JP2015064971A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2015064971A
JP2015064971A JP2013197143A JP2013197143A JP2015064971A JP 2015064971 A JP2015064971 A JP 2015064971A JP 2013197143 A JP2013197143 A JP 2013197143A JP 2013197143 A JP2013197143 A JP 2013197143A JP 2015064971 A JP2015064971 A JP 2015064971A
Authority
JP
Japan
Prior art keywords
battery
wide side
secondary battery
spacer
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013197143A
Other languages
Japanese (ja)
Other versions
JP6247486B2 (en
Inventor
正明 岩佐
Masaaki Iwasa
正明 岩佐
独志 西森
Hitoshi Nishimori
独志 西森
大矢 淳
Atsushi Oya
淳 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013197143A priority Critical patent/JP6247486B2/en
Publication of JP2015064971A publication Critical patent/JP2015064971A/en
Application granted granted Critical
Publication of JP6247486B2 publication Critical patent/JP6247486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack which allows for enhancement of positioning accuracy by holding a square secondary battery reliably, while suppressing expansion of a battery container.SOLUTION: In a battery pack 200 in which a plurality of square secondary batteries 100 with a flat box type battery container 2 are stacked in the thickness direction (X direction) with a spacer 103 interposed therebetween, the spacer 103 has a first abutting part 120 abutting against the width direction end region R1 of the wide side face 1b of the battery container 2, and a second abutting part 121 abutting against the width direction intermediate region R2 of the wide side face 1b. With regard to the interval of the spacers 103, 103 arranged on both sides of the square secondary batteries 100 in the thickness direction (X direction) to face each other, the interval D2 of the second abutting parts 121, 121 is wider than the interval D1 of the first abutting parts 120, 120.

Description

本発明は、例えばスペーサを介在させて複数の角形二次電池を積層させた組電池に関する。   The present invention relates to an assembled battery in which a plurality of rectangular secondary batteries are stacked with a spacer interposed therebetween, for example.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高いエネルギー密度を有するリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, as electric appliances become smaller and lighter, lithium ion secondary batteries having a high energy density have attracted attention, and their research, development, and commercialization are rapidly progressing.

また、地球温暖化や枯渇燃料の観点から、電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源として高容量で高出力の二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧の非水溶液系のリチウムイオン二次電池が注目されている。特に角形リチウムイオン二次電池はパック化した際の体積効率が優れているため、HEVまたはEV用として角形リチウムイオン二次電池の開発への期待が高まっている。   In addition, from the perspective of global warming and depleted fuel, electric vehicles (EV) and hybrid electric vehicles (HEV) that use electric motors to assist a part of the drive have been developed by each automobile manufacturer. Secondary batteries have come to be demanded. As a power source that meets such requirements, high-voltage non-aqueous lithium ion secondary batteries have attracted attention. In particular, prismatic lithium ion secondary batteries have excellent volumetric efficiency when packed into packs, and therefore, there is an increasing expectation for the development of prismatic lithium ion secondary batteries for HEVs or EVs.

HEVまたはEV用などの大電流用途では、電池の発熱は避けられず、電池の冷却が必要となる。一般的には、複数の電池を直列およびまたは並列に電気的に接続して構成される組電池の各電池間に隙間を設け、その隙間に空気などの冷却媒体を流すことで電池の冷却を行っている。また、組電池を構成する個々の電池は、電池容器内に収容されている電極材料が充電に伴って膨張することで、電池容器が膨張することがある。   In high current applications such as for HEV or EV, heat generation of the battery is inevitable and the battery needs to be cooled. Generally, a gap is provided between each battery of an assembled battery configured by electrically connecting a plurality of batteries in series and / or in parallel, and cooling of the battery is performed by flowing a cooling medium such as air through the gap. Is going. Moreover, as for each battery which comprises an assembled battery, an electrode material accommodated in a battery container may expand | swell with charge, and a battery container may expand | swell.

電池容器の膨張を抑制することができる組電池として、各二次電池の外面のうち最大面積の側面(被圧迫面)が部分的に圧迫された状態で、二次電池が拘束されている二次電池アセンブリが開示されている(下記特許文献1参照)。   As an assembled battery capable of suppressing the expansion of the battery container, the secondary battery is restrained in a state in which the side surface (pressed surface) of the maximum area among the outer surfaces of each secondary battery is partially compressed. A secondary battery assembly is disclosed (see Patent Document 1 below).

特許文献1に記載の二次電池アセンブリは、大電流の充放電を繰り返すハイレートで使用される二次電池において、被圧迫面の面圧を均一に保持して二次電池の劣化を抑制することを課題とし、その解決手段として接触部材と拘束部材とを有している。接触部材は、被圧迫面に接触する、離散的に設けられた複数の接触部を有している。接触部は、被圧迫面に向かって連結部から突出して形成されており、捲回状の電極体における捲回軸方向の中央寄りの部位に対応する、両方の片寄り領域の間の中央領域にて被圧迫面をより弱く圧迫する形状または配置そのものとされている。具体的には、接触部材は、被圧迫面に接触する頂面が中央で凹となるように湾曲し、被圧迫面への圧迫力をその面内の箇所によって異ならせることが記載されている。一方で、接触部材は、単電池のケースの端部に接触せず、ケースの端部を圧迫しないように、各部材の配置が決定されることが記載されている。   The secondary battery assembly described in Patent Document 1 suppresses deterioration of the secondary battery by uniformly maintaining the surface pressure of the pressed surface in a secondary battery used at a high rate that repeatedly charges and discharges a large current. And has a contact member and a restraining member as means for solving the problem. The contact member has a plurality of discrete contact portions that contact the pressed surface. The contact portion is formed so as to protrude from the connecting portion toward the pressed surface, and corresponds to a central portion in the winding axis direction of the wound electrode body, and a central region between both offset regions The shape or arrangement itself presses the surface to be pressed more weakly. Specifically, it is described that the contact member is curved so that the top surface contacting the surface to be compressed is concave in the center, and the compression force to the surface to be compressed varies depending on the location in the surface. . On the other hand, it is described that the arrangement of each member is determined so that the contact member does not contact the end portion of the unit cell case and does not press the end portion of the case.

国際公開第2011/158341号International Publication No. 2011/158341

特許文献1に記載の二次電池アセンブリでは、接触部材が単電池の被圧迫面を圧迫することで被圧迫面の膨張が抑制されるが、単電池のケースの端部が固定されていないため、車載時の振動等により単電池が移動しやすくなるなど、単電池の位置決めに課題がある。   In the secondary battery assembly described in Patent Document 1, expansion of the pressed surface is suppressed by the contact member pressing the pressed surface of the unit cell, but the end of the case of the unit cell is not fixed. However, there is a problem in positioning of the unit cell such that the unit cell can be easily moved by vibration when mounted on the vehicle.

本発明は、前記課題に鑑みてなされたものであり、角形二次電池を確実に保持して位置決め精度を向上させると共に、電池容器の膨張を抑制することができる組電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an assembled battery that can reliably hold a square secondary battery to improve positioning accuracy and can suppress expansion of a battery container. And

前記目的を達成すべく、本発明の組電池は、扁平箱型の電池容器を備えた複数の角形二次電池を厚さ方向にスペーサを介在させて積層した組電池であって、前記スペーサは、前記電池容器の幅広側面の幅方向端部領域に当接する第1の当接部と、該幅広側面の幅方向中間領域に当接する第2の当接部と、を有し、前記角形二次電池の厚さ方向両側に対向配置された前記スペーサ間の間隔は、前記第1の当接部間の間隔よりも前記第2の当接部間の間隔が広いことを特徴とする。   In order to achieve the above object, the assembled battery of the present invention is an assembled battery in which a plurality of prismatic secondary batteries each having a flat box-type battery container are stacked with a spacer interposed in the thickness direction. A first abutting portion that abuts against a width direction end region of the wide side surface of the battery container; and a second abutting portion that abuts against a width direction intermediate region of the wide side surface; The interval between the spacers arranged opposite to each other in the thickness direction of the secondary battery is characterized in that the interval between the second contact portions is wider than the interval between the first contact portions.

