diaphragm type ion selective electrode can be used as in the case of nitrate ion. As the ozone concentration, an ultraviolet absorption method, a colorimetric method, or the like can be applied, but it is preferable to use a colorimetric method that can easily measure the dissolved ozone concentration dissolved in the water to be treated.

すきま腐食が生じないかどうかを判定するには、ステンレス鋼の電位が図7に示すある任意のオゾン濃度における再不動態化電位より低くなっていることで確認することができる。濃度、電位、電導度検出部においてステンレス鋼の電位を検出することができる。電位は、参照電極を使用して対象とする構成材料であるステンレス鋼からなる金属電極との間の電位をボルテージフォロア型作動アンプを使用して測定する。これによりシステムの接地状態によらず正しい電位を測定することができる。参照電極を保護したい金属の近傍に設置することが可能である場合は、金属電極を設けずに直接保護したい金属と参照電極との間の電位差を測定し、これを腐食電位とすることも可能である。このようにして測定された腐食電位が、別途測定されたオゾン濃度と図7に示す関係から求めたすきま再不動態化電位と比較して、その値がすきま再不動態化電位より低ければすきま腐食が生じないと判定することができる。判定によりすきま腐食が抑制されていないとされた場合、前述したように硝酸イオンを添加することにより、すきま再不動態化電位を上げることの他に、オゾン濃度を下げることが挙げられる。反応層中のオゾン濃度が低下すれば図3に示すように腐食電位が低下するために、すきま再不動態化より腐食電位が低くなり、すきま腐食を抑制できるようになる。しかし、オゾン濃度が低下することにより有機物の分解速度は低下することになる。   To determine whether crevice corrosion does not occur, it can be confirmed that the potential of stainless steel is lower than the repassivation potential at an arbitrary ozone concentration shown in FIG. The potential of the stainless steel can be detected in the concentration, potential, and conductivity detector. The potential is measured using a voltage follower type operational amplifier with respect to a metal electrode made of stainless steel, which is a target constituent material, using a reference electrode. As a result, the correct potential can be measured regardless of the ground state of the system. If it is possible to install the reference electrode in the vicinity of the metal to be protected, the potential difference between the metal to be protected and the reference electrode can be directly measured without providing the metal electrode, and this can be used as the corrosion potential. It is. When the corrosion potential measured in this way is compared with the separately measured ozone concentration and the gap repassivation potential obtained from the relationship shown in FIG. 7, if the value is lower than the gap repassivation potential, crevice corrosion will occur. It can be determined that it does not occur. When it is determined that the crevice corrosion is not suppressed by the determination, it is possible to lower the ozone concentration in addition to increasing the gap repassivation potential by adding nitrate ions as described above. If the ozone concentration in the reaction layer decreases, the corrosion potential decreases as shown in FIG. 3, so that the corrosion potential becomes lower than the clearance repassivation, and the crevice corrosion can be suppressed. However, the degradation rate of the organic matter is lowered by decreasing the ozone concentration.

以上で説明した実施例によれば、塩化物イオンが含まれる被処理液中にオゾンを添加した時の強酸化環境によって引き起こされるすきま腐食を防止できる。また、システムを構成する金属材料にとって厳しい腐食環境下においても耐食性を維持することができる。これにより、汎用金属材料の使用が可能となり、信頼性が高く長寿命な有機物分解システムを提供することができる。   According to the embodiment described above, crevice corrosion caused by a strong oxidizing environment when ozone is added to a liquid to be treated containing chloride ions can be prevented. Further, the corrosion resistance can be maintained even in a severe corrosive environment for the metal materials constituting the system. Thereby, it is possible to use a general-purpose metal material, and it is possible to provide a highly reliable and long-life organic material decomposition system.

本発明は、オゾンを用いた漂泊、汚泥処理、殺菌、防汚、脱臭、医薬品合成等のプロセスにも適用することができる。   The present invention can also be applied to processes such as drifting using ozone, sludge treatment, sterilization, antifouling, deodorization, and pharmaceutical synthesis.

