JP2015066962A - Drive assist apparatus - Google Patents

Drive assist apparatus Download PDF

Info

Publication number
JP2015066962A
JP2015066962A JP2013200010A JP2013200010A JP2015066962A JP 2015066962 A JP2015066962 A JP 2015066962A JP 2013200010 A JP2013200010 A JP 2013200010A JP 2013200010 A JP2013200010 A JP 2013200010A JP 2015066962 A JP2015066962 A JP 2015066962A
Authority
JP
Japan
Prior art keywords
vehicle
vehicle speed
lane
acceleration
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013200010A
Other languages
Japanese (ja)
Other versions
JP6337435B2 (en
Inventor
康啓 鈴木
Yasuhiro Suzuki
康啓 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013200010A priority Critical patent/JP6337435B2/en
Publication of JP2015066962A publication Critical patent/JP2015066962A/en
Application granted granted Critical
Publication of JP6337435B2 publication Critical patent/JP6337435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to increase adjacent vehicles which can change lanes from an adjacent lane to an own-lane.SOLUTION: A controller 5 calculates the number of vehicles Naccopt at accelerating that is the number of adjacent vehicles D which can change lanes to an own-lane when an own vehicle A accelerates, and the number of vehicles Ndccopt at decelerating that is the number of adjacent vehicles D which can change lanes to the own-lane when the own vehicle A decelerates. The controller 5 performs at least one of control of the own vehicle A and notification to a driver such that the own vehicle A accelerates if the calculated number of vehicles Naccopt at accelerating is larger than the number of vehicles Ndccopt at decelerating. On the other hand, the controller 5 performs at least one of control of the own vehicle A and notification to the driver such that the own vehicle A decelerates if the calculated number of vehicles Naccopt at accelerating is less than the number of vehicles Ndccopt at decelerating.

Description

本発明は、運転支援装置に関する。   The present invention relates to a driving support device.

従来、運転支援装置としては、例えば、特許文献1に記載の従来技術がある。
この従来技術では、自車線の前方車両が加速すると、隣接車線から自車線の前方車両と自車両との間のスペースへ車線変更してくる車両(以下、隣接車両とも呼ぶ)があると判定し、自車両が減速する。これにより、この従来技術では、自車線の前方車両と自車両との間のスペースを増大し、当該スペースへの隣接車両の車線変更を可能とする。
Conventionally, as a driving assistance device, for example, there is a conventional technique described in Patent Document 1.
In this prior art, when the vehicle ahead of the own lane accelerates, it is determined that there is a vehicle that changes the lane from the adjacent lane to the space between the vehicle ahead of the own lane and the own vehicle (hereinafter also referred to as an adjacent vehicle). The host vehicle decelerates. Thereby, in this prior art, the space between the vehicle ahead of the own lane and the own vehicle is increased, and the lane change of the adjacent vehicle to the said space is enabled.

特開平7−334790号公報JP-A-7-334790

しかしながら、上記従来技術では、例えば、隣接車両が複数台存在し、隣接車両の車列が長い場合には、自車両が減速し、自車線の前方車両と自車両との間のスペースを増大させても、車列の後側の隣接車両が車線変更できない可能性があった。そのため、上記従来技術では、隣接車線から自車線へ車線変更可能な隣接車両が低減する可能性があった。
本発明は、上記のような点に着目したもので、隣接車線から自車線へ車線変更可能な隣接車両の数を増大可能とすることを目的とする。
However, in the above prior art, for example, when there are a plurality of adjacent vehicles and the adjacent vehicle has a long train, the host vehicle decelerates and increases the space between the vehicle ahead of the host lane and the host vehicle. However, there is a possibility that the adjacent vehicle on the rear side of the train cannot change lanes. Therefore, in the conventional technology, there is a possibility that the number of adjacent vehicles that can change lanes from the adjacent lane to the own lane may be reduced.
The present invention focuses on the above points, and an object thereof is to increase the number of adjacent vehicles that can change lanes from the adjacent lane to the own lane.

上記課題を解決するために、本発明の一態様では、自車両が加速した場合に自車線へ車線変更可能な隣接車両の数である加速時台数、及び自車両が減速した場合に自車線へ車線変更可能な隣接車両の数である減速時台数を算出する。そして、算出した加速時台数が減速時台数より大きい場合には、自車両が加速するように自車両の制御及び運転者への報知の少なくとも一方を行う。一方、算出した加速時台数が減速時台数未満である場合には、自車両が減速するように自車両の制御及び運転者への報知の少なくとも一方を行う。   In order to solve the above-described problem, according to one aspect of the present invention, when the host vehicle accelerates, the number of adjacent vehicles that can change lanes to the host lane, and the host vehicle when the host vehicle decelerates, The number of vehicles at deceleration, which is the number of adjacent vehicles that can change lanes, is calculated. When the calculated number of accelerations is larger than the number of decelerations, at least one of control of the host vehicle and notification to the driver is performed so that the host vehicle accelerates. On the other hand, when the calculated number of accelerations is less than the number of decelerations, at least one of controlling the own vehicle and notifying the driver is performed so that the own vehicle decelerates.

本発明の一態様によれば、自車両が加速した場合に自車線へ車線変更可能な隣接車両の数(以下、車線変更可能台数とも呼ぶ)が、自車両が減速した場合の車線変更可能台数よりも大きい場合に、自車両を加速できる。一方、自車両が減速した場合の車線変更可能台数が自車両が減速した場合の車線変更可能台数よりも大きい場合に、自車両を減速できる。これにより、隣接車線から自車線へ車線変更可能な隣接車両の数を増大できる。   According to one aspect of the present invention, when the own vehicle accelerates, the number of adjacent vehicles that can change lanes to the own lane (hereinafter also referred to as the number of lane changeable vehicles) is the number of lane changeable vehicles when the own vehicle decelerates. The vehicle can be accelerated when it is larger than the above. On the other hand, the host vehicle can be decelerated when the number of lane changeable vehicles when the host vehicle decelerates is larger than the number of lane changeable vehicles when the host vehicle decelerates. Thereby, the number of adjacent vehicles that can change lanes from the adjacent lane to the own lane can be increased.

運転支援装置を搭載した自車両Aの概略構成を表すブロック図である。It is a block diagram showing schematic structure of the own vehicle A carrying a driving assistance device. 各種状態量を説明するための説明図である。It is explanatory drawing for demonstrating various state quantities. コントローラ5が実行する運転支援処理を表すフローチャートである。It is a flowchart showing the driving assistance process which the controller 5 performs. 隣接車両Dが自車線へ車線変可能か否かの判定方法の説明図である。It is explanatory drawing of the determination method of whether the adjacent vehicle D can change a lane to the own lane. 運転支援装置の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of a driving assistance device. 加速時設定閾値thL1及び減速時設定閾値thL2の設定方法の説明図である。It is explanatory drawing of the setting method of the setting threshold value thL1 at the time of acceleration, and the setting threshold value thL2 at the time of deceleration. 車間時間THW1hosei1及びTHW2hosei2の設定方法の説明図である。It is explanatory drawing of the setting method of inter-vehicle time THW1hosei1 and THW2hosei2. 加速時設定閾値thL1及び減速時設定閾値thL2の設定方法の説明図である。It is explanatory drawing of the setting method of the setting threshold value thL1 at the time of acceleration, and the setting threshold value thL2 at the time of deceleration.

本発明に係る運転支援装置の実施形態について図面を参照しつつ説明する。
(構成)
図1は、運転支援装置を搭載した自車両Aの概略構成を表すブロック図である。
図1に示すように、自車両Aは、レーダー部1、画像撮影部2、ナビゲーション部3、車速検出部4、コントローラ5、及び制駆動力制御部6を備える。
An embodiment of a driving support apparatus according to the present invention will be described with reference to the drawings.
(Constitution)
FIG. 1 is a block diagram showing a schematic configuration of a host vehicle A equipped with a driving support device.
As shown in FIG. 1, the host vehicle A includes a radar unit 1, an image capturing unit 2, a navigation unit 3, a vehicle speed detection unit 4, a controller 5, and a braking / driving force control unit 6.

図2は、各種状態量を説明するための説明図である。
レーダー部1は、自車両Aの周囲に存在する車両(以下、周囲車両とも呼ぶ)と自車両Aとの前後方向(車両前後方向)の車間距離を検出する。周囲車両としては、例えば、図2(a)に示すように、自車線の前方車両B、自車線の後方車両C、隣接車線の車両(以下、隣接車両とも呼ぶ)Dがある。また、車間距離としては、例えば、自車線の前方車両Bと自車両Aとの車間距離L1、自車両Aと自車線の後方車両Cとの車間距離L2、自車両Aと隣接車両Dとの前後方向の車間距離L3がある。レーダー部1としては、例えば、自車両Aの周囲(例えば、前後、斜め前方、斜め後方)にレーザー光を出射して反射光を検出するレーザ距離計を採用できる。
FIG. 2 is an explanatory diagram for explaining various state quantities.
The radar unit 1 detects an inter-vehicle distance in the front-rear direction (vehicle front-rear direction) between a vehicle (hereinafter also referred to as a surrounding vehicle) existing around the host vehicle A and the host vehicle A. As the surrounding vehicles, for example, as shown in FIG. 2A, there are a front vehicle B in the own lane, a rear vehicle C in the own lane, and a vehicle (hereinafter also referred to as an adjacent vehicle) D in the adjacent lane. Further, as the inter-vehicle distance, for example, the inter-vehicle distance L1 between the front vehicle B and the own vehicle A in the own lane, the inter-vehicle distance L2 between the own vehicle A and the rear vehicle C in the own lane, and the own vehicle A and the adjacent vehicle D There is an inter-vehicle distance L3 in the front-rear direction. As the radar unit 1, for example, a laser rangefinder that emits laser light around the host vehicle A (for example, front and rear, diagonally forward, and diagonally rear) to detect reflected light can be employed.

また、レーダー部1は、隣接車両Dの車速V2を検出する。なお、隣接車両Dの車速V4の検出方法としては、例えば、車間距離L3を時間微分して自車両Aと隣接車両Dとの相対車速を算出し、算出結果に車速検出部4が検出した自車両Aの車速V1を加算する方法がある。そして、レーダー部1は、検出結果をコントローラ5に出力する。
画像撮影部2は、隣接車両Dの画像を撮影する。そして、画像撮影部2は、撮影結果をコントローラ5に出力する。画像撮影部2としては、例えば、自車両Aの周囲(例えば、隣接車線側)を撮影するCCD((Charge Coupled Device)カメラを採用できる。
Further, the radar unit 1 detects the vehicle speed V2 of the adjacent vehicle D. As a method for detecting the vehicle speed V4 of the adjacent vehicle D, for example, the relative vehicle speed between the own vehicle A and the adjacent vehicle D is calculated by time-differentiating the inter-vehicle distance L3, and the vehicle speed detection unit 4 detects the calculated result. There is a method of adding the vehicle speed V1 of the vehicle A. Then, the radar unit 1 outputs the detection result to the controller 5.
The image capturing unit 2 captures an image of the adjacent vehicle D. Then, the image photographing unit 2 outputs the photographing result to the controller 5. As the image capturing unit 2, for example, a CCD ((Charge Coupled Device) camera that captures the periphery of the host vehicle A (for example, the adjacent lane side) can be employed.

ナビゲーション部3は、GPS(Global Positioning System)受信機、地図データベース、及び表示モニタを備える。そして、ナビゲーション部3は、GPS受信機、及び地図データベースから自車両Aの位置及び道路情報を取得する。続いて、ナビゲーション部3は、取得した自車両Aの位置及び道路情報に基づいて、設定した目的地までの経路探索を行う。続いて、ナビゲーション部3は、経路探索の結果を表示モニタに表示する。   The navigation unit 3 includes a GPS (Global Positioning System) receiver, a map database, and a display monitor. And the navigation part 3 acquires the position and road information of the own vehicle A from a GPS receiver and a map database. Subsequently, the navigation unit 3 performs a route search to the set destination based on the acquired position of the host vehicle A and road information. Subsequently, the navigation unit 3 displays the route search result on the display monitor.

また、ナビゲーション部3は、取得した自車両Aの位置及び道路情報に基づいて、隣接車両Dが自車線に合流する合流車線を走行しているか否かを判定する。また、ナビゲーション部3は、隣接車両Dが合流車線を走行していると判定すると、取得した自車両Aの位置及び道路情報に基づいて、隣接車両Dから合流車線終点までの距離L4(隣接車両Dが複数台存在する場合には先頭の隣接車両Dから合流車線終点までの距離L4)を検出する。そして、ナビゲーション部3は、判定結果及び検出結果をコントローラ5に出力する。   Moreover, the navigation part 3 determines whether the adjacent vehicle D is drive | working the merge lane which joins the own lane based on the position and road information of the own vehicle A which were acquired. When the navigation unit 3 determines that the adjacent vehicle D is traveling in the merge lane, the distance L4 (adjacent vehicle) from the adjacent vehicle D to the merge lane end point is determined based on the acquired position of the own vehicle A and road information. When there are a plurality of vehicles D, the distance L4) from the head adjacent vehicle D to the merge lane end point is detected. The navigation unit 3 outputs the determination result and the detection result to the controller 5.