本発明の組電池によれば、角形二次電池の電池容器の幅広側面の幅方向端部領域をスペーサの第1の当接部間で確実に保持しつつ、該幅広側面の幅方向中間領域を第2の当接部間で保持して該幅広側面の膨張を抑制することができる。さらに、該第1の当接部間の間隔よりも該第2の当接部間の間隔が広いことから、該幅広側面の膨張を電池性能が低下しない範囲で許容し、該第2の当接部によって該幅広側面の幅方向中間領域に負荷される荷重を減少させ、該幅広側面に適切な荷重を負荷して電池性能の低下を防止することができる。   According to the assembled battery of the present invention, the widthwise end region of the wide side surface of the battery container of the square secondary battery is securely held between the first contact portions of the spacer, and the widthwise intermediate region of the wide side surface. Can be held between the second contact portions, and the expansion of the wide side surface can be suppressed. Further, since the interval between the second contact portions is wider than the interval between the first contact portions, the expansion of the wide side surface is allowed in a range where the battery performance does not deteriorate, and the second contact portion is allowed. The load applied to the intermediate region in the width direction of the wide side surface can be reduced by the contact portion, and an appropriate load can be applied to the wide side surface to prevent a decrease in battery performance.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

角形二次電池の外観斜視図。The external appearance perspective view of a square secondary battery. 本発明の実施形態1に係る角形二次電池モジュールの外観斜視図。1 is an external perspective view of a prismatic secondary battery module according to Embodiment 1 of the present invention. 図2に示す角形二次電池モジュールの角形二次電池とセルホルダの斜視図。The perspective view of the square secondary battery and cell holder of the square secondary battery module shown in FIG. 図3に示す角形二次電池とセルホルダの分解斜視図。The disassembled perspective view of the square secondary battery and cell holder shown in FIG. 図2に示すセルホルダのスペーサと角形二次電池との関係を示す断面図。Sectional drawing which shows the relationship between the spacer of a cell holder shown in FIG. 2, and a square secondary battery. 図2に示すセルホルダのスペーサと角形二次電池との関係を示す断面図。Sectional drawing which shows the relationship between the spacer of a cell holder shown in FIG. 2, and a square secondary battery. 本発明の実施形態2に係る角形二次電池モジュールにおける角形二次電池の電池容器の幅広側面とスペーサの第1の当接部との関係を示す模式図。The schematic diagram which shows the relationship between the wide side surface of the battery container of the square secondary battery in the square secondary battery module which concerns on Embodiment 2 of this invention, and the 1st contact part of a spacer. 本発明の実施形態3に係る角形二次電池モジュールにおける角形二次電池の電池容器の幅広側面とスペーサの第1の当接部との関係を示す模式図。The schematic diagram which shows the relationship between the wide side surface of the battery container of the square secondary battery in the square secondary battery module which concerns on Embodiment 3 of this invention, and the 1st contact part of a spacer.

[実施形態1]
以下、図面を参照して本発明の組電池の実施形態1を説明する。
[Embodiment 1]
Hereinafter, Embodiment 1 of the assembled battery of this invention is demonstrated with reference to drawings.

(角形二次電池)
まず、本発明の組電池が備える角形二次電池の実施形態について説明する。図1は、本実施形態の角形二次電池100の外観斜視図である。
(Square secondary battery)
First, an embodiment of a square secondary battery provided in the assembled battery of the present invention will be described. FIG. 1 is an external perspective view of a prismatic secondary battery 100 of the present embodiment.

図1に示すように、角形二次電池100は、電池缶1と電池蓋6とからなる扁平箱型の電池容器2を備えている。図示は省略するが、電池容器2内には、絶縁体であるセパレータを介在させて積層させた正負の電極を捲回軸周りに捲回して作製した電極群が収容配置されている。   As shown in FIG. 1, the square secondary battery 100 includes a flat box type battery container 2 including a battery can 1 and a battery lid 6. Although not shown in the figure, in the battery container 2, an electrode group produced by winding positive and negative electrodes laminated around a separator as an insulator around a winding axis is housed and arranged.

電池缶1および電池蓋6は、例えばアルミニウムまたはアルミニウム合金等の金属材料により構成されている。電池缶1は、例えば金属材料に深絞り加工を施すことによって、一端が開口された扁平な矩形箱状に形成されている。電池缶1は、有底筒状の直方体形状に形成され、長方形の底面1dと、底面1dの一対の長辺のそれぞれに隣接する一対の幅広側面1bと、底面1dの一対の短辺のそれぞれに隣接する一対の幅狭側面1cとを有している。電池缶1内には電極群が収容され、電極群の捲回軸方向は電池缶1の底面1dおよび幅広側面1bと平行になる。   The battery can 1 and the battery lid 6 are made of a metal material such as aluminum or an aluminum alloy. The battery can 1 is formed in a flat rectangular box shape with one end opened by, for example, deep drawing a metal material. The battery can 1 is formed in a bottomed cylindrical rectangular parallelepiped shape, and includes a rectangular bottom surface 1d, a pair of wide side surfaces 1b adjacent to each of a pair of long sides of the bottom surface 1d, and a pair of short sides of the bottom surface 1d. And a pair of narrow side surfaces 1c adjacent to each other. An electrode group is accommodated in the battery can 1, and the winding axis direction of the electrode group is parallel to the bottom surface 1 d and the wide side surface 1 b of the battery can 1.

電池蓋6は、矩形平板状であって、電池缶1の開口を塞ぐように電池缶1にレーザ溶接されている。つまり、電池蓋6は、電池缶1の開口を封止している。さらに、電池蓋6には、絶縁体22,24を介して一対の電極端子である正極端子51と負極端子61が配設され、蓋組立体が構成されている。また、電池蓋6には、正極端子51及び負極端子61の他に、電池容器2内の圧力が所定値よりも上昇すると開放されて電池容器2内のガスを排出するガス排出弁10と、電池容器2内に電解液を注入するための注液口9が配置されている。   The battery lid 6 has a rectangular flat plate shape, and is laser-welded to the battery can 1 so as to close the opening of the battery can 1. That is, the battery lid 6 seals the opening of the battery can 1. Further, the battery lid 6 is provided with a positive electrode terminal 51 and a negative electrode terminal 61 which are a pair of electrode terminals via insulators 22 and 24, thereby forming a lid assembly. In addition to the positive electrode terminal 51 and the negative electrode terminal 61, the battery lid 6 has a gas discharge valve 10 that is opened when the pressure in the battery container 2 rises above a predetermined value and discharges the gas in the battery container 2; A liquid injection port 9 for injecting an electrolytic solution into the battery container 2 is disposed.

