JP2015063235A - Method for reinforcing panel component, and panel component reinforced by the same - Google Patents

Method for reinforcing panel component, and panel component reinforced by the same Download PDF

Info

Publication number
JP2015063235A
JP2015063235A JP2013198571A JP2013198571A JP2015063235A JP 2015063235 A JP2015063235 A JP 2015063235A JP 2013198571 A JP2013198571 A JP 2013198571A JP 2013198571 A JP2013198571 A JP 2013198571A JP 2015063235 A JP2015063235 A JP 2015063235A
Authority
JP
Japan
Prior art keywords
reinforcing
tension
panel
reinforcement
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013198571A
Other languages
Japanese (ja)
Other versions
JP6015956B2 (en
Inventor
欣哉 中川
Kinya Nakagawa
欣哉 中川
岩間 隆史
Takashi Iwama
隆史 岩間
小日置 英明
Hideaki Kohiki
英明 小日置
正樹 卜部
Masaki Urabe
正樹 卜部
山崎 雄司
Yuji Yamazaki
雄司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013198571A priority Critical patent/JP6015956B2/en
Publication of JP2015063235A publication Critical patent/JP2015063235A/en
Application granted granted Critical
Publication of JP6015956B2 publication Critical patent/JP6015956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a temporal cost required for a design of a panel component, by determining a reinforcement position to simply and effectively increase tensile rigidity in a short period of time and reinforcing the reinforcement position, and to obtain an effect of a reduction in the number of man-hours, weight saving and the like achieved by a reduction in the number of the reinforcement positions.SOLUTION: In a reinforcement method for a panel component, distribution of the tensile rigidity of the panel component 1 is determined when tensile rigidity of the panel component is increased by arranging a reinforcement component on the backside of a panel of the panel component 1; positions P1-P7, in which the tensile rigidity is low in the distribution of the tensile rigidity, or their peripheries are determined as reinforcement positions; and the reinforcement member and the backside of the panel of the panel component 1 are bonded together in the reinforcement positions P1-P7.

Description

本発明は、自動車用パネル部品等の張り剛性を必要とされるパネル部品に関して効果的に張り剛性を高める補強方法および、その方法で補強されたパネル部品に関するものである。   The present invention relates to a reinforcement method for effectively increasing the tension rigidity of panel parts that require tension rigidity, such as automotive panel parts, and a panel part reinforced by the method.

ドア、エンジンフード、ルーフ等の自動車用パネル部品等のパネル部品に求められる特性のひとつとして張り剛性が挙げられる。張り剛性を高めるためには、デザインの変更や裏面からの補強といった手法をとることが一般的であるが、デザインの変更は外観の変更に直結するため、裏面からの補強により張り剛性対策が採られる場合が多い。   One of the characteristics required for panel parts such as doors, engine hoods, roofs, and other automotive panel parts is tensile rigidity. In order to increase the tension rigidity, it is common to adopt a method such as a design change or reinforcement from the back side. However, since a design change is directly linked to a change in appearance, a measure for tension rigidity is taken by reinforcement from the back side. It is often done.

裏面から補強部材によって張り剛性を高める手段として、従来から様々な検討が行われている。特許文献1では効果的に張り剛性を高める補強部材の形状が開示され、特許文献2では張り剛性を効果的に高めるための補強部材の配置方法が開示され、特許文献3では補強部材とパネル部品とを接着剤を用いて接合する方法が開示されている。   Conventionally, various studies have been conducted as means for increasing the rigidity of the tension by a reinforcing member from the back surface. Patent Document 1 discloses a shape of a reinforcing member that effectively increases the tension rigidity, Patent Document 2 discloses a reinforcing member arrangement method for effectively increasing the tension rigidity, and Patent Document 3 discloses a reinforcing member and a panel component. And a method of joining together using an adhesive.

特開2011−251624号公報JP 2011-251624 A 特開2001−171349号公報JP 2001-171349 A 実開2010−083248号公報Japanese Utility Model Publication No. 2010-083248

パネル部品の裏面に補強部材を配置する方法で張り剛性を高めるには、補強部材とパネル部品とを樹脂等の接着剤を用いて接合することにより、外力によるパネル部品の変形を、接着剤を介して補強部材に伝えることが必要であると考えられる。このパネル部品と補強材との間の力の伝達をなす接着剤を配置する位置を、以下では「補強位置」と呼ぶ。   In order to increase the tension rigidity by arranging a reinforcing member on the back of the panel component, the reinforcing member and the panel component are joined using an adhesive such as resin, so that the deformation of the panel component due to external force can be reduced. It is thought that it is necessary to transmit to the reinforcing member via The position where the adhesive that transmits the force between the panel component and the reinforcing material is disposed is hereinafter referred to as a “reinforcing position”.

