JP2015067535A - Ceramic matrix composite component, turbine system and fabrication process - Google Patents

Ceramic matrix composite component, turbine system and fabrication process Download PDF

Info

Publication number
JP2015067535A
JP2015067535A JP2014194554A JP2014194554A JP2015067535A JP 2015067535 A JP2015067535 A JP 2015067535A JP 2014194554 A JP2014194554 A JP 2014194554A JP 2014194554 A JP2014194554 A JP 2014194554A JP 2015067535 A JP2015067535 A JP 2015067535A
Authority
JP
Japan
Prior art keywords
matrix composite
component
ceramic matrix
coating
resistant coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014194554A
Other languages
Japanese (ja)
Inventor
ジョン・マックコネル・デルヴォー
John Mcconnell Delvaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2015067535A publication Critical patent/JP2015067535A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Abstract

PROBLEM TO BE SOLVED: To provide a turbine excellent in efficiency and performance.SOLUTION: A ceramic matrix composite component, a turbine system and a fabrication process are disclosed. The ceramic matrix composite (CMC) component includes a CMC material, an environmental barrier coating (EBC) on the CMC material, and a hard wear-resistant coating applied over the EBC. The turbine system includes a rotatable CMC component having a hard wear-resistant coating, and a stationary turbine component, the stationary turbine component having an abradable coating arranged to be cut by a silicon carbide material. A fabrication process includes positioning the rotatable CMC a pre-determined distance from the stationary turbine component, and rotating the rotatable CMC component. The hard wear-resistant coating on the rotatable CMC component cuts into the abradable coating on the stationary turbine component.

Description

本発明は、製造される部品および製造される部品の使用工程に関し、特にセラミック基複合材(CMC)部品上に形成される耐摩耗被膜に関する。   The present invention relates to manufactured parts and the process of using the manufactured parts, and more particularly to wear-resistant coatings formed on ceramic matrix composite (CMC) parts.

ガスタービンは効率と性能の向上を目指して常に改良されている。改良の対象には、より高温ならびにより厳しい条件下で運転できる能力が含まれる。そのような改良では、かかる温度および条件から部品を保護するために材料の改良および/またはコーティングが必要になることが多い。改良を導入すると新たな課題が浮上する。   Gas turbines are constantly being improved to improve efficiency and performance. The objects of improvement include the ability to operate at higher temperatures as well as more severe conditions. Such improvements often require material improvements and / or coatings to protect the parts from such temperatures and conditions. Introducing improvements raises new challenges.

性能と効率の向上を実現する改良の1つは、タービン動翼の先端とタービンシュラウド間の隙間を最小限にすることである。しかし、隙間を最小限にすると、ある出力過渡状態において動翼の先端とシュラウドとの間に摩擦(擦れ)が発生する。こうした摩擦は、ガスタービンのCMC動翼の先端に施される耐環境被膜(EBC)を損傷することがある。   One improvement that provides increased performance and efficiency is to minimize the clearance between the tip of the turbine blade and the turbine shroud. However, if the gap is minimized, friction (rubbing) occurs between the tip of the rotor blade and the shroud in a certain output transient state. Such friction can damage the environmental coating (EBC) applied to the tip of the CMC blade of the gas turbine.

タービン動翼のEBCが損傷されると、その下のCMCが高温の燃焼ガスにさらされて揮発しやすくなる。動翼のEBCを厚くすると動翼の重量が増し、タービンの効率と性能の低下を招く。また、摩擦を減らすために隙間を広げても効率と性能が同様に低下する。   When the EBC of the turbine blade is damaged, the CMC under the EBC is easily exposed to high-temperature combustion gas and volatilizes. If the EBC of the moving blade is increased, the weight of the moving blade increases, resulting in a decrease in turbine efficiency and performance. Also, even if the gap is widened to reduce friction, the efficiency and performance are similarly reduced.

この分野では、上記の欠点をもたない、製造される部品および製造される部品の使用工程が望まれている。   In this field, there is a desire for a manufactured part and a process for using the manufactured part that do not have the disadvantages described above.

ある例示的実施形態において、セラミック基複合材(CMC)部品は、CMC材料部と、前記CMC材料部の上に形成される耐環境被膜と、前記耐環境被膜の上に形成される硬質耐摩耗被膜とを含む。   In an exemplary embodiment, a ceramic matrix composite (CMC) component includes a CMC material portion, an environmental coating formed on the CMC material portion, and a hard wear resistant coating formed on the environmental coating. A coating.

別の例示的実施形態において、タービンシステムは、CMC材料部と、前記CMC材料部の上に形成される耐環境被膜(EBC)と、前記EBCの上に形成される硬質耐摩耗被膜とを有する回転CMC部品を含む。前記タービンシステムは、前記回転CMC部品の前記硬質耐摩耗被膜によって切り込まれるように前記回転CMC部品に隣接して配置される摩耗性被膜を有する静止タービン部品を、さらに含む。   In another exemplary embodiment, a turbine system has a CMC material portion, an environmental coating (EBC) formed on the CMC material portion, and a hard wear resistant coating formed on the EBC. Includes rotating CMC parts. The turbine system further includes a stationary turbine component having a wearable coating disposed adjacent to the rotating CMC component to be cut by the hard wear resistant coating of the rotating CMC component.

さらに別の例示的実施形態において、組立工程は、回転CMC部品を静止タービン部品から所定の距離に位置づける工程を含み、前記静止タービン部品は摩耗性材料を含む。前記組立工程は、前記回転CMC部品を回転させる工程をさらに含み、前記回転CMC部品上の硬質耐摩耗被膜は前記静止タービン部品の摩耗性材料に切り込む。   In yet another exemplary embodiment, the assembling process includes positioning the rotating CMC part at a predetermined distance from the stationary turbine part, the stationary turbine part comprising an abradable material. The assembling step further includes the step of rotating the rotating CMC component, and the hard wear-resistant coating on the rotating CMC component cuts into the wearable material of the stationary turbine component.