車速検出部4は、自車両Aの車速V1を検出する。そして、車速検出部4は、検出結果をレーダー部1及びコントローラ5に出力する。車速検出部4としては、例えば、自車両Aの車輪速を検出して自車両Aの車速V1を演算する車輪速センサを採用できる。
コントローラ5は、A/D(Analog to Digital)変換回路、D/A(Digital to Analog)変換回路、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等から構成した集積回路を備える。ROMは、各種処理を実現する1または2以上のプログラムを記憶している。CPUは、レーダー部1、画像撮影部2、ナビゲーション部3、及び車速検出部4が出力した検出結果等に基づき、ROMが記憶している1または2以上のプログラムに従って各種処理(例えば、運転支援処理)を実行する。運転支援処理では、コントローラ5は、自車両Aを減速させる指令(以下、減速指令とも呼ぶ)、または自車両Aを加速させる指令(以下、加速指令とも呼ぶ)を制駆動力制御部6に出力する。運転支援処理の詳細については後述する。
The vehicle speed detector 4 detects the vehicle speed V1 of the host vehicle A. Then, the vehicle speed detection unit 4 outputs the detection result to the radar unit 1 and the controller 5. As the vehicle speed detector 4, for example, a wheel speed sensor that detects the wheel speed of the host vehicle A and calculates the vehicle speed V1 of the host vehicle A can be employed.
The controller 5 includes an A / D (Analog to Digital) conversion circuit, a D / A (Digital to Analog) conversion circuit, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Integrated circuit. The ROM stores one or more programs that realize various processes. The CPU performs various processes (for example, driving assistance) according to one or more programs stored in the ROM based on the detection results output by the radar unit 1, the image capturing unit 2, the navigation unit 3, and the vehicle speed detection unit 4. Process). In the driving support process, the controller 5 outputs a command for decelerating the host vehicle A (hereinafter also referred to as a deceleration command) or a command for accelerating the host vehicle A (hereinafter also referred to as an acceleration command) to the braking / driving force control unit 6. To do. Details of the driving support process will be described later.

制駆動力制御部6は、コントローラ5が減速指令を出力すると、自車両Aを減速させる。具体的には、制駆動力制御部6は、自車両Aの各車輪の制動力の発生及び自車両Aの駆動力の低減の少なくともいずれかを実行する。また、制駆動力制御部6は、コントローラ5が加速指令を出力すると、自車両Aを加速させる。具体的には、制駆動力制御部6は、自車両Aの各車輪の制動力の低減及び駆動力の増大の少なくともいずれかを実行する。   The braking / driving force control unit 6 decelerates the host vehicle A when the controller 5 outputs a deceleration command. Specifically, the braking / driving force control unit 6 executes at least one of generation of the braking force of each wheel of the host vehicle A and reduction of the driving force of the host vehicle A. The braking / driving force control unit 6 accelerates the host vehicle A when the controller 5 outputs an acceleration command. Specifically, the braking / driving force control unit 6 executes at least one of the reduction of the braking force and the increase of the driving force of each wheel of the host vehicle A.

なお、本実施形態では、制駆動力制御部6が、コントローラ5が減速指令または加速指令を出力すると、自車両Aを減速または加速させる例を示したが、他の構成を採用することもできる。例えば、自車両Aが、コントローラ5が減速指令または加速指令を出力すると、運転者に自車両Aの減速または加速を促す音声を出力する構成としてもよく運転者に自車両Aの減速または加速を促す画像を表示する構成としてもよい。   In the present embodiment, an example in which the braking / driving force control unit 6 decelerates or accelerates the host vehicle A when the controller 5 outputs a deceleration command or an acceleration command has been described. However, other configurations may be employed. . For example, the host vehicle A may be configured to output a voice prompting the driver to decelerate or accelerate the host vehicle A when the controller 5 outputs a deceleration command or an acceleration command. It is good also as a structure which displays the image to urge.

(運転支援処理)
次に、コントローラ5が実行する運転支援処理について説明する。運転支援処理は、隣接車両Dに自車線へ車線変更する意図があると判定した場合、または隣接車両Dが自車線に合流する合流車線を走行していると判定した場合に実行される。具体的には、コントローラ5は、画像撮影部2が出力した撮影結果に基づき、隣接車両Dが自車線側のウィンカーを点滅させていると判定した場合に、隣接車両Dに自車線へ車線変更する意図があると判定する。また、コントローラ5は、ナビゲーション部3が出力した判定結果に基づき、隣接車両Dが自車線に合流する合流車線を走行しているか否かを判定する。
(Driving support processing)
Next, driving support processing executed by the controller 5 will be described. The driving support process is executed when it is determined that the adjacent vehicle D has an intention to change the lane to the own lane, or when it is determined that the adjacent vehicle D is traveling in a merged lane that merges with the own lane. Specifically, when it is determined that the adjacent vehicle D blinks the blinker on the own lane side based on the photographing result output from the image photographing unit 2, the controller 5 changes the lane to the own lane in the adjacent vehicle D. It is determined that there is an intention to do. Further, the controller 5 determines whether or not the adjacent vehicle D is traveling in a merged lane that merges with the own lane based on the determination result output by the navigation unit 3.

図3は、コントローラ5が実行する運転支援処理を表すフローチャートである。
図3に示すように、まず、ステップS101では、コントローラ5は、車速検出部4が出力した検出結果に基づき、自車両Aの車速V1を目標車速V1accとして設定する。また、コントローラ5は、運転支援処理で用いる変数(例えば、合流可能台数Nacc、加速時台数Naccopt、加速時目標車速V1acc*)を0に設定する(初期化する)。加速時台数Naccoptとしては、例えば、自車両Aが加速した場合に隣接車線を走行している周囲車両(隣接車両D)のうち自車線へ車線変更可能な隣接車両Dの数がある。
FIG. 3 is a flowchart showing a driving support process executed by the controller 5.
As shown in FIG. 3, first, in step S101, the controller 5 sets the vehicle speed V1 of the host vehicle A as the target vehicle speed V1acc based on the detection result output by the vehicle speed detector 4. Further, the controller 5 sets (initializes) the variables (for example, the number Nacc that can be merged, the number Naccopt during acceleration, and the target vehicle speed V1acc * during acceleration) used in the driving support process to 0. The number Naccopt at the time of acceleration includes, for example, the number of adjacent vehicles D that can change lanes to the own lane among the surrounding vehicles (adjacent vehicles D) traveling in the adjacent lane when the own vehicle A accelerates.

続いてステップS102に移行して、コントローラ5は、前記ステップS101で設定した目標車速V1acc(ステップS102〜S106のフローが繰り返し実行され、ステップS102で目標車速V1accを設定した場合には、前回ステップS102で設定した目標車速V1acc)に速度変化量ΔV1(>0)を加算する。そして、コントローラ5は、加算結果を目標車速V1accとして設定する。速度変化量ΔV1は、例えば、自車両Aの車速V1やコントローラ5の演算速度に基づいて設定する。これにより、コントローラ5が、目標車速V1accを徐々に増大し、自車両Aの車速V1よりも速い目標車速V1accを複数設定する。   Subsequently, the process proceeds to step S102, where the controller 5 repeatedly executes the target vehicle speed V1acc set in step S101 (the flow of steps S102 to S106 is repeated, and if the target vehicle speed V1acc is set in step S102, the previous step S102 is performed. The speed change amount ΔV1 (> 0) is added to the target vehicle speed V1acc) set in step S1. Then, the controller 5 sets the addition result as the target vehicle speed V1acc. The speed change amount ΔV1 is set based on the vehicle speed V1 of the host vehicle A and the calculation speed of the controller 5, for example. As a result, the controller 5 gradually increases the target vehicle speed V1acc and sets a plurality of target vehicle speeds V1acc faster than the vehicle speed V1 of the host vehicle A.

続いてステップS103に移行して、コントローラ5は、レーダー部1及び車速検出部4が出力した検出結果、及び前記ステップS102で設定した目標車速V1accに基づき、下記(1)式に従って車間距離L1accを算出(予測)する。車間距離L1accとしては、例えば、図2(b)に示すように、自車両Aが加速して、前記ステップS102で設定した目標車速V1accに自車両Aの車速V1が到達したときの、自車線の前方車両Bと自車両Aとの車間距離がある。   Subsequently, the process proceeds to step S103, where the controller 5 calculates the inter-vehicle distance L1acc according to the following equation (1) based on the detection results output by the radar unit 1 and the vehicle speed detection unit 4 and the target vehicle speed V1acc set in step S102. Calculate (predict). As the inter-vehicle distance L1acc, for example, as shown in FIG. 2B, the host vehicle A accelerates and the host vehicle lane when the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1acc set in step S102. There is an inter-vehicle distance between the preceding vehicle B and the host vehicle A.

L1acc=L1―1/2×αa×((V1acc―V1)/αa)2 ………(1)
ここで、αaは、予め設定した加速度であり、加速方向を正値とする。
また、コントローラ5は、レーダー部1及び車速検出部4が出力した検出結果、及び前記ステップS102で設定した目標車速V1accに基づき、下記(2)式に従って車間距離L2accを算出する。車間距離L2accとしては、例えば、自車両Aが加速して、自車両Aの車速V1が前記ステップS102で設定した目標車速V1accに到達したときの、自車両Aと自車線の後方車両Cとの車間距離がある。
L1acc = L1-1 / 2 × αa × ((V1acc−V1) / αa) 2 (1)
Here, αa is a preset acceleration, and the acceleration direction is a positive value.
The controller 5 calculates the inter-vehicle distance L2acc according to the following equation (2) based on the detection results output from the radar unit 1 and the vehicle speed detection unit 4 and the target vehicle speed V1acc set in step S102. As the inter-vehicle distance L2acc, for example, when the host vehicle A accelerates and the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1acc set in step S102, the host vehicle A and the rear vehicle C of the host lane There is a distance between cars.

L2acc=L2+1/2×αa×((V1acc―V1)/αa)2 ………(2)
図4は、隣接車両Dが自車線へ車線変可能か否かの判定方法の説明図である。
続いてステップS104に移行して、コントローラ5は、レーダー部1が出力した検出結果、及び前記ステップS103で算出した車間距離L1acc、L2accに基づき、自車両Aに対する各隣接車両Dの相対位置を算出する。続いて、コントローラ5は、算出した相対位置に基づいて、自車両Aが加速して、前記ステップS102で設定した目標車速V1accに自車両Aの車速V1が到達したときの、自車線へ車線変更可能な隣接車両Dの数(以下、合流可能台数Naccとも呼ぶ)を計数する。具体的には、コントローラ5は、レーダー部1が検出した隣接車両Dのうちから、各隣接車両Dを順に選択する。そして、コントローラ5は、選択した隣接車両Dに以下の(a)〜(d)の処理を実行する。
L2acc = L2 + 1/2 × αa × ((V1acc−V1) / αa) 2 (2)
FIG. 4 is an explanatory diagram of a method for determining whether or not the adjacent vehicle D can change to the own lane.
In step S104, the controller 5 calculates the relative position of each adjacent vehicle D with respect to the host vehicle A based on the detection result output from the radar unit 1 and the inter-vehicle distances L1acc and L2acc calculated in step S103. To do. Subsequently, the controller 5 changes the lane to the own lane when the own vehicle A accelerates based on the calculated relative position and the vehicle speed V1 of the own vehicle A reaches the target vehicle speed V1acc set in step S102. The number of possible adjacent vehicles D (hereinafter also referred to as the number Nacc capable of joining) is counted. Specifically, the controller 5 sequentially selects each adjacent vehicle D from among the adjacent vehicles D detected by the radar unit 1. Then, the controller 5 performs the following processes (a) to (d) on the selected adjacent vehicle D.