一般に、裏面からの補強による張り剛性向上効果は高い方が良いが、補強位置を増やすことは工数増大、重量増等につながる。そのため補強位置の数は、パネル部品の張り剛性を必要なだけ確保できる点数のうちで、できるだけ少なくすることが望ましい。しかしながら従来は、効果的に張り剛性を高める補強位置の決定方法が確立されていないため、補強が必要とされると考えられる位置に補強がなされていなかったり、逆に補強による張り剛性向上効果が低いと考えられる位置に過剰に補強がなされていたりする場合がある。   In general, it is better that the tension rigidity improvement effect by reinforcement from the back surface is higher, but increasing the reinforcement position leads to an increase in man-hours, an increase in weight, and the like. For this reason, it is desirable that the number of reinforcing positions is as small as possible, out of the number of points that can secure the required rigidity of the panel parts. However, in the past, since a method for determining a reinforcement position that effectively increases the tension stiffness has not been established, reinforcement has not been made at a position where reinforcement is considered to be necessary, or conversely, the effect of improving the stiffness stiffness is not achieved. There may be excessive reinforcement at positions that are considered low.

特許文献1および特許文献2記載の方法では、パネル部品の張り剛性を効果的に高めるための補強部材の形状や配置について述べられているが、外力は最終的に接着剤を介して補強部材に伝達されるため、補強部材の形状や配置の適正化だけでは張り剛性を効果的に高められるとはいえない。   In the methods described in Patent Document 1 and Patent Document 2, the shape and arrangement of the reinforcing member for effectively increasing the tension rigidity of the panel parts are described, but external force is finally applied to the reinforcing member via an adhesive. Since it is transmitted, it cannot be said that the tension rigidity can be effectively increased only by optimizing the shape and arrangement of the reinforcing members.

また、特許文献3には接着剤を用いて補強部材を接合することでパネル部品の張り剛性を高める方法が記載されているが、同様に、張り剛性を効果的に高められる位置に接着剤を配置しなければ、不必要に補強位置が増加したり、逆に必要な位置に補強がなされなかったりする可能性がある。そして、必要な位置に補強をなさないまま設計を行えば、当然にパネル部品の張り剛性が低くなることから、それを補うために補強部材の追加や高剛性化等の措置が必要となり、コスト増や重量増等に繋がることになる。   Patent Document 3 describes a method for increasing the rigidity of panel components by bonding reinforcing members using an adhesive. Similarly, the adhesive is placed at a position where the tension rigidity can be effectively increased. If it is not arranged, there is a possibility that the reinforcing position will be increased unnecessarily, or conversely, there will be no reinforcement at the required position. If the design is made without reinforcement at the required position, the rigidity of the panel parts will naturally be reduced, so additional measures such as the addition of reinforcement members and higher rigidity are required to compensate for this. It will lead to increase and weight increase.

それゆえ本発明は、前記従来技術の課題を有利に解決したパネル部品の補強方法およびその方法で補強されたパネル部品を提供することを目的とする。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a panel component reinforcing method and a panel component reinforced by the method which have advantageously solved the above-described problems of the prior art.

本発明者らは、パネル部品の張り剛性解析を行うことにより、張り剛性を効果的に向上させる補強位置の決定方法について知見を得ており、この知見に基づいて前記目的を達成する本発明のパネル部品の補強方法は、
パネル部品のパネル裏面に補強部品を配置してパネル部品の張り剛性を高めるに際し、
前記パネル部品の張り剛性の分布を求め、
前記張り剛性の分布において張り剛性が低い位置またはその近傍の位置を補強位置に決定し、
前記補強位置で補強部材とパネル部品のパネル裏面とを接着することを特徴とするものである。
The inventors of the present invention have obtained knowledge about a method for determining a reinforcing position that effectively improves the tension rigidity by performing a tension rigidity analysis of the panel component. Based on this knowledge, the present invention achieves the object. How to reinforce panel parts
When placing reinforcing parts on the back of the panel parts to increase the rigidity of the panel parts,
Obtain the stiffness distribution of the panel parts,
In the tension stiffness distribution, a position where the tension stiffness is low or a position in the vicinity thereof is determined as a reinforcement position,
The reinforcing member and the panel back surface of the panel component are bonded at the reinforcing position.

なお、本発明のパネル部品の補強方法においては、好ましくは、
補強位置1箇所当りの張り剛性向上効果を求め、これを複数箇所の補強位置について重ね合わせることでパネル部品全体の張り剛性を向上させる。
また、前記張り剛性の分布において張り剛性が最も低い位置を補強位置に決定し、その補強位置を補強した後の前記パネル部品の張り剛性の分布を求め、その張り剛性の分布において張り剛性が最も低い位置を補強位置に決定する、という工程を繰り返して、パネル部品全体の張り剛性を向上させる。
あるいは、前記張り剛性の分布において張り剛性が最も低い位置の近傍の複数の位置を補強位置に決定し、それらの補強位置を補強した後の前記パネル部品の張り剛性の分布を求め、その張り剛性の分布において張り剛性が最も低い位置の近傍の複数の位置を補強位置に決定する、という工程を繰り返して、パネル部品全体の張り剛性を向上させる。
そして、本発明のパネル部品は、前記補強方法を用いて補強されていることを特徴とするものである。
In the method for reinforcing panel parts of the present invention, preferably,
The tension rigidity improvement effect per reinforcement position is obtained, and this is overlapped at a plurality of reinforcement positions to improve the tension rigidity of the entire panel component.
Further, the position having the lowest tension rigidity in the distribution of the tension rigidity is determined as the reinforcement position, the distribution of the tension rigidity of the panel component after reinforcing the reinforcement position is obtained, and the tension rigidity is the highest in the tension rigidity distribution. The process of determining the low position as the reinforcing position is repeated to improve the tension rigidity of the entire panel component.
Alternatively, a plurality of positions in the vicinity of the position where the tension rigidity is lowest in the distribution of the tension rigidity is determined as the reinforcement position, and the distribution of the tension rigidity of the panel component after reinforcing the reinforcement positions is obtained, and the tension rigidity is determined. In this distribution, the process of determining a plurality of positions in the vicinity of the position having the lowest tension rigidity as the reinforcing position is repeated to improve the tension rigidity of the entire panel component.
And the panel component of this invention is reinforced using the said reinforcement method, It is characterized by the above-mentioned.