本発明の他の特徴や利点は、別途詳述する好適な実施形態および添付の図面を参照することによって明らかになるであろう。添付の図面では本発明の原理を例示している。   Other features and advantages of the present invention will become apparent with reference to preferred embodiments and accompanying drawings, which are described in detail below. The accompanying drawings illustrate the principles of the invention.

タービン動翼の斜視図である。It is a perspective view of a turbine rotor blade. タービンシステムの概略図である。1 is a schematic diagram of a turbine system. 回転部分の静止部分に対する干渉パターンを示す概略図である。It is the schematic which shows the interference pattern with respect to the stationary part of a rotation part.

以下、本発明の実施形態について詳細に説明する。図中、同じ要素には同じ参照番号を付している。   Hereinafter, embodiments of the present invention will be described in detail. In the drawings, the same elements are denoted by the same reference numerals.

例示的なセラミック基複合材部品、タービンシステム、および組立工程について以下に説明する。本開示の実施形態は、本明細書に開示する特徴をまったく使用しない方法や製品に比べ、耐環境被膜(EBC)材料の使用量が少なく、EBCの損傷を軽減し、修理回数を減らし、セラミック基複合材(CMC)の揮発を低減し、先端のクリアランスを減少させ、タービン効率を向上させ、あるいはそれらの組み合わせを実現する。   Exemplary ceramic matrix composite parts, turbine systems, and assembly processes are described below. Embodiments of the present disclosure use less environmentally resistant coating (EBC) material, reduce EBC damage, reduce repair times, and reduce the number of repairs compared to methods and products that do not use any of the features disclosed herein. Reduce volatilization of matrix composite (CMC), reduce tip clearance, improve turbine efficiency, or achieve a combination thereof.

図1を参照する。一実施形態において、回転CMC部品101は、CMC材料部102と、CMC材料部102の上に形成されるEBC104と、EBC104の上に形成される硬質耐摩耗被膜106とを含む。回転CMC部品101は、ブレードまたは動翼など(ただし、これには限定されない)、揮発および/または擦れ摩耗を受けうる任意の適切な部品である。動翼はシュラウドなしの動翼でもいいし、シュラウド付きの動翼でもよい。硬質耐摩耗被膜106は炭化ケイ素(SiC)、SiO2、立方晶窒化ホウ素(CBN)、またはその組み合わせなどの材料だが、これには限定されない。CMC材料部102の例として、炭素繊維強化カーボン(C/C)、炭素繊維強化炭化ケイ素(C/SiC)、炭化ケイ素繊維強化炭化ケイ素(SiC/SiC)、およびアルミナ繊維強化アルミナ(Al23/Al23)などがあるが、これには限定されない。CMCにより、伸び率、破壊靱性、耐熱衝撃性、動荷重容量、および異方性属性がモノリシックなセラミック構造に比べて向上している。ただし、耐環境被膜がないとCMCはガスタービンの運転中に揮発しうる。 Please refer to FIG. In one embodiment, the rotating CMC component 101 includes a CMC material portion 102, an EBC 104 formed on the CMC material portion 102, and a hard wear resistant coating 106 formed on the EBC 104. The rotating CMC component 101 is any suitable component that can undergo volatilization and / or scuffing, such as but not limited to a blade or blade. The moving blade may be a moving blade without a shroud or a moving blade with a shroud. Hard wear-resistant coating 106 is a material such as, but not limited to, silicon carbide (SiC), SiO 2 , cubic boron nitride (CBN), or combinations thereof. Examples of the CMC material portion 102 include carbon fiber reinforced carbon (C / C), carbon fiber reinforced silicon carbide (C / SiC), silicon carbide fiber reinforced silicon carbide (SiC / SiC), and alumina fiber reinforced alumina (Al 2 O). 3 / Al 2 O 3 ), but is not limited thereto. CMC improves elongation, fracture toughness, thermal shock resistance, dynamic load capacity, and anisotropic attributes compared to monolithic ceramic structures. However, CMC can volatilize during operation of the gas turbine if there is no environmental protection coating.

例えば、水蒸気は1500°Fを超える温度においてCMC材料部102と化学反応を起こす。水蒸気はCMC材料部102中のケイ素および炭素と反応して水酸化ケイ素(SiOH)と二酸化炭素(CO2)をそれぞれ生成する。水蒸気とCMC材料部102との反応によって生成したSiOHとCO2は、気体としてゆっくり放出される、すなわち揮発する。1500°Fを超える温度で何時間も運転すると、CMC材料部102は外側から内側に向けて消失する。 For example, water vapor causes a chemical reaction with the CMC material portion 102 at temperatures in excess of 1500 ° F. The water vapor reacts with silicon and carbon in the CMC material portion 102 to generate silicon hydroxide (SiOH) and carbon dioxide (CO 2 ), respectively. SiOH and CO 2 generated by the reaction between the water vapor and the CMC material part 102 are slowly released as gas, that is, volatilize. When operated for many hours at a temperature exceeding 1500 ° F., the CMC material portion 102 disappears from the outside toward the inside.

EBC104は水蒸気や熱、ならびにCMC材料部102の揮発もしくは劣化を生じうるその他の燃焼ガスからCMC材料部102を保護する。一実施形態において、EBC104は水蒸気とCMC材料部102との化学反応の発生を低減もしくは防止する。EBC104は、高温の燃焼ガスからCMC材料部102を保護する任意の適切な材料でありうる。適切なEBC材料には、アルミノケイ酸バリウムストロンチウム(BSAS)、ムライト、イットリア安定化ジルコニア、およびその組み合わせなどがあるが、これには限定されない。   The EBC 104 protects the CMC material portion 102 from water vapor, heat, and other combustion gases that can cause volatilization or degradation of the CMC material portion 102. In one embodiment, the EBC 104 reduces or prevents the occurrence of a chemical reaction between water vapor and the CMC material portion 102. The EBC 104 can be any suitable material that protects the CMC material portion 102 from hot combustion gases. Suitable EBC materials include, but are not limited to, barium strontium aluminosilicate (BSAS), mullite, yttria stabilized zirconia, and combinations thereof.

