JP2015067517A - Method for manufacturing single crystal diamond - Google Patents

Method for manufacturing single crystal diamond Download PDF

Info

Publication number
JP2015067517A
JP2015067517A JP2013205154A JP2013205154A JP2015067517A JP 2015067517 A JP2015067517 A JP 2015067517A JP 2013205154 A JP2013205154 A JP 2013205154A JP 2013205154 A JP2013205154 A JP 2013205154A JP 2015067517 A JP2015067517 A JP 2015067517A
Authority
JP
Japan
Prior art keywords
single crystal
seed
substrate
crystal diamond
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013205154A
Other languages
Japanese (ja)
Other versions
JP6274492B2 (en
Inventor
山田 英明
Hideaki Yamada
英明 山田
茶谷原 昭義
Akiyoshi Chayahara
昭義 茶谷原
杢野 由明
Yoshiaki Mokuno
由明 杢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013205154A priority Critical patent/JP6274492B2/en
Publication of JP2015067517A publication Critical patent/JP2015067517A/en
Application granted granted Critical
Publication of JP6274492B2 publication Critical patent/JP6274492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal diamond substrate, which is obtained by using a plurality of single crystal diamond substrates as raw materials and joining them on the side surfaces thereof having a length of more than 20 mm.SOLUTION: The method for manufacturing a single crystal diamond substrate comprises the following steps of: (1) placing a plurality of single crystal diamond seed substrates having the same crystallographic properties, the outer peripheral side surface of the main growth surface of the seed substrate shaped so that an angle between a ridge line and off direction of the seed substrate is the same among the seed substrates and the ridge line having a length of more than 20 mm on the shaped side surface, in such a state that both side surfaces of the shaped seed substrates in the longitudinal direction are contacted to each other on a support, the off directions of the seed substrates are coincident respectively and the main growth surfaces of the seed substrates are exposed; and (2) growing a single crystal diamond on the main growth surfaces of the plurality of seed substrates placed on the support in the (1) step to join the plurality of seed substrates.

Description

本発明は、単結晶ダイヤモンドの製造方法に関する。   The present invention relates to a method for producing single crystal diamond.

半導体として優れた特性を有するダイヤモンドは、高周波・高出力デバイス、受光デバイスなど半導体デバイス用の材料として期待されている。特に、ダイヤモンドを半導体材料として実用化するためには、大面積の均質な単結晶ダイヤモンドからなるウェハが必要である。   Diamond having excellent characteristics as a semiconductor is expected as a material for semiconductor devices such as high-frequency / high-power devices and light-receiving devices. In particular, in order to put diamond to practical use as a semiconductor material, a wafer composed of a large area of homogeneous single crystal diamond is required.

従来、単結晶ダイヤモンドの成長は、主に高圧合成法、気相合成法などの方法によって行われている。これらの方法の内で、高圧合成法は、1cm角程度の面積を有する基板の製造が限界とされており、これ以上の面積を有する単結晶基板を製造する方法としては期待できない。また、5mm角程度以上の面積を有する単結晶ダイヤモンド基板を入手することは困難であり、その面積を拡大することも容易ではない。   Conventionally, single crystal diamond is grown mainly by a method such as a high pressure synthesis method or a gas phase synthesis method. Among these methods, the high-pressure synthesis method is limited to the production of a substrate having an area of about 1 cm square, and cannot be expected as a method for producing a single crystal substrate having an area larger than this. In addition, it is difficult to obtain a single crystal diamond substrate having an area of about 5 mm square or more, and it is not easy to enlarge the area.

このため、大面積の単結晶ダイヤモンドを作製する方法として、同一表面上に並べた複数のダイヤモンド結晶上に気相法でダイヤモンド結晶を成長させて接合することによって、大型のダイヤモンド結晶とする、いわゆるモザイク状ダイヤモンドの作製技術が開発されている(非特許文献1)。   For this reason, as a method for producing a large-area single crystal diamond, a diamond crystal is grown on a plurality of diamond crystals arranged on the same surface by a vapor phase method and bonded to form a large diamond crystal. A technique for producing mosaic diamond has been developed (Non-patent Document 1).

モザイク状ダイヤモンドを製造する際に、接合すべき基材として単結晶ダイヤモンドのみを用いる場合と、単結晶ダイヤモンドと多結晶ダイヤモンド又はそれ以外の材料を用いる場合があるが、いずれの場合にも、これらの基材の上に気相法によってダイヤモンドを成長させることによって、基材となるダイヤモンドを接合している。   When manufacturing mosaic diamond, there are cases where only single crystal diamond is used as the base material to be joined, and there are cases where single crystal diamond and polycrystalline diamond or other materials are used. The diamond as the base material is bonded to the base material by growing the diamond by a vapor phase method.

これらの方法の内で、単結晶ダイヤモンド基板のみを用い、これを接合して大型の単結晶ダイヤモンドを得る方法としては、例えば、接合しようとする単結晶ダイヤモンド基板の間隔や高さの差を所定の範囲内に収め、その上に一体のダイヤモンド結晶を気相成長させることによって、基板と基板の境界部に成長する異常成長粒子の発生を抑制して大型ダイヤモンド結晶を製造する方法が報告されている(特許文献1)。   Among these methods, only a single crystal diamond substrate is used and bonded to obtain a large single crystal diamond. For example, a gap between single crystal diamond substrates to be bonded and a difference in height are predetermined. A method for producing a large diamond crystal by suppressing the generation of abnormally grown particles growing at the boundary between the substrate by vapor-phase-growing an integral diamond crystal on the substrate is reported. (Patent Document 1).

更に、基材とする単結晶ダイヤモンドのオフ角やオフ方向を適切に選択し、この単結晶ダイヤモンドを複数個並べて配置し、その後、気相合成法によって隣り合う単結晶の方向へ優先的にダイヤモンド結晶を拡大し、接合を促す方法も提案されている(特許文献2)。   Furthermore, the off-angle and off-direction of the single crystal diamond used as the base material are appropriately selected, and a plurality of the single crystal diamonds are arranged side by side, and then the diamond is preferentially arranged in the direction of the adjacent single crystal by the vapor phase synthesis method. A method of enlarging crystals and promoting bonding has also been proposed (Patent Document 2).

更に、接合しようとする側面としてヘキ開面を用いる方法、接合しようとする側面に角度を設ける方法等も知られている(特許文献3及び4)。   Furthermore, a method using a cleaved surface as a side surface to be joined, a method of providing an angle on the side surface to be joined, and the like are also known (Patent Documents 3 and 4).

ところで、気相合成法を用いたホモエピタキシャル成長によってダイヤモンド基板上に単結晶ダイヤモンドを成長させる方法は、例えば、半導体グレードの高品質ダイヤモンドの合成に適用されている。しかしながら、気相合成法によるダイヤモンドのエピタキシャル成長においては、多数の異常成長粒子や成長丘などの欠陥が発生し易く、大面積の単結晶ダイヤモンドの合成は容易ではない。   By the way, a method of growing single crystal diamond on a diamond substrate by homoepitaxial growth using a vapor phase synthesis method is applied to, for example, synthesis of semiconductor-grade high-quality diamond. However, in the epitaxial growth of diamond by the vapor phase synthesis method, defects such as a large number of abnormally grown particles and growth hills are likely to occur, and it is not easy to synthesize large-area single crystal diamond.