正極端子51及び負極端子61は、電池蓋6の長手方向の一方側と他方側の互いに離れた位置に配置されている。正極端子51及び負極端子61は、電池蓋6の外側に配置される外部端子52、62と、電池蓋6を貫通して一端が外部端子52、62に導通接続される接続端子53、63を有している。正極側の外部端子52と接続端子53は、アルミニウム合金で製作され、負極側の外部端子62と接続端子63は、銅合金で製作されている。外部端子52,62には、バスバーを締結するためのボルト52a、62aが突設されている。正極端子51は、外部端子52、接続端子53及び電池容器2内の不図示の集電板を介して電極群の捲回軸方向の一端に設けられた正極金属箔露出部に接続される。負極端子61は、外部端子62、接続端子63および電池容器2内の不図示の集電板を介して電極群の捲回軸方向の他端に設けられた負極金属箔露出部に接続される。   The positive electrode terminal 51 and the negative electrode terminal 61 are arranged at positions separated from each other on one side and the other side in the longitudinal direction of the battery lid 6. The positive electrode terminal 51 and the negative electrode terminal 61 include external terminals 52 and 62 arranged outside the battery cover 6 and connection terminals 53 and 63 penetrating the battery cover 6 and having one end electrically connected to the external terminals 52 and 62. Have. The positive external terminal 52 and the connection terminal 53 are made of an aluminum alloy, and the negative external terminal 62 and the connection terminal 63 are made of a copper alloy. Bolts 52a and 62a for fastening the bus bar protrude from the external terminals 52 and 62. The positive electrode terminal 51 is connected to an exposed portion of the positive electrode metal foil provided at one end of the electrode group in the winding axis direction via the external terminal 52, the connection terminal 53, and a current collector plate (not shown) in the battery container 2. The negative electrode terminal 61 is connected to the negative electrode metal foil exposed portion provided at the other end in the winding axis direction of the electrode group via the external terminal 62, the connection terminal 63, and a current collector plate (not shown) in the battery container 2. .

電池蓋6に設けられているガス排出弁10は、プレス加工によって電池蓋6を部分的に薄肉化することで形成されている。なお、薄肉部材を電池蓋6の開口にレーザ溶接等により取り付けて、薄肉部材の薄肉部分をガス排出弁としてもよい。ガス排出弁10は、角形二次電池100が過充電等の異常により発熱して電池容器2内でガスが発生し、電池容器2内の圧力が上昇して所定圧力に達したときに開裂することで、電池容器2の内部のガスを排出して内部の圧力を低減させる。また、電池蓋6に設けられている注液口9は、電解液を注入した後、注液栓11を溶接することで封口される。   The gas discharge valve 10 provided in the battery lid 6 is formed by partially thinning the battery lid 6 by press working. A thin member may be attached to the opening of the battery lid 6 by laser welding or the like, and the thin portion of the thin member may be used as a gas discharge valve. The gas discharge valve 10 is heated when the square secondary battery 100 generates heat due to an abnormality such as overcharging, gas is generated in the battery container 2, and the pressure in the battery container 2 increases to reach a predetermined pressure. Thus, the gas inside the battery container 2 is discharged to reduce the internal pressure. Further, the liquid injection port 9 provided in the battery lid 6 is sealed by welding the liquid injection plug 11 after injecting the electrolytic solution.

(組電池)
図2は、複数の角形二次電池100を組み合わせた本実施形態の組電池である角形二次電池モジュール200を示す斜視図である。以下では、モジュール200を作製したときの角形二次電池100の厚さ方向、幅広側面1bの幅方向および幅広側面1bの高さ方向を、それぞれX、Y、Z方向とする直交座標系を用いて説明する。
(Battery)
FIG. 2 is a perspective view showing a prismatic secondary battery module 200 that is an assembled battery of the present embodiment in which a plurality of prismatic secondary batteries 100 are combined. In the following, an orthogonal coordinate system is used in which the thickness direction of the rectangular secondary battery 100, the width direction of the wide side surface 1b, and the height direction of the wide side surface 1b when the module 200 is manufactured are X, Y, and Z directions, respectively. I will explain.

モジュール200は、角形二次電池100の厚さ方向(X方向)に積層された複数の角形二次電池100と、各角形二次電池100を積層した状態に保持するセルホルダ91を有している。セルホルダ91は、例えば、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート樹脂などの樹脂材料や、アルミニウム、銅、ステンレスなどの金属材料によって構成することができる。   The module 200 includes a plurality of prismatic secondary batteries 100 stacked in the thickness direction (X direction) of the prismatic secondary battery 100 and a cell holder 91 that holds the prismatic secondary batteries 100 in a stacked state. . The cell holder 91 can be made of, for example, a resin material such as glass epoxy resin, polypropylene, or polybutylene terephthalate resin, or a metal material such as aluminum, copper, or stainless steel.

セルホルダ91は、複数の中間セルホルダ92と、一対の端部セルホルダ93とからなる。中間セルホルダ92は、互いに隣り合う角形二次電池100の間に介在される。端部セルホルダ93は、中間セルホルダ92を介して厚さ方向に積層された複数の角形二次電池100の積層方向の両端部に配置され、対向する中間セルホルダ92との間に角形二次電池100を保持する。端部セルホルダ93は、概ね中間セルホルダ92を角形二次電池100の幅広側面1bに平行な面で半分に分割した構成を有している。そのため、以下の説明では、中間セルホルダ92の構成について詳細に説明し、端部セルホルダ93の構成についての説明は適宜省略する。   The cell holder 91 includes a plurality of intermediate cell holders 92 and a pair of end cell holders 93. Intermediate cell holder 92 is interposed between prismatic secondary batteries 100 adjacent to each other. The end cell holders 93 are arranged at both ends in the stacking direction of the plurality of prismatic secondary batteries 100 stacked in the thickness direction via the intermediate cell holder 92, and the prismatic secondary battery 100 is interposed between the opposing intermediate cell holders 92. Hold. The end cell holder 93 has a configuration in which the intermediate cell holder 92 is roughly divided in half by a plane parallel to the wide side surface 1 b of the prismatic secondary battery 100. Therefore, in the following description, the configuration of the intermediate cell holder 92 will be described in detail, and the description of the configuration of the end cell holder 93 will be omitted as appropriate.

図3は、一対の中間セルホルダ92,92と角形二次電池100との組み立て状態を示す斜視図である。図4は、図3の中間セルホルダ92,92と角形二次電池100の分解状態を示す斜視図である。   FIG. 3 is a perspective view showing an assembled state of the pair of intermediate cell holders 92 and 92 and the prismatic secondary battery 100. 4 is a perspective view showing an exploded state of the intermediate cell holders 92 and 92 and the prismatic secondary battery 100 of FIG.

中間セルホルダ92は、角形二次電池100の電池缶1の幅方向(Y方向)両側の幅狭側面1c,1cに対向する一対の側板111,111と、電池缶1の底面1dに対向する底板112を有する。図2に示されるように、中間セルホルダ92は、2つの角形二次電池100,100の間に配置されるため、2つの角形二次電池100,100の中間を通り電池缶1の幅広側面1bに平行な面に面対称な形状を有している。すなわち、中間セルホルダ92の側板111および底板112は、中間セルホルダ92の両側に配置された2つの角形二次電池100,100の幅狭側面1c,1cおよび底面1d,1dに対して、電池缶1の厚さ方向の約半分ずつ対向している。   The intermediate cell holder 92 includes a pair of side plates 111, 111 facing the narrow side surfaces 1 c, 1 c on both sides in the width direction (Y direction) of the battery can 1 of the square secondary battery 100, and a bottom plate facing the bottom surface 1 d of the battery can 1. 112. As shown in FIG. 2, the intermediate cell holder 92 is disposed between the two rectangular secondary batteries 100, 100, so that it passes through the middle of the two rectangular secondary batteries 100, 100 and the wide side surface 1 b of the battery can 1. Have a plane-symmetric shape on a plane parallel to the surface. That is, the side plate 111 and the bottom plate 112 of the intermediate cell holder 92 are connected to the battery can 1 with respect to the narrow side surfaces 1c and 1c and the bottom surfaces 1d and 1d of the two rectangular secondary batteries 100 and 100 disposed on both sides of the intermediate cell holder 92. It faces about half of the thickness direction.