図1を参照する。一実施形態において、硬質耐摩耗被膜106は1層以上のEBC104の上に形成され、回転CMC部品101の最外層を形成する。硬質耐摩耗被膜106は、摩擦(擦れ)事象中に摩耗を受ける、回転CMC部品101の任意の適切な部分の上に形成される。回転CMC部品101の適切な部分には、先端部103、台部との境界面、エーロフォイル(翼など)とシュラウドとの接触点、エーロフォイルとシュラウドレールとの接触点、またはその組み合わせなどがあるが、これには限定されない。さらに、硬質耐摩耗被膜106は強い摩擦中にEBC104の損失を低減もしくは防止する任意の適切な厚さに形成される。適切な厚さには、約0.1milから約4milの間、約0.5milから約3milの間、約1milから約2.5milの間、またはその任意の組み合わせ、部分的な組み合わせ、範囲、もしくは部分的な範囲が含まれるが、それには限定されない。例えば、一実施形態において、硬質耐摩耗被膜106は先端部103の全幅および全長にわたって伸びている。別の例において、硬質耐摩耗被膜106は先端部103の一端を囲み、そこから回転CMC部品101の放射状に伸びる表面に至るまで形成され、厳しい条件に対して保護を強化している。   Please refer to FIG. In one embodiment, the hard wear resistant coating 106 is formed on one or more EBCs 104 and forms the outermost layer of the rotating CMC component 101. The hard wear resistant coating 106 is formed on any suitable portion of the rotating CMC component 101 that undergoes wear during a friction (rub) event. Appropriate portions of the rotating CMC component 101 include a tip 103, a boundary surface with a base, a contact point between an airfoil (such as a wing) and a shroud, a contact point between an airfoil and a shroud rail, or a combination thereof. There is, but is not limited to this. Furthermore, the hard wear resistant coating 106 is formed to any suitable thickness that reduces or prevents the loss of the EBC 104 during strong friction. Suitable thicknesses include between about 0.1 mil to about 4 mil, between about 0.5 mil to about 3 mil, between about 1 mil to about 2.5 mil, or any combination, partial combination, range, Or a partial range is included, but is not limited thereto. For example, in one embodiment, the hard wear resistant coating 106 extends across the entire width and length of the tip 103. In another example, the hard wear resistant coating 106 is formed from one end of the tip 103 to the radially extending surface of the rotating CMC component 101 to enhance protection against harsh conditions.

硬質耐摩耗被膜106は任意の適切な堆積処理によってEBC104の上に形成される。例えば、1つの適切な堆積処理は物理蒸着法(PVD)である。PVDは気化した硬質耐摩耗被膜106を回転CMC部品101のEBC104上に凝縮させることにより、高硬度の薄い硬質耐摩耗被膜106を形成する。他の適切な堆積処理には、化学蒸着法(CVD)、大気プラズマ溶射法(APS)、粉末または溶棒を用いたフレーム溶射法、スラリコーティング法、ゾル・ゲル法、電気泳動堆積法、テープ成形法、またはその組み合わせなどがあるが、これには限定されない。一実施形態において、硬質耐摩耗被膜106としてSiCが用いられる。SiCはその熱膨張係数がCMC材料部102およびEBC104のいずれともかなり近いため、付着性に優れている。EBC104はCMC材料部102上に形成してCMC材料部102と接触してもよい。硬質耐摩耗被膜106はEBC104上に形成してEBC104と接触してもよい。   Hard wear resistant coating 106 is formed on EBC 104 by any suitable deposition process. For example, one suitable deposition process is physical vapor deposition (PVD). PVD condenses the vaporized hard wear-resistant coating 106 on the EBC 104 of the rotating CMC component 101 to form a thin hard wear-resistant coating 106 with high hardness. Other suitable deposition processes include chemical vapor deposition (CVD), atmospheric plasma spraying (APS), flame spraying using powder or wand, slurry coating, sol-gel, electrophoretic deposition, tape Although there exists a shaping | molding method or its combination, it is not limited to this. In one embodiment, SiC is used as the hard wear resistant coating 106. Since SiC has a coefficient of thermal expansion that is quite close to that of both the CMC material portion 102 and the EBC 104, it has excellent adhesion. The EBC 104 may be formed on the CMC material portion 102 and contact the CMC material portion 102. The hard wear resistant coating 106 may be formed on the EBC 104 and contact the EBC 104.

図2を参照する。一実施形態において、タービンシステム100は、回転部材107(例えばタービンディスク)に取り付けられた回転CMC部品101(例えばタービン動翼)を備えている。CMC部品101と回転部材107は中心点131(例えば回転軸)から外に向かって伸びている。別の実施形態において、回転部材107の周囲には回転CMC部品101が複数設けられ、中心点131から外に向かって伸びている。一実施形態において、静止タービン部品120は回転部材107を囲む外周部を形成する。このときCMC部品101は回転部材107と静止タービン部品120の間にある。静止タービン部品120の中心は中心点131にあり、回転部材107と共通の中心点を共有する。回転CMC部品101の先端部103は理想的には静止タービン部品120に対してシールを形成する。   Please refer to FIG. In one embodiment, the turbine system 100 includes a rotating CMC component 101 (eg, turbine blade) attached to a rotating member 107 (eg, turbine disk). The CMC component 101 and the rotation member 107 extend outward from a center point 131 (for example, a rotation axis). In another embodiment, a plurality of rotating CMC components 101 are provided around the rotating member 107 and extend outward from the center point 131. In one embodiment, stationary turbine component 120 forms a perimeter that surrounds rotating member 107. At this time, the CMC component 101 is between the rotating member 107 and the stationary turbine component 120. The center of the stationary turbine component 120 is at a center point 131 and shares a common center point with the rotating member 107. The tip 103 of the rotating CMC component 101 ideally forms a seal with the stationary turbine component 120.