同様に、基板表面上の欠陥は成長層にも引き継がれ、その位置を基板毎に制御することは不可能であるため、成長層の性質を統一することを妨げる原因の1つとなっている。更に、成長層の性質は、成長前の基板中に存在するひずみにも影響を受けることが知られている(非特許文献2)。   Similarly, defects on the surface of the substrate are inherited by the growth layer, and it is impossible to control the position of each substrate for each substrate, which is one of the causes that hinder the unification of the properties of the growth layer. Furthermore, it is known that the properties of the growth layer are affected by strain existing in the substrate before growth (Non-patent Document 2).

通常、複数のダイヤモンド結晶上に気相法でダイヤモンド結晶を成長させてモザイク状ダイヤモンドを作製する方法では、接合しようとするダイヤモンド基板のオフ角を同一とみなす閾値は最低でも1度以上とされている。しかしながら、1度でもオフ角が異なると同一の条件では成長層の品質が異なるものとなり、この方法で接合されたモザイク基板上には、接合された単結晶領域毎に品質の異なる単結晶層が成長することになる。また、前述したオフ角やオフ方向といった結晶面の方向が異なる基板を積極的に利用し、これら同士を接合してモザイク基板を製造する方法(特許文献2)についても同様の問題がある。   Usually, in the method of producing a mosaic diamond by growing diamond crystals on a plurality of diamond crystals by a vapor phase method, the threshold for considering the off angles of the diamond substrates to be joined to be the same is at least 1 degree or more. Yes. However, if the off-angle is different even once, the quality of the growth layer will be different under the same conditions, and on the mosaic substrate bonded by this method, single crystal layers having different qualities for each bonded single crystal region are present. Will grow. In addition, there is a similar problem in the method (Patent Document 2) in which a mosaic substrate is manufactured by actively using substrates having different crystal plane directions such as the off angle and the off direction described above.

また、ダイヤモンドを半導体デバイス用の材料として用いる際には、通常、不純物を意図的に添加して基板(ダイヤモンドウェハ)上にダイヤモンドを成長させるが、その際の不純物の成長層への取り込み率やそれに伴う結晶性の変化は、基板の性質に依存することが知られている(非特許文献3)。従って、上記した方法を用いて大面積を有するダイヤモンドウェハが得られたとしても、オフ角、オフ方向といった結晶面の方向、ひずみや欠陥の分布等が不均一なウェハであれば、その上に作製されるデバイスは特性が不均一となることが予想される。従って、このような性質の揃っていないモザイクウェハを基板として使用したとしても、実効的に使用に耐えうるデバイスが取り出される率が極めて低いことは明白である。更に、モザイク状ダイヤモンド基板は、デバイス作製のための処理に耐えうる様に強度を持つ必要があるため、接合した後に更にその上へ積み増す必要が生ずる場合がある。その際にも接合すべき基材として用いた単結晶ダイヤモンドの性質が異なると、均質に積み増すことが困難となる。   In addition, when diamond is used as a material for a semiconductor device, usually, impurities are intentionally added to grow diamond on a substrate (diamond wafer). It is known that the change in crystallinity accompanying this depends on the properties of the substrate (Non-patent Document 3). Therefore, even if a diamond wafer having a large area is obtained by using the above-described method, if the wafer has non-uniform crystal plane direction such as off-angle and off-direction, strain and defect distribution, etc. The fabricated device is expected to have non-uniform characteristics. Therefore, it is clear that even when a mosaic wafer having such properties is used as a substrate, the rate at which devices that can effectively withstand use are taken out is extremely low. Furthermore, the mosaic diamond substrate needs to have strength so that it can withstand the processing for device fabrication, and thus it may be necessary to further pile up after joining. Even in this case, if the properties of the single crystal diamond used as the base material to be joined are different, it becomes difficult to accumulate uniformly.

以上の様な困難さから、従来のモザイク状ダイヤモンド基板は、接合境界に沿って異常成長を抑制することが困難で、当該境界が滑らかに接合されておらず、接合された基板がヘキ開によって破壊することが開示されており(非特許文献1)、測定するまでもなく結晶性も粗悪である。   Due to the above difficulties, it is difficult for the conventional mosaic diamond substrate to suppress abnormal growth along the bonding boundary, and the boundary is not smoothly bonded. Disruption is disclosed (Non-patent Document 1), and the crystallinity is poor without being measured.

このような問題点を解決することを目的とした、大面積のダイヤモンド基板を製造する方法として、イオン注入を用いた自立膜作製方法を利用した方法が知られている(特許文献5)。この様な方法を用いれば、オフ角・オフ方向が揃った基板同士を容易に接合できると期待される。   As a method of manufacturing a large-area diamond substrate for the purpose of solving such problems, a method using a self-supporting film manufacturing method using ion implantation is known (Patent Document 5). If such a method is used, it is expected that substrates having the same off angle and off direction can be easily joined together.

しかしながら、本文献には複数の単結晶ダイヤモンド間のオフ方向が一致していることは記載されているものの、各々の単結晶ダイヤモンドのオフ方向については何ら記載されていない。   However, although it is described in this document that the off directions between a plurality of single crystal diamonds coincide with each other, there is no description about the off direction of each single crystal diamond.

例えば、特許文献5に記載される方法は大面積ダイヤモンド基板の製造方法としては優れているものの、接合する基板同士でオフ方向の方向の関係が適切で無い場合、得られた単結晶ダイヤモンド基板の接合領域に対応する部分は完全に滑らかに被覆されているとはいい難く、実用性に乏しいという問題点が生じている。特許文献6には、面方位が相互になす角度が5度以内に揃える製造方法が開示されているが、実際は、例えば、特許文献4にある様に、接合する基板同士のオフ方向の関係が5度ずれていると、接合領域の被覆の完全性が低い。この様な場合、研磨などの加工プロセスを実施することが困難となり、半導体ウェハとして使用することが困難となる。   For example, although the method described in Patent Document 5 is excellent as a method for manufacturing a large-area diamond substrate, if the relationship between the off-direction directions is not appropriate between the substrates to be bonded, the obtained single crystal diamond substrate It is difficult to say that the portion corresponding to the joining region is completely smoothly covered, and there is a problem that the practicality is poor. Patent Document 6 discloses a manufacturing method in which the angles formed by the plane orientations are aligned within 5 degrees. However, in actuality, for example, as described in Patent Document 4, the relationship between the off-directions of substrates to be bonded is disclosed. If it is shifted by 5 degrees, the covering area is not completely covered. In such a case, it becomes difficult to carry out a processing process such as polishing, and it becomes difficult to use it as a semiconductor wafer.