本発明のパネル部品の補強方法によれば、パネル部品のパネル裏面に補強部品を配置してパネル部品の張り剛性を高めるに際し、前記パネル部品の張り剛性の分布を求め、前記張り剛性の分布において張り剛性が低い位置またはその近傍を補強位置に決定し、前記補強位置で補強部材とパネル部品のパネル裏面とを接着するので、短時間で簡便に、張り剛性を効果的に向上させる補強位置を決定してその補強位置を補強でき、それにより、設計にかかる時間的コストを削減することができ、また、補強位置の数の削減による工数削減や軽量化等の効果を得ることができる。   According to the panel component reinforcement method of the present invention, when the reinforcement component is arranged on the back surface of the panel component to increase the tension rigidity of the panel component, the distribution of the tension stiffness of the panel component is obtained. The position where the tension rigidity is low or its vicinity is determined as the reinforcing position, and the reinforcing member and the panel back surface of the panel part are bonded at the reinforcing position. Therefore, a reinforcing position that effectively improves the tension rigidity in a short time can be obtained. It is possible to determine and reinforce the reinforcing position, thereby reducing the time cost for the design, and it is possible to obtain effects such as man-hour reduction and weight reduction by reducing the number of reinforcing positions.

そして本発明のパネル部品によれば、本発明の補強方法で補強されたものであるので、設計にかかる時間的コストを削減することができ、また、補強位置の数の削減による工数削減や軽量化等の効果を得ることができる。   And, according to the panel component of the present invention, since it is reinforced by the reinforcing method of the present invention, the time cost for designing can be reduced, and the man-hours can be reduced and the weight can be reduced by reducing the number of reinforcing positions. Effects such as conversion can be obtained.

本発明のパネル部品の補強方法の一実施形態で用いるパネル部品としての自動車用ドアパネルの有限要素解析モデルを示す平面図である。It is a top view which shows the finite element analysis model of the door panel for motor vehicles as a panel component used with one Embodiment of the reinforcement method of the panel component of this invention. 上記実施形態の補強方法において上記有限要素解析モデルを用いて解析した補強前の自動車用ドアパネルの張り剛性分布を示す平面図である。It is a top view which shows the tension rigidity distribution of the door panel for motor vehicles before reinforcement analyzed using the said finite element analysis model in the reinforcement method of the said embodiment. 上記実施形態の補強方法において上記補強前の自動車用ドアパネルの張り剛性分布から第1の方法で求めた補強位置を示す平面図である。It is a top view which shows the reinforcement position calculated | required with the 1st method from the tension rigidity distribution of the door panel for motor vehicles before the said reinforcement in the reinforcement method of the said embodiment. 上記実施形態の補強方法において上記補強前の自動車用ドアパネルの張り剛性分布から第2の方法で求めた補強位置を示す平面図である。It is a top view which shows the reinforcement position calculated | required with the 2nd method from the tension rigidity distribution of the door panel for motor vehicles before the said reinforcement in the reinforcement method of the said embodiment.

以下、本発明の実施の形態を図面に基づき詳細に説明する。この実施形態のパネル部品の補強方法は、パネル部品としての例えば自動車用ドアパネルのパネル裏面にチャンネル材等の補強部品を配置して自動車用ドアパネルの張り剛性を高めるに際し、先ず、その自動車用ドアパネルの張り剛性の分布を求め、その張り剛性の分布において張り剛性が低い位置またはその近傍を補強位置に決定するものであり、このようにすることにより、張り剛性を効果的に向上させるための補強位置が決定可能になり、その決定した補強位置で、補強部材と自動車用ドアパネルのパネル裏面とを接着して自動車用ドアパネルを補強する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The panel component reinforcing method of this embodiment is arranged such that, for example, a reinforcing member such as a channel material is arranged on the back side of the panel of an automotive door panel as the panel component to increase the tension rigidity of the automotive door panel. The tension stiffness distribution is obtained, and the position where the tension stiffness is low or the vicinity thereof is determined as the reinforcement position in the tension stiffness distribution. By doing so, the reinforcement position for effectively improving the tension stiffness is determined. Can be determined, and at the determined reinforcing position, the reinforcing member and the back surface of the automotive door panel are bonded to reinforce the automotive door panel.