静止タービン部品120上の摩耗性被膜122は、回転CMC部品101に切り込まれるように配置される。摩耗性被膜122は静止タービン部品120材料および運転温度に基づく任意の適切な被膜である。低めの温度(約2200°F以下)にある金属製静止タービン部品120に適した摩耗性被膜122には、NiCrAlY、CoCrAlY、FeCrAlY、またはその組み合わせなど、一般式MCrAlYをもつ摩耗性金属が含まれるが、これには限定されない。一実施形態において、上記摩耗性金属は大気プラズマ溶射法、溶線式アークおよびフレーム溶射法、高速オキシ燃料法(HVOF)、またはその組み合わせによって形成される。   The wearable coating 122 on the stationary turbine component 120 is arranged to be cut into the rotating CMC component 101. The abradable coating 122 is any suitable coating based on the stationary turbine component 120 material and operating temperature. Abrasive coatings 122 suitable for metal stationary turbine components 120 at lower temperatures (less than about 2200 ° F.) include abradable metals having the general formula MCrAlY, such as NiCrAlY, CoCrAlY, FeCrAlY, or combinations thereof. However, it is not limited to this. In one embodiment, the abradable metal is formed by atmospheric plasma spraying, hot wire arc and flame spraying, high velocity oxyfuel (HVOF), or a combination thereof.

高めの温度(約2200°F以下)にある金属製静止タービン部品120に適した摩耗性被膜122には、安定剤としてイットリアを用いる部分安定化ジルコニア(7または8YSZ)などの摩耗性セラミックが含まれるが、これには限定されない。一実施形態において、低温用途向けの摩耗性金属および/または高温用途向けの摩耗性セラミックは、使用当初はポリエステル成分を含有する。このポリエステル成分は大気中で加熱されて燃え尽き、多孔表面が後に残る。この多孔表面により、摩耗性被膜122は摩擦事象において回転するCMC部品101に引きずられやすい。一実施形態において、摩耗性金属被膜と摩耗性セラミック被膜の少なくとも一方は固形潤滑剤として窒化ホウ素をさらに含む。   Abrasive coatings 122 suitable for metal stationary turbine components 120 at elevated temperatures (less than about 2200 ° F.) include wearable ceramics such as partially stabilized zirconia (7 or 8YSZ) using yttria as a stabilizer. However, it is not limited to this. In one embodiment, the abradable metal for low temperature applications and / or the abradable ceramic for high temperature applications initially contain a polyester component. This polyester component is heated in the atmosphere and burned out, leaving a porous surface behind. This porous surface tends to drag the wearable coating 122 to the rotating CMC part 101 in a friction event. In one embodiment, at least one of the wearable metal coating and the wearable ceramic coating further comprises boron nitride as a solid lubricant.

セラミック製静止タービン部品120に適した摩耗性被膜122にはケイ酸塩があるが、これには限定されない。例えば、一実施形態において、低めの温度(約2200°F以下)で運転されるセラミック製静止タービン部品120に適した摩耗性被膜122はアルミノケイ酸バリウムストロンチウム(BSAS)である。別の例として、一実施形態において、高めの温度(約2201°F以下)で運転されるセラミック製静止タービン部品120に適した摩耗性被膜122には、Yb23Si27など希土類元素の含有量が多いケイ酸塩がある。 Abrasive coating 122 suitable for ceramic stationary turbine component 120 includes, but is not limited to, silicate. For example, in one embodiment, a wearable coating 122 suitable for ceramic stationary turbine components 120 operating at lower temperatures (less than about 2200 ° F.) is barium strontium aluminosilicate (BSAS). As another example, in one embodiment, an abradable coating 122 suitable for a ceramic stationary turbine component 120 operating at elevated temperatures (below about 2201 ° F.) includes a rare earth such as Yb 2 O 3 Si 2 O 7. There are silicates with high elemental content.

一実施形態において、ケイ酸塩の摩耗性被膜122は使用中にポリエステル成分を含有する。このポリエステル成分は大気中で加熱されて燃え尽き、多孔表面が後に残る。これはコンプライアンスに寄与する。一実施形態において、ケイ酸塩の摩耗性被膜122は大気プラズマ溶射法、スラリコーティング法、ゾル・ゲル法、電気泳動堆積法、テープ成形法、またはその組み合わせによって形成される。   In one embodiment, the silicate wearable coating 122 contains a polyester component during use. This polyester component is heated in the atmosphere and burned out, leaving a porous surface behind. This contributes to compliance. In one embodiment, the silicate abradable coating 122 is formed by atmospheric plasma spraying, slurry coating, sol-gel, electrophoretic deposition, tape molding, or a combination thereof.

図3を参照する。一実施形態において、組立工程200は回転部材107を静止タービン部品120から所定の距離105に位置づける工程を含む。回転部材107は中心点131を中心にして回転してCMC部品101を回転させる。所定の距離105は出力過渡状態において変動し、先端部103と静止タービン部品120の摩耗性被膜122とが接触する。硬質耐摩耗被膜106は摩耗性被膜122に切り込んで溝201を形成し、さらなる出力過渡状態において接触を減らす。一実施形態において、回転方向203は時計回りである。別の実施形態において、回転方向203は反時計回りである(図示なし)。   Please refer to FIG. In one embodiment, the assembly process 200 includes positioning the rotating member 107 at a predetermined distance 105 from the stationary turbine component 120. The rotating member 107 rotates around the center point 131 to rotate the CMC component 101. The predetermined distance 105 varies in the output transient state, and the tip portion 103 and the wearable coating 122 of the stationary turbine component 120 are in contact with each other. The hard wear-resistant coating 106 cuts into the wear-resistant coating 122 to form grooves 201, reducing contact in further power transients. In one embodiment, the direction of rotation 203 is clockwise. In another embodiment, the direction of rotation 203 is counterclockwise (not shown).