特開平7−48198号公報JP 7-48198 A 特開2006−306701号公報JP 2006-306701 A 特公平6−53638号公報Japanese Patent Publication No. 6-53638 EP0687747A1EP0687747A1 特開2010−150069号公報JP 2010-150069 A 特許第2654232号Japanese Patent No. 2654232

目黒、西林、今井、SEIテクニカルレビュー163,53 (2003).Meguro, Nishibayashi, Imai, SEI Technical Review 163, 53 (2003). P.S.Weiser,S.Prawer,K.W.Nugent,A.A.Bettiol,L.I.Kostidis,D.N.Jamieson,Diamond and Related Materials 5(1996),272−275.P. S. Weiser, S.M. Prawer, K.M. W. Nugent, A.M. A. Bettiol, L.M. I. Kostidis, D.C. N. Jamison, Diamond and Related Materials 5 (1996), 272-275. K.Arima,H.Miyatake,T.Teraji,and T.Ito,Journal of Crystal Growth 309(2007),145−152.K. Arima, H .; Miyatake, T .; Teraji, and T.A. Ito, Journal of Crystal Growth 309 (2007), 145-152. Hideaki Yamada,Akiyoshi Chayahara,Yoshiaki Mokuno,Nobuteru Tsubouchi,Shin−ichi Shikata,Diamond and Related Materials,Volume 33,March 2013,Pages27−31Hideaki Yamada, Akiyoshi Chayahara, Yoshiki Mokuno, Nobuteru Tsubuchi, Shin-ichi Shikata, Diamond and Related Materials, Volume 33, Volume 33, Volume 33

以上の様な背景技術から、単結晶ダイヤモンドからなる大面積の基板については、その要望が高いにもかかわらず、接合を用いたモザイク状ダイヤモンド基板であっても、接合領域が20mmを超える長さを有する単結晶ダイヤモンドを種基板とし、これらを接合する方法については、何ら報告されていない。   From the background art as described above, a large area substrate made of single-crystal diamond is highly demanded, but even with a mosaic diamond substrate using bonding, the bonding region has a length exceeding 20 mm. There is no report on a method of bonding single crystal diamond having a seed substrate and bonding them.

本発明者は、斯かる目的を達成すべく鋭意研究を重ねた結果、単結晶ダイヤモンドを製造する際の材料となる、同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板であって、それぞれの種基板間での該種基板の稜線と該種基板のオフ方向のなす角度を調整し、該種基板の主たる成長面の外周側面が整形加工され、且つ整形加工された側面に基づく稜線の長さが20mmを超える複数の種基板を、支持台上に、整形加工された該種基板の長さ方向の側面同士が接触し、それぞれの該種基板のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置することで、接合部位が20mmを超える種基板同士を接合させて単結晶ダイヤモンドを製造することが可能となった。   As a result of intensive studies to achieve such an object, the present inventor is a plurality of single crystal diamond seed substrates having the same crystallographic properties, which are materials for producing single crystal diamond, The angle between the seed substrate ridge line between each seed substrate and the off direction of the seed substrate is adjusted, the outer peripheral side surface of the main growth surface of the seed substrate is shaped, and the ridge line is based on the shaped side surface A plurality of seed substrates having a length of more than 20 mm, the side surfaces in the length direction of the seed substrates that have been shaped are in contact with each other on a support base, and the off-directions of the respective seed substrates are matched, and the By placing the seed substrate so that the main growth surface of the seed substrate is exposed, it has become possible to produce single crystal diamond by joining the seed substrates having a joint portion exceeding 20 mm.

本発明は、斯かる知見に基づいて完成されたものであり、以下に示す態様の発明を広く包含するものである。   The present invention has been completed based on such findings, and broadly encompasses the inventions of the embodiments shown below.

項1 下記の工程を含む単結晶ダイヤモンド基板の製造方法:
(1)同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板であって、該種基板の稜線と該種基板のオフ方向のなす角度が、それぞれの種基板間で全て同一となるように、該種基板の主たる成長面の外周側面が整形加工され、且つ整形加工された側面に基づく稜線の長さが20mmを超える、複数の単結晶ダイヤモンド種基板を、支持台上に、整形加工された該種基板の長さ方向の側面同士が接触し、それぞれの該種基板のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置する工程、
(2)上記(1)工程で支持台上に載置された複数の種基板の主たる成長面上に単結晶ダイヤモンドを成長させ、該複数の種基板を接合する工程。
Item 1 A method for producing a single crystal diamond substrate comprising the following steps:
(1) A plurality of single crystal diamond seed substrates having the same crystallographic properties, and the angles formed by the ridgelines of the seed substrate and the off direction of the seed substrate are all the same between the seed substrates. In addition, a plurality of single crystal diamond seed substrates on which the outer peripheral side surface of the main growth surface of the seed substrate is shaped and the length of the ridge line based on the shaped side surface exceeds 20 mm are shaped on the support base. A step of placing the seed substrates in such a manner that the side surfaces in the length direction of the seed substrates are in contact with each other, the off-directions of the seed substrates are matched, and the main growth surface of the seed substrate is exposed;
(2) A step of growing single crystal diamond on a main growth surface of a plurality of seed substrates placed on a support table in the step (1) and bonding the plurality of seed substrates.

項2 前記工程(1)における同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の稜線と該種基板のオフ方向のなす角が90度未満となるように該種基板の主たる成長面の外周側面が整形加工された、項1に記載の単結晶ダイヤモンド基板の製造方法。   Item 2 The main growth surface of the seed substrate so that the angle formed by the ridgelines of the single crystal diamond seed substrate having the same crystallographic properties in the step (1) and the off direction of the seed substrate is less than 90 degrees Item 2. The method for producing a single crystal diamond substrate according to Item 1, wherein the outer peripheral side surface of the substrate is shaped.

項3 前記工程(1)における同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の稜線と該種基板のオフ方向のなす角が18度以上となるように該種基板の主たる成長面の外周側面が整形加工された、項1又は2に記載の単結晶ダイヤモンド基板の製造方法。   Item 3 The main growth surface of the seed substrate so that the angle formed by the ridgelines of the single crystal diamond seed substrate having the same crystallographic properties in the step (1) and the off direction of the seed substrate is 18 degrees or more. Item 3. The method for producing a single crystal diamond substrate according to Item 1 or 2, wherein the outer peripheral side surface of the substrate is shaped.

項4 同一の結晶学的性質が、オフ方向及び/又はオフ角である項1〜3の何れか1項に記載の単結晶ダイヤモンド基板の製造方法。   Item 4 The method for producing a single crystal diamond substrate according to any one of Items 1 to 3, wherein the same crystallographic property is an off direction and / or an off angle.

項5 項1〜4何れか1項に記載の方法によって得られる単結晶ダイヤモンド基板。   Item 5 A single crystal diamond substrate obtained by the method according to any one of Items 1 to 4.

以下に、本発明の単結晶ダイヤモンド製造方法が発揮する効果について詳述するが、本発明は、以下のすべての効果を有する発明に限定されないのは言うまでもない。   Although the effect which the single-crystal diamond manufacturing method of this invention exhibits below is explained in full detail below, it cannot be overemphasized that this invention is not limited to the invention which has all the following effects.

本発明の製造方法によると、複数の単結晶ダイヤモンド結晶を種基板としてもこれらを接合する際に接合部位が20mmを超えるものであっても、これらを接合させることができ、より大面積のダイヤモンド結晶基板を製造することができる。   According to the production method of the present invention, even when a plurality of single crystal diamond crystals are used as seed substrates, even when the bonding sites exceed 20 mm, they can be bonded, and a diamond having a larger area can be bonded. Crystal substrates can be manufactured.