(a)コントローラ5は、選択した隣接車両(以下、選択隣接車両とも呼ぶ)Dと自車両Aとの前後方向の車間距離L3、選択隣接車両Dの車速V2、及び前記ステップS102で設定した目標車速V1accに基づき、下記(3)式に従って干渉予測時間TTCを算出する。干渉予測時間TTCとしては、例えば、選択隣接車両Dと自車両Aとが干渉するまでに要する時間の予測値がある。
TTC=L3/(V1acc―V2) ………(3)
(A) The controller 5 determines the front-rear distance L3 between the selected adjacent vehicle (hereinafter also referred to as a selected adjacent vehicle) D and the host vehicle A, the vehicle speed V2 of the selected adjacent vehicle D, and the target set in step S102. Based on the vehicle speed V1acc, the predicted interference time TTC is calculated according to the following equation (3). As the interference prediction time TTC, for example, there is a predicted value of the time required until the selected adjacent vehicle D and the host vehicle A interfere with each other.
TTC = L3 / (V1acc-V2) (3)

(b)選択隣接車両Dと自車両Aとの前後方向の車間距離L3、及び選択隣接車両Dの車速V2に基づき、下記(4)式に従って車間時間THWを算出する。
THW=L3/V2 ………(4)
(c)コントローラ5は、図4に示すように、算出した干渉予測時間TTCが設定時間minTTC以上(TTC≧minTTC)であり且つ車間時間THWが設定時間minTHW以上(THW≧minTHW)であるか否かを判定する。そして、コントローラ5は、TTC≧minTTCで且つTHW≧minTHWであると判定した場合には、選択隣接車両Dが自車線へ車線変できると判定する。一方、コントローラ5は、コントローラ5は、TTC<minTTCまたはTHW<minTHWであると判定した場合には、選択隣接車両Dが自車線へ車線変できないと判定する。
(B) On the basis of the inter-vehicle distance L3 between the selected adjacent vehicle D and the host vehicle A and the vehicle speed V2 of the selected adjacent vehicle D, an inter-vehicle time THW is calculated according to the following equation (4).
THW = L3 / V2 (4)
(C) As shown in FIG. 4, the controller 5 determines whether or not the calculated interference prediction time TTC is equal to or greater than the set time minTTC (TTC ≧ minTTC) and the inter-vehicle time THW is equal to or greater than the set time minTHW (THW ≧ minTHW). Determine whether. When the controller 5 determines that TTC ≧ minTTC and THW ≧ minTHW, the controller 5 determines that the selected adjacent vehicle D can change to the own lane. On the other hand, if the controller 5 determines that TTC <minTTC or THW <minTHW, the controller 5 determines that the selected adjacent vehicle D cannot change its lane to the own lane.

(d)コントローラ5は、選択隣接車両Dが自車線へ車線変できると判定すると、合流可能台数Naccに1を加算する。
これにより、各隣接車両Dに対し、上記(a)〜(d)の処理を実行することで、合流可能台数Naccが、自車線へ車線変更可能な隣接車両Dの数となる。
(D) When the controller 5 determines that the selected adjacent vehicle D can change the lane to the own lane, the controller 5 adds 1 to the mergeable number Nacc.
Thereby, by executing the processes (a) to (d) for each adjacent vehicle D, the number Nacc that can be merged becomes the number of adjacent vehicles D that can change the lane to the own lane.

続いてステップS105に移行して、コントローラ5は、前記ステップS104で算出(予測)した合流可能台数Naccが前記ステップS101で設定した加速時台数Naccopt(ステップS102〜S106のフローが繰り返し実行され、ステップS105で合流可能台数Naccを設定した場合には、前回ステップS105で設定した合流可能台数Nacc)よりも大きいか否かを判定する。そして、コントローラ5は、合流可能台数Naccが加速時台数Naccoptよりも大きいと判定した場合には、合流可能台数Naccを加速時台数Naccoptとして設定するとともに、前記ステップS102で設定した目標車速V1accを加速時目標車速V1acc*として設定する。これにより、コントローラ5は、前記ステップS104で算出(予測)した隣接車両Dの数(合流可能台数Nacc)のうちの最大値を加速時台数Naccoptとするとともに隣接車両Dの数(合流可能台数Nacc)が最大となる目標車速V1accのうち最小の目標車速V1accを加速時目標車速V1acc*とする。一方、コントローラ5は、合流可能台数Naccが加速時台数Naccopt以下であると判定した場合には、加速時台数Naccopt及び加速時目標車速V1acc*を維持する。   Subsequently, the process proceeds to step S105, and the controller 5 repeats the steps of the number Naccopt at acceleration Naccopt calculated (predicted) in step S104 set in step S101 (the flow of steps S102 to S106 is repeatedly executed). If the mergeable number Nacc is set in S105, it is determined whether it is larger than the mergeable number Nacc) set in the previous step S105. If the controller 5 determines that the number Nacc that can be merged is larger than the number Naccopt during acceleration, the controller 5 sets the number Nacc that can be merged as the number Naccopt during acceleration and accelerates the target vehicle speed V1acc set in step S102. Set as the target vehicle speed V1acc *. As a result, the controller 5 sets the maximum value of the number of adjacent vehicles D (number Nacc that can be merged) calculated (predicted) in step S104 as the number Naccopt during acceleration and the number of adjacent vehicles D (number Nacc that can be merged). ) Is the minimum target vehicle speed V1acc among the target vehicle speeds V1acc that maximizes the target vehicle speed V1acc *. On the other hand, when the controller 5 determines that the mergeable number Nacc is equal to or less than the acceleration number Naccopt, the controller 5 maintains the acceleration number Naccopt and the acceleration target vehicle speed V1acc *.

続いてステップS106に移行して、コントローラ5は、前記ステップS103で算出した車間距離L1acc、つまり、加速時目標車速V1acc*に自車両Aの車速V1が到達したときの、自車線の前方車両Bと自車両Aとの車間距離L1(L1acc)が加速時設定閾値thL1よりも小さい(L1acc<thL1)か否かを判定する。加速時設定閾値thL1としては、例えば、予め定めた値がある。そして、コントローラ5は、L1acc<thL1と判定した場合には(Yes)ステップS107に移行する。一方、コントローラ5は、L1acc≧thL1と判定した場合には(Yes)前記ステップS102に移行する。   Subsequently, the process proceeds to step S106, where the controller 5 moves the vehicle B ahead of the own lane when the vehicle speed V1 of the own vehicle A reaches the inter-vehicle distance L1acc calculated in step S103, that is, the acceleration target vehicle speed V1acc *. It is determined whether the inter-vehicle distance L1 (L1acc) between the vehicle and the host vehicle A is smaller than the acceleration threshold value thL1 (L1acc <thL1). As the acceleration setting threshold thL1, for example, there is a predetermined value. If the controller 5 determines that L1acc <thL1 (Yes), the controller 5 proceeds to step S107. On the other hand, if the controller 5 determines that L1acc ≧ thL1 (Yes), the controller 5 proceeds to step S102.

前記ステップS107では、コントローラ5は、車速検出部4が出力した検出結果に基づき、自車両Aの車速V1を目標車速V1dccとして設定する。また、コントローラ5は、運転支援処理で用いる変数(例えば、合流可能台数Ndcc、減速時台数Ndccopt、減速時目標車速V1dcc*)を0に設定する(初期化する)。減速時台数Ndccoptとしては、例えば、自車両Aが減速した場合に隣接車線を走行している周囲車両(隣接車両D)のうち自車線へ車線変更可能な隣接車両Dの数がある。   In step S107, the controller 5 sets the vehicle speed V1 of the host vehicle A as the target vehicle speed V1dcc based on the detection result output by the vehicle speed detection unit 4. Further, the controller 5 sets (initializes) variables used in the driving support process (for example, the number Ndcc that can be merged, the number Ndccopt during deceleration, and the target vehicle speed during deceleration V1dcc *) to 0. The number Ndccopt during deceleration includes, for example, the number of adjacent vehicles D that can change lanes to the own lane among the surrounding vehicles (adjacent vehicles D) that are traveling in the adjacent lane when the own vehicle A decelerates.

続いてステップS108に移行して、コントローラ5は、前記ステップS107で設定した目標車速V1dcc(ステップS107〜S11のフローが繰り返し実行され、ステップS108で目標車速V1dccを設定した場合には、前回ステップS108で設定した目標車速V1dcc)から速度変化量ΔV1(>0)を減算する。そして、コントローラ5は、減算結果を目標車速V1dccとして設定する。これにより、コントローラ5が、目標車速V1dccを徐々に低減し、自車両Aの車速V1よりも遅い目標車速V1accを複数設定する。   Subsequently, the process proceeds to step S108, and the controller 5 repeats the target vehicle speed V1dcc set in step S107 (the flow of steps S107 to S11 is repeatedly executed. If the target vehicle speed V1dcc is set in step S108, the controller 5 performs the previous step S108. The speed change amount ΔV1 (> 0) is subtracted from the target vehicle speed V1dcc set in step (1). Then, the controller 5 sets the subtraction result as the target vehicle speed V1dcc. Thereby, the controller 5 gradually reduces the target vehicle speed V1dcc and sets a plurality of target vehicle speeds V1acc slower than the vehicle speed V1 of the host vehicle A.

続いてステップS109に移行して、コントローラ5は、レーダー部1及び車速検出部4が出力した検出結果、及び前記ステップS108で設定した目標車速V1dccに基づき、下記(5)式に従って車間距離L1dccを算出(予測)する。車間距離L1dccとしては、例えば、図2(c)に示すように、自車両Aが減速して、前記ステップS108で設定した目標車速V1dccに自車両Aの車速V1が到達したときの、自車線の前方車両Bと自車両Aとの車間距離がある。   Subsequently, the process proceeds to step S109, where the controller 5 calculates the inter-vehicle distance L1dcc according to the following equation (5) based on the detection results output by the radar unit 1 and the vehicle speed detection unit 4 and the target vehicle speed V1dcc set in step S108. Calculate (predict). As the inter-vehicle distance L1dcc, for example, as shown in FIG. 2C, the host vehicle A decelerates and the host vehicle lane when the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1dcc set in step S108. There is an inter-vehicle distance between the preceding vehicle B and the host vehicle A.

L1dcc=L1+1/2×αd×((V1dcc―V1)/αd)2 ………(5)
ここで、αdは、予め設定した減速度であり、減速方向を正値とする。
また、コントローラ5は、レーダー部1及び車速検出部4が出力した検出結果、及び前記ステップS108で設定した目標車速V1dccに基づき、下記(6)式に従って車間距離L2dccを算出する。車間距離L2dccとしては、例えば、自車両Aが減速して、自車両Aの車速V1が前記ステップS108で設定した目標車速V1dccに到達したときの、自車両Aと自車線の後方車両Cとの車間距離がある。
L1dcc = L1 + 1/2 × αd × ((V1dcc−V1) / αd) 2 (5)
Here, αd is a preset deceleration, and the deceleration direction is a positive value.
Further, the controller 5 calculates the inter-vehicle distance L2dcc according to the following equation (6) based on the detection results output from the radar unit 1 and the vehicle speed detection unit 4 and the target vehicle speed V1dcc set in step S108. As the inter-vehicle distance L2dcc, for example, when the own vehicle A decelerates and the vehicle speed V1 of the own vehicle A reaches the target vehicle speed V1dcc set in step S108, the own vehicle A and the rear vehicle C in the own lane There is a distance between cars.

L2dcc=L2―1/2×αd×((V1dcc―V1)/αd)2 ………(6)
続いてステップS110に移行して、コントローラ5は、レーダー部1が出力した検出結果、及び前記ステップS109で算出した車間距離L1dcc、L2dccに基づき、自車両Aに対する各隣接車両Dの相対位置を算出する。続いて、コントローラ5は、算出した相対位置に基づいて、自車両Aが減速して、前記ステップS108で設定した目標車速V1dccに自車両Aの車速V1が到達したときの、自車線へ車線変更可能な隣接車両Dの数(以下、合流可能台数Ndccとも呼ぶ)を計数する。具体的には、コントローラ5は、レーダー部1が検出した隣接車両Dのうちから、各隣接車両Dを順に選択する。そして、コントローラ5は、選択した隣接車両Dに以下の(a)〜(d)の処理を実行する。
L2dcc = L2-1 / 2 × αd × ((V1dcc−V1) / αd) 2 (6)
In step S110, the controller 5 calculates the relative position of each adjacent vehicle D with respect to the host vehicle A based on the detection result output from the radar unit 1 and the inter-vehicle distances L1dcc and L2dcc calculated in step S109. To do. Subsequently, the controller 5 changes the lane to the own lane when the own vehicle A decelerates based on the calculated relative position and the vehicle speed V1 of the own vehicle A reaches the target vehicle speed V1dcc set in step S108. The number of possible adjacent vehicles D (hereinafter also referred to as the number Ndcc that can be joined) is counted. Specifically, the controller 5 sequentially selects each adjacent vehicle D from among the adjacent vehicles D detected by the radar unit 1. Then, the controller 5 performs the following processes (a) to (d) on the selected adjacent vehicle D.

(a)コントローラ5は、選択した隣接車両(選択隣接車両)Dと自車両Aとの前後方向の車間距離L3、選択隣接車両Dの車速V2、及び前記ステップS108で設定した目標車速V1dccに基づき、下記(7)式に従って干渉予測時間TTCを算出する。
TTC=L3/(V1dcc―V2) ………(7)
(b)選択隣接車両Dと自車両Aとの前後方向の車間距離L3、及び選択隣接車両Dの車速V2に基づき、下記(8)式に従って車間時間THWを算出する。
THW=L3/V2 ………(8)
(A) The controller 5 is based on the longitudinal distance L3 between the selected adjacent vehicle (selected adjacent vehicle) D and the host vehicle A, the vehicle speed V2 of the selected adjacent vehicle D, and the target vehicle speed V1dcc set in step S108. The interference prediction time TTC is calculated according to the following equation (7).
TTC = L3 / (V1dcc-V2) (7)
(B) The inter-vehicle time THW is calculated according to the following equation (8) based on the front-to-rear distance L3 between the selected adjacent vehicle D and the host vehicle A and the vehicle speed V2 of the selected adjacent vehicle D.
THW = L3 / V2 (8)

(c)コントローラ5は、図4に示すように、算出した干渉予測時間TTCが設定時間minTTC以上(TTC≧minTTC)であり且つ車間時間THWが設定時間minTHW以上(THW≧minTHW)であるか否かを判定する。そして、コントローラ5は、TTC≧minTTCで且つTHW≧minTHWであると判定した場合には、選択隣接車両Dが自車線へ車線変できると判定する。一方、コントローラ5は、コントローラ5は、TTC<minTTCまたはTHW<minTHWであると判定した場合には、選択隣接車両Dが自車線へ車線変できないと判定する。 (C) As shown in FIG. 4, the controller 5 determines whether or not the calculated interference prediction time TTC is equal to or greater than the set time minTTC (TTC ≧ minTTC) and the inter-vehicle time THW is equal to or greater than the set time minTHW (THW ≧ minTHW). Determine whether. When the controller 5 determines that TTC ≧ minTTC and THW ≧ minTHW, the controller 5 determines that the selected adjacent vehicle D can change to the own lane. On the other hand, if the controller 5 determines that TTC <minTTC or THW <minTHW, the controller 5 determines that the selected adjacent vehicle D cannot change its lane to the own lane.