101 薬液調整タンク
102 オゾン発生装置
103 液量制御部
104 有機物含有被分解物
105 反応層
106 濃度、電位、電導度検出
DESCRIPTION OF SYMBOLS 101 Chemical liquid adjustment tank 102 Ozone generator 103 Liquid volume control part 104 Organic substance containing to-be-decomposed thing 105 Reaction layer 106 Concentration, electric potential, and electrical conductivity detection

Claims (10)

塩化物イオンおよびオゾンを含む水溶液中における耐食金属材料のすきま腐食防止方法であって、前記水溶液中に塩化物イオンのモル濃度に対してモル濃度比で0.2以上のモル濃度の硝酸イオンを共存させることを特徴とする耐食金属材料のすきま腐食防止方法。   A method for preventing crevice corrosion of a corrosion-resistant metal material in an aqueous solution containing chloride ions and ozone, wherein nitrate ions having a molar concentration ratio of 0.2 or more with respect to the molar concentration of chloride ions are added to the aqueous solution. A method for preventing crevice corrosion of corrosion-resistant metal materials characterized by coexistence. 請求項1において、前記耐食性金属材料がステンレス鋼であることを特徴とする耐食金属材料のすきま腐食防止方法。   The method for preventing crevice corrosion of a corrosion-resistant metal material according to claim 1, wherein the corrosion-resistant metal material is stainless steel. 請求項1において、前記水溶液の電気伝導度が25mS/cm以上になるように前記水溶液中に硝酸イオンを共存させることを特徴とする耐食金属材料のすきま腐食防止方法。   The method for preventing crevice corrosion of a corrosion-resistant metal material according to claim 1, wherein nitrate ions are allowed to coexist in the aqueous solution so that the electric conductivity of the aqueous solution is 25 mS / cm or more. 塩化物イオンおよびオゾンを含む水溶液中における耐食金属材料のすきま腐食防止方法であって、前記水溶液の電気伝導度が25mS/cm以上になるように前記水溶液中に硝酸イオンを共存させることを特徴とする耐食金属材料のすきま腐食防止方法。   A method for preventing crevice corrosion of a corrosion-resistant metal material in an aqueous solution containing chloride ions and ozone, characterized in that nitrate ions coexist in the aqueous solution so that the electrical conductivity of the aqueous solution is 25 mS / cm or more. To prevent crevice corrosion of corrosion resistant metal materials. 請求項4において、前記耐食性金属材料がステンレス鋼であることを特徴とする耐食金属材料のすきま腐食防止方法。   5. The crevice corrosion prevention method for a corrosion-resistant metal material according to claim 4, wherein the corrosion-resistant metal material is stainless steel. オゾンを用いて有機物を分解する有機物分解システムにおいて、
前記有機物を含む被処理液中に硝酸イオンを注入する薬液注入システムを備え、
前記薬液注入システムは、被処理液中の塩化物イオン及び硝酸イオンの濃度、又は、被処理液の電気伝導度の情報に基づいて、被処理液中に注入する硝酸イオンの量を制御することを特徴とする有機物分解システム。
In organic matter decomposition system that decomposes organic matter using ozone,
A chemical solution injection system for injecting nitrate ions into the liquid to be treated containing the organic matter,
The chemical solution injection system controls the amount of nitrate ions injected into the liquid to be processed based on the concentration of chloride ions and nitrate ions in the liquid to be processed, or information on the electrical conductivity of the liquid to be processed. Organic matter decomposition system characterized by.
請求項6において、前記薬液注入システムは、被処理液中の塩化物イオン及び硝酸イオンの濃度の情報に基づいて、塩化物イオンのモル濃度に対して硝酸イオンのモル濃度比が0.2以上になるように硝酸イオンの注入量を制御することを特徴とする有機物分解システム。   7. The chemical solution injection system according to claim 6, wherein the molar concentration ratio of nitrate ions to the molar concentration of chloride ions is 0.2 or more based on information on the concentration of chloride ions and nitrate ions in the liquid to be treated. An organic matter decomposition system characterized by controlling the injection amount of nitrate ions so that 請求項7において、前記薬液注入システムは、制御する塩化物イオンのモル濃度に対する硝酸イオンのモル濃度の比を、オゾン濃度により変化させることを特徴とする有機物分解システム。   8. The organic matter decomposition system according to claim 7, wherein the chemical solution injection system changes a ratio of a molar concentration of nitrate ions to a molar concentration of chloride ions to be controlled according to an ozone concentration. 請求項6において、前記薬液注入システムは、被処理液の電気伝導度が25mS/cm以上になるように硝酸イオンの注入量を制御することを特徴とする有機物分解システム。   7. The organic matter decomposition system according to claim 6, wherein the chemical solution injection system controls an injection amount of nitrate ions so that an electric conductivity of the liquid to be processed is 25 mS / cm or more. 請求項6において、被処理液中の硝酸イオン濃度、塩化物イオン濃度を測定する検出器、オゾン濃度を測定する検出器、及び、被処理液の電気伝導度を測定する検出器のうち少なくとも1つを備えることを特徴とする有機物分解システム。   7. The detector according to claim 6, wherein at least one of a detector for measuring a nitrate ion concentration and a chloride ion concentration in a liquid to be processed, a detector for measuring an ozone concentration, and a detector for measuring an electric conductivity of the liquid to be processed. Organic matter decomposition system characterized by comprising one.
JP2013202957A 2013-09-30 2013-09-30 Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material Pending JP2015067859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202957A JP2015067859A (en) 2013-09-30 2013-09-30 Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202957A JP2015067859A (en) 2013-09-30 2013-09-30 Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material