本発明の製造方法によると、従来よりも基板の面積を拡大することが可能となり、一枚の基板当たりから作製される、工具、窓材料、電子素子等の数を増やせるため、低コストで作製が可能となる。   According to the manufacturing method of the present invention, it becomes possible to enlarge the area of the substrate as compared with the conventional method, and it is possible to increase the number of tools, window materials, electronic elements, etc. manufactured from one substrate, so that it is manufactured at low cost. Is possible.

単結晶ダイヤモンド基板の製造方法
本発明に係る単結晶ダイヤモンド基板の製造方法は、下記の工程1及び工程2を含む。
Method for Manufacturing Single Crystal Diamond Substrate A method for manufacturing a single crystal diamond substrate according to the present invention includes the following Step 1 and Step 2.

(1)同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板であって、該種基板の稜線と該種基板のオフ方向のなす角度が、それぞれの種基板間で全て同一となるように、該種基板の主たる成長面の外周側面が整形加工され、且つ整形加工された側面に基づく稜線の長さが20mmを超える、複数の単結晶ダイヤモンド種基板を、支持台上に、整形加工された該種基板の長さ方向の側面同士が接触し、それぞれの該種基板のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置する工程、 (1) A plurality of single crystal diamond seed substrates having the same crystallographic properties, and the angles formed by the ridgelines of the seed substrate and the off direction of the seed substrate are all the same between the seed substrates. In addition, a plurality of single crystal diamond seed substrates on which the outer peripheral side surface of the main growth surface of the seed substrate is shaped and the length of the ridge line based on the shaped side surface exceeds 20 mm are shaped on the support base. A step of placing the seed substrates in such a manner that the side surfaces in the length direction of the seed substrates are in contact with each other, the off-directions of the seed substrates are matched, and the main growth surface of the seed substrate is exposed;

(2)上記(1)工程で支持台上に載置された複数の種基板の主たる成長面上に単結晶ダイヤモンドを成長させ、該複数の種基板を接合する工程。 (2) A step of growing single crystal diamond on a main growth surface of a plurality of seed substrates placed on a support table in the step (1) and bonding the plurality of seed substrates.

<工程1について>
本発明に係る単結晶ダイヤモンド基板の製造方法における工程1は、同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板であって、該種基板の稜線と該種基板のオフ方向のなす角度が、それぞれの種基板間で全て同一となるように、該種基板の主たる成長面の外周側面が整形加工され、且つ整形加工された側面に基づく稜線の長さが20mmを超える、複数の単結晶ダイヤモンド種基板を、支持台上に、整形加工された該種基板の長さ方向の側面同士が接触し、それぞれの該種基板のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置する工程である。以下に、上記工程1について詳述する。
<About Step 1>
Step 1 in the method for producing a single crystal diamond substrate according to the present invention includes a plurality of single crystal diamond seed substrates having the same crystallographic properties, wherein an angle formed between the ridge line of the seed substrate and the off direction of the seed substrate However, the outer peripheral side surface of the main growth surface of the seed substrate is shaped so that all of the seed substrates are the same, and the length of the ridge line based on the shaped side surface exceeds 20 mm. The crystal diamond seed substrate is placed on a support base, the side surfaces in the length direction of the shaped seed substrate are in contact with each other, the off directions of the seed substrates are aligned, and the main growth surface of the seed substrate is It is a process of mounting so that it may be in an exposed state. Below, the said process 1 is explained in full detail.

[同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板]
同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の入手方法は、特に限定されず、市販の単結晶ダイヤモンド基板から同一の結晶学的性質を有する複数の単結晶ダイヤモンド基板を選別するか、公知のダイヤモンド製造方法を適宜採用し、同一の結晶学的性質を有する単結晶ダイヤモンド基板を製造すればよく、特に限定はされない。
[Multiple single crystal diamond seed substrates having the same crystallographic properties]
The method for obtaining a plurality of single crystal diamond seed substrates having the same crystallographic properties is not particularly limited, and is it possible to select a plurality of single crystal diamond substrates having the same crystallographic properties from commercially available single crystal diamond substrates? Any known diamond production method may be employed as appropriate to produce a single crystal diamond substrate having the same crystallographic properties, and is not particularly limited.

例えば、同一の結晶学的性質を有する複数の単結晶ダイヤモンド基板を得る方法として、以下に示すクローン基板の作製技術が挙げられる。この作製技術は、ダイヤモンド単結晶親基板の表面近傍にイオン注入して非ダイヤモンド層を形成し、次いで、該非ダイヤモンド層をエッチングして、該非ダイヤモンド層より上層の単結晶ダイヤモンド層を分離する工程によって子基板を得る技術である。具体的には、特許第4340881号、特開平2007―112637、WO2011/074599、特開2010−150069号公報等の記載を参照すればよい。   For example, as a method for obtaining a plurality of single crystal diamond substrates having the same crystallographic properties, a clone substrate manufacturing technique shown below can be cited. This manufacturing technique is a process in which a non-diamond layer is formed by ion implantation near the surface of a diamond single crystal parent substrate, and then the non-diamond layer is etched to separate a single-crystal diamond layer above the non-diamond layer. This is a technique for obtaining a sub board. Specifically, descriptions in Japanese Patent No. 4340881, Japanese Patent Application Laid-Open No. 2007-112737, WO 2011/074599, Japanese Patent Application Laid-Open No. 2010-150069, and the like may be referred to.

この技術によって得られる子基板は、親基板と同一の結晶学的性質を有しているため、同一の親基板に対して上述の工程を繰り返し採用することにより、同一の結晶学的性質を有する複数の子基板、即ちクローン基板を効率的に得ることができる。   Since the child substrate obtained by this technique has the same crystallographic properties as the parent substrate, it has the same crystallographic properties by repeatedly adopting the above steps for the same parent substrate. A plurality of child boards, that is, clone boards can be obtained efficiently.

このような複数の子基板(クローン基板)を、本発明の製造方法における、同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板とすればよい。   Such a plurality of sub-substrates (clone substrates) may be a plurality of single-crystal diamond seed substrates having the same crystallographic properties in the production method of the present invention.

なお、上記結晶学的性質とは、例えばオフ角、オフ方向等の結晶面の方向;ひずみ、欠陥の分布等が挙げられる。好ましくは、オフ角及び/又はオフ方向である。   The crystallographic properties include, for example, crystal plane directions such as off angle and off direction; strain, defect distribution, and the like. The off angle and / or the off direction are preferable.

[種基板の主たる成長面の外周側面の整形加工]
上記複数の単結晶ダイヤモンド種基板は、それぞれの種基板間で全て同一となるように、該種基板の主たる成長面の外周側面が整形加工されている。ここで、同一とは、2度程度の角度のズレを許容範囲とする。
[Shaping of the outer peripheral side of the main growth surface of the seed substrate]
In the plurality of single crystal diamond seed substrates, the outer peripheral side surfaces of the main growth surfaces of the seed substrates are shaped so as to be the same between the seed substrates. Here, the term “same” means that an angle deviation of about 2 degrees is an allowable range.