なお、ここでいう「張り剛性」とは、パネル上に加重を付加してゆく際にある一定変位に達するときの荷重、あるいは荷重−変位曲線における傾き等、種々考えられるが何れでも良い。本発明は、何らかの方法により張り合成の閾値を決定し、パネル全体がその閾値の張り剛性を越えるような補強位置を決定するものである。   The “tension rigidity” here may be variously considered, such as a load when a certain displacement is reached when a load is applied on the panel, or an inclination in a load-displacement curve. According to the present invention, a threshold value for tension synthesis is determined by some method, and a reinforcing position is determined so that the entire panel exceeds the threshold stiffness.

一般的には、裏面からの補強による張り剛性向上の効果は、補強位置に近いほうが高いと考えられる。しかし、具体的な向上効果は、補強に用いられる樹脂等の材質により変わると考えられる。本実施形態では、先ず補強位置1箇所当りの張り剛性向上効果を見積もることが必要である。本発明者らは、市販されている自動車のドアパネルを対象に張り剛性試験と解析とを行って解析の精度を充分に確かめた後に、解析により補強位置1箇所当りの張り剛性向上効果を見積もった。   In general, it is considered that the effect of improving the tension rigidity by reinforcement from the back surface is higher when closer to the reinforcement position. However, the specific improvement effect is considered to vary depending on the material such as resin used for reinforcement. In this embodiment, first, it is necessary to estimate the tension rigidity improvement effect per one reinforcing position. The present inventors conducted a tension rigidity test and analysis on a commercially available automobile door panel to sufficiently confirm the accuracy of the analysis, and then estimated the effect of improving the tension rigidity per reinforcing position by the analysis. .

方法としては、図1に示される自動車用ドアパネルの有限要素解析モデルに対し、補強を全て外した条件での解析と、補強を中央に1点だけ配した条件での解析とを行った。有限要素解析モデルの作成についてはアルテア(Altair)社の市販CAEプログラムであるハイパーメッシュ(Hyper Mesh)を用いて行った。パネルのメッシュサイズは5mmとした。要素はシェル要素を用い、ドアパネルモデルの自動車本体と繋がる部分を空間に対し完全拘束とした。有限要素解析はこれも市販CAEプログラムであるエルエスダイナ(LS-DYNA)ver971d R3.2.1を用いて、静的陰解法で行った。結果として、合成ゴムや熱可塑性樹脂等からなる接着剤での補強材のマスチック接合による張り剛性向上効果率p(向上なし:p=1)は、本検討のケースでは補強位置との距離d(mm)を用いて以下の式で表されることが判明した。但し、d<120である。
p=(−d/120)+2 ・・・(式1)
なお、dの値が120mm以上になると、補強位置からの距離が充分に遠くなるため、補強による張り剛性向上効果が及ばなくなる。
As the method, the finite element analysis model of the automobile door panel shown in FIG. 1 was analyzed under the condition where all reinforcements were removed and under the condition where only one reinforcement was arranged at the center. The creation of the finite element analysis model was performed using Hyper Mesh, which is a commercially available CAE program of Altair. The mesh size of the panel was 5 mm. The element was a shell element, and the part of the door panel model connected to the car body was completely constrained to the space. Finite element analysis was performed by static implicit method using LS-DYNA ver971d R3.2.1, which is also a commercially available CAE program. As a result, the tension stiffness improvement effect rate p (no improvement: p = 1) by mastic bonding of the reinforcing material with an adhesive made of synthetic rubber, thermoplastic resin, or the like is the distance d ( mm), and was found to be expressed by the following formula. However, d <120.
p = (− d / 120) +2 (Formula 1)
When the value of d is 120 mm or more, the distance from the reinforcing position is sufficiently long, and the effect of improving the tension rigidity due to the reinforcement does not reach.

次に、複数の補強により、張り剛性向上効果を受ける位置はどのように張り剛性が向上するのかについて解析を行った。パネル中央に補強位置を一箇所設け、その接合位置から半径120mm以内に補強を設けて解析を行った結果、今回解析に使ったモデルでは、n箇所の補強の影響を受ける位置の張り剛性向上率pm(向上なし:pm=1)は、最大値を2(倍)として、式1から求められるそれぞれの補強位置からの張り剛性向上率pを加算した以下の式2で表されることを知見した。但し、di<120である。
従って、Pm<2の場合は、張り剛性向上率p=pmであり、Pm≧2の場合は、張り剛性向上率p=2となる。
Next, we analyzed how the tension rigidity is improved at the position where the tension rigidity is improved by multiple reinforcements. As a result of analyzing the reinforcement position within the center of the panel and providing a reinforcement within a radius of 120mm from the joint position, the model used for this analysis has an increase in the stiffness at the position affected by the reinforcement at the n positions. It is found that pm (no improvement: pm = 1) is expressed by the following formula 2 in which the maximum value is 2 (times) and the tension stiffness improvement rate p from each reinforcement position obtained from formula 1 is added. did. However, di <120.
Therefore, when Pm <2, the tension stiffness improvement rate p = pm, and when Pm ≧ 2, the tension stiffness improvement rate p = 2.