Publications (1)

Publication Number Publication Date
JP2015067859A true JP2015067859A (en) 2015-04-13

Family

ID=52834864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202957A Pending JP2015067859A (en) 2013-09-30 2013-09-30 Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material

Country Status (1)

Country Link
JP (1) JP2015067859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218656A (en) * 2016-06-10 2017-12-14 東京電力ホールディングス株式会社 Local corrosion inhibition method of stainless steel and storage method of metal container
JP2020169364A (en) * 2019-04-04 2020-10-15 日立Geニュークリア・エナジー株式会社 Liquid treatment system and adsorption system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188655A (en) * 2012-03-13 2013-09-26 Hitachi-Ge Nuclear Energy Ltd Organic matter decomposition system using ozone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188655A (en) * 2012-03-13 2013-09-26 Hitachi-Ge Nuclear Energy Ltd Organic matter decomposition system using ozone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218656A (en) * 2016-06-10 2017-12-14 東京電力ホールディングス株式会社 Local corrosion inhibition method of stainless steel and storage method of metal container
JP2020169364A (en) * 2019-04-04 2020-10-15 日立Geニュークリア・エナジー株式会社 Liquid treatment system and adsorption system
JP7312593B2 (en) 2019-04-04 2023-07-21 日立Geニュークリア・エナジー株式会社 Liquid handling system and adsorption system

Similar Documents

Publication Publication Date Title
Pérez et al. Treatment of real effluents from the pharmaceutical industry: a comparison between Fenton oxidation and conductive-diamond electro-oxidation
Pérez et al. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates
EP2178801B1 (en) Method and system for treating ballast water
Hsieh et al. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems
Sun et al. Selective oxidation of bromide in wastewater brines from hydraulic fracturing
Tyusenkov Chemical resistance of steel 13CrV (rus 13ХФА)
US11155927B2 (en) Corrosion control compositions and methods of mitigating corrosion
Pilipenko et al. The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide
Saha et al. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters
Nagels et al. Corrosion behaviour of lean duplex stainless steel in advanced oxidation process (AOP) based wastewater treatment plants
Li et al. Electrochemical degradation of bisphenol A in chloride electrolyte—Factor analysis and mechanisms study
Huang et al. Removal of organic and ammonium nitrogen pollutants in swine wastewater using electrochemical advanced oxidation
JP2015067859A (en) Organic matter decomposition system using ozone and method for preventing crevice corrosion of anticorrosive metallic material
Sarhan Jawad et al. Treatment of petroleum refinery wastewater by electrochemical oxidation using graphite anodes
Nainar et al. Corrosion in CO2 capture unit using MEA-piperazine blends
JP5868229B2 (en) Organic matter decomposition system using ozone
JP6616583B2 (en) Organic acid solution decomposition system and organic acid solution decomposition method
JP2011011167A (en) Wastewater treatment method
JP2009248247A (en) Electric discharge machine and electric discharge machining method
Arai et al. Urine Processing and Water Recovery using Electro Oxidation and Membrane Evaporator
Angar et al. Influence of the anode nature in the ammonium electro-oxidation
JP7312593B2 (en) Liquid handling system and adsorption system
Liang et al. Evaluation of reverse osmosis and nanofiltration for in situ persulfate remediated groundwater
CN103896373A (en) Method for treating ammonia nitrogen in electrolytic manganese wastewater
Kim et al. New ORP/pH based control strategy for chlorination and dechlorination of wastewater: pilot scale application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131