(d)コントローラ5は、選択隣接車両Dが自車線へ車線変できると判定すると、合流可能台数Ndccに1を加算する。
これにより、各隣接車両Dに対し、上記(a)〜(d)の処理を実行することで、合流可能台数Ndccが、自車線へ車線変更可能な隣接車両Dの数となる。
(D) When the controller 5 determines that the selected adjacent vehicle D can change the lane to the own lane, the controller 5 adds 1 to the number Ndcc that can be joined.
Accordingly, by executing the processes (a) to (d) for each adjacent vehicle D, the number Ndcc that can be merged becomes the number of adjacent vehicles D that can change the lane to the own lane.

続いてステップS111に移行して、コントローラ5は、前記ステップS110で算出(予測)した合流可能台数Ndccが前記ステップS107で設定した減速時台数Ndccopt(ステップS107〜S11のフローが繰り返し実行され、ステップS111で合流可能台数Ndccを設定した場合には、前回ステップS111で設定した合流可能台数Ndcc)よりも大きいか否かを判定する。そして、コントローラ5は、合流可能台数Ndccが減速時台数Ndccoptよりも大きいと判定した場合には、合流可能台数Ndccを減速時台数Ndccoptとして設定するとともに、前記ステップS108で設定した目標車速V1dccを減速時目標車速V1dcc*として設定する。これにより、コントローラ5は、前記ステップS110で算出(予測)した隣接車両Dの数(合流可能台数Ndcc)のうちの最大値を加速時台数Ndccoptとするとともに隣接車両Dの数(合流可能台数Ndcc)が最大となる目標車速V1dccのうち最大の目標車速V1dccを減速時目標車速V1dcc*とする。一方、コントローラ5は、合流可能台数Ndccが減速時台数Ndccopt以下であると判定した場合には、減速時台数Ndccopt及び減速時目標車速V1dcc*を維持する。   Subsequently, the process proceeds to step S111, and the controller 5 determines that the number Ndcc that can be merged calculated (predicted) in step S110 is the number Ndccopt during deceleration set in step S107 (the flow of steps S107 to S11 is repeatedly executed). If the mergeable number Ndcc is set in S111, it is determined whether it is larger than the mergeable number Ndcc) set in the previous step S111. If the controller 5 determines that the number Ndcc that can be merged is greater than the number Ndccopt during deceleration, the controller 5 sets the number Ndcc that can be merged as the number Ndccopt during deceleration and decelerates the target vehicle speed V1dcc set in step S108. Set as the target vehicle speed V1dcc *. As a result, the controller 5 sets the maximum value of the number of adjacent vehicles D calculated (predicted) in step S110 (the number Ndcc that can be merged) as the number Ndccopt during acceleration and the number of adjacent vehicles D (the number Ndcc that can be merged). The maximum target vehicle speed V1dcc out of the target vehicle speed V1dcc with the maximum ()) is set as the deceleration target vehicle speed V1dcc *. On the other hand, if the controller 5 determines that the mergeable number Ndcc is equal to or less than the deceleration number Ndccopt, the controller 5 maintains the deceleration number Ndccopt and the deceleration target vehicle speed V1dcc *.

続いてステップS112に移行して、コントローラ5は、前記ステップS107で算出した車間距離L2dcc、つまり、減速時目標車速V1dcc*に自車両Aの車速V1が到達したときの、自車両Aと自車線の後方車両Cとの車間距離L2(L2dcc)が減速時設定閾値thL2よりも小さい(L2dcc<thL2)か否かを判定する。加速時設定閾値thL1としては、例えば、予め定めた値がある。そして、コントローラ5は、L2dcc<thL2と判定した場合には(Yes )ステップS113に移行する。一方、コントローラ5は、L2dcc≧thL2と判定した場合には(Yes )前記ステップS108に移行する。   Subsequently, the process proceeds to step S112, in which the controller 5 determines the own vehicle A and the own lane when the vehicle speed V1 of the own vehicle A reaches the inter-vehicle distance L2dcc calculated in step S107, that is, the deceleration target vehicle speed V1dcc *. It is determined whether the inter-vehicle distance L2 (L2dcc) with the rear vehicle C is smaller than the deceleration threshold value thL2 (L2dcc <thL2). As the acceleration setting threshold thL1, for example, there is a predetermined value. If the controller 5 determines that L2dcc <thL2 (Yes), the controller 5 proceeds to step S113. On the other hand, if the controller 5 determines that L2dcc ≧ thL2 (Yes), the controller 5 proceeds to step S108.

前記ステップS113では、コントローラ5は、前記ステップS105で設定した加速時台数Naccoptが前記ステップS111で設定した減速時台数Ndccopt以下(Ndccopt≧Naccopt)であるか否かを判定する。そして、コントローラ5は、Ndccopt≧Naccoptと判定した場合には(Yes)ステップS114に移行する。一方、コントローラ5は、Ndccopt<Naccoptと判定した場合には(No)ステップS115に移行する。   In step S113, the controller 5 determines whether or not the acceleration number Naccopt set in step S105 is less than or equal to the deceleration number Ndccopt set in step S111 (Ndccopt ≧ Naccopt). If the controller 5 determines that Ndccopt ≧ Naccopt (Yes), the controller 5 proceeds to step S114. On the other hand, if the controller 5 determines that Ndccopt <Naccopt (No), the controller 5 proceeds to step S115.

前記ステップS114では、コントローラ5は、自車両Aが減速して、前記ステップS111で設定した減速時目標車速V1dcc*と自車両Aの車速V1とが一致するように自車両Aの制駆動力を制御する指令(減速指令)を制駆動力制御部6に出力した後、この演算処理を終了する。これにより、制駆動力制御部6が、制動力の発生及び駆動力の低減の少なくともいずれかを行う。そして、自車両Aが減速し、自車線の前方車両Bと自車両Aとの車間距離L1が増大し、自車両Aと自車線の後方車両Cとの車間距離L2が低減する。   In step S114, the controller 5 decelerates the host vehicle A so that the deceleration target vehicle speed V1dcc * set in step S111 and the vehicle speed V1 of the host vehicle A coincide with each other. After the command (deceleration command) to be controlled is output to the braking / driving force control unit 6, the calculation process is terminated. Thereby, the braking / driving force control unit 6 performs at least one of generation of braking force and reduction of driving force. And the own vehicle A decelerates, the inter-vehicle distance L1 between the front vehicle B and the own vehicle A in the own lane increases, and the inter-vehicle distance L2 between the own vehicle A and the rear vehicle C in the own lane decreases.

前記ステップS115では、コントローラ5は、自車両Aが加速して、前記ステップS105で設定した加速時目標車速V1acc*と自車両Aの車速V1とが一致するように自車両Aの制駆動力を制御する指令(加速指令)を制駆動力制御部6に出力した後、この演算処理を終了する。これにより、制駆動力制御部6が、制動力の低減及び駆動力の増大の少なくともいずれかを行う。そして、自車両Aが加速し、自車線の前方車両Bと自車両Aとの車間距離L1が低減し、自車両Aと自車線の後方車両Cとの車間距離L2が増大する。
(動作その他)
次に、本実施形態の運転支援装置を搭載した車両の動作について説明する。
In step S115, the controller 5 accelerates the host vehicle A and increases the braking / driving force of the host vehicle A so that the acceleration target vehicle speed V1acc * set in step S105 matches the vehicle speed V1 of the host vehicle A. After the command (acceleration command) to be controlled is output to the braking / driving force control unit 6, this calculation process is terminated. As a result, the braking / driving force control unit 6 performs at least one of the reduction of the braking force and the increase of the driving force. Then, the own vehicle A accelerates, the inter-vehicle distance L1 between the front vehicle B and the own vehicle A in the own lane decreases, and the inter-vehicle distance L2 between the own vehicle A and the rear vehicle C in the own lane increases.
(Operation other)
Next, the operation of the vehicle equipped with the driving support device of this embodiment will be described.

自車両Aの走行中、図2(a)に示すように、自車線の左側に自車線(本線)に合流する隣接車線(合流車線)が存在し、その合流車線に3台の隣接車両D(以下、先頭側から隣接車両D1、隣接車両D2、隣接車両D3とも呼ぶ)が走行していたとする。また、隣接車両D1、D2、D3が自車線側のウィンカーを点滅させていたとする。すると、コントローラ5が、隣接車両D1、D2、D3に自車線へ車線変更する意図があると判定し、運転支援処理を実行する。続いて、コントローラ5が、車速検出部4が出力した検出結果に基づき、自車両Aの車速V1を目標車速V1accとして設定する(図3のステップS101)。続いて、コントローラ5が、合流可能台数Nacc、加速時台数Naccopt、及び加速時目標車速V1acc*を0に設定する(図3のステップS101)。   While the host vehicle A is traveling, as shown in FIG. 2A, there is an adjacent lane (merging lane) that merges with the host lane (main line) on the left side of the own lane, and three adjacent vehicles D are in the merging lane. Assume that the adjacent vehicle D1, the adjacent vehicle D2, and the adjacent vehicle D3 are running from the head side. Further, it is assumed that the adjacent vehicles D1, D2, and D3 blink the blinker on the own lane side. Then, the controller 5 determines that the adjacent vehicles D1, D2, and D3 have an intention to change lanes to the own lane, and executes driving support processing. Subsequently, the controller 5 sets the vehicle speed V1 of the host vehicle A as the target vehicle speed V1acc based on the detection result output by the vehicle speed detection unit 4 (step S101 in FIG. 3). Subsequently, the controller 5 sets the number Nacc that can be merged, the number Naccopt during acceleration, and the target vehicle speed V1acc * during acceleration to 0 (step S101 in FIG. 3).

続いて、コントローラ5が、設定した目標車速V1accに速度変化量ΔV1(>0)を加算し、加算結果を目標車速V1accとして設定する(図3のステップS102)。続いて、コントローラ5が、設定した目標車速V1acc、並びにレーダー部1及び車速検出部4が出力した検出結果基づき、図2(b)に示すように、自車両Aが加速して、自車両Aの車速V1が目標車速V1accに到達したときの、自車線の前方車両Bと自車両Aとの車間距離L1accを算出する(図3のステップS103)。また、コントローラ5が、設定した目標車速V1acc、及びレーダー部1及び車速検出部4が出力した検出結果に基づき、自車両Aが加速して、自車両Aの車速V1が目標車速V1accに到達したときの、自車両Aと自車線の後方車両Cとの車間距離L2accを算出する(図3のステップS103)。   Subsequently, the controller 5 adds the speed change amount ΔV1 (> 0) to the set target vehicle speed V1acc, and sets the addition result as the target vehicle speed V1acc (step S102 in FIG. 3). Subsequently, based on the target vehicle speed V1acc set by the controller 5 and the detection results output by the radar unit 1 and the vehicle speed detection unit 4, the host vehicle A accelerates as shown in FIG. When the vehicle speed V1 reaches the target vehicle speed V1acc, an inter-vehicle distance L1acc between the vehicle B ahead of the host lane and the host vehicle A is calculated (step S103 in FIG. 3). Further, based on the target vehicle speed V1acc set by the controller 5 and the detection results output by the radar unit 1 and the vehicle speed detection unit 4, the host vehicle A accelerates and the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1acc. The inter-vehicle distance L2acc between the host vehicle A and the rear vehicle C of the host lane is calculated (step S103 in FIG. 3).