以上の結果から、張り剛性を効果的に上昇させる補強位置の決定方法として二種類の方法が考えられる。第1の方法は、先ず、パネル上の最も張り剛性が低い位置に補強位置を配置し、その補強位置を配置した後に、再びパネル上で最も張り剛性が低い位置を探し、その位置に補強位置を配置する、ということを繰返し、パネル全体が張り剛性の閾値を超えるように補強位置を配置するものである。   From the above results, two types of methods are conceivable as a method for determining a reinforcing position that effectively increases the tension rigidity. In the first method, first, a reinforcing position is arranged at a position where the tension stiffness is lowest on the panel, and after the reinforcement position is located, a position where the tension stiffness is lowest is again searched for on the panel, and the reinforcement position is located at that position. The reinforcement position is arranged so that the entire panel exceeds the tension rigidity threshold value.

第2の方法は、先ず、パネル上の最も張り剛性が低い位置が張り剛性の閾値を超えるように式2を用いてその最も張り剛性が低い位置を囲むように複数の補強位置を配置し、次に、再びパネル上で最も張り剛性が低い位置を探し、その位置が張り剛性の閾値を超えるのに必要な張り剛性上昇率を与える距離を式1を用いて算出し、その位置から式1で求めた距離だけ離れた場所のうち最も張り剛性が低い位置に補強位置を配置する、ということを繰返し、パネル全体が張り剛性の閾値を超えるように補強位置を配置するものである。   In the second method, first, a plurality of reinforcing positions are arranged so as to surround the position having the lowest tension rigidity using Equation 2 so that the position having the lowest tension rigidity on the panel exceeds the threshold value of the tension rigidity, Next, the position where the tension rigidity is the lowest on the panel is searched again, and the distance giving the tension rigidity increase rate necessary for the position to exceed the tension rigidity threshold value is calculated using Expression 1, and from the position, Expression 1 The reinforcement position is arranged at a position where the tension stiffness is the lowest among the places separated by the distance obtained in the above, and the reinforcement position is arranged so that the entire panel exceeds the tension stiffness threshold.

上記の何れの方法でも、最初にパネル全体の張り剛性分布と補強による張り剛性上昇率を表す式1,式2とを解析、実験等で得れば、補強位置の配置は式1,式2を用いて手計算により行うことができるが、より精密に行うためには表計算ソフトを用いることが望ましい。   In any of the above-described methods, if the first and second expressions representing the tension stiffness distribution of the entire panel and the tension rigidity increase rate due to reinforcement are obtained through analysis, experiment, etc. However, it is desirable to use spreadsheet software for more precise processing.

第1の方法と第2の方法とのどちらを適用するのが好ましいかは、パネル形状や張り剛性の強弱の分布によって異なる。また、例えばドア内のインパクトビームのように、インナー部品の構造によっては補強位置に制約ができる場合があるため、補強位置を設定する際には両方の方法を施工してより好適な配置を選択することが好ましい。またその際、第1の方法と第2の方法とを重複して用いることも可能である。   Which of the first method and the second method is preferably applied differs depending on the panel shape and the distribution of strength of the tension rigidity. In addition, for example, an impact beam in a door may restrict the reinforcement position depending on the structure of the inner part. Therefore, when setting the reinforcement position, both methods are constructed and a more suitable arrangement is selected. It is preferable to do. At that time, the first method and the second method can be used in an overlapping manner.

(実施例)
本実施形態の実施例として、図2に示す自動車用ドアパネル1に対して適正な補強位置を算出した。先ず図1に示すドアパネルの解析モデル1Mに対して補強を全て外した条件での解析を行い、図2に示すように、補強していない状態での自動車用ドアパネル1の張り剛性の分布を得た。有限要素解析モデルの作成についてはアルテア(Altair)社の市販CAEプログラムであるハイパーメッシュ(Hyper Mesh)を用いて行った。パネルのメッシュサイズは5mmとした。板厚は0.60mmとし、要素はシェル要素を用い、ドアパネルモデルの自動車本体と繋がる部分を空間に対し完全拘束とした。有限要素解析はこれも市販CAEプログラムであるエルエスダイナ(LS-DYNA)ver971d R3.2.1を用いて、静的陰解法で行った。
(Example)
As an example of this embodiment, an appropriate reinforcing position was calculated for the automobile door panel 1 shown in FIG. First, an analysis is performed on the analysis model 1M of the door panel shown in FIG. 1 under the condition where all reinforcements are removed, and as shown in FIG. It was. The creation of the finite element analysis model was performed using Hyper Mesh, which is a commercially available CAE program of Altair. The mesh size of the panel was 5 mm. The plate thickness was 0.60 mm, the shell element was used as the element, and the part connected to the automobile body of the door panel model was completely restricted to the space. Finite element analysis was performed by static implicit method using LS-DYNA ver971d R3.2.1, which is also a commercially available CAE program.