再び図1を参照する。一実施形態において、硬質耐摩耗被膜106の硬度値はEBC104の硬度値より大きい。硬度値は、ある材料が損傷を受けずに接触に耐える能力を表す。例えば、EBC104より硬度値が大きい硬質耐摩耗被膜106は、EBC104に比べて強い摩擦に耐えることができる。   Refer to FIG. 1 again. In one embodiment, the hardness value of the hard wear resistant coating 106 is greater than the hardness value of the EBC 104. The hardness value represents the ability of a material to withstand contact without being damaged. For example, the hard wear resistant coating 106 having a hardness value larger than that of the EBC 104 can withstand strong friction compared to the EBC 104.

一実施形態において、硬度値がより大きい硬質耐摩耗被膜106がEBC104の上に形成される。これは、エネルギーの過渡状態において回転するCMC部品101と静止タービン部品120とが接触したときに、EBC104が損傷するのを防止するためである。一実施形態において硬質耐摩耗被膜106はSiCであり、このSiCのヌープ値(硬度)は2480である。一方、EBC104のヌープ値は2480より小さい。一実施形態において、EBC104のヌープ値は約500と1800の間である。これはEBC104の構造による。構造因子には、層数、各層の厚さ、層の組成、適用工程、および実施する熱処理などがある。   In one embodiment, a hard wear resistant coating 106 with a higher hardness value is formed on the EBC 104. This is to prevent the EBC 104 from being damaged when the rotating CMC component 101 and the stationary turbine component 120 come into contact in an energy transient state. In one embodiment, the hard wear resistant coating 106 is SiC, and the Knoop value (hardness) of this SiC is 2480. On the other hand, the Knoop value of the EBC 104 is smaller than 2480. In one embodiment, the EBC 104 Knoop value is between about 500 and 1800. This is due to the structure of EBC104. Structural factors include the number of layers, the thickness of each layer, the composition of the layers, the application process, and the heat treatment performed.

例えば一実施形態において、EBC104は先端部103と摩耗性被膜122との間の約10milまでの接触に対してのみ無傷を保つことができる。ガスタービンの回転パーツは静止パーツに対して10milを超えて接触する。接触が10milを超えるとEBC104の構造および機能が劣化し、場合によっては基材が環境の侵食を受けることになる。EBC104の保護のため、EBC104の上に硬質耐摩耗被膜106が形成され、強い摩擦を受けた際のEBC104の損傷を低減もしくは防止する。   For example, in one embodiment, the EBC 104 can remain intact only up to about 10 mils contact between the tip 103 and the wearable coating 122. The rotating part of the gas turbine contacts the stationary part in excess of 10 mils. If the contact exceeds 10 mils, the structure and function of the EBC 104 is degraded and in some cases the substrate is subject to environmental erosion. To protect the EBC 104, a hard wear-resistant coating 106 is formed on the EBC 104 to reduce or prevent damage to the EBC 104 when subjected to strong friction.

タービン動翼の一般的な稼動条件の1つに、約2,000°Fから約3,000°Fの温度範囲における水蒸気や燃焼ガスがある。これらの条件下において硬質耐摩耗被膜106は次第に揮発し、EBC104が露出する。最小限の厚さの硬質耐摩耗被膜106を形成することで、回転CMC部品101上のEBC104と静止タービン部品120の摩耗性被膜122との間の隙間が最小限に抑えられる。この隙間を狭めると、回転CMC部品101と静止タービン部品120の間の空気流量が抑えられるため、システム効率が向上する。   One common operating condition for turbine blades is steam and combustion gases in the temperature range of about 2,000 ° F to about 3,000 ° F. Under these conditions, the hard wear-resistant coating 106 gradually evaporates and the EBC 104 is exposed. By forming the hard wear resistant coating 106 with a minimum thickness, the gap between the EBC 104 on the rotating CMC component 101 and the wearable coating 122 of the stationary turbine component 120 is minimized. When this gap is narrowed, the air flow rate between the rotating CMC component 101 and the stationary turbine component 120 is suppressed, so that the system efficiency is improved.

犠牲硬質耐摩耗被膜106が運転条件下で揮発するのに要する時間は、一種の慣らし期間である。一実施形態において、慣らし期間は約100時間以下である。一実施形態において、慣らし期間は約100時間以上である。硬質耐摩耗被膜106が先端部103においてEBC104上に残留している慣らし期間は十分に長いため、強い摩擦を引き起こす出力過渡状態において硬質耐摩耗被膜106は存在し、摩耗する。   The time required for the sacrificial hard wear-resistant coating 106 to volatilize under operating conditions is a kind of break-in period. In one embodiment, the break-in period is about 100 hours or less. In one embodiment, the break-in period is about 100 hours or more. The break-in period during which the hard wear-resistant coating 106 remains on the EBC 104 at the tip 103 is sufficiently long, so that the hard wear-resistant coating 106 exists and wears in an output transient that causes strong friction.

一実施形態において、慣らし期間は所定時間にわたる所定の定速度回転を含む。一実施形態において、慣らし期間は回転速度の所定の1回の変動もしくは一連の変動を含む。所定速度の回転または回転速度の変動は、慣らし期間中に出力過渡状態を誘起するように設定される。慣らし期間中に組立工程200の出力過渡状態が発生すると、硬質耐摩耗被膜106は摩耗性材料122に接触して摩耗性材料122に切り込む。硬質耐摩耗被膜106による切り込みは摩耗性材料122中に溝201を形成する。   In one embodiment, the break-in period includes a predetermined constant speed rotation over a predetermined time. In one embodiment, the break-in period includes a predetermined single variation or a series of variations in rotational speed. The predetermined speed of rotation or fluctuation in rotational speed is set to induce an output transient during the break-in period. When an output transient of the assembly process 200 occurs during the break-in period, the hard wear resistant coating 106 contacts the wearable material 122 and cuts into the wearable material 122. Cutting with the hard wear-resistant coating 106 forms a groove 201 in the wearable material 122.