上述の種基板の主たる成長面とは、斯かる種基板中で最も面積の大きい面と解することができる。或いは気相合成法等の方法で単結晶ダイヤモンドを成長させる際に、放電領域に接する面を主たる成長面としてもよい。例えば、上記[同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の入手]にて例示した、クローン基板の製造方法によって得た複数の単結晶ダイヤモンド種基板であれば、親基板から分離された面又はその対面である。   The main growth surface of the seed substrate described above can be understood as the surface having the largest area in such a seed substrate. Alternatively, when the single crystal diamond is grown by a method such as a vapor phase synthesis method, a surface in contact with the discharge region may be a main growth surface. For example, a plurality of single crystal diamond seed substrates obtained by the method for producing a clone substrate exemplified in [Acquisition of multiple single crystal diamond seed substrates having the same crystallographic properties] are separated from the parent substrate. Or the opposite face.

上述の外周側面とは、上述の主たる成長面又はその対面以外の面であり、複数存在してもよい。整形加工に供される外周側面は、これらの面のうち少なくとも1つの面であればよい。   The above-described outer peripheral side surface is a surface other than the above-described main growth surface or the opposite surface, and a plurality of the outer peripheral side surfaces may exist. The outer peripheral side surface used for shaping may be at least one of these surfaces.

上述の稜線とは上述の主たる成長面の外周側面が整形加工工程に供されて得られる側面と、上述の主たる成長面又はその対面との交線を意味する。   The above-mentioned ridge line means an intersection line between the side surface obtained by subjecting the outer peripheral side surface of the main growth surface to the shaping process and the main growth surface or the opposite surface.

整形加工された外周側面に基づく稜線の長さは、20mmを超える。また、このような外周側面を、長さ方向の外周側面ということがある。   The length of the ridge line based on the shaped outer peripheral side surface exceeds 20 mm. Moreover, such an outer peripheral side surface may be called the outer peripheral side surface of a length direction.

該種基板のオフ方向と該種基板の稜線のなす角度は特に限定はされないが、通常は90度未満とすればよい。90度とした場合には、20mmを超える接合面で、複数の種基板を接合することができないからである。   The angle formed between the off direction of the seed substrate and the ridge line of the seed substrate is not particularly limited, but it may be usually less than 90 degrees. This is because when the angle is 90 degrees, a plurality of seed substrates cannot be bonded at a bonding surface exceeding 20 mm.

また、上述の角度の下限値は、特に限定はされないが、通常は0度以上とすればよく、好ましくは18度以上である。   Further, the lower limit value of the angle is not particularly limited, but is usually set to 0 degree or more, and preferably 18 degrees or more.

なお、前記種基板のオフ方向と該種基板の稜線のなす角度が90度から180度である場合は、本発明においてはその捕角に換算したものとして定義される。なお、この様に換算した本願発明にて規定する角度が、負の角度又は180度を超える場合となっても、これが0度から90度の間に換算されることは言うまでもない。   When the angle between the off direction of the seed substrate and the ridge line of the seed substrate is 90 degrees to 180 degrees, the angle is defined as the catch angle in the present invention. In addition, even if the angle prescribed | regulated by this invention converted in this way exceeds a negative angle or 180 degree | times, it cannot be overemphasized that this is converted between 0 degree | times and 90 degree | times.

具体的に供される整形加工の方法は特に限定はされず、例えば、スカイフ研磨等の研磨加工や、レーザーカット等の切断加工等の方法を採用したものが挙げられる。   The shaping method specifically provided is not particularly limited, and examples thereof include a method employing a polishing process such as Skyf polishing or a cutting process such as laser cutting.

なお、後述する様に、上述の同一の結晶学的性質を有する複数の種基板は、該種基板の整形加工された長さ方向の側面同士が接触するように載置するので、該側面がほぼ平面となるように研磨等によって整形加工されていることが好ましい。   As will be described later, the plurality of seed substrates having the same crystallographic properties described above are placed so that the side surfaces in the longitudinal direction of the seed substrate are in contact with each other. It is preferably shaped by polishing or the like so as to be substantially flat.

また、同一の結晶学的性質を有する複数の種基板のオフ方向と、整形加工に供された外周側面を、後述するように該種基板の長さ方向の側面同士が接触し、且つ該種基板同士のオフ方向が一致する限りにおいて、該種基板の主たる成長面又はその対面と整形加工に供されて得られる該外周側面が、必ずしも垂直の関係となるようにされている必要は無く、例えば両者のなす角度が45度〜135度程度の角度を有していてもよい。   Further, the side surfaces in the length direction of the seed substrate are in contact with each other between the off direction of the plurality of seed substrates having the same crystallographic properties and the outer peripheral side surface subjected to the shaping process, as described later. As long as the off-directions of the substrates coincide with each other, the main growth surface of the seed substrate or the opposite surface thereof and the outer peripheral side surface obtained by shaping are not necessarily in a vertical relationship, For example, the angle formed by the two may have an angle of about 45 degrees to 135 degrees.

なお、上述の同一の結晶学的性質を有する複数の種基板を、上述のようなクローン基板の作製技術によって得た子基板を採用する場合は、外周側面を上述した方法によって適宜整形加工し、これを親基板として作製されたクローン基板を本発明の整形加工後の同一の結晶学的性質を有する複数の種基板とすることもできる。   In addition, when adopting a plurality of seed substrates having the same crystallographic properties as described above, a child substrate obtained by a clone substrate production technique as described above, the outer peripheral side surface is appropriately shaped by the method described above, A clone substrate produced using this as a parent substrate can be used as a plurality of seed substrates having the same crystallographic properties after the shaping process of the present invention.

なお、この場合、上述の親基板の主たる成長面の外周側面のうち、少なくとも一対の対面の距離が一定となるように整形加工される必要があり、例えば、少なくとも一対の対面が平行となるように整形加工されることが好ましい。   In this case, it is necessary to shape the outer peripheral side surfaces of the main growth surface of the parent substrate so that at least the distance between the pair of facing surfaces is constant. For example, at least the pair of facing surfaces are parallel to each other. It is preferable to be formed into a shape.

また、複数の種基板の厚さは、同一であっても異なっていてもよい。厚さは上述のクローン基板の取得技術を適宜採用することによって、得ることができる。又は、研磨処理に供して、厚さを適宜調整することも可能である。   Further, the thicknesses of the plurality of seed substrates may be the same or different. The thickness can be obtained by appropriately employing the above-described clone substrate acquisition technique. Alternatively, the thickness can be appropriately adjusted by polishing.

なお、種基板の厚さが同一とは、全ての種基板の厚さが完全に同一でなくてもよく、厚さの差が、20μm程度以下の範囲内であれば、同一とみなすことができる。   It should be noted that the thickness of the seed substrate is not necessarily the same for all the seed substrates, and may be regarded as the same if the difference in thickness is within a range of about 20 μm or less. it can.