図5は、運転支援装置の動作を説明するための説明図である。
続いて、コントローラ5が、算出した車間距離L1acc、L2acc、及びレーダー部1が出力した検出結果に基づき、自車両Aに対する各隣接車両D1、D2、D3の相対位置を算出する(図3のステップS104)。続いて、コントローラ5が、算出した相対位置に基づき、自車線へ車線変更可能な隣接車両D1、D2、D3の数、つまり、図4、図5に示すように、図4(a)(b)(c)それぞれの斜線状の領域内に「加速時」がある隣接車両D1、D2、D3の数(合流可能台数Nacc)を計数する(図3のステップS104)。ここで、算出した合流可能台数Naccが加速時台数Naccoptよりも大きいとする。すると、コントローラ5が、合流可能台数Naccを加速時台数Naccoptとして設定し、目標車速V1accを加速時目標車速V1acc*として設定する(図3のステップS105)。続いて、コントローラ5が、算出した車間距離L1accが加速時設定閾値thL1よりも大きい、つまり、自車線の前方車両Bに自車両Aがもっと接近してもかまわないと判定し、前記ステップS102から上記フローを繰り返し実行する。
FIG. 5 is an explanatory diagram for explaining the operation of the driving support apparatus.
Subsequently, the controller 5 calculates the relative positions of the adjacent vehicles D1, D2, and D3 with respect to the host vehicle A based on the calculated inter-vehicle distances L1acc and L2acc and the detection result output by the radar unit 1 (step of FIG. 3). S104). Subsequently, based on the calculated relative position, the number of adjacent vehicles D1, D2, and D3 whose lanes can be changed to the own lane, that is, as shown in FIGS. 4 and 5, FIG. (C) Count the number of adjacent vehicles D1, D2, D3 (the number Nacc that can be merged) having “at the time of acceleration” in each shaded area (step S104 in FIG. 3). Here, it is assumed that the calculated mergeable number Nacc is larger than the acceleration number Naccopt. Then, the controller 5 sets the number Nacc that can be merged as the number Naccopt during acceleration, and sets the target vehicle speed V1acc as the target vehicle speed V1acc * during acceleration (step S105 in FIG. 3). Subsequently, the controller 5 determines that the calculated inter-vehicle distance L1acc is greater than the acceleration setting threshold thL1, that is, the host vehicle A may approach the vehicle B ahead of the host lane, and from step S102 described above. Repeat the above flow.

上記フローを繰り返し実行するうちに、L1acc<thL1になると、コントローラ5が、前記ステップS106の判定を「Yes」とする。続いて、コントローラ5が、車速検出部4が出力した検出結果に基づき、自車両Aの車速V1を目標車速V1dccとして設定する(図3のステップS107)。続いて、コントローラ5が、合流可能台数Ndcc、減速時台数Ndccopt、及び減速時目標車速V1dcc*を0に設定する(図3のステップS107)。   If L1acc <thL1 during repeated execution of the above flow, the controller 5 sets the determination in step S106 to “Yes”. Subsequently, the controller 5 sets the vehicle speed V1 of the host vehicle A as the target vehicle speed V1dcc based on the detection result output by the vehicle speed detection unit 4 (step S107 in FIG. 3). Subsequently, the controller 5 sets the number Ndcc that can be merged, the number Ndccopt during deceleration, and the target vehicle speed V1dcc * during deceleration to 0 (step S107 in FIG. 3).

続いて、コントローラ5が、設定した目標車速V1dccから速度変化量ΔV1(>0)を減算し、減算結果を目標車速V1dccとして設定する(図3のステップS108)。続いて、コントローラ5が、設定した目標車速V1dcc、並びにレーダー部1及び車速検出部4が出力した検出結果に基づき、図2(c)に示すように、自車両Aが減速して、自車両Aの車速V1が目標車速V1dccに到達したときの、自車線の前方車両Bと自車両Aとの車間距離L1dccを算出する(図3のステップS109)。また、コントローラ5が、設定した目標車速V1dcc、及びレーダー部1及び車速検出部4が出力した検出結果に基づき、自車両Aが減速して、自車両Aの車速V1が目標車速V1dccに到達したときの、自車両Aと自車線の後方車両Cとの車間距離L2dccを算出する(図3のステップS110)。   Subsequently, the controller 5 subtracts the speed change amount ΔV1 (> 0) from the set target vehicle speed V1dcc, and sets the subtraction result as the target vehicle speed V1dcc (step S108 in FIG. 3). Subsequently, based on the set target vehicle speed V1dcc and the detection results output by the radar unit 1 and the vehicle speed detection unit 4, the controller 5 decelerates the host vehicle A as shown in FIG. An inter-vehicle distance L1dcc between the vehicle B ahead of the host lane and the host vehicle A when the vehicle speed V1 of A reaches the target vehicle speed V1dcc is calculated (step S109 in FIG. 3). Further, based on the target vehicle speed V1dcc set by the controller 5 and the detection results output by the radar unit 1 and the vehicle speed detection unit 4, the host vehicle A decelerates and the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1dcc. The inter-vehicle distance L2dcc between the host vehicle A and the rear vehicle C of the host lane is calculated (step S110 in FIG. 3).

続いて、コントローラ5は、算出した車間距離L1dcc、L2dcc、及びレーダー部1が出力した検出結果に基づき、自車両Aに対する各隣接車両D1、D2、D3の相対位置を算出する(図3のステップS110)。続いて、コントローラ5が、算出した相対位置に基づき、自車線へ車線変更可能な隣接車両D1、D2、D3の数、つまり、図4、図5に示すように、図4(a)(b)(c)それぞれの斜線状の領域内に「減速時」がある隣接車両D1、D2、D3の数(合流可能台数Ndcc)を計数する(図3のステップS104)。ここで、算出した合流可能台数Ndccが減速時台数Ndccoptよりも大きいとする。すると、コントローラ5が、合流可能台数Ndccを減速時台数Ndccoptとして設定し、目標車速V1dccを減速時目標車速V1dcc*として設定する(図3のステップS111)。続いて、コントローラ5が、算出した車間距離L2dccが減速時設定閾値thL2よりも大きい、つまり、自車線の後方車両Cに自車両Aがもっと接近してもかまわないと判定し、前記ステップS108から上記フローを繰り返し実行する。   Subsequently, the controller 5 calculates the relative positions of the adjacent vehicles D1, D2, and D3 with respect to the host vehicle A based on the calculated inter-vehicle distances L1dcc and L2dcc and the detection result output by the radar unit 1 (step of FIG. 3). S110). Subsequently, based on the calculated relative position, the number of adjacent vehicles D1, D2, and D3 whose lanes can be changed to the own lane, that is, as shown in FIGS. 4 and 5, FIG. (C) Count the number of adjacent vehicles D1, D2 and D3 (number of possible merging Ndcc) having “at the time of deceleration” in each shaded area (step S104 in FIG. 3). Here, it is assumed that the calculated mergeable number Ndcc is larger than the deceleration number Ndccopt. Then, the controller 5 sets the number Ndcc that can be merged as the number Ndccopt during deceleration, and sets the target vehicle speed V1dcc as the target vehicle speed V1dcc * during deceleration (step S111 in FIG. 3). Subsequently, the controller 5 determines that the calculated inter-vehicle distance L2dcc is greater than the deceleration time setting threshold thL2, that is, the host vehicle A may approach the rear vehicle C of the host lane, and from the step S108. Repeat the above flow.

上記フローを繰り返し実行するうちに、L2dcc<thL2になると、コントローラ5が、前記ステップS112の判定を「Yes」とする。ここで、図5に示すように、加速時台数Naccoptが減速時台数Ndccoptより大きかったとする。すると、コントローラ5が、Ndccopt<Naccoptと判定する(図3のステップS113「No」)。続いて、コントローラ5が、加速指令を制駆動力制御部6に出力する(図3のステップS115)。これにより、制駆動力制御部6が、コントローラ5が加速指令を出力すると、設定した加速時目標車速V1acc*と自車両Aの車速V1とが一致するように自車両Aの制駆動力を制御する。そして、自車両Aを加速し、自車線の前方車両Bと自車両Aとの車間距離L1が低減し、自車両Aと自車線の後方車両Cとの車間距離L2が増大する。   If L2dcc <thL2 during the repeated execution of the above flow, the controller 5 sets the determination in step S112 to "Yes". Here, as shown in FIG. 5, it is assumed that the number Naccopt during acceleration is larger than the number Ndccopt during deceleration. Then, the controller 5 determines that Ndccopt <Naccopt (step S113 “No” in FIG. 3). Subsequently, the controller 5 outputs an acceleration command to the braking / driving force control unit 6 (step S115 in FIG. 3). As a result, when the controller 5 outputs an acceleration command, the braking / driving force control unit 6 controls the braking / driving force of the host vehicle A so that the set target vehicle speed V1acc * during acceleration matches the vehicle speed V1 of the host vehicle A. To do. Then, the host vehicle A is accelerated, the inter-vehicle distance L1 between the front vehicle B on the own lane and the own vehicle A is reduced, and the inter-vehicle distance L2 between the own vehicle A and the rear vehicle C on the own lane is increased.

このように、本実施形態では、コントローラ5が、自車両Aが加速した場合に自車線へ車線変更可能な隣接車両Dの数である加速時台数Naccopt、及び自車両Aが減速した場合に自車線へ車線変更可能な隣接車両Dの数である減速時台数Ndccoptを算出する。そして、本実施形態では、コントローラ5が、算出した加速時台数Naccoptが減速時台数Ndccoptより大きい場合には、自車両Aが加速するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。一方、本実施形態では、コントローラ5が、算出した加速時台数Naccoptが減速時台数未満である場合には、自車両Aが減速するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。それゆえ、本実施形態では、自車両Aが加速した場合の自車線へ車線変更可能な隣接車両Dの数(車線変更可能台数)が、自車両Aが減速した場合の車線変更可能台数よりも大きい場合に、自車両Aを加速できる。一方、本実施形態では、自車両Aが減速した場合の車線変更可能台数が自車両Aが減速した場合の車線変更可能台数よりも大きい場合に、自車両Aを減速できる。これにより、本実施形態では、隣接車線から自車線へ車線変更可能な隣接車両Dの数を増大できる。   Thus, in this embodiment, when the own vehicle A accelerates, the controller 5 increases the number Naccopt during acceleration, which is the number of adjacent vehicles D that can change lanes to the own lane, and when the own vehicle A decelerates. The number Ndccopt during deceleration, which is the number of adjacent vehicles D that can change lanes to the lane, is calculated. In this embodiment, when the calculated acceleration number Naccopt is larger than the deceleration number Ndccopt, the controller 5 controls at least one of the own vehicle A and notifies the driver so that the own vehicle A accelerates. I do. On the other hand, in the present embodiment, when the calculated acceleration number Naccopt is less than the deceleration number, the controller 5 controls at least one of the own vehicle A and notifies the driver so that the own vehicle A decelerates. I do. Therefore, in the present embodiment, the number of adjacent vehicles D that can change lanes to the own lane when the own vehicle A accelerates (the number of lanes that can be changed) is larger than the number that can change the lane when the own vehicle A decelerates. When it is large, the host vehicle A can be accelerated. On the other hand, in the present embodiment, the host vehicle A can be decelerated when the number of lane changeable vehicles when the host vehicle A decelerates is larger than the number of lane changeable vehicles when the host vehicle A decelerates. Thereby, in this embodiment, the number of the adjacent vehicles D which can change a lane from an adjacent lane to the own lane can be increased.

本実施形態では、図1の車速検出部4が自車速検出部を構成する。以下同様に、図1のレーダー部1が隣接車速検出部及び車間距離検出部を構成する。また、図1のコントローラ5、図3のステップS101〜S112が車線変更可能台数算出部を構成する。さらに、図1のコントローラ5、図3のステップS113、S114、S115が車線変更運転支援部を構成する。また、図1のコントローラ5、図3のステップS101〜S106が加速時変数設定部を構成する。さらに、図1のコントローラ5、図3のステップS107〜S112が減速時変数設定部を構成する。   In the present embodiment, the vehicle speed detection unit 4 in FIG. 1 constitutes the own vehicle speed detection unit. Similarly, the radar unit 1 in FIG. 1 constitutes an adjacent vehicle speed detection unit and an inter-vehicle distance detection unit. Further, the controller 5 in FIG. 1 and steps S101 to S112 in FIG. 3 constitute a lane changeable number calculating section. Further, the controller 5 in FIG. 1 and steps S113, S114, and S115 in FIG. 3 constitute a lane change driving support unit. 1 and steps S101 to S106 in FIG. 3 constitute an acceleration variable setting unit. Further, the controller 5 in FIG. 1 and steps S107 to S112 in FIG. 3 constitute a deceleration time variable setting unit.

(本実施形態の効果)
本実施形態は、次のような効果を奏する。
(1)コントローラ5が、自車両Aが加速した場合に自車線へ車線変更可能な隣接車両Dの数である加速時台数Naccopt、及び自車両Aが減速した場合に自車線へ車線変更可能な隣接車両Dの数である減速時台数Ndccoptを算出する。そして、コントローラ5が、算出した加速時台数Naccoptが減速時台数Ndccoptより大きい場合には、自車両Aが加速するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。一方、コントローラ5が、算出した加速時台数Naccoptが減速時台数未満である場合には、自車両Aが減速するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。
(Effect of this embodiment)
This embodiment has the following effects.
(1) The controller 5 can change the lane to the own lane when the own vehicle A accelerates, and the number Naccopt of accelerations, which is the number of adjacent vehicles D that can change the lane to the own lane, and the own vehicle A decelerates. The number Ndccopt during deceleration, which is the number of adjacent vehicles D, is calculated. When the calculated acceleration number Naccopt is larger than the deceleration number Ndccopt, the controller 5 controls at least one of the own vehicle A and notifies the driver so that the own vehicle A accelerates. On the other hand, when the calculated acceleration number Naccopt is less than the deceleration number, the controller 5 controls at least one of the own vehicle A and notifies the driver so that the own vehicle A decelerates.