一対の側板111,111は、電池缶1の幅広側面1bの幅方向(Y方向)すなわち角形二次電池100の幅方向の両端部で対峙して、それぞれ角形二次電池100の厚さの半分に達する幅で角形二次電池100の厚さ方向(X方向)に延在している。底板12は、電池缶1の底面1dと垂直な方向、すなわち電池缶1の幅広側面1bの高さ方向(Z方向)の下端部で、角形二次電池100の厚さの半分に達する幅で角形二次電池100の厚さ方向に延在して、一対の側板111,111の下端部間を連結している。また、角形二次電池100の厚さ方向の両側に配置された対向する一対の中間セルホルダ92,92は、互いの側板111,111および底板112,112の端部が突き合わされるか僅かに隙間をあけて保持されることで、これらの間に角形二次電池100を保持する空間が形成される。   The pair of side plates 111, 111 are opposed to each other at both ends in the width direction (Y direction) of the wide side surface 1 b of the battery can 1, i.e., the width direction of the square secondary battery 100, and are each half the thickness of the prismatic secondary battery 100. Is extended in the thickness direction (X direction) of the prismatic secondary battery 100. The bottom plate 12 has a width that reaches half of the thickness of the rectangular secondary battery 100 at the lower end in the direction perpendicular to the bottom surface 1d of the battery can 1, that is, the height direction (Z direction) of the wide side surface 1b of the battery can 1. Extending in the thickness direction of the prismatic secondary battery 100, the lower end portions of the pair of side plates 111 are connected. In addition, the pair of opposed intermediate cell holders 92 and 92 disposed on both sides in the thickness direction of the square secondary battery 100 are arranged such that the end portions of the side plates 111 and 111 and the bottom plates 112 and 112 face each other or have a slight gap. By being held open, a space for holding the prismatic secondary battery 100 is formed between them.

電池缶1の幅広側面1bの幅方向に対向する一対の側板111,111は、幅広側面1bの幅方向に延びる複数のスペーサ101,102,103によって連結されている。より詳細には、一対の側板111,111は、これらの下端部を連結する下端部スペーサ101と、これらの上端部を連結する上端部スペーサ102と、これらの中間部を連結する複数の中間部スペーサ103とにより連結されている。下端部スペーサ101は、下端が底板112と連結されている。電池缶1に内蔵される扁平形状に巻回された電極群の上下両端の湾曲部のうち、上端部の湾曲部から電池蓋6の下端までのZ方向の寸法に対応して、上端部スペーサ102のZ方向の幅は、他のスペーサよりも広くなっている。下端部スペーサ101と中間部スペーサ103との間隔及び上端部スペーサ102と中間部スペーサ103との間隔は、中間部スペーサ103同士の間隔よりも小さくなっている。各スペーサ101,102,103は、隣接する2つの角形二次電池100,100の間に配置される。   A pair of side plates 111 and 111 facing in the width direction of the wide side surface 1b of the battery can 1 are connected by a plurality of spacers 101, 102, and 103 extending in the width direction of the wide side surface 1b. More specifically, the pair of side plates 111, 111 includes a lower end spacer 101 that connects these lower ends, an upper end spacer 102 that connects these upper ends, and a plurality of intermediate portions that connect these intermediate portions. The spacer 103 is connected. The lower end spacer 101 is connected to the bottom plate 112 at the lower end. The upper end spacer corresponding to the dimension in the Z direction from the upper end bent portion to the lower end of the battery lid 6 among the upper and lower bent portions of the electrode group wound in a flat shape built in the battery can 1. The width in the Z direction of 102 is wider than other spacers. The interval between the lower end spacer 101 and the intermediate spacer 103 and the interval between the upper end spacer 102 and the intermediate spacer 103 are smaller than the interval between the intermediate spacers 103. Each spacer 101, 102, 103 is disposed between two adjacent square secondary batteries 100, 100.

側板111は、第1の開口部111aと、第2の開口部111bと、を有している。第1の開口部111aは、Z方向において下端部スペーサ101と中間部スペーサ103との間の位置、および、上端部スペーサ102と中間部スペーサ103との間の位置に形成されている。第2の開口部111bは、Z方向において中間部スペーサ103同士の間の位置に形成されている。第1の開口部111aと第2の開口部111bは、X方向の開口幅が等しくなっている。各開口部111a,111bのZ方向の開口高さは、各スペーサ101,102,103の間隔に対応して、第1の開口部111aよりも第2の開口部111bの方が大きくなっている。   The side plate 111 has a first opening 111a and a second opening 111b. The first opening 111 a is formed at a position between the lower end spacer 101 and the intermediate spacer 103 and a position between the upper end spacer 102 and the intermediate spacer 103 in the Z direction. The second opening 111b is formed at a position between the intermediate spacers 103 in the Z direction. The first opening 111a and the second opening 111b have the same opening width in the X direction. The opening height in the Z direction of each opening 111a, 111b is larger in the second opening 111b than in the first opening 111a, corresponding to the spacing between the spacers 101, 102, 103. .

スペーサ101,102,103は、Z方向に互いに間隔をあけて配置されることで、角形二次電池100の電池缶1の幅広側面1bに沿ってその幅方向(Y方向)に延びる複数のスリット114,115を形成している。各スペーサ101,102,103間の間隔に対応して、下端部スペーサ101と中間部スペーサ103との間及び上端部スペーサ102と中間部スペーサ103との間には、Z方向の幅が比較的狭い第1のスリット114が形成されている。また、中間部スペーサ103同士の間には、Z方向の幅が比較的広い第2のスリット115が形成されている。第1のスリット114は、一対の側板111の第1の開口部111aを連通し、第2のスリット115は一対の側板111の第2の開口部111bを連通している。これにより、スリット114,115に冷却媒体を通過させ、角形二次電池100の電池缶1の幅広側面1bを冷却できるようになっている。   The spacers 101, 102, and 103 are spaced apart from each other in the Z direction, and thereby a plurality of slits extending in the width direction (Y direction) along the wide side surface 1 b of the battery can 1 of the rectangular secondary battery 100. 114 and 115 are formed. The width in the Z direction is relatively small between the lower end spacer 101 and the intermediate spacer 103 and between the upper end spacer 102 and the intermediate spacer 103 corresponding to the distance between the spacers 101, 102, and 103. A narrow first slit 114 is formed. In addition, a second slit 115 having a relatively wide width in the Z direction is formed between the intermediate spacers 103. The first slit 114 communicates with the first opening 111a of the pair of side plates 111, and the second slit 115 communicates with the second opening 111b of the pair of side plates 111. Thereby, a cooling medium is allowed to pass through the slits 114 and 115 so that the wide side surface 1b of the battery can 1 of the rectangular secondary battery 100 can be cooled.

以上の構成を有する中間セルホルダ92を介在させて、複数の角形二次電池100を厚さ方向に積層させ、積層方向両端の角形二次電池100の外側に端部セルホルダ93を配置することで、複数の角形二次電池100を厚さ方向にスペーサ101,102,103を介在させて積層させた角形二次電池モジュール(組電池)200が得られる。   By interposing the intermediate cell holder 92 having the above configuration, a plurality of prismatic secondary batteries 100 are stacked in the thickness direction, and the end cell holder 93 is disposed outside the prismatic secondary battery 100 at both ends in the stacking direction. A prismatic secondary battery module (assembled battery) 200 is obtained in which a plurality of prismatic secondary batteries 100 are stacked in the thickness direction with spacers 101, 102, and 103 interposed therebetween.

(スペーサ)
次に、中間セルホルダ92および端部セルホルダ93が備える中間部スペーサ103について詳細に説明する。図5は、図2に示す角形二次電池モジュール200の組立前におけるセルホルダ92,93のスペーサ103と角形二次電池100との関係を示す断面図である。図6は、図2に示す角形二次電池モジュール200の組立後におけるセルホルダ92,93のスペーサ103と角形二次電池100との関係を示す断面図である。
(Spacer)
Next, the intermediate portion spacer 103 provided in the intermediate cell holder 92 and the end cell holder 93 will be described in detail. FIG. 5 is a cross-sectional view showing the relationship between the spacers 103 of the cell holders 92 and 93 and the prismatic secondary battery 100 before the prismatic secondary battery module 200 shown in FIG. 2 is assembled. 6 is a cross-sectional view showing the relationship between the spacers 103 of the cell holders 92 and 93 and the prismatic secondary battery 100 after the prismatic secondary battery module 200 shown in FIG. 2 is assembled.