慣らし期間を通し、硬質耐摩耗被膜106は静止摩耗性材料122と先端部103との間に溝201を形成しながら徐々に揮発する。慣らし期間では、静止部品と先端部103との間の、ガスが漏れうる溝201が、EBC104を損傷することなく最小限に抑えられる。ガスの漏洩が最小で済む要因は、硬質耐摩耗被膜106の切り込み特性とその薄さにある。溝201と先端部103の間に生じる隙間を最小限にすることで、タービンシステム100の効率が向上する。さらに、硬質耐摩耗被膜106の切り込みによって静止摩耗性材料122に形成される溝201により、硬質耐摩耗被膜106の揮発後の摩擦によるEBC104の損傷が低減される。EBC104が損傷しなければ、CMC材料部102はそれだけ多く揮発から保護されることになる。   Through the break-in period, the hard wear-resistant coating 106 gradually evaporates while forming the groove 201 between the stationary wear material 122 and the tip 103. During the break-in period, the groove 201 between which the stationary part and the tip 103 can leak gas is minimized without damaging the EBC 104. The reason why gas leakage is minimized is the cutting characteristics and thinness of the hard wear-resistant coating 106. By minimizing the gap generated between the groove 201 and the tip portion 103, the efficiency of the turbine system 100 is improved. Further, the groove 201 formed in the stationary wear-resistant material 122 by cutting the hard wear-resistant coating 106 reduces damage to the EBC 104 due to friction after the hard wear-resistant coating 106 volatilizes. If the EBC 104 is not damaged, the CMC material portion 102 will be protected from volatilization as much.

これまで好適な実施形態を参照しながら本発明について説明してきた。しかし、本発明の範囲を逸脱することなく、その要素に対してさまざまな変更を加えうる、あるいは均等物で代用しうることは当業者には理解されるだろう。また、ある特定の状況もしくは材料に適用するため、本発明の本質的範囲を逸脱することなく本発明の開示に対して多くの改変を行いうる。したがって、本発明は、本発明の実施において予測される最良の形態として開示される実施形態に限定されるものではなく、本発明は添付の特許請求の範囲に収まるあらゆる実施形態を含むものである。   The present invention has been described above with reference to preferred embodiments. However, one of ordinary skill in the art appreciates that various modifications can be made to the elements or equivalents can be substituted without departing from the scope of the invention. In addition, many modifications may be made to the disclosure of the present invention to apply to a specific situation or material without departing from the essential scope of the invention. Accordingly, the present invention is not limited to the embodiments disclosed as the best mode contemplated for carrying out the invention, but includes all embodiments that fall within the scope of the appended claims.

100 タービンシステム
101 回転CMC部品、CMC部品
102 CMC材料部
103 先端部
104 EBC(耐環境被膜)
105 距離
106 硬質耐摩耗被膜
107 回転部材
120 静止タービン部品
122 摩耗性被膜、摩耗性材料
131 中心点
200 組立工程
201 溝
203 回転方向
100 Turbine system 101 Rotating CMC part, CMC part 102 CMC material part 103 Tip part 104 EBC (environmental resistant coating)
105 Distance 106 Hard wear-resistant coating 107 Rotating member 120 Stationary turbine component 122 Abrasive coating, wearable material 131

Claims (20)