本実施例では、張り剛性の閾値を「パネル上の任意の位置を2mm変位させるのに必要な荷重が40N以上である」と設定した。図2は張り剛性の分布として、パネル上の任意の位置を2mm変位させるのに必要な荷重のコンター(等値線)図を示す。従来は補強位置の効果的な決定方法がなかったため、適正な補強位置を得るためには解析、試作を繰返す必要があり、時間とコストが必要であった。しかしながら本実施形態の方法を適当することにより、簡便に補強位置を決定することができる。   In this example, the tension stiffness threshold was set as “the load required to displace an arbitrary position on the panel by 2 mm is 40 N or more”. FIG. 2 shows a contour (isoline) diagram of a load necessary to displace an arbitrary position on the panel by 2 mm as a distribution of the tension rigidity. Conventionally, there has been no effective method for determining the reinforcement position, and therefore it has been necessary to repeat analysis and trial production in order to obtain an appropriate reinforcement position, which requires time and cost. However, by appropriately applying the method of the present embodiment, the reinforcing position can be easily determined.

図3に、第1の方法で決定した補強位置を図2の張り剛性分布と重ねて示す。この方法では先ず、張り剛性分布から求めた自動車用ドアパネル1上の最も張り剛性が低い位置に補強位置P1を配置し、その補強位置P1を配置した後に再び自動車用ドアパネル1の張り剛性分布を求めて、その自動車用ドアパネル1上で最もはり剛性が低い位置を探し、その位置に補強位置P2を配置し、それら補強位置P1,P2を配置した後に再び自動車用ドアパネル1の張り剛性分布を求めて、その自動車用ドアパネル1上で最も張り剛性が低い位置を探し、その位置に補強位置P3を配置する、というようにして補強位置P1〜P7を求め、それらの補強位置P1〜P7を配置した後に再び自動車用ドアパネル1の張り剛性分布を求めて、その自動車用ドアパネル1全体の張り剛性が上記閾値を超えるようにしている。   FIG. 3 shows the reinforcing positions determined by the first method, overlapping the tension stiffness distribution of FIG. In this method, first, the reinforcing position P1 is arranged at a position where the tensile rigidity is lowest on the automotive door panel 1 obtained from the tensile rigidity distribution, and after the reinforcing position P1 is arranged, the tensile rigidity distribution of the automotive door panel 1 is obtained again. Then, a position with the lowest beam rigidity is searched for on the door panel 1 for the automobile, the reinforcement position P2 is arranged at that position, and after the reinforcement positions P1 and P2 are arranged, the tension rigidity distribution of the automobile door panel 1 is obtained again. After searching for the position with the lowest tension rigidity on the door panel 1 for the automobile and arranging the reinforcement positions P3 at the position, the reinforcement positions P1 to P7 are obtained, and after the reinforcement positions P1 to P7 are arranged. The tension stiffness distribution of the automobile door panel 1 is obtained again so that the tension stiffness of the entire automobile door panel 1 exceeds the threshold value.

また図4に、第2の方法で決定した補強位置を図2の張り剛性分布と重ねて示す。この方法では先ず、自動車用ドアパネル1上の最も張り剛性が低い位置が張り剛性の閾値を超えるように式2を用いてその最も張り剛性が低い位置の近傍に、その最も張り剛性が低い位置を囲むように複数、例えば三箇所の補強位置P1−1,P1−2,P1−3を配置する。例えば最も張り剛性が低い位置が閾値を超えるには張り剛性上昇率を1.9倍とする必要があるとすると、式2から補強位置1ヶ所当りでは1.3倍とする必要があり、1.3倍にするには式1から距離d=0.7×120=84mmとなり、最も張り剛性が低い位置を中心に半径84mmの円周上に補強位置P1−1,P1−2,P1−3を、互いに120度ずつ離間させて配置する。   Further, FIG. 4 shows the reinforcing positions determined by the second method in an overlapping manner with the tension stiffness distribution of FIG. In this method, first, the position having the lowest tension rigidity is set in the vicinity of the position having the lowest tension rigidity using Equation 2 so that the position having the lowest tension rigidity on the automobile door panel 1 exceeds the threshold value of the tension rigidity. A plurality of, for example, three reinforcing positions P1-1, P1-2, and P1-3 are arranged so as to surround. For example, if it is necessary to increase the tension rigidity increase rate by 1.9 times in order that the position having the lowest tension rigidity exceeds the threshold value, it is necessary to increase 1.3 times per reinforcement position from Equation 2. To increase the magnification by three, the distance d is 0.7 × 120 = 84 mm from Equation 1, and the reinforcing positions P1-1, P1-2, P1- 3 are arranged 120 degrees apart from each other.