スペーサ103は、前記したように角形二次電池100の電池容器2を構成する電池缶1の幅広側面1bの幅方向(Y方向)に沿って延在し、延在方向の両端部に設けられた第1の当接部120と、該第1の当接部120の間に設けられた第2の当接部121とを有している。第1の当接部120は、電池缶1の幅広側面1bの幅方向端部領域R1に当接し、第2の当接部121は、幅広側面1bの幅方向中間領域R2に当接する。   As described above, the spacer 103 extends along the width direction (Y direction) of the wide side surface 1b of the battery can 1 constituting the battery case 2 of the rectangular secondary battery 100, and is provided at both ends in the extending direction. The first contact portion 120 and the second contact portion 121 provided between the first contact portions 120 are provided. The first contact portion 120 contacts the width direction end region R1 of the wide side surface 1b of the battery can 1, and the second contact portion 121 contacts the width direction intermediate region R2 of the wide side surface 1b.

図6に示すように、角形二次電池100の厚さ方向(X方向)両側に対向配置されたスペーサ103,103間の間隔は、第1の当接部120,120間の間隔D1よりも第2の当接部121,121間の間隔D2が広くなっている。すなわち、スペーサ103は、角形二次電池100の厚さ方向において、第1の当接部120の厚さT1が第2の当接部121の厚さT2よりも厚くなっている。これにより、第1の当接部120と第2の当接部121との間には、段差が形成されている。   As shown in FIG. 6, the interval between the spacers 103 and 103 arranged opposite to each other in the thickness direction (X direction) of the square secondary battery 100 is larger than the interval D1 between the first contact portions 120 and 120. The distance D2 between the second contact portions 121 and 121 is widened. That is, in the spacer 103, the thickness T 1 of the first contact portion 120 is larger than the thickness T 2 of the second contact portion 121 in the thickness direction of the rectangular secondary battery 100. Accordingly, a step is formed between the first contact portion 120 and the second contact portion 121.

また、角形二次電池100の厚さ方向の両側に対向配置されたスペーサ103,103は、互いに対向する第1の当接部120,120および第2の当接部121,121の表面が互いに平行な平坦面とされている。なお、本実施形態において、第1の当接部120および第2の当接部121は、角形二次電池100の幅方向および高さ方向、すなわちYZ平面に平行であり、角形二次電池100の厚さ方向、すなわちX方向に垂直である。   In addition, the spacers 103 and 103 disposed opposite to each other in the thickness direction of the prismatic secondary battery 100 are such that the surfaces of the first contact portions 120 and 120 and the second contact portions 121 and 121 that face each other are the same. Parallel flat surfaces. In the present embodiment, the first contact portion 120 and the second contact portion 121 are parallel to the width direction and the height direction of the rectangular secondary battery 100, that is, the YZ plane, and the rectangular secondary battery 100. Is perpendicular to the thickness direction, that is, the X direction.

角形二次電池100を充電すると、電池容器2内に収容配置された電極群は、主に負極材料の膨張によって電池缶1の幅広側面1bの中央部に対向する部分の厚さが最も大きくなるように角形二次電池100の厚さ方向に凸状に膨張する。また、角形二次電池100の充電時の化学反応等によって電池容器2内で気体が発生し、電池容器2の内部の圧力が上昇する。   When the prismatic secondary battery 100 is charged, the electrode group accommodated in the battery container 2 has the largest thickness at the portion facing the central portion of the wide side surface 1b of the battery can 1 mainly due to the expansion of the negative electrode material. Thus, the prismatic secondary battery 100 expands in a convex shape in the thickness direction. Further, gas is generated in the battery container 2 due to a chemical reaction or the like during charging of the square secondary battery 100, and the pressure inside the battery container 2 increases.

これにより、図5に示すように、電池缶1は、幅広側面1bの中央部の厚さが最も大きい凸型の形状に膨張している。角形二次電池100において、このように電池缶1が膨張した状態が継続すると、内部抵抗が増大して電池特性が低下する虞があるだけでなく、電池缶1と電池蓋6の溶接部等の信頼性が低下する虞がある。しかし、電池缶1の膨張を抑制するために幅広側面1bを過大な荷重で圧迫すると、角形二次電池100の電池特性が低下する虞がある。特に、電池缶1内の電極群は膨張しているので、幅広側面1bの幅方向中間領域R2における電池缶1の厚さを、幅方向端部領域R1における電池缶1の厚さと同じ厚さまで圧縮すると、電極群に過大な荷重が負荷される虞がある。   Thereby, as shown in FIG. 5, the battery can 1 has expanded into a convex shape in which the thickness of the central portion of the wide side surface 1b is the largest. In the prismatic secondary battery 100, when the state where the battery can 1 expands in this way, not only may the internal resistance increase and the battery characteristics deteriorate, but also the welded portion of the battery can 1 and the battery lid 6 and the like. There is a risk that the reliability of the system will be lowered. However, if the wide side surface 1b is pressed with an excessive load in order to suppress the expansion of the battery can 1, the battery characteristics of the prismatic secondary battery 100 may be deteriorated. In particular, since the electrode group in the battery can 1 is expanded, the thickness of the battery can 1 in the width direction intermediate region R2 of the wide side surface 1b is the same as the thickness of the battery can 1 in the width direction end region R1. When compressed, an excessive load may be applied to the electrode group.

そこで、本実施形態の角形二次電池モジュール200は、スペーサ103を備えたセルホルダ92,93によって角形二次電池100を保持し、角形二次電池100を、厚さ方向にスペーサ103を介在させて積層させている。このスペーサ103は、前記したように、電池容器2を構成する電池缶1の幅広側面1bの幅方向端部領域R1に当接する第1の当接部120と、幅広側面1bの幅方向中間領域R2に当接する第2の当接部121とを有している。さらに、スペーサ103は、角形二次電池100の厚さ方向において、第1の当接部120の厚さが第2の当接部121の厚さよりも厚くされている。これにより、角形二次電池100の厚さ方向両側に対向配置されたスペーサ103,103間の間隔は、第1の当接部120,120間の間隔D1よりも第2の当接部121,121間の間隔D2が広くされている。   Therefore, the prismatic secondary battery module 200 of this embodiment holds the prismatic secondary battery 100 by the cell holders 92 and 93 including the spacer 103, and the prismatic secondary battery 100 is interposed with the spacer 103 in the thickness direction. Laminated. As described above, the spacer 103 includes the first contact portion 120 that contacts the end region R1 in the width direction of the wide side surface 1b of the battery can 1 constituting the battery case 2, and the intermediate region in the width direction of the wide side surface 1b. And a second abutting portion 121 that abuts on R2. Further, in the spacer 103, the thickness of the first contact portion 120 is larger than the thickness of the second contact portion 121 in the thickness direction of the rectangular secondary battery 100. As a result, the distance between the spacers 103 and 103 disposed opposite to each other in the thickness direction of the prismatic secondary battery 100 is greater than the distance D1 between the first contact parts 120 and 120. The distance D2 between 121 is widened.