セラミック基複合材材料部(102)と、
前記セラミック基複合材材料部(102)の上に形成される耐環境被膜(104)と、
前記耐環境被膜(104)の上に形成される硬質耐摩耗被膜(106)と、
を含むセラミック基複合材部品(101)。
A ceramic matrix composite material part (102);
An environmental coating (104) formed on the ceramic matrix composite material portion (102);
A hard wear-resistant coating (106) formed on the environmental coating (104);
Ceramic matrix composite part (101) comprising:
前記硬質耐摩耗被膜(106)は炭化ケイ素をさらに含む、請求項1に記載のセラミック基複合材部品(101)。   The ceramic matrix composite component (101) of claim 1, wherein the hard wear-resistant coating (106) further comprises silicon carbide. 前記硬質耐摩耗被膜(106)は最外層である、請求項1に記載のセラミック基複合材部品(101)。   The ceramic matrix composite component (101) of claim 1, wherein the hard wear resistant coating (106) is the outermost layer. 前記硬質耐摩耗被膜(106)は前記部品の外表面を被覆する、請求項1に記載のセラミック基複合材部品(101)。   The ceramic matrix composite component (101) of claim 1, wherein the hard wear resistant coating (106) covers an outer surface of the component. 前記硬質耐摩耗被膜(106)は物理蒸着法によって形成される、請求項1に記載のセラミック基複合材部品(101)。   The ceramic matrix composite component (101) of claim 1, wherein the hard wear resistant coating (106) is formed by physical vapor deposition. 前記硬質耐摩耗被膜(106)は化学蒸着法によって形成される、請求項1に記載のセラミック基複合材部品(101)。   The ceramic matrix composite component (101) of claim 1, wherein the hard wear resistant coating (106) is formed by chemical vapor deposition. タービンディスク(107)に取り付けられたセラミック基複合材の回転動翼(101)であって、セラミック基複合材材料部(102)と、前記セラミック基複合材材料部(102)の上に形成される耐環境被膜(104)と、前記耐環境被膜(104)の上に形成される硬質耐摩耗被膜(106)とを含む、セラミック基複合材の回転動翼(101)と、
静止タービンシュラウド(120)であって、前記セラミック基複合材の回転動翼(101)の前記硬質耐摩耗被膜(106)によって切り込まれるように配置される摩耗性被膜(122)を有する静止タービンシュラウド(120)と、
を備えたタービンシステム(100)。
A ceramic matrix composite rotor blade (101) attached to a turbine disk (107), formed on a ceramic matrix composite material portion (102) and the ceramic matrix composite material portion (102). An environmentally resistant coating (104) and a hard wear-resistant coating (106) formed on the environmental resistant coating (104);
Stationary turbine shroud (120) having a wearable coating (122) disposed to be cut by the hard wear-resistant coating (106) of the ceramic matrix composite rotor blade (101) A shroud (120);
A turbine system (100) comprising:
前記静止タービンシュラウド(120)は前記回転動翼(107)の外周部を形成する、請求項7に記載のタービンシステム(100)。   The turbine system (100) of claim 7, wherein the stationary turbine shroud (120) forms an outer periphery of the rotating blade (107). 前記セラミック基複合材の回転動翼(101)が前記タービンディスク(107)に対して放射状に複数個取り付けられている、請求項7に記載のタービンシステム(100)。   The turbine system (100) of claim 7, wherein a plurality of said ceramic matrix composite rotor blades (101) are radially attached to said turbine disk (107). セラミック基複合材の回転部品(101)を静止タービン部品(120)から所定の距離(105)に位置づける工程であって、前記静止タービン部品(120)は摩耗性被膜(122)を有し、かつ前記回転部品(101)は耐環境被膜(104)の上に形成される硬質耐摩耗被膜(106)を有する、工程と、
前記セラミック基複合材の回転部品(101)を回転させる工程とを含み、
前記セラミック基複合材の回転部品(101)上の前記硬質耐摩耗被膜(106)は前記静止タービン部品(120)上の前記摩耗性被膜(122)に切り込む、
組立工程。
Positioning a ceramic matrix composite rotating component (101) at a predetermined distance (105) from a stationary turbine component (120), said stationary turbine component (120) having an abradable coating (122); and The rotating component (101) has a hard wear-resistant coating (106) formed on the environmental coating (104);
Rotating the rotating component (101) of the ceramic matrix composite material,
The hard wear-resistant coating (106) on the ceramic matrix composite rotating component (101) cuts into the wear-resistant coating (122) on the stationary turbine component (120);
Assembly process.
出力過渡状態によって前記セラミック基複合材の回転部品(101)は前記摩耗性被膜(122)と接触する、請求項10に記載の組立工程。   11. Assembly process according to claim 10, wherein the ceramic matrix composite rotating part (101) is in contact with the wearable coating (122) by an output transient. 前記セラミック基複合材の回転部品(101)による前記切り込みは前記摩耗性被膜(122)内に溝(201)を形成する、請求項10に記載の組立工程。   11. An assembly process according to claim 10, wherein the incision by the rotating component (101) of the ceramic matrix composite forms a groove (201) in the wearable coating (122). 前記工程は慣らし期間をさらに含む、請求項10に記載の組立工程。   The assembly process of claim 10, wherein the process further includes a break-in period. 前記慣らし期間は約100時間以下である、請求項13に記載の組立工程。   The assembly process of claim 13, wherein the break-in period is about 100 hours or less. 前記慣らし期間は約100時間以上である、請求項13に記載の組立工程。   The assembly process of claim 13, wherein the break-in period is about 100 hours or more. 前記硬質耐摩耗被膜(106)は高温への所定の暴露後に揮発する、請求項10に記載の組立工程。   The assembly process of claim 10, wherein the hard wear-resistant coating (106) volatilizes after a predetermined exposure to high temperature. 前記高温は少なくとも1,500°Fを含む、請求項16に記載の組立工程。   The assembly process of claim 16, wherein the elevated temperature comprises at least 1500 ° F. 前記高温は少なくとも2,900°Fを含む、請求項16に記載の組立工程。   The assembly process of claim 16, wherein the elevated temperature comprises at least 2900 ° F. 前記硬質耐摩耗被膜(106)の前記揮発によって前記耐環境被膜(104)が露出する、請求項16に記載の組立工程。   The assembly process of claim 16, wherein the environmental coating (104) is exposed by the volatilization of the hard wear-resistant coating (106). 前記耐環境被膜(104)の硬度は前記硬質耐摩耗被膜(106)の硬度より小さい、請求項10に記載の組立工程。   The assembly process according to claim 10, wherein the hardness of the environmental coating (104) is less than the hardness of the hard wear coating (106).
JP2014194554A 2013-09-30 2014-09-25 Ceramic matrix composite component, turbine system and fabrication process Pending JP2015067535A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/041,262 2013-09-30
US14/041,262 US20150093237A1 (en) 2013-09-30 2013-09-30 Ceramic matrix composite component, turbine system and fabrication process

Publications (1)

Publication Number Publication Date
JP2015067535A true JP2015067535A (en) 2015-04-13

Family

ID=52673267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194554A Pending JP2015067535A (en) 2013-09-30 2014-09-25 Ceramic matrix composite component, turbine system and fabrication process

Country Status (5)