次に、それら補強位置P1−1,P1−2,P1−3を配置した後に再び自動車用ドアパネル1上で最も張り剛性が低い位置を探し、その最も張り剛性が低い位置が張り剛性の閾値を超えるように式2を用いてその最も張り剛性が低い位置を囲むように複数、例えば三箇所の補強位置P2−1,P2−2,P2−3を配置し、さらに、それら補強位置P1−1,P1−2,P1−3,P2−1,P2−2,P2−3を配置した後に再び自動車用ドアパネル1上で最も張り剛性が低い位置を探し、その最も張り剛性が低い位置が張り剛性の閾値を超えるように式2を用いてその最も張り剛性が低い位置を囲むように複数、例えば三箇所の補強位置P3−1,P3−2,P3−3を配置する、というようにして補強位置P1−1〜1−3、P2−1〜2−3,P3−1〜3−3を求め、それらの補強位置を配置した後に再び自動車用ドアパネル1の張り剛性分布を求めて、その自動車用ドアパネル1全体の張り剛性が上記閾値を超えるようにしている。   Next, after arranging the reinforcement positions P1-1, P1-2, and P1-3, the position where the tension stiffness is the lowest is again searched for on the door panel 1 for an automobile, and the position where the tension strength is the lowest is the threshold value of the tension stiffness. A plurality of, for example, three reinforcing positions P2-1, P2-2, and P2-3 are arranged so as to surround the position having the lowest tension rigidity by using Formula 2, and further, these reinforcing positions P1-1 are arranged. , P1-2, P1-3, P2-1, P2-2, and P2-3, the position on the automobile door panel 1 is searched again for the position with the lowest tension rigidity, and the position with the lowest tension rigidity is the tension rigidity. Reinforcement by using a plurality of, for example, three reinforcement positions P3-1, P3-2, and P3-3 so as to surround the position having the lowest tension rigidity so as to exceed the threshold value of Position P1-1 to 1-3, P2- ~ 2-3, P3-1 to 3-3 are obtained, and after the reinforcement positions are arranged, the tension rigidity distribution of the automobile door panel 1 is obtained again, and the tension rigidity of the whole automobile door panel 1 exceeds the above threshold. I am doing so.

なお、上記第2の方法で1箇所の補強位置を追加する場合は、先に補強位置を配置した後に再び自動車用ドアパネル1上で最も張り剛性が低い位置を探し、その最も張り剛性が低い位置が張り剛性の閾値を超えるのに必要な張り剛性上昇率を与える距離dを式1を用いて算出し、その位置から式1で求めた距離dだけ離れた場所のうち最も張り剛性が低い位置に補強位置を配置する。   When one reinforcing position is added by the second method, after the reinforcing position is first arranged, a position having the lowest tension rigidity is searched again on the automobile door panel 1, and the position having the lowest tension rigidity is obtained. The distance d giving the rate of increase in tension rigidity necessary to exceed the tension stiffness threshold value is calculated using Equation 1, and the position where the tension stiffness is the lowest among the locations separated from the position by the distance d determined by Equation 1 Place the reinforcement position on

例えば、最も張り剛性が低い位置が張り剛性の閾値を超えるには張り剛性上昇率を1.4倍にする必要があるとすると、式1からd=0.6×120=72mmとなり、上記最も張り剛性が低い位置を中心に半径72mmの円周上で最も張り剛性が低い位置に補強位置を配置する。   For example, if it is necessary to increase the tension stiffness increase rate by 1.4 times in order that the position with the lowest tension stiffness exceeds the tension stiffness threshold, d = 0.6 × 120 = 72 mm from Equation 1, A reinforcing position is arranged at a position having the lowest tension rigidity on the circumference of a radius of 72 mm around a position where the tension rigidity is low.

第1の方法で決定した補強位置の方が補強位置の数が少ないが、第2の方法で決定した場合は補強位置がほぼ直線状に並ぶため、直線状の補強部材を用いて補強する際に補強がしやすいという利点がある。このように、本実施形態の方法によれば、従来の方法と比較して簡便かつ迅速に適正な補強位置を得ることが可能になり、本実施形態の方法で補強位置を決定して補強した自動車用ドアパネルによれば、設計にかかる時間的コストを削減することができ、また、補強位置の数の削減による工数削減や軽量化等の効果を得ることができる。   The number of reinforcing positions determined by the first method is smaller than the number of reinforcing positions. However, when the position is determined by the second method, the reinforcing positions are arranged almost linearly. Therefore, when reinforcing using a linear reinforcing member, There is an advantage that it is easy to reinforce. As described above, according to the method of the present embodiment, it is possible to obtain an appropriate reinforcing position easily and quickly compared to the conventional method, and the reinforcing position is determined and reinforced by the method of the present embodiment. According to the automobile door panel, it is possible to reduce the time cost required for the design, and it is possible to obtain effects such as man-hour reduction and weight reduction by reducing the number of reinforcing positions.