そのため、図6に示すように、中間セルホルダ92,92の間または端部セルホルダ93と中間セルホルダ92との間に、角形二次電池100を保持して厚さ方向に荷重を付加すると、電池缶1の幅方向中間領域R2よりも膨張し難く厚さが薄い幅方向端部領域R1は、比較的狭い間隔D1で対向する第1の当接部120,120間で確実に保持される。これにより、角形二次電池100は、図2に示すセルホルダ91において確実に位置決めされた状態で保持され、例えば車載時の振動等により移動または位置ずれすることが確実に防止される。   Therefore, as shown in FIG. 6, when the prismatic secondary battery 100 is held between the intermediate cell holders 92 and 92 or between the end cell holder 93 and the intermediate cell holder 92 and a load is applied in the thickness direction, the battery can The width direction end region R1 which is less likely to expand than the one width direction intermediate region R2 and has a small thickness is reliably held between the first contact portions 120, 120 facing each other with a relatively narrow distance D1. Thereby, the square secondary battery 100 is held in a state of being reliably positioned in the cell holder 91 shown in FIG. 2, and is reliably prevented from being moved or displaced due to, for example, vibration in the vehicle.

電池缶1の幅広側面1bの幅方向中間領域R2は剛性が低いが、幅狭側面1cに近い幅方向端部領域R1は比較的剛性が高い。そのため、振動等の負荷に耐えるように電池を保持するには、前記のように比較的狭い間隔D1で対向する第1の当接部120,120間で電池缶1の幅方向端部領域R1を保持し、電池缶1の変形が少ない幅方向端部領域R1に第1の当接部120によって比較的高い荷重を負荷することが効果的である。なお、幅広側面1bの幅方向端部領域R1の内部には電極群が存在しない空間があるため、幅方向端部領域R1に荷重を負荷しても捲回群には荷重は負荷されない。   The intermediate region R2 in the width direction of the wide side surface 1b of the battery can 1 has low rigidity, but the end region R1 in the width direction close to the narrow side surface 1c has relatively high rigidity. Therefore, in order to hold the battery so as to withstand a load such as vibration, the end region R1 in the width direction of the battery can 1 between the first contact portions 120 and 120 facing each other with a relatively small distance D1 as described above. It is effective to apply a relatively high load to the width direction end region R <b> 1 with little deformation of the battery can 1 by the first contact portion 120. Since there is a space in which no electrode group exists in the width direction end region R1 of the wide side surface 1b, no load is applied to the wound group even if a load is applied to the width direction end region R1.

一方、電池缶1の幅広側面1bの幅方向中間領域R2は、角形二次電池100の厚さ方向に比較的広い間隔D2で対向する第2の当接部121,121間で圧縮される。これにより、電池缶1の幅広側面1bの膨張を効果的に抑制することができる。加えて、電池缶1の幅方向中間領域R2における厚さが、幅方向端部領域R1の厚さよりも厚くなるように、電池缶1の膨張を角形二次電池100の電池特性が低下しない範囲で許容することができる。したがって、スペーサ103によって幅広側面1bの幅方向中間領域R2および電池缶1内の電極群に過大な荷重が負荷されることを避けて適正な荷重を負荷することが可能になる。なお、予め角形二次電池100の充放電実験等により、電池缶1の幅広側面1bに対する適切な荷重範囲を決めておくことで、その荷重範囲になるように第2の当接部121,121間の間隔D2を調整することができる。   On the other hand, the intermediate region R2 in the width direction of the wide side surface 1b of the battery can 1 is compressed between the second contact portions 121 and 121 facing each other at a relatively wide distance D2 in the thickness direction of the rectangular secondary battery 100. Thereby, expansion | swelling of the wide side surface 1b of the battery can 1 can be suppressed effectively. In addition, the expansion of the battery can 1 does not deteriorate the battery characteristics of the rectangular secondary battery 100 so that the thickness in the width direction intermediate region R2 of the battery can 1 is thicker than the thickness of the width direction end region R1. Can be tolerated. Therefore, it is possible to apply an appropriate load while avoiding an excessive load being applied to the width direction intermediate region R2 of the wide side surface 1b and the electrode group in the battery can 1 by the spacer 103. It should be noted that by determining an appropriate load range for the wide side surface 1b of the battery can 1 by a charge / discharge experiment or the like of the square secondary battery 100 in advance, the second contact portions 121 and 121 are set to be within the load range. The interval D2 between them can be adjusted.

また、前記したように、本実施形態の角形二次電池モジュール200において、角形二次電池100の厚さ方向の両側に対向配置されたスペーサ103,103は、互いに対向する第1の当接部120,120および第2の当接部121,121の表面が互いに平行な平坦面とされている。これにより、第1の当接部120,120が電池缶1の膨張形状に沿う傾斜面とされている場合と比較して、第1の当接部120,120によって電池缶1の幅広側面1bの幅方向端部領域R1、特に幅方向中間領域R2との境界の近傍により大きな荷重を負荷し、角形二次電池100をセルホルダ91によってより確実に保持することが可能になる。また、凸状に膨張した電池缶1の幅広側面1bの中央部の形状をより平坦な形状に近づけることが可能になる。   Further, as described above, in the prismatic secondary battery module 200 according to the present embodiment, the spacers 103 and 103 disposed opposite to each other in the thickness direction of the prismatic secondary battery 100 are the first abutting portions facing each other. The surfaces of 120 and 120 and the second contact portions 121 and 121 are flat surfaces parallel to each other. Thereby, compared with the case where the 1st contact part 120,120 is made into the inclined surface which follows the expansion | swelling shape of the battery can 1, the wide side surface 1b of the battery can 1 by the 1st contact part 120,120. A large load is applied to the vicinity of the boundary with the width direction end region R1, particularly the width direction intermediate region R2, and the prismatic secondary battery 100 can be more securely held by the cell holder 91. Moreover, it becomes possible to make the shape of the center part of the wide side surface 1b of the battery can 1 expanded in a convex shape closer to a flatter shape.

以上説明したように、本実施形態の組電池である角形二次電池モジュール200によれば、角形二次電池100を確実に保持して位置決め精度を向上させると共に、電池容器2を構成する電池缶1の膨張を抑制することができる。   As described above, according to the prismatic secondary battery module 200 that is the assembled battery of the present embodiment, the prismatic secondary battery 100 is reliably held to improve positioning accuracy, and the battery can constituting the battery container 2 1 expansion can be suppressed.

[実施形態2]
次に、本発明の組電池の実施形態2について、図1から図6を援用し、図7を用いて説明する。図7は、本実施形態の4つのスペーサ103の第1の当接部120a,120c,120c,120bと電池缶1の幅広側面1bとの位置関係を示す角形二次電池100の側面図である。
[Embodiment 2]
Next, Embodiment 2 of the assembled battery of the present invention will be described with reference to FIGS. FIG. 7 is a side view of the prismatic secondary battery 100 showing the positional relationship between the first contact portions 120 a, 120 c, 120 c, 120 b of the four spacers 103 of the present embodiment and the wide side surface 1 b of the battery can 1. .

本実施形態の組電池である角形二次電池モジュール201は、角形二次電池100の電池缶1の幅広側面1bの高さ方向(Z方向)に隣接する複数のスペーサ103の少なくとも1つにおいて、幅広側面1bの幅方向(Y方向)に沿う第1の当接部120cの長さが、他のスペーサ103の第1の当接部120a,120bの同方向の長さと異なる点で、前記した実施形態1の角形二次電池モジュール200と異なっている。その他の点については、本実施形態の角形二次電池モジュール201と実施形態1の角形二次電池モジュール200は同一であるので、同一の部分には同一の符号を付して説明は省略する。   The prismatic secondary battery module 201 which is an assembled battery according to the present embodiment includes at least one of the plurality of spacers 103 adjacent in the height direction (Z direction) of the wide side surface 1b of the battery can 1 of the prismatic secondary battery 100. As described above, the length of the first contact portion 120c along the width direction (Y direction) of the wide side surface 1b is different from the length of the first contact portions 120a and 120b of the other spacers 103 in the same direction. This is different from the prismatic secondary battery module 200 of the first embodiment. About the other point, since the square secondary battery module 201 of this embodiment and the square secondary battery module 200 of Embodiment 1 are the same, the same code | symbol is attached | subjected to the same part and description is abbreviate | omitted.