このような構成によれば、自車両Aが加速した場合の自車線へ車線変更可能な隣接車両Dの数(車線変更可能台数)が、自車両Aが減速した場合の車線変更可能台数よりも大きい場合に、自車両Aを加速できる。一方、自車両Aが減速した場合の車線変更可能台数が自車両Aが減速した場合の車線変更可能台数よりも大きい場合に、自車両Aを減速できる。これにより、隣接車線から自車線へ車線変更可能な隣接車両Dの数を増大できる。   According to such a configuration, the number of adjacent vehicles D that can change lanes to the own lane when the own vehicle A accelerates (the number that can change lanes) is greater than the number that can change lanes when the own vehicle A decelerates. When it is large, the host vehicle A can be accelerated. On the other hand, the host vehicle A can be decelerated when the number of lane changeable vehicles when the host vehicle A decelerates is larger than the number of lane changeable vehicles when the host vehicle A decelerates. Thereby, the number of the adjacent vehicles D which can change lanes from an adjacent lane to the own lane can be increased.

(2)コントローラ5が、目標車速V1acc(>V1)を複数設定し、設定した目標車速V1accそれぞれに自車両Aの車速V1が到達したときの、自車線へ車線変更可能な隣接車両Dの数(合流可能台数Nacc)を予測する。続いて、コントローラ5が、予測した隣接車両Dの数(合流可能台数Nacc)のうちの最大値を加速時台数Naccoptとするとともに隣接車両Dの数(合流可能台数Nacc)が最大となる目標車速V1accのうち最小の目標車速V1accを加速時目標車速V1acc*とする。一方、コントローラ5が、目標車速V1dcc(<V1)を複数設定し、設定した目標車速V1dccそれぞれに自車両Aの車速V1が到達したときの、自車線へ車線変更可能な隣接車両Dの数(合流可能台数Ndcc)を予測する。続いて、コントローラ5が、予測した隣接車両Dの数(合流可能台数Ndcc)のうちの最大値を減速時台数Ndccoptとするとともに隣接車両Dの数(合流可能台数Ndcc)が最大となる目標車速V1dccのうち最大の目標車速V1dccを減速時目標車速V1dcc*とする。続いて、コントローラ5が、加速時台数Naccoptが減速時台数Ndccoptより大きい場合には、自車両Aが加速して、加速時目標車速V1acc*と自車両Aの車速V1とが一致するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。一方、コントローラ5が、加速時台数Naccoptが減速時台数Ndccopt未満である場合には、自車両Aが減速して、減速時目標車速V1dcc*と自車両Aの車速V1とが一致するように自車両Aの制御及び運転者への報知の少なくとも一方を行う。
このような構成により、自車両Aの加速度及び減速度の過度の増大を抑制できる。
(2) The controller 5 sets a plurality of target vehicle speeds V1acc (> V1), and when the vehicle speed V1 of the own vehicle A reaches each of the set target vehicle speeds V1acc, the number of adjacent vehicles D that can change lanes to the own lane Predict the (number of possible merging Nacc). Subsequently, the controller 5 sets the maximum value of the predicted number of adjacent vehicles D (the number Nacc that can be merged) as the acceleration-time number Naccopt and the target vehicle speed that maximizes the number of the adjacent vehicles D (the number Nacc that can be merged). The minimum target vehicle speed V1acc in V1acc is set as the acceleration target vehicle speed V1acc *. On the other hand, when the controller 5 sets a plurality of target vehicle speeds V1dcc (<V1) and the vehicle speed V1 of the host vehicle A reaches each of the set target vehicle speeds V1dcc, the number of adjacent vehicles D that can change lanes to the host lane ( Predict the possible number of mergers (Ndcc). Subsequently, the controller 5 sets the maximum value of the predicted number of adjacent vehicles D (the number Ndcc that can be merged) as the deceleration number Ndccopt and the target vehicle speed that maximizes the number of the adjacent vehicles D (the number Ndcc that can be merged). The maximum target vehicle speed V1dcc of V1dcc is set as the deceleration target vehicle speed V1dcc *. Subsequently, when the controller Naccopt is greater than the deceleration number Ndccopt, the host vehicle A accelerates and the acceleration target vehicle speed V1acc * and the vehicle speed V1 of the host vehicle A coincide with each other. At least one of the control of the vehicle A and the notification to the driver is performed. On the other hand, when the number Naccopt during acceleration is less than the number Ndccopt during deceleration, the own vehicle A decelerates so that the target vehicle speed V1dcc * during deceleration matches the vehicle speed V1 of the own vehicle A. At least one of the control of the vehicle A and the notification to the driver is performed.
With such a configuration, an excessive increase in the acceleration and deceleration of the host vehicle A can be suppressed.

(変形例)
なお、上記実施形態では、加速時設定閾値thL1、減速時設定閾値thL2として予め定めた値を用いる例を示したが、他の構成を採用してもよい。例えば、自車両Aの車速V1に基づいて加速時設定閾値thL1、及び減速時設定閾値thL2を設定する構成としてもよい。具体的には、コントローラ5は、自車両Aと隣接車両Dとの位置関係に基づき、隣接車両Dの車線変更のためのスペース(例えば、自車両Aの前方及び後方のスペース)をより積極的に増大させる要求(以下、増減要求とも呼ぶ)があるか否かを判定する。例えば、コントローラ5は、自車両Aと隣接車両Dとの前後方向の車間距離L3のうち最小の車間距離L3が設定距離以下(L3≦設定距離)であるか否かを判定する。そして、コントローラ5は、L3>設定距離と判定した場合には、増減要求がないと判定する。一方、コントローラ5は、L3≦設定距離と判定した場合には、増減要求があると判定する。
(Modification)
In the above embodiment, an example is shown in which predetermined values are used as the acceleration setting threshold thL1 and the deceleration setting threshold thL2, but other configurations may be employed. For example, the acceleration setting threshold thL1 and the deceleration setting threshold thL2 may be set based on the vehicle speed V1 of the host vehicle A. Specifically, based on the positional relationship between the host vehicle A and the adjacent vehicle D, the controller 5 more actively uses spaces for changing the lane of the adjacent vehicle D (for example, spaces ahead and behind the host vehicle A). It is determined whether or not there is a request to increase (hereinafter also referred to as an increase / decrease request). For example, the controller 5 determines whether or not the minimum inter-vehicle distance L3 among the inter-vehicle distances L3 between the host vehicle A and the adjacent vehicle D is equal to or less than the set distance (L3 ≦ set distance). When the controller 5 determines that L3> the set distance, it determines that there is no increase / decrease request. On the other hand, if it is determined that L3 ≦ the set distance, the controller 5 determines that there is an increase / decrease request.

図6は、加速時設定閾値thL1及び減速時設定閾値thL2の設定方法の説明図である。
そして、コントローラ5は、増減要求がないと判定すると、下記(9)式に従って加速時設定閾値thL1、減速時設定閾値thL2を算出する。
thL1=THW1×V1+thL10
thL2=THW2×V1+thL20 ………(9)
ここで、THW1、THW2は、最小車間時間であり、一般的な交通状態では4〜5秒に設定する。これにより、コントローラ5は、自車両Aの車速V1が大きいほど自車線の前方車両Bと自車両Aとの車間距離L1及び自車両Aと自車線の後方車両Cとの車間距離L2を増大でき、自車両Aの車速V1に応じた安心感のある車間距離L1、L2を確保できる。
FIG. 6 is an explanatory diagram of a method of setting the acceleration setting threshold thL1 and the deceleration setting threshold thL2.
When determining that there is no increase / decrease request, the controller 5 calculates the acceleration setting threshold thL1 and the deceleration setting threshold thL2 according to the following equation (9).
thL1 = THW1 × V1 + thL10
thL2 = THW2 × V1 + thL20 (9)
Here, THW1 and THW2 are minimum inter-vehicle time, and are set to 4 to 5 seconds in a general traffic state. Thus, the controller 5 can increase the inter-vehicle distance L1 between the front vehicle B and the own vehicle A in the own lane and the inter-vehicle distance L2 between the own vehicle A and the rear vehicle C in the own lane as the vehicle speed V1 of the own vehicle A increases. Therefore, the inter-vehicle distances L1 and L2 can be secured with a sense of security corresponding to the vehicle speed V1 of the host vehicle A.

また、thL10は、自車両Aが停止したときに確保すべき自車両Aと自車線の前方車両Bとの車間距離である。さらに、thL20は、自車両Aが停止したときに確保すべき自車両Aと自車線の後方車両Cとの車間距離である。thL10、thL20は、例えば、一般的な交通状態では1〜3mに設定する。これにより、コントローラ5は、自車両Aの車速V1が0となり、自車両Aが停車しても十分な車間距離L1、L2を確保できる。   Further, thL10 is the inter-vehicle distance between the host vehicle A to be secured when the host vehicle A stops and the vehicle B ahead of the host lane. Further, thL20 is the inter-vehicle distance between the own vehicle A and the rear vehicle C in the own lane that should be secured when the own vehicle A stops. For example, thL10 and thL20 are set to 1 to 3 m in a general traffic state. As a result, the controller 5 can secure the sufficient inter-vehicle distances L1 and L2 even if the vehicle speed V1 of the host vehicle A becomes 0 and the host vehicle A stops.

一方、コントローラ5は、増減要求があると判定すると、下記(10)式に従って加速時設定閾値thL1、減速時設定閾値thL2を算出する。
thL1=THW1hosei1×V1+thL10
thL2=THW2hosei2×V1+thL20 ………(6)
ここで、THW1hosei1<THW1、THW2hosei2<THW2に設定する。これにより、コントローラ5は、増減要求があると判定した場合には、増減要求がないと判定した場合に比べ、加速時設定閾値thL1、減速時設定閾値thL2、つまり、自車線の前方車両B及び後方車両Cと自車両Aとの車間距離の最低値(以下、最低車間距離とも呼ぶ)を低減できる。それゆえ、コントローラ5は、隣接車両Dの車線変更のためのスペースをより積極的に増大できる(自車両Aの位置の変更可能な範囲が広がる)。そのため、コントローラ5は、隣接車両Dの車線変更のためのスペースをより確保しやすくできる。
On the other hand, when determining that there is an increase / decrease request, the controller 5 calculates the acceleration setting threshold thL1 and the deceleration setting threshold thL2 according to the following equation (10).
thL1 = THW1hosei1 × V1 + thL10
thL2 = THW2hosei2 × V1 + thL20 (6)
Here, THW1hosei1 <THW1 and THW2hosei2 <THW2 are set. Thereby, when the controller 5 determines that there is an increase / decrease request, the controller 5 sets the acceleration setting threshold thL1 and the deceleration setting threshold thL2, that is, the vehicle B ahead of the own lane and The minimum value of the inter-vehicle distance between the rear vehicle C and the host vehicle A (hereinafter also referred to as the minimum inter-vehicle distance) can be reduced. Therefore, the controller 5 can more actively increase the space for changing the lane of the adjacent vehicle D (the range in which the position of the host vehicle A can be changed is widened). Therefore, the controller 5 can more easily secure a space for changing the lane of the adjacent vehicle D.

なお、本実施形態では、加速時設定閾値thL1、減速時設定閾値thL2を上記(6)式に従って算出する例を示したが、他の構成を採用することもできる。例えば、下記(7)に従って算出する構成としてもよい。
thL1=THW1×V1+thL10’
thL2=THW2×V1+thL20’ ………(7)
In the present embodiment, an example is shown in which the acceleration setting threshold thL1 and the deceleration setting threshold thL2 are calculated according to the above equation (6). However, other configurations may be employed. For example, it is good also as a structure calculated according to following (7).
thL1 = THW1 × V1 + thL10 '
thL2 = THW2 × V1 + thL20 '(7)

ここで、thL10’<thL10、thL20’<thL20に設定する。これにより、コントローラ5は、増減要求があると判定した場合には、増減要求がないと判定した場合に比べ、加速時設定閾値thL1、減速時設定閾値thL2、つまり、自車線の前方車両B及び後方車両Cと自車両Aとの最低車間距離を低減できる。それゆえ、コントローラ5は、隣接車両Dの車線変更のためのスペースをより積極的に増大できる(自車両Aの位置の変更可能な範囲が広がる)。そのため、コントローラ5は、上記(6)式に従って加速時設定閾値thL1、減速時設定閾値thL2を算出する場合と同様に、隣接車両Dの車線変更のためのスペースをより確保しやすくできる。   Here, thL10 '<thL10 and thL20' <thL20 are set. Thereby, when the controller 5 determines that there is an increase / decrease request, the controller 5 sets the acceleration setting threshold thL1 and the deceleration setting threshold thL2, that is, the vehicle B ahead of the own lane and The minimum inter-vehicle distance between the rear vehicle C and the host vehicle A can be reduced. Therefore, the controller 5 can more actively increase the space for changing the lane of the adjacent vehicle D (the range in which the position of the host vehicle A can be changed is widened). Therefore, the controller 5 can more easily secure a space for changing the lane of the adjacent vehicle D, as in the case of calculating the acceleration setting threshold thL1 and the deceleration setting threshold thL2 according to the above equation (6).