Country Link
US (1) US20150093237A1 (en)
JP (1) JP2015067535A (en)
CN (1) CN104514583A (en)
CH (1) CH708634A2 (en)
DE (1) DE102014112236A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844860B2 (en) 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve
US11149854B2 (en) * 2019-02-07 2021-10-19 Raytheon Technologies Corporation High pressure compressor seal-ring with improved wear resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279364A (en) * 1996-01-02 1997-10-28 General Electric Co <Ge> Heat insulating film having resistance against erosion and impact by granular material
US7510370B2 (en) * 2005-02-01 2009-03-31 Honeywell International Inc. Turbine blade tip and shroud clearance control coating system
US20100129673A1 (en) * 2008-11-25 2010-05-27 Rolls-Royce Corporation Reinforced oxide coatings
JP2011507791A (en) * 2007-12-20 2011-03-10 ゼネラル・エレクトリック・カンパニイ How to repair a barrier coating
US8124252B2 (en) * 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537713A (en) * 1968-02-21 1970-11-03 Garrett Corp Wear-resistant labyrinth seal
US4169020A (en) * 1977-12-21 1979-09-25 General Electric Company Method for making an improved gas seal
US4227703A (en) * 1978-11-27 1980-10-14 General Electric Company Gas seal with tip of abrasive particles
US4249913A (en) * 1979-05-21 1981-02-10 United Technologies Corporation Alumina coated silicon carbide abrasive
US4390320A (en) * 1980-05-01 1983-06-28 General Electric Company Tip cap for a rotor blade and method of replacement
DE3401742C2 (en) * 1984-01-19 1986-08-14 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Rotor for an axial compressor
US4589823A (en) * 1984-04-27 1986-05-20 General Electric Company Rotor blade tip
US4851188A (en) * 1987-12-21 1989-07-25 United Technologies Corporation Method for making a turbine blade having a wear resistant layer sintered to the blade tip surface
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5113582A (en) * 1990-11-13 1992-05-19 General Electric Company Method for making a gas turbine engine component
US5264011A (en) * 1992-09-08 1993-11-23 General Motors Corporation Abrasive blade tips for cast single crystal gas turbine blades
US5413877A (en) * 1992-09-22 1995-05-09 Moller International, Inc. Combination thermal barrier and wear coating for internal combustion engines
US5603603A (en) * 1993-12-08 1997-02-18 United Technologies Corporation Abrasive blade tip
WO1997037800A1 (en) * 1996-04-10 1997-10-16 Tmt Research Development, Inc. Coating methods, coating products and coated articles
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
US6261643B1 (en) * 1997-04-08 2001-07-17 General Electric Company Protected thermal barrier coating composite with multiple coatings
US6355086B2 (en) * 1997-08-12 2002-03-12 Rolls-Royce Corporation Method and apparatus for making components by direct laser processing
US6190124B1 (en) * 1997-11-26 2001-02-20 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
US6013592A (en) * 1998-03-27 2000-01-11 Siemens Westinghouse Power Corporation High temperature insulation for ceramic matrix composites
US5997248A (en) * 1998-12-03 1999-12-07 Sulzer Metco (Us) Inc. Silicon carbide composition for turbine blade tips
US6335105B1 (en) * 1999-06-21 2002-01-01 General Electric Company Ceramic superalloy articles
US6294260B1 (en) * 1999-09-10 2001-09-25 Siemens Westinghouse Power Corporation In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
US6340286B1 (en) * 1999-12-27 2002-01-22 General Electric Company Rotary machine having a seal assembly
US6461746B1 (en) * 2000-04-24 2002-10-08 General Electric Company Nickel-base superalloy article with rhenium-containing protective layer, and its preparation
US6502304B2 (en) * 2001-05-15 2003-01-07 General Electric Company Turbine airfoil process sequencing for optimized tip performance
US6607852B2 (en) * 2001-06-27 2003-08-19 General Electric Company Environmental/thermal barrier coating system with silica diffusion barrier layer
US6656600B2 (en) * 2001-08-16 2003-12-02 Honeywell International Inc. Carbon deposit inhibiting thermal barrier coating for combustors
JP2003148103A (en) * 2001-11-09 2003-05-21 Mitsubishi Heavy Ind Ltd Turbine and its manufacturing method
US6733908B1 (en) * 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
US6929852B2 (en) * 2002-08-08 2005-08-16 Siemens Westinghouse Power Corporation Protective overlayer for ceramics
DE10313489A1 (en) * 2003-03-26 2004-10-14 Alstom Technology Ltd Thermal turbomachine with axial flow
CH696854A5 (en) * 2003-04-14 2007-12-31 Alstom Technology Ltd Thermal turbomachinery.
DE10337094A1 (en) * 2003-08-12 2005-03-03 Mtu Aero Engines Gmbh Inlet lining for gas turbines and method for producing the same
US7115319B2 (en) * 2003-10-08 2006-10-03 Honeywell International, Inc. Braze-based protective coating for silicon nitride
EP1715140A1 (en) * 2005-04-21 2006-10-25 Siemens Aktiengesellschaft Turbine blade with a cover plate and a protective layer on the cover plate
EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
US8512871B2 (en) * 2006-05-30 2013-08-20 United Technologies Corporation Erosion barrier for thermal barrier coatings
US8177494B2 (en) * 2009-03-15 2012-05-15 United Technologies Corporation Buried casing treatment strip for a gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279364A (en) * 1996-01-02 1997-10-28 General Electric Co <Ge> Heat insulating film having resistance against erosion and impact by granular material
US7510370B2 (en) * 2005-02-01 2009-03-31 Honeywell International Inc. Turbine blade tip and shroud clearance control coating system
JP2011507791A (en) * 2007-12-20 2011-03-10 ゼネラル・エレクトリック・カンパニイ How to repair a barrier coating
US20100129673A1 (en) * 2008-11-25 2010-05-27 Rolls-Royce Corporation Reinforced oxide coatings
US8124252B2 (en) * 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate

Also Published As

Publication number Publication date
DE102014112236A1 (en) 2015-04-02
CH708634A2 (en) 2015-03-31
CN104514583A (en) 2015-04-15
US20150093237A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
CA2893961C (en) Turbine blade with abradable or abrasive tip layer
US7510370B2 (en) Turbine blade tip and shroud clearance control coating system
US7473072B2 (en) Turbine blade tip and shroud clearance control coating system
CA2950787A1 (en) Abradable compositions and methods for cmc shrouds
US11078798B2 (en) Methods of deposition of thick environmental barrier coatings on CMC blade tips
JP6612096B2 (en) Abradable seal and method of forming abradable seal
US20140272249A1 (en) Slurry-based coating restoration
JP7154806B2 (en) Segmented environmental barrier coating system and method of forming same
JP2006347870A (en) Bond coat for corrosion resistant environmental barrier coating for silicon-containing substrate and process for preparing the same
CN106699234B (en) Composition and method for attaching thick environmental barrier coating to CMC component
JP2013212972A (en) Fiber reinforced barrier coating, method for applying barrier coating to component, and turbomachinery component
US20130236302A1 (en) In-situ gas turbine rotor blade and casing clearance control
US20110171039A1 (en) Blade arrangement of a gas turbine
JP2015531822A (en) Abrasive coatings made of materials with low surface roughness
JP2015067535A (en) Ceramic matrix composite component, turbine system and fabrication process
EP4140972A1 (en) Multilayer protective coating systems for gas turbine engine applications and methods for fabricating the same
EP4124612A1 (en) Method for fabricating protective coating systems for gas turbine engine applications
US11859287B2 (en) Protective coating systems for gas turbine engine applications and methods for fabricating the same
JP2020533257A (en) Self-supporting ceramic seal for gas turbines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191206