図7に示すように、本実施形態において、電池缶1の幅広側面1bの高さ方向に隣接する複数のスペーサ103は、幅広側面1bの幅方向に沿う第1の当接部120a,120b,120cの長さLa,Lb,Lcが、幅広側面1bの高さ方向の中央部から端部に向けて漸次長くなっている。   As shown in FIG. 7, in the present embodiment, the plurality of spacers 103 adjacent in the height direction of the wide side surface 1b of the battery can 1 include first contact portions 120a, 120b, The lengths La, Lb, and Lc of 120c are gradually increased from the center in the height direction of the wide side surface 1b toward the end.

前述の実施形態1では角形二次電池100の幅広側面1bの幅方向端部領域R1と当接する第1の当接部120は電池缶1の幅広側面1bの高さ方向(上下方向)の4本で幅広側面1bの幅方向に沿う長さは同じであった。しかし、本実施形態では、最も上側のスペーサ103と最も下側のスペーサ103の当接部120a,120bの長さLa,Lbが、上下方向の中間に位置するスペーサ103の当接部120cの長さLcよりも長くなっている。すなわち、幅広側面1bの高さ方向において最も上側に位置する中間スペーサ103の第1の当接部120aと、最も下側に位置する中間スペーサ103の第1の当接部120bは、高さ方向の中間に位置する2本の中間スペーサ103,103の第1の当接部120c,120cより電池缶1の幅広側面1bに長く当接している。   In the first embodiment, the first contact portion 120 that contacts the width direction end region R1 of the wide side surface 1b of the prismatic secondary battery 100 is 4 in the height direction (vertical direction) of the wide side surface 1b of the battery can 1. In the book, the length along the width direction of the wide side surface 1b was the same. However, in this embodiment, the lengths La and Lb of the contact portions 120a and 120b of the uppermost spacer 103 and the lowermost spacer 103 are equal to the length of the contact portion 120c of the spacer 103 located in the middle in the vertical direction. It is longer than Lc. That is, the first contact portion 120a of the intermediate spacer 103 positioned on the uppermost side in the height direction of the wide side surface 1b and the first contact portion 120b of the intermediate spacer 103 positioned on the lowermost side are in the height direction. Are in contact with the wide side surface 1b of the battery can 1 longer than the first contact portions 120c and 120c of the two intermediate spacers 103 and 103 located in the middle of the two.

前記したように、角形二次電池100の電池容器2を構成する電池缶1は、幅広側面1bの中央部の厚さが最も厚くなるように膨張する。これに対応して、本実施形態の角形二次電池モジュール201では、電池缶1の幅広側面1bの高さ方向の中間に位置するスペーサ103の第1の当接部120cの長さLcを、上下の中間スペーサ103の第1の当接部120a,120bの長さLa,Lbよりも短くしている。これにより、幅広側面1bの高さ方向の中間部分における膨張をより許容して、電池缶1内の電極群に負荷する荷重をより小さくすることができ、かつ上下のスペーサ103の第1の当接部120a,120bによって電池缶1の幅方向端部領域R1を確実に保持することができる。   As described above, the battery can 1 constituting the battery case 2 of the square secondary battery 100 expands so that the thickness of the central portion of the wide side surface 1b is the largest. Correspondingly, in the rectangular secondary battery module 201 of the present embodiment, the length Lc of the first contact portion 120c of the spacer 103 located in the middle in the height direction of the wide side surface 1b of the battery can 1 is It is shorter than the lengths La and Lb of the first contact portions 120a and 120b of the upper and lower intermediate spacers 103. As a result, expansion at the intermediate portion in the height direction of the wide side surface 1b can be further allowed, the load applied to the electrode group in the battery can 1 can be further reduced, and the first contact between the upper and lower spacers 103 can be reduced. The width direction end region R1 of the battery can 1 can be reliably held by the contact portions 120a and 120b.

以上説明したように、本実施形態の組電池である角形二次電池モジュール201によれば、角形二次電池100を確実に保持して位置決め精度を向上させると共に、電池容器2を構成する電池缶1の膨張を抑制することができる。   As described above, according to the prismatic secondary battery module 201 that is the assembled battery according to the present embodiment, the prismatic secondary battery 100 is securely held to improve positioning accuracy, and the battery can constituting the battery container 2 1 expansion can be suppressed.

[実施形態3]
前述の実施形態1および2の角形二次電池モジュール200,201は、冷却空気等の冷却媒体を流すため、複数のスペーサ103間に空間が存在した。しかし、複数の中間部スペーサ103間に空間を設けず、電池缶1の幅広側面1bの高さ方向において複数の中間部スペーサ103を一体に連結してもよい。このような角形二次電池モジュールの実施形態を図8に示す。
[Embodiment 3]
In the prismatic secondary battery modules 200 and 201 of the first and second embodiments described above, a space exists between the plurality of spacers 103 in order to flow a cooling medium such as cooling air. However, a plurality of intermediate spacers 103 may be integrally connected in the height direction of the wide side surface 1 b of the battery can 1 without providing a space between the plurality of intermediate spacers 103. An embodiment of such a prismatic secondary battery module is shown in FIG.

図8は、本実施形態の角形二次電池モジュールの中間部スペーサ103Pの第1の当接部120dと電池缶1の幅広側面1bとの関係を示す、実施形態2の図7に相当する図である。   FIG. 8 is a view corresponding to FIG. 7 of the second embodiment, showing the relationship between the first contact portion 120d of the intermediate spacer 103P of the prismatic secondary battery module of the present embodiment and the wide side surface 1b of the battery can 1. It is.

図示のように、スペーサ103Pは、電池缶1の幅広側面1bの上端部から下端部まで連続して設けられ、電池缶1の幅広側面1bの高さ方向端部を除く高さ方向中間部の大部分において幅広側面1bと対向する板状に設けられている。なお、幅広側面1bの高さ方向における中間部スペーサ103Pの上端と下端は、上端部スペーサ102および下端部スペーサ101と連結されていてもよい。   As shown in the figure, the spacer 103P is provided continuously from the upper end to the lower end of the wide side surface 1b of the battery can 1, and is located at the intermediate portion in the height direction excluding the height direction end of the wide side surface 1b of the battery can 1. Mostly, it is provided in a plate shape facing the wide side surface 1b. The upper end and the lower end of the intermediate spacer 103P in the height direction of the wide side surface 1b may be connected to the upper end spacer 102 and the lower end spacer 101.