[複数の種基板の支持台上での載置]
本発明の製造方法における工程1では、主たる成長面の外周側面が整形加工された上述の複数の種基板を、支持台上に、互いの整形加工された該種基板の長さ方向の側面同士が接触し、該種基板の結晶面のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置する。
[Placing multiple seed substrates on a support stand]
In step 1 in the manufacturing method of the present invention, the plurality of seed substrates described above whose outer peripheral side surfaces of the main growth surface are shaped are placed on the support base, and the lengthwise side surfaces of the seed substrates that have been shaped with respect to each other. Are placed so that the crystal plane of the seed substrate is aligned with the off direction, and the main growth surface of the seed substrate is exposed.

なお、上述の整形加工された単結晶ダイヤモンド種基板において、整形加工された外周側面に平行な側面を有している場合は、その平行な側面同士、又は前記整形加工された外周側面と、該側面に平行な側面を接触させてもよい。   In addition, in the above-mentioned shaped single crystal diamond seed substrate, when having a side surface parallel to the shaped outer peripheral side surface, the parallel side surfaces or the shaped outer peripheral side surface, A side surface parallel to the side surface may be contacted.

<工程2について>
本発明に係る製造方法における工程2は、上記(1)工程で支持台上に載置された複数の種基板の主たる成長面上に単結晶ダイヤモンドを成長させ、該複数の種基板を接合する工程である。
<About step 2>
In step 2 of the manufacturing method according to the present invention, single crystal diamond is grown on the main growth surfaces of the plurality of seed substrates placed on the support base in the step (1), and the plurality of seed substrates are joined. It is a process.

この工程によって、複数のダイヤモンド種基板は接合される。また、接合された種基板上に、更に種基板上に100〜1000μm程度のダイヤモンド結晶の層が形成されていてもよい。斯かる層の結晶学的性質は、複数の種基板の結晶学的性質と同一となる。   By this process, the plurality of diamond seed substrates are bonded. In addition, a diamond crystal layer of about 100 to 1000 μm may be further formed on the bonded seed substrate. The crystallographic properties of such a layer are the same as the crystallographic properties of the plurality of seed substrates.

単結晶ダイヤモンドを成長させる方法は、特に限定されないが、例えば気相合成法が挙げられる。気相合成法については特に限定されることはなく、例えば、マイクロ波プラズマCVD法、熱フィラメント法、直流放電法等の公知の方法を適用できる。   The method for growing the single crystal diamond is not particularly limited, and examples thereof include a vapor phase synthesis method. The vapor phase synthesis method is not particularly limited, and for example, a known method such as a microwave plasma CVD method, a hot filament method, a direct current discharge method, or the like can be applied.

特に、マイクロ波プラズマCVD法によれば、高純度なダイヤモンド単結晶膜を成長させることができる。具体的な製造条件については特に限定はなく、公知の条件に従って、ダイヤモンド単結晶を成長させればよい。原料ガスとしては、例えば、メタンガスと水素ガスの混合ガスを用いることができる。具体的なダイヤモンド成長条件の一例を示すと、反応ガスとして用いる水素及びメタンの混合気体では、メタンは、水素供給量1モルに対して、0.01〜0.33モル程度となる比率で供給することが好ましい。また、プラズマCVD装置内の圧力は、通常、13.3〜40kPa程度とすればよい。マイクロ波としては、通常、2.45GHz、915MHz等の工業および科学用に許可された周波数のマイクロ波が使用される。マイクロ波電力は、特に限定的ではないが、通常、0.5〜5kW程度とればよい。この様な範囲内において、例えば、基板(単結晶ダイヤモンド子基板)の温度が900〜1300℃程度、好ましくは900〜1100℃程度となるように各条件を設定すればよい。   In particular, according to the microwave plasma CVD method, a high-purity diamond single crystal film can be grown. Specific manufacturing conditions are not particularly limited, and a diamond single crystal may be grown according to known conditions. As the source gas, for example, a mixed gas of methane gas and hydrogen gas can be used. As an example of specific diamond growth conditions, in a mixed gas of hydrogen and methane used as a reaction gas, methane is supplied at a ratio of about 0.01 to 0.33 mol with respect to 1 mol of hydrogen supply. It is preferable to do. Moreover, what is necessary is just to usually set the pressure in a plasma CVD apparatus to about 13.3-40 kPa. As the microwave, a microwave having a frequency permitted for industrial and scientific use such as 2.45 GHz and 915 MHz is usually used. The microwave power is not particularly limited, but is usually about 0.5 to 5 kW. Within such a range, for example, each condition may be set so that the temperature of the substrate (single crystal diamond substrate) is about 900 to 1300 ° C., preferably about 900 to 1100 ° C.

単結晶ダイヤモンド基板
本発明の方法によって製造されるダイヤモンド基板は、均一な結晶学的性質を有する。結晶学的性質とは、上述のとおりである。
Single crystal diamond substrate The diamond substrate produced by the method of the present invention has uniform crystallographic properties. The crystallographic properties are as described above.

なお、本発明の方法によって製造される単結晶ダイヤモンド基板を、上述のような方法を採用して主たる成長面の外周側面を成型加工等に供して、上述した本発明の単結晶ダイヤモンド基板の製造方法における複数の種基板と見なし、適宜、より大面積の単結晶ダイヤモンドを容易に形成することができる。   In addition, the single crystal diamond substrate manufactured by the method of the present invention is subjected to the above-described method and the outer peripheral side surface of the main growth surface is subjected to a molding process or the like to manufacture the above-described single crystal diamond substrate of the present invention. Considering a plurality of seed substrates in the method, a single crystal diamond having a larger area can be easily formed as appropriate.

以下に、本発明をより詳細に説明するための実施例を示す。但し、本発明が実施例の記載に限定されないのは言うまでもない。   Examples for explaining the present invention in more detail are shown below. However, it goes without saying that the present invention is not limited to the description of the examples.

[実施例1]
同一の結晶学的性質を有する、幅約15mm長さ約34mmの厚さが0.4mmの不定形の単結晶ダイヤモンド(100)基板2枚について、X線回折を用いてオフ方向を評価し、長さ方向の稜線に対してオフ方向が60度の角度を持つことを確認した。
[Example 1]
For two amorphous single crystal diamond (100) substrates having the same crystallographic properties and having a width of about 15 mm and a length of about 34 mm and a thickness of 0.4 mm, the off-direction is evaluated using X-ray diffraction, It was confirmed that the off direction had an angle of 60 degrees with respect to the ridge line in the length direction.

次いで、これらの単結晶ダイヤモンド基板のオフ方向が揃う様に、長さ方向の辺を接触させて、市販のマイクロ波プラズマCVD装置内に設置し、当該装置を用いて、マイクロ波パワーを10kW、ガス圧力を10kPa、水素ガス流量を1slm、そしてメタンガス流量を0.01slmとして、該種結晶のイオン注入された面上に17時間単結晶ダイヤモンド膜を成長させた。単結晶ダイヤモンドの成長における成長終了時の基板温度は、1200℃であった。形成された単結晶ダイヤモンド膜の厚さは0.2mmであった。   Next, these single crystal diamond substrates are placed in a commercially available microwave plasma CVD apparatus so that the lengthwise sides are in contact with each other so that the off-directions of these single crystal diamond substrates are aligned. Using the apparatus, the microwave power is 10 kW, A single crystal diamond film was grown for 17 hours on the ion-implanted surface of the seed crystal at a gas pressure of 10 kPa, a hydrogen gas flow rate of 1 slm, and a methane gas flow rate of 0.01 slm. The substrate temperature at the end of the growth of single crystal diamond was 1200 ° C. The formed single crystal diamond film had a thickness of 0.2 mm.