図7は、車間時間THW1hosei1及びTHW2hosei2の設定方法の説明図である。
また、コントローラ5は、ナビゲーション部3が出力した検出結果に基づき、図7(a)、(b)の制御マップに従って、隣接車両Dから合流車線終点までの距離L4が短いほど車間時間THW1hosei1、THW2hosei2を小さくする。図7(a)の制御マップでは、距離L4が設定値thL4より大きい範囲では、距離L4の大きさに関わらず、車間時間THW1hosei1を予め定めた設定値THW1kijunに設定する。一方、図7(a)の制御マップでは、距離L4が設定値thL4未満の範囲では、距離L4が短いほど車間時間THW1hosei1を直線的に減少させる。また、図7(b)の制御マップでは、距離L4が設定値thL4より大きい範囲では、距離L4の大きさに関わらず、車間時間THW2hosei2を予め定めた設定値THW2kijunに設定する。一方、図7(b)の制御マップでは、距離L4が設定値thL4未満の範囲では、距離L4が短いほど車間時間THW2hosei2を直線的に減少させる。これにより、コントローラ5は、隣接車両Dが合流車線終点に近づくほど、加速時設定閾値thL1、減速時設定閾値thL2、つまり、自車線の前方車両B及び後方車両Cと自車両Aとの最低車間距離を低減できる。それゆえ、コントローラ5は、隣接車両Dの車線変更のためのスペースをより積極的に増大できる(自車両Aの位置の変更可能な範囲が広がる)。そのため、隣接車両Dの車線変更のためのスペースをより確保しやすくできる。
FIG. 7 is an explanatory diagram of a method for setting the inter-vehicle time THW1hosei1 and THW2hosei2.
Further, based on the detection result output from the navigation unit 3, the controller 5 determines the inter-vehicle time THW1hosei1, THW2hosei2 as the distance L4 from the adjacent vehicle D to the merging lane end point is shorter according to the control maps of FIGS. 7 (a) and 7 (b). Make it smaller. In the control map of FIG. 7A, in the range where the distance L4 is larger than the set value thL4, the inter-vehicle time THW1hosei1 is set to a predetermined set value THW1kijun regardless of the size of the distance L4. On the other hand, in the control map of FIG. 7A, in the range where the distance L4 is less than the set value thL4, the inter-vehicle time THW1hosei1 decreases linearly as the distance L4 is shorter. In the control map of FIG. 7B, in the range where the distance L4 is larger than the set value thL4, the inter-vehicle time THW2hosei2 is set to a predetermined set value THW2kijun regardless of the size of the distance L4. On the other hand, in the control map of FIG. 7B, in the range where the distance L4 is less than the set value thL4, the inter-vehicle time THW2hosei2 decreases linearly as the distance L4 is shorter. As a result, the controller 5 sets the acceleration setting threshold thL1 and the deceleration setting threshold thL2, that is, the minimum distance between the front vehicle B and the rear vehicle C of the own lane and the own vehicle A as the adjacent vehicle D approaches the merging lane end point. The distance can be reduced. Therefore, the controller 5 can more actively increase the space for changing the lane of the adjacent vehicle D (the range in which the position of the host vehicle A can be changed is widened). Therefore, it is easier to secure a space for changing the lane of the adjacent vehicle D.

図8は、加速時設定閾値thL1及び減速時設定閾値thL2の設定方法の説明図である。
なお、本実施形態では、コントローラ5が、隣接車両Dから合流車線終点までの距離L4が短いほど車間時間THW1hosei1、THW2hosei2を小さくする例を示したが、他の構成を採用してもよい。例えば、コントローラ5が、図8(a)、(b)に示すように、隣接車両Dから合流車線終点までの距離L4が短いほど加速時設定閾値thL1、減速時設定閾値thL2を小さくする構成としてもよい。この場合、加速時設定閾値thL1、減速時設定閾値thL2の変更態様は、距離L4に対して線形であってもよく、非線形であってもよい。また、上述したように、コントローラ5が、自車両Aの車速V1が大きいほど加速時設定閾値thL1、減速時設定閾値thL2を大きくする構成を組み合わせてもよい。
FIG. 8 is an explanatory diagram of a method for setting the acceleration setting threshold thL1 and the deceleration setting threshold thL2.
In the present embodiment, the controller 5 reduces the inter-vehicle time THW1hosei1 and THW2hosei2 as the distance L4 from the adjacent vehicle D to the merging lane end point is shorter. However, other configurations may be adopted. For example, as shown in FIGS. 8A and 8B, the controller 5 decreases the acceleration setting threshold thL1 and the deceleration setting threshold thL2 as the distance L4 from the adjacent vehicle D to the end of the merging lane is shorter. Also good. In this case, the changing mode of the acceleration setting threshold thL1 and the deceleration setting threshold thL2 may be linear or non-linear with respect to the distance L4. Moreover, as described above, the controller 5 may be configured to increase the acceleration setting threshold thL1 and the deceleration setting threshold thL2 as the vehicle speed V1 of the host vehicle A increases.

本実施形態では、図1のコントローラ5が閾値設定部及び閾値低減部を構成する。
(本変形例の効果)
本変形例は、第1実施形態の効果(1)(2)に加え、次のような効果を奏する。
(1)コントローラ5が、加速時目標車速V1acc*に自車両Aの車速V1が到達したときの、自車線の前方車両Bと自車両Aとの車間距離L1が加速時設定閾値thL1以上となるように、加速時台数Naccopt及び加速時目標車速V1acc*を設定する。また、コントローラ5が、減速時目標車速V1dcc*に自車両Aの車速V1が到達したときの、自車両Aと自車線の後方車両Cとの車間距離L2が減速時設定閾値thL2以上となるように、減速時台数Ndccopt及び減速時目標車速V1dcc*を設定する。続いて、コントローラ5が、自車両Aの車速V1に基づいて加速時設定閾値thL1及び減速時設定閾値thL2を設定する。
In the present embodiment, the controller 5 in FIG. 1 constitutes a threshold setting unit and a threshold reduction unit.
(Effect of this modification)
This modification has the following effects in addition to the effects (1) and (2) of the first embodiment.
(1) The inter-vehicle distance L1 between the vehicle B ahead of the host lane and the host vehicle A when the vehicle speed V1 of the host vehicle A reaches the target vehicle speed V1acc * during acceleration reaches the acceleration set threshold thL1 or more. As described above, the number Naccopt during acceleration and the target vehicle speed V1acc * during acceleration are set. Further, when the controller 5 reaches the target vehicle speed V1dcc * when the vehicle speed V1 of the host vehicle A reaches the inter-vehicle distance L2 between the host vehicle A and the rear vehicle C in the host lane is equal to or greater than the deceleration setting threshold thL2. In addition, the deceleration number Ndccopt and the deceleration target vehicle speed V1dcc * are set. Subsequently, the controller 5 sets the acceleration setting threshold thL1 and the deceleration setting threshold thL2 based on the vehicle speed V1 of the host vehicle A.

このような構成により、自車両Aの車速V1を考慮して加速時設定閾値thL1、減速時設定閾値thL2を設定できる。これにより、自車両Aの位置の変更可能な範囲をより適切に設定でき、隣接車両Dの車線変更のためのスペースをより適切に設定できる。   With this configuration, the acceleration setting threshold thL1 and the deceleration setting threshold thL2 can be set in consideration of the vehicle speed V1 of the host vehicle A. Thereby, the range which can change the position of the own vehicle A can be set more appropriately, and the space for the lane change of the adjacent vehicle D can be set more appropriately.

(2)コントローラ5が、隣接車両Dから合流車線終点までの距離L4が短いほど加速時設定閾値thL1及び減速時設定閾値thL2を小さくする。
このような構成により、隣接車両Dが自車線へ車線変更できない事態を防止でき、隣接車両Dが合流車線終点で行き詰まってしまうことを防止できる。
(2) The controller 5 decreases the acceleration setting threshold thL1 and the deceleration setting threshold thL2 as the distance L4 from the adjacent vehicle D to the merging lane end point is shorter.
With such a configuration, it is possible to prevent a situation in which the adjacent vehicle D cannot change the lane to the own lane, and it is possible to prevent the adjacent vehicle D from getting stuck at the merging lane end point.

1 レーダー部(隣接車速検出部、車間距離検出部)
4 車速検出部(自車速検出部)
5 コントローラ5(車線変更可能台数算出部、車線変更運転支援部、加速時変数設定部、減速時変数設定部、閾値設定部、閾値低減部)
1 Radar (adjacent vehicle speed detector, inter-vehicle distance detector)
4 Vehicle speed detector (own vehicle speed detector)
5 Controller 5 (number of lane changeable number calculation unit, lane change driving support unit, acceleration variable setting unit, deceleration variable setting unit, threshold setting unit, threshold reduction unit)

Claims (4)