このように、スペーサ103Pの第1の当接部120dが、幅広側面1bの高さ方向の上下に連続していることで、実施形態1および2のスペーサ103よりも電池缶1を保持する面積が大きくなる。したがって、角形二次電池100をより確実に保持し、より高い振動等の荷重に耐えて、角形二次電池100を確実に位置決めすることができる。   As described above, the first contact portion 120d of the spacer 103P is continuous above and below in the height direction of the wide side surface 1b, so that the area that holds the battery can 1 more than the spacer 103 of the first and second embodiments. Becomes larger. Therefore, the prismatic secondary battery 100 can be reliably positioned by holding the prismatic secondary battery 100 more reliably and withstanding a higher load such as vibration.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

2 電池容器
1b 幅広側面
100 角形二次電池
103 中間部スペーサ(スペーサ)
103P 中間部スペーサ(スペーサ)
120 第1の当接部
121 第2の当接部
200 角形二次電池モジュール(組電池)
D1 第1の当接部間の間隔
D2 第2の当接部間の間隔
La,Lb,Lc 第1の当接部の長さ
R1 幅方向端部領域
R2 幅方向中間領域
T1 第1の当接部の厚さ
T2 第2の当接部の厚さ
X 角形二次電池の厚さ方向
Y 幅広側面の幅方向
Z 幅広側面の高さ方向
2 Battery container 1b Wide side surface 100 Square secondary battery 103 Intermediate spacer (spacer)
103P Spacer (spacer)
120 1st contact part 121 2nd contact part 200 Rectangular secondary battery module (assembled battery)
D1 Interval between first contact portions D2 Intervals between second contact portions La, Lb, Lc Length of first contact portion R1 Width direction end region R2 Width direction intermediate region T1 First contact Contact portion thickness T2 Second contact portion thickness X Square secondary battery thickness direction Y Wide side width direction Z Wide side surface height direction

Claims (6)

扁平箱型の電池容器内に正負の電極を捲回した電極群が収容配置された複数の角形二次電池を、厚さ方向にスペーサを介在させて積層させた組電池であって、
前記スペーサは、前記電池容器の幅広側面の幅方向端部領域に当接する第1の当接部と、該幅広側面の幅方向中間領域に当接する第2の当接部と、を有し、
前記角形二次電池の厚さ方向両側に対向配置された前記スペーサ間の間隔は、前記第1の当接部間の間隔よりも前記第2の当接部間の間隔が広いことを特徴とする組電池。
A battery pack in which a plurality of rectangular secondary batteries in which an electrode group in which positive and negative electrodes are wound is accommodated and arranged in a flat box type battery container are stacked with a spacer interposed in the thickness direction,
The spacer includes a first contact portion that contacts a width direction end region of the wide side surface of the battery container, and a second contact portion that contacts a width direction intermediate region of the wide side surface,
The interval between the spacers arranged opposite to each other in the thickness direction of the prismatic secondary battery is wider between the second contact portions than the interval between the first contact portions. Assembled battery.
前記スペーサは、前記角形二次電池の厚さ方向において、前記第1の当接部の厚さが前記第2の当接部の厚さよりも厚いことを特徴とする請求項1に記載の組電池。   2. The set according to claim 1, wherein the spacer has a thickness of the first contact portion that is greater than a thickness of the second contact portion in a thickness direction of the rectangular secondary battery. battery. 前記幅広側面の高さ方向に複数の前記スペーサが設けられ、
複数の前記スペーサの少なくとも1つは、前記幅広側面の幅方向に沿う前記第1の当接部の長さが、他の前記スペーサと異なることを特徴とする請求項2に記載の組電池。
A plurality of the spacers are provided in the height direction of the wide side surface,
3. The assembled battery according to claim 2, wherein at least one of the plurality of spacers is different from the other spacers in length of the first contact portion along the width direction of the wide side surface.
前記幅広側面の高さ方向に隣接する複数の前記スペーサは、前記幅広側面の幅方向に沿う前記第1の当接部の長さが、前記幅広側面の高さ方向の中央部から端部に向けて漸次長くなることを特徴とする請求項3に記載の組電池。   In the plurality of spacers adjacent to each other in the height direction of the wide side surface, the length of the first abutting portion along the width direction of the wide side surface is changed from the center portion in the height direction of the wide side surface to the end portion. The assembled battery according to claim 3, wherein the battery pack gradually becomes longer toward the battery pack. 前記スペーサは、前記幅広側面の上端部から下端部まで連続して設けられていることを特徴とする請求項2に記載の組電池。   The assembled battery according to claim 2, wherein the spacer is provided continuously from the upper end to the lower end of the wide side surface. 前記角形二次電池の厚さ方向の両側に対向配置された前記スペーサは、互いに対向する前記第1の当接部および前記第2の当接部の表面が互いに平行な平坦面であることを特徴とする請求項1から請求項5のいずれか1項に記載の組電池。   The spacers arranged opposite to each other in the thickness direction of the prismatic secondary battery are such that the surfaces of the first contact portion and the second contact portion facing each other are flat surfaces parallel to each other. The assembled battery according to any one of claims 1 to 5, characterized in that:
JP2013197143A 2013-09-24 2013-09-24 Assembled battery Active JP6247486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197143A JP6247486B2 (en) 2013-09-24 2013-09-24 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197143A JP6247486B2 (en) 2013-09-24 2013-09-24 Assembled battery

Publications (2)

Publication Number Publication Date
JP2015064971A true JP2015064971A (en) 2015-04-09
JP6247486B2 JP6247486B2 (en) 2017-12-13

Family

ID=52832717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197143A Active JP6247486B2 (en) 2013-09-24 2013-09-24 Assembled battery

Country Status (1)

Country Link
JP (1) JP6247486B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220218A (en) * 2014-05-21 2015-12-07 日立オートモティブシステムズ株式会社 Battery module
CN111742423A (en) * 2018-02-26 2020-10-02 日本汽车能源株式会社 Battery module
WO2021020326A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Buffer member and power storage module
WO2021052004A1 (en) * 2019-09-20 2021-03-25 宁德时代新能源科技股份有限公司 Battery module, battery pack, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158341A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Secondary battery assembly
JP2014010983A (en) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having the power supply device
JP2015011919A (en) * 2013-07-01 2015-01-19 三洋電機株式会社 Power unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158341A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Secondary battery assembly
JP2014010983A (en) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having the power supply device
JP2015011919A (en) * 2013-07-01 2015-01-19 三洋電機株式会社 Power unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220218A (en) * 2014-05-21 2015-12-07 日立オートモティブシステムズ株式会社 Battery module
CN111742423A (en) * 2018-02-26 2020-10-02 日本汽车能源株式会社 Battery module
CN111742423B (en) * 2018-02-26 2023-01-03 日本汽车能源株式会社 Battery module
WO2021020326A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Buffer member and power storage module
CN113875076A (en) * 2019-07-31 2021-12-31 松下知识产权经营株式会社 Buffer member and power storage module
WO2021052004A1 (en) * 2019-09-20 2021-03-25 宁德时代新能源科技股份有限公司 Battery module, battery pack, and vehicle
EP3930025A4 (en) * 2019-09-20 2022-06-08 Contemporary Amperex Technology Co., Limited Battery module, battery pack, and vehicle

Also Published As

Publication number Publication date
JP6247486B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
CN108431986B (en) Pouch exterior for secondary battery, pouch type secondary battery using the same, and method of manufacturing the pouch type secondary battery
US10249867B2 (en) Prismatic secondary battery and assembled battery using the same
JP6166994B2 (en) Assembled battery
EP4027404A1 (en) Battery module, battery pack, and vehicle
EP3151307B1 (en) Battery module and battery pack comprising same
US11075398B2 (en) Cell pack and method for producing unit cell for use in cell pack
KR101898295B1 (en) Battery Module Assembly and Method of manufacturing the same
KR101305218B1 (en) Battery Module Having Fixing Member and Coupling Member, and Battery Pack Employed with the Same
EP3446346B1 (en) Multicavity battery module
US10741804B2 (en) Laminated battery for serial connection and battery pack
JP2013093225A (en) Storage element, electric cell, and battery pack
JP6247486B2 (en) Assembled battery
JP5344237B2 (en) Assembled battery
US10454128B2 (en) Electric storage apparatus and method of manufacturing electric storage apparatus
US20210151722A1 (en) Battery pack
US20230369703A1 (en) Battery pack and battery holder
EP3391430B1 (en) Through-wall current collector for a pouch cell
KR20190006965A (en) A prismatic electrochemical cell
US9065082B2 (en) Electric storage device
KR102115624B1 (en) Electric storage device
EP4203125A1 (en) Secondary battery
US20240145786A1 (en) Battery
US20220238967A1 (en) Secondary battery
KR102267587B1 (en) Battery Pack
JP2024021232A (en) Battery modules and batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6247486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250