成長後、これらのダイヤモンド基板は一体化しており、接触部は一様に単結晶ダイヤモンドによって被覆されていた。   After the growth, these diamond substrates were integrated, and the contact portions were uniformly covered with single crystal diamond.

[実施例2]
同一の結晶学的性質を有する、幅20mm長さ40mmの厚さが0.2mmの矩形の単結晶ダイヤモンド(100)基板2枚について、X線回折を用いてオフ方向を評価し、長さ方向の稜線に対してオフ方向が88度の角度を持つことを確認した。
[Example 2]
For two rectangular single crystal diamond (100) substrates having the same crystallographic properties, width 20 mm, length 40 mm, and thickness 0.2 mm, the off direction is evaluated using X-ray diffraction, and the length direction It was confirmed that the off direction had an angle of 88 degrees with respect to the ridgeline.

次いで、これらの単結晶ダイヤモンド基板のオフ方向が揃う様に、長さ方向の辺を接触させて、市販のマイクロ波プラズマCVD装置内に設置し、当該装置を用いて、マイクロ波パワーを10kW、ガス圧力を13kPa、水素ガス流量を1slm、そしてメタンガス流量を0.01slmとして、該種結晶のイオン注入された面上に14時間単結晶ダイヤモンド膜を成長させた。単結晶ダイヤモンドの成長における成長終了時の基板温度は、1200℃であった。形成された単結晶ダイヤモンド膜の厚さは0.2mmであった。   Next, these single crystal diamond substrates are placed in a commercially available microwave plasma CVD apparatus so that the lengthwise sides are in contact with each other so that the off-directions of these single crystal diamond substrates are aligned. Using the apparatus, the microwave power is 10 kW, A single crystal diamond film was grown for 14 hours on the ion-implanted surface of the seed crystal at a gas pressure of 13 kPa, a hydrogen gas flow rate of 1 slm, and a methane gas flow rate of 0.01 slm. The substrate temperature at the end of the growth of single crystal diamond was 1200 ° C. The formed single crystal diamond film had a thickness of 0.2 mm.

成長後、これらのダイヤモンド基板は一体化しており、接触部は一様に単結晶ダイヤモンドによって被覆されていた。   After the growth, these diamond substrates were integrated, and the contact portions were uniformly covered with single crystal diamond.

[実施例3]
同一の結晶学的性質を有する、幅約15mm長さ約23mmの厚さが0.5mmの不定形の単結晶ダイヤモンド(100)基板2枚について、X線回折を用いてオフ方向を評価し、長さ方向の稜線に対してオフ方向が45度の角度を持つことを確認した。
[Example 3]
For two amorphous single crystal diamond (100) substrates having the same crystallographic properties and having a width of about 15 mm and a length of about 23 mm and a thickness of 0.5 mm, the off direction is evaluated using X-ray diffraction, It was confirmed that the off direction had an angle of 45 degrees with respect to the ridge line in the length direction.

次いで、これらの単結晶ダイヤモンド基板のオフ方向が揃う様に、長さ方向の辺を接触させて、市販のマイクロ波プラズマCVD装置内に設置し、当該装置を用いて、マイクロ波パワーを10kW、ガス圧力を13kPa、水素ガス流量を1slm、そしてメタンガス流量を0.01slmとして、該種結晶のイオン注入された面上に16時間単結晶ダイヤモンド膜を成長させた。単結晶ダイヤモンドの成長における成長終了時の基板温度は、1100℃であった。形成された単結晶ダイヤモンド膜の厚さは0.2mmであった。   Next, these single crystal diamond substrates are placed in a commercially available microwave plasma CVD apparatus so that the lengthwise sides are in contact with each other so that the off-directions of these single crystal diamond substrates are aligned. Using the apparatus, the microwave power is 10 kW, A single crystal diamond film was grown for 16 hours on the ion-implanted surface of the seed crystal at a gas pressure of 13 kPa, a hydrogen gas flow rate of 1 slm, and a methane gas flow rate of 0.01 slm. The substrate temperature at the end of the growth of the single crystal diamond was 1100 ° C. The formed single crystal diamond film had a thickness of 0.2 mm.

成長後、これらのダイヤモンド基板は一体化しており、接触部は一様に単結晶ダイヤモンドによって被覆されていた。   After the growth, these diamond substrates were integrated, and the contact portions were uniformly covered with single crystal diamond.

[比較例1]
同一の結晶学的性質を有する、幅20mm長さ40mmの厚さが0.5mmの矩形の単結晶ダイヤモンド(100)基板2枚について、X線回折を用いてオフ方向を評価し、長さ方向の稜線に対してオフ方向が90度の角度を持つことを確認した。
[Comparative Example 1]
For two rectangular single crystal diamond (100) substrates having the same crystallographic properties, width 20 mm, length 40 mm, and thickness 0.5 mm, the off direction is evaluated using X-ray diffraction, and the length direction It was confirmed that the off direction had an angle of 90 degrees with respect to the ridgeline.

次いで、これらの単結晶ダイヤモンド基板のオフ方向が揃う様に、長さ方向の辺を接触させて、市販のマイクロ波プラズマCVD装置内に設置し、当該装置を用いて、マイクロ波パワーを10kW、ガス圧力を17kPa、水素ガス流量を1slm、そしてメタンガス流量を0.01slmとして、該種結晶のイオン注入された面上に14時間単結晶ダイヤモンド膜を成長させた。単結晶ダイヤモンドの成長における成長終了時の基板温度は、1100℃であった。形成された単結晶ダイヤモンド膜の厚さは0.2mmであった。   Next, these single crystal diamond substrates are placed in a commercially available microwave plasma CVD apparatus so that the lengthwise sides are in contact with each other so that the off-directions of these single crystal diamond substrates are aligned. Using the apparatus, the microwave power is 10 kW, A single crystal diamond film was grown for 14 hours on the ion-implanted surface of the seed crystal at a gas pressure of 17 kPa, a hydrogen gas flow rate of 1 slm, and a methane gas flow rate of 0.01 slm. The substrate temperature at the end of the growth of the single crystal diamond was 1100 ° C. The formed single crystal diamond film had a thickness of 0.2 mm.

成長後、これらのダイヤモンド基板は接合していなかった。   After growth, these diamond substrates were not bonded.