自車両の車速を検出する自車速検出部と、
隣接車線を走行している車両である隣接車両の車速を検出する隣接車速検出部と、
前記自車両と前記隣接車両との前後方向の車間距離を検出する車間距離検出部と、
前記自車速検出部が検出した車速、前記隣接車速検出部が検出した車速、及び前記車間距離検出部が検出した車間距離に基づいて、前記自車両が加速した場合に自車線へ車線変更可能な前記隣接車両の数である加速時台数及び前記自車両が減速した場合に自車線へ車線変更可能な前記隣接車両の数である減速時台数を算出する車線変更可能台数算出部と、
前記車線変更可能台数算出部が算出した前記加速時台数が前記減速時台数より大きい場合には前記自車両が加速するように前記自車両の制御及び運転者への報知の少なくとも一方を行い、前記車線変更可能台数算出部が算出した前記加速時台数が前記減速時台数未満である場合には前記自車両が減速するように前記自車両の制御及び運転者への報知の少なくとも一方を行う車線変更運転支援部と、を備えたことを特徴とする運転支援装置。
A vehicle speed detection unit for detecting the vehicle speed of the vehicle;
An adjacent vehicle speed detection unit that detects the vehicle speed of an adjacent vehicle that is a vehicle traveling in an adjacent lane;
An inter-vehicle distance detector that detects an inter-vehicle distance in the front-rear direction between the host vehicle and the adjacent vehicle;
Based on the vehicle speed detected by the own vehicle speed detection unit, the vehicle speed detected by the adjacent vehicle speed detection unit, and the inter-vehicle distance detected by the inter-vehicle distance detection unit, the lane can be changed to the own lane when the own vehicle accelerates. A lane changeable number calculating unit that calculates the number of adjacent vehicles that is the number of adjacent vehicles and the number of adjacent vehicles that can be lane changed to the own lane when the host vehicle is decelerated, and
When the acceleration number calculated by the lane changeable number calculation unit is larger than the deceleration number, at least one of controlling the own vehicle and notifying the driver so that the own vehicle accelerates, Lane change that performs at least one of control of the host vehicle and notification to the driver so that the host vehicle decelerates when the number of units at the time of acceleration calculated by the lane changeable number calculating unit is less than the number of units at the time of deceleration A driving support apparatus comprising: a driving support unit.
前記車線変更可能台数算出部は、
前記自車速検出部が検出した車速よりも速い目標車速を複数設定し、設定した目標車速それぞれに前記自車両の車速が到達したときの、自車線へ車線変更可能な前記隣接車両の数を予測し、予測した前記車線変更可能な前記隣接車両の数のうちの最大値を前記加速時台数とするとともに前記車線変更可能な前記隣接車両の数が最大となる目標車速のうち最小の目標車速を加速時目標車速とする加速時変数設定部と、
前記自車速検出部が検出した車速よりも遅い目標車速を複数設定し、設定した目標車速それぞれに前記自車両の車速が到達したときの、自車線へ車線変更可能な前記隣接車両の数を予測し、予測した前記車線変更可能な前記隣接車両の数のうちの最大値を前記減速時台数とするとともに前記車線変更可能な前記隣接車両の数が最大となる目標車速のうち最大の目標車速を減速時目標車速とする減速時変数設定部と、を備え、
前記車線変更運転支援部は、前記加速時変数設定部が算出した前記加速時台数が前記減速時変数設定部が算出した前記減速時台数より大きい場合には、前記自車両が加速して、前記加速時変数設定部が算出した前記加速時目標車速と前記自車両の車速とが一致するように前記自車両の制御及び運転者への報知の少なくとも一方を行い、前記加速時変数設定部が算出した前記加速時台数が前記減速時変数設定部が算出した前記減速時台数未満である場合には、前記自車両が減速して、前記減速時変数設定部が算出した前記減速時目標車速と前記自車両の車速とが一致するように前記自車両の制御及び運転者への報知の少なくとも一方を行うことを特徴とする請求項1に記載の運転支援装置。
The lane changeable number calculating section is
A plurality of target vehicle speeds faster than the vehicle speed detected by the own vehicle speed detection unit are set, and the number of adjacent vehicles whose lanes can be changed to the own lane when the vehicle speed reaches the set target vehicle speed is predicted. The maximum value of the predicted number of adjacent vehicles that can change lanes is used as the number of vehicles at the time of acceleration, and the minimum target vehicle speed is selected among the target vehicle speeds that maximize the number of adjacent vehicles that can change lanes. An acceleration variable setting unit for setting a target vehicle speed during acceleration;
A plurality of target vehicle speeds slower than the vehicle speed detected by the own vehicle speed detection unit are set, and the number of adjacent vehicles whose lanes can be changed to the own lane when the vehicle speed reaches the set target vehicle speed is predicted. The maximum value of the predicted number of adjacent vehicles that can change the lane is set as the number of vehicles at the time of deceleration, and the maximum target vehicle speed among the target vehicle speeds that maximizes the number of adjacent vehicles that can change the lane is determined. A deceleration-time variable setting unit for setting a target vehicle speed during deceleration,
The lane change driving support unit, when the acceleration number calculated by the acceleration variable setting unit is larger than the deceleration number calculated by the deceleration variable setting unit, the host vehicle accelerates, The acceleration variable setting unit calculates at least one of control of the own vehicle and notification to the driver so that the acceleration target vehicle speed calculated by the acceleration variable setting unit matches the vehicle speed of the own vehicle. When the number of accelerations is less than the number of decelerations calculated by the deceleration variable setting unit, the host vehicle decelerates, and the deceleration target vehicle speed calculated by the deceleration variable setting unit and the The driving support device according to claim 1, wherein at least one of control of the host vehicle and notification to a driver is performed so that a vehicle speed of the host vehicle matches.
前記加速時変数設定部は、前記加速時目標車速に前記自車両の車速が到達したときの、前記自車線の前方車両と前記自車両との車間距離が、設定した加速時設定閾値以上となるように、前記加速時台数及び前記加速時目標車速を設定し、
前記減速時変数設定部は、前記減速時目標車速に前記自車両の車速が到達したときの、前記自車両と前記自車線の後方車両との車間距離が、設定した減速時設定閾値以上となるように、前記減速時台数及び前記減速時目標車速を設定し、
前記自車速検出部が検出した車速に基づいて前記加速時設定閾値及び前記減速時設定閾値を設定する閾値設定部を備えたことを特徴とする請求項2に記載の運転支援装置。
The acceleration variable setting unit is configured such that an inter-vehicle distance between the vehicle ahead of the own lane and the own vehicle when the vehicle speed of the own vehicle reaches the target vehicle speed during acceleration is equal to or greater than a set acceleration setting threshold. As described above, the number of vehicles at the time of acceleration and the target vehicle speed at the time of acceleration are set,
In the deceleration time variable setting unit, the inter-vehicle distance between the host vehicle and the vehicle behind the host lane when the vehicle speed of the host vehicle reaches the target vehicle speed during deceleration is equal to or greater than a set threshold value during deceleration. As described above, the number of vehicles at the time of deceleration and the target vehicle speed at the time of deceleration are set,
The driving support device according to claim 2, further comprising a threshold setting unit configured to set the acceleration setting threshold and the deceleration setting threshold based on the vehicle speed detected by the host vehicle speed detection unit.
前記加速時変数設定部は、前記加速時目標車速に前記自車両の車速が到達したときの、前記自車線の前方車両と前記自車両との車間距離が、設定した加速時設定閾値以上となるように、前記加速時台数及び前記加速時目標車速を設定し、
前記減速時変数設定部は、前記減速時目標車速に前記自車両の車速が到達したときの、前記自車両と前記自車線の後方車両との車間距離が、設定した減速時設定閾値以上となるように、前記減速時台数及び前記減速時目標車速を設定し、
前記隣接車両が前記自車両の走行車線に合流する合流車線を走行している場合に前記隣接車両から合流車線終点までの距離を検出する終点距離検出部と、
前記終点距離検出部が検出した距離が短いほど前記加速時設定閾値及び前記減速時設定閾値を小さくする閾値低減部と、を備えたことを特徴とする請求項2または3に記載の運転支援装置。
The acceleration variable setting unit is configured such that an inter-vehicle distance between the vehicle ahead of the own lane and the own vehicle when the vehicle speed of the own vehicle reaches the target vehicle speed during acceleration is equal to or greater than a set acceleration setting threshold. As described above, the number of vehicles at the time of acceleration and the target vehicle speed at the time of acceleration are set,
In the deceleration time variable setting unit, the inter-vehicle distance between the host vehicle and the vehicle behind the host lane when the vehicle speed of the host vehicle reaches the target vehicle speed during deceleration is equal to or greater than a set threshold value during deceleration. As described above, the number of vehicles at the time of deceleration and the target vehicle speed at the time of deceleration are set,
An end point distance detecting unit that detects a distance from the adjacent vehicle to the end point of the merged lane when the adjacent vehicle is traveling in a merged lane that merges with the travel lane of the host vehicle;
The driving support device according to claim 2, further comprising: a threshold reduction unit that decreases the acceleration setting threshold and the deceleration setting threshold as the distance detected by the end point distance detection unit is shorter. .
JP2013200010A 2013-09-26 2013-09-26 Driving assistance device Active JP6337435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200010A JP6337435B2 (en) 2013-09-26 2013-09-26 Driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200010A JP6337435B2 (en) 2013-09-26 2013-09-26 Driving assistance device

Publications (2)

Publication Number Publication Date
JP2015066962A true JP2015066962A (en) 2015-04-13
JP6337435B2 JP6337435B2 (en) 2018-06-06

Family

ID=52834164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200010A Active JP6337435B2 (en) 2013-09-26 2013-09-26 Driving assistance device

Country Status (1)

Country Link
JP (1) JP6337435B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030435A (en) * 2015-07-30 2017-02-09 クラリオン株式会社 Inter-vehicle distance control device
WO2017158731A1 (en) * 2016-03-15 2017-09-21 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018076004A (en) * 2016-11-10 2018-05-17 パナソニック株式会社 Vehicle control method and vehicle control device
KR20190118944A (en) * 2018-04-11 2019-10-21 현대자동차주식회사 Apparatus and method for controlling lane change
WO2020115516A1 (en) * 2018-12-06 2020-06-11 日産自動車株式会社 Travel assistance method and travel assistance device
CN112208530A (en) * 2019-07-09 2021-01-12 本田技研工业株式会社 Vehicle control system, vehicle control method, and storage medium
JP2022099146A (en) * 2020-12-22 2022-07-04 パナソニックIpマネジメント株式会社 Vehicle control system and vehicle control method
US11529956B2 (en) 2018-04-11 2022-12-20 Hyundai Motor Company Apparatus and method for controlling driving in vehicle
US11541889B2 (en) 2018-04-11 2023-01-03 Hyundai Motor Company Apparatus and method for providing driving path in vehicle
US11550317B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling to enable autonomous system in vehicle
US11548525B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for providing notification of control authority transition in vehicle
US11548509B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling lane change in vehicle
US11597403B2 (en) 2018-04-11 2023-03-07 Hyundai Motor Company Apparatus for displaying driving state of vehicle, system including the same and method thereof
WO2023068162A1 (en) * 2021-10-22 2023-04-27 株式会社デンソー Automated travel device and merging vehicle response control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088758A1 (en) * 2018-11-15 2020-05-22 Psa Automobiles Sa MANAGEMENT OF THE INSERTION OF A VEHICLE IN FRONT OF ANOTHER VEHICLE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442582A (en) * 1977-09-09 1979-04-04 Mitsubishi Electric Corp Joining controller
JPH07334790A (en) * 1994-06-13 1995-12-22 Toyota Motor Corp Merging vehicle foreseeing device and travel controller using the same
JP2000285395A (en) * 1999-03-30 2000-10-13 Mitsubishi Motors Corp Vehicle travel controller
JP2007253723A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Vehicle controller
JP2008129839A (en) * 2006-11-21 2008-06-05 Aisin Aw Co Ltd Device and method for merging guidance
JP2013003775A (en) * 2011-06-15 2013-01-07 Toyota Motor Corp Vehicle support device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442582A (en) * 1977-09-09 1979-04-04 Mitsubishi Electric Corp Joining controller
JPH07334790A (en) * 1994-06-13 1995-12-22 Toyota Motor Corp Merging vehicle foreseeing device and travel controller using the same
JP2000285395A (en) * 1999-03-30 2000-10-13 Mitsubishi Motors Corp Vehicle travel controller
JP2007253723A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Vehicle controller
JP2008129839A (en) * 2006-11-21 2008-06-05 Aisin Aw Co Ltd Device and method for merging guidance
JP2013003775A (en) * 2011-06-15 2013-01-07 Toyota Motor Corp Vehicle support device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030435A (en) * 2015-07-30 2017-02-09 クラリオン株式会社 Inter-vehicle distance control device
JPWO2017158731A1 (en) * 2016-03-15 2018-10-18 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
CN108698598A (en) * 2016-03-15 2018-10-23 本田技研工业株式会社 Vehicle control system, control method for vehicle and vehicle control program
WO2017158731A1 (en) * 2016-03-15 2017-09-21 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018076004A (en) * 2016-11-10 2018-05-17 パナソニック株式会社 Vehicle control method and vehicle control device
US11529956B2 (en) 2018-04-11 2022-12-20 Hyundai Motor Company Apparatus and method for controlling driving in vehicle
KR20190118944A (en) * 2018-04-11 2019-10-21 현대자동차주식회사 Apparatus and method for controlling lane change
US11772677B2 (en) 2018-04-11 2023-10-03 Hyundai Motor Company Apparatus and method for providing notification of control authority transition in vehicle
KR102540928B1 (en) * 2018-04-11 2023-06-08 현대자동차주식회사 Apparatus and method for controlling lane change
US11597403B2 (en) 2018-04-11 2023-03-07 Hyundai Motor Company Apparatus for displaying driving state of vehicle, system including the same and method thereof
US11548509B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling lane change in vehicle
US11548525B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for providing notification of control authority transition in vehicle
US11550317B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling to enable autonomous system in vehicle
US11541889B2 (en) 2018-04-11 2023-01-03 Hyundai Motor Company Apparatus and method for providing driving path in vehicle
WO2020115516A1 (en) * 2018-12-06 2020-06-11 日産自動車株式会社 Travel assistance method and travel assistance device
JP7188452B2 (en) 2018-12-06 2022-12-13 日産自動車株式会社 Driving support method and driving support device
US11295609B1 (en) 2018-12-06 2022-04-05 Nissan Motor Co., Ltd. Travel assistance method and travel assistance device
JPWO2020115516A1 (en) * 2018-12-06 2021-12-02 日産自動車株式会社 Driving support method and driving support device
CN113168770B (en) * 2018-12-06 2023-02-03 日产自动车株式会社 Driving assistance method and driving assistance device
CN113168770A (en) * 2018-12-06 2021-07-23 日产自动车株式会社 Driving assistance method and driving assistance device
JP7225043B2 (en) 2019-07-09 2023-02-20 本田技研工業株式会社 Vehicle control system, vehicle control method, and program
JP2021012659A (en) * 2019-07-09 2021-02-04 本田技研工業株式会社 Vehicle control system, method for controlling system, and program
CN112208530A (en) * 2019-07-09 2021-01-12 本田技研工业株式会社 Vehicle control system, vehicle control method, and storage medium
CN112208530B (en) * 2019-07-09 2024-04-23 本田技研工业株式会社 Vehicle control system, vehicle control method, and storage medium
JP2022099146A (en) * 2020-12-22 2022-07-04 パナソニックIpマネジメント株式会社 Vehicle control system and vehicle control method
WO2023068162A1 (en) * 2021-10-22 2023-04-27 株式会社デンソー Automated travel device and merging vehicle response control method

Also Published As

Publication number Publication date
JP6337435B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6337435B2 (en) Driving assistance device
KR102138051B1 (en) Drive assist apparatus
JP6931370B2 (en) Vehicle control devices, vehicle control methods, and programs
US10000208B2 (en) Vehicle control apparatus
US9981658B2 (en) Autonomous driving vehicle system
US9902399B2 (en) Vehicle travelling control device for controlling a vehicle in traffic
US10754347B2 (en) Vehicle control device
JP6221569B2 (en) Driving assistance device
JP6380920B2 (en) Vehicle control device
JP2009003795A (en) Branch entry determination apparatus
JP7266709B2 (en) Vehicle control method and vehicle control device
JP2019160032A (en) Vehicle control device, vehicle control method, and program
KR20210030975A (en) Driving support method and driving support device
JPWO2018042499A1 (en) Vehicle control device
JP5202741B2 (en) Branch entry judgment device
JP2016007954A (en) Lane merging assist system
JP2021020580A (en) Vehicle control device, vehicle control method, and program
JP2021014175A (en) Vehicle control system, vehicle control method and program
JP2019043245A (en) Vehicle control device, vehicle, vehicle control method, and program
JP2019070900A (en) Vehicle controller
JP6245186B2 (en) Confluence support device
JP7165109B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JPWO2018047232A1 (en) Vehicle control device
JP2023101547A (en) Vehicle control device
JP6221568B2 (en) Driving assistance device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R151 Written notification of patent or utility model registration

Ref document number: 6337435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151