Claims (5)

下記の工程を含む単結晶ダイヤモンド基板の製造方法:
(1)同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板であって、該種基板の稜線と該種基板のオフ方向のなす角度が、それぞれの種基板間で全て同一となるように、該種基板の主たる成長面の外周側面が整形加工され、且つ整形加工された側面に基づく稜線の長さが20mmを超える、複数の単結晶ダイヤモンド種基板を、支持台上に、整形加工された該種基板の長さ方向の側面同士が接触し、それぞれの該種基板のオフ方向を一致させ、且つ該種基板の主たる成長面が露出する状態となるように載置する工程、
(2)上記(1)工程で支持台上に載置された複数の種基板の主たる成長面上に単結晶ダイヤモンドを成長させ、該複数の種基板を接合する工程。
A method for producing a single crystal diamond substrate including the following steps:
(1) A plurality of single crystal diamond seed substrates having the same crystallographic properties, and the angles formed by the ridgelines of the seed substrate and the off direction of the seed substrate are all the same between the seed substrates. In addition, a plurality of single crystal diamond seed substrates on which the outer peripheral side surface of the main growth surface of the seed substrate is shaped and the length of the ridge line based on the shaped side surface exceeds 20 mm are shaped on the support base. A step of placing the seed substrates in such a manner that the side surfaces in the length direction of the seed substrates are in contact with each other, the off-directions of the seed substrates are matched, and the main growth surface of the seed substrate is exposed;
(2) A step of growing single crystal diamond on a main growth surface of a plurality of seed substrates placed on a support table in the step (1) and bonding the plurality of seed substrates.
前記工程(1)における同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の稜線と該種基板のオフ方向のなす角が90度未満となるように該種基板の主たる成長面の外周側面が整形加工された、請求項1に記載の単結晶ダイヤモンド基板の製造方法。 The outer circumference of the main growth surface of the seed substrate so that the angle formed by the ridgelines of the single crystal diamond seed substrate having the same crystallographic properties in the step (1) and the off direction of the seed substrate is less than 90 degrees. The manufacturing method of the single-crystal diamond substrate of Claim 1 by which the side surface was processed. 前記工程(1)における同一の結晶学的性質を有する複数の単結晶ダイヤモンド種基板の稜線と該種基板のオフ方向のなす角が18度以上となるように該種基板の主たる成長面の外周側面が整形加工された、請求項1又は2に記載の単結晶ダイヤモンド基板の製造方法。   The outer periphery of the main growth surface of the seed substrate so that the angle formed by the ridgelines of the single crystal diamond seed substrate having the same crystallographic properties in the step (1) and the off direction of the seed substrate is 18 degrees or more. The manufacturing method of the single-crystal diamond substrate of Claim 1 or 2 by which the side surface was shaped. 同一の結晶学的性質が、オフ方向及び/又はオフ角である請求項1〜3の何れか1項に記載の単結晶ダイヤモンド基板の製造方法。   The method for producing a single crystal diamond substrate according to any one of claims 1 to 3, wherein the same crystallographic property is an off direction and / or an off angle. 請求項1〜4何れか1項に記載の方法によって得られる単結晶ダイヤモンド基板。   A single crystal diamond substrate obtained by the method according to claim 1.
JP2013205154A 2013-09-30 2013-09-30 Method for producing single crystal diamond Active JP6274492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205154A JP6274492B2 (en) 2013-09-30 2013-09-30 Method for producing single crystal diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205154A JP6274492B2 (en) 2013-09-30 2013-09-30 Method for producing single crystal diamond

Publications (2)

Publication Number Publication Date
JP2015067517A true JP2015067517A (en) 2015-04-13
JP6274492B2 JP6274492B2 (en) 2018-02-07

Family

ID=52834573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205154A Active JP6274492B2 (en) 2013-09-30 2013-09-30 Method for producing single crystal diamond

Country Status (1)

Country Link
JP (1) JP6274492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139147A1 (en) 2018-01-15 2019-07-18 国立研究開発法人産業技術総合研究所 Laminate including single crystal diamond substrate
CN114318521A (en) * 2021-12-28 2022-04-12 北京大学东莞光电研究院 Diamond growth method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309794A (en) * 1996-05-24 1997-12-02 Sumitomo Electric Ind Ltd Diamond film and its synthesis
JPH11255599A (en) * 1998-03-11 1999-09-21 Kobe Steel Ltd Substrate for synthesizing single crystal diamond
JP2003277183A (en) * 2002-03-22 2003-10-02 Sumitomo Electric Ind Ltd Method for producing diamond single crystal, diamond single crystal substrate, and method for producing the same
JP2006124249A (en) * 2004-10-29 2006-05-18 Namiki Precision Jewel Co Ltd Diamond cvd growth substrate
JP2010150069A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Large-area diamond crystal substrate and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309794A (en) * 1996-05-24 1997-12-02 Sumitomo Electric Ind Ltd Diamond film and its synthesis
JPH11255599A (en) * 1998-03-11 1999-09-21 Kobe Steel Ltd Substrate for synthesizing single crystal diamond
JP2003277183A (en) * 2002-03-22 2003-10-02 Sumitomo Electric Ind Ltd Method for producing diamond single crystal, diamond single crystal substrate, and method for producing the same
JP2006124249A (en) * 2004-10-29 2006-05-18 Namiki Precision Jewel Co Ltd Diamond cvd growth substrate
JP2010150069A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Large-area diamond crystal substrate and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139147A1 (en) 2018-01-15 2019-07-18 国立研究開発法人産業技術総合研究所 Laminate including single crystal diamond substrate
CN114318521A (en) * 2021-12-28 2022-04-12 北京大学东莞光电研究院 Diamond growth method

Also Published As

Publication number Publication date
JP6274492B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JP5601634B2 (en) Method for producing large area CVD diamond single crystal and large area CVD diamond single crystal obtained thereby
KR102267800B1 (en) Method of manufacturing single crystal diamond
JP2010150069A (en) Large-area diamond crystal substrate and method for producing the same
TW201607662A (en) Manufacturing method of group III nitride substrate
JP4547493B2 (en) Method for producing diamond single crystal and diamond single crystal
JP7161158B2 (en) Method for manufacturing diamond substrate layer
TWI246173B (en) Diamond compound substrate and its manufacturing method
JP6274492B2 (en) Method for producing single crystal diamond
JP5418621B2 (en) Diamond single crystal substrate
JPH0748198A (en) Method for synthesizing diamond
JP2009137779A (en) Method for manufacturing diamond single crystal substrate and diamond single crystal substrate
JP6746124B2 (en) Method for producing single crystal diamond
JP6312236B2 (en) Method for producing single crystal diamond
JP2013203596A (en) Single crystal diamond substrate
JP6002100B2 (en) Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate
JP6374060B2 (en) Method for producing single crystal diamond
JP2013060329A (en) Diamond composite
JP6551953B2 (en) Method of manufacturing single crystal diamond
US11505878B2 (en) Diamond crystal substrate, method for producing diamond crystal substrate, and method for homo-epitaxially growing diamond crystal
US20230154747A1 (en) A seed layer, a heterostructure comprising the seed layer and a method of forming a layer of material using the seed layer
JP5545567B2 (en) Base material for single crystal diamond growth and method for producing single crystal diamond
JP2020059648A (en) Diamond substrate, and manufacturing method of diamond substrate
KR101578717B1 (en) METHOD FOR MANUFACTURING GaN WAFER
JP2022168623A (en) Manufacturing method of substrate of single crystal diamond and substrate of single crystal diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6274492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250