以上、図示例に基づき説明したが、この発明は上述の例に限られるものでなく、所要に応じて特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば、第2の方法における張り剛性が最も低い位置の近傍の複数の位置は、張り剛性が最も低い位置を挟む2箇所または張り剛性が最も低い位置を囲む4箇所以上の位置でもよい。また、この発明の方法では、適用するパネル部品の構成等に応じて、上記第1の方法と第2の方法とを適宜組み合わせて用いてもよい。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims as required. For example, the second method The plurality of positions in the vicinity of the position having the lowest tension rigidity may be two positions sandwiching the position having the lowest tension rigidity or four or more positions surrounding the position having the lowest tension rigidity. In the method of the present invention, the first method and the second method may be used in appropriate combination according to the configuration of the panel component to be applied.

かくして本発明のパネル部品の補強方法によれば、短時間で簡便に、張り剛性を効果的に向上させる補強位置を決定してその補強位置を補強でき、それにより、設計にかかる時間的コストを削減することができ、また、補強位置の数の削減による工数削減や軽量化等の効果を得ることができる。   Thus, according to the method for reinforcing a panel part of the present invention, it is possible to determine a reinforcing position that effectively improves the tension rigidity in a short time and to reinforce the reinforcing position, thereby reducing the time cost for designing. In addition, effects such as man-hour reduction and weight reduction by reducing the number of reinforcing positions can be obtained.

また、本発明のパネル部品によれば、設計にかかる時間的コストを削減することができ、また、補強位置の数の削減による工数削減や軽量化等の効果を得ることができる。   Further, according to the panel component of the present invention, it is possible to reduce the time cost for designing, and it is possible to obtain effects such as man-hour reduction and weight reduction by reducing the number of reinforcing positions.

1 自動車用ドアパネル
1M 自動車用ドアパネルの有限要素解析モデル
P1〜P7 第1の方法での補強位置
P1−1〜P3−3 第2の方法での補強位置
DESCRIPTION OF SYMBOLS 1 Automotive door panel 1M Finite element analysis model of automotive door panel P1 to P7 Reinforcement position in the first method P1-1 to P3-3 Reinforcement position in the second method

Claims (5)

パネル部品のパネル裏面に補強部品を配置してパネル部品の張り剛性を高めるに際し、
前記パネル部品の張り剛性の分布を求め、
前記張り剛性の分布において張り剛性が低い位置またはその近傍を補強位置に決定し、
前記補強位置で補強部材とパネル部品のパネル裏面とを接着することを特徴とするパネル部品の補強方法。
When placing reinforcing parts on the back of the panel parts to increase the rigidity of the panel parts,
Obtain the stiffness distribution of the panel parts,
A position where the tension rigidity is low or its vicinity in the distribution of the tension rigidity is determined as a reinforcing position,
A reinforcing method for a panel component, wherein a reinforcing member and a panel back surface of the panel component are bonded at the reinforcing position.
前記補強位置1箇所当りの張り剛性向上効果を求め、
前記張り剛性向上効果を複数箇所の補強位置について重ね合わせることでパネル部品全体の張り剛性を向上させることを特徴とする請求項1記載のパネル部品の補強方法。
The tension rigidity improvement effect per one said reinforcement position is calculated | required,
2. The panel component reinforcing method according to claim 1, wherein the tension rigidity of the entire panel component is improved by superimposing the tension rigidity improving effect on a plurality of reinforcing positions.
前記張り剛性の分布において張り剛性が最も低い位置を補強位置に決定し、
その補強位置を補強した後の前記パネル部品の張り剛性の分布を求め、
その張り剛性の分布において張り剛性が最も低い位置を補強位置に決定する、
という工程を繰り返して、パネル部品全体の張り剛性を向上させることを特徴とする請求項2記載のパネル部品の補強方法。
The position where the tension stiffness is lowest in the tension stiffness distribution is determined as the reinforcing position,
Obtain the tension stiffness distribution of the panel parts after reinforcing the reinforcing position,
The position where the tension stiffness is the lowest in the tension stiffness distribution is determined as the reinforcement position.
The method of reinforcing a panel part according to claim 2, wherein the tension rigidity of the whole panel part is improved by repeating the process.
前記張り剛性の分布において張り剛性が最も低い位置の近傍の複数の位置を補強位置に決定し、
それらの補強位置を補強した後の前記パネル部品の張り剛性の分布を求め、
その張り剛性の分布において張り剛性が最も低い位置の近傍の複数の位置を補強位置に決定する、
という工程を繰り返して、パネル部品全体の張り剛性を向上させることを特徴とする請求項2または3記載のパネル部品の補強方法。
A plurality of positions in the vicinity of the position having the lowest tension rigidity in the tension rigidity distribution are determined as the reinforcing positions,
Obtain the tension stiffness distribution of the panel parts after reinforcing their reinforcing positions,
A plurality of positions in the vicinity of the position having the lowest tension rigidity in the distribution of the tension rigidity are determined as the reinforcement positions.
The method of reinforcing a panel part according to claim 2 or 3, wherein the tension rigidity of the whole panel part is improved by repeating the above process.
請求項1から4までの何れか1項記載のパネル部品の補強方法を用いて補強されていることを特徴とするパネル部品。   A panel component reinforced by using the method for reinforcing a panel component according to any one of claims 1 to 4.
JP2013198571A 2013-09-25 2013-09-25 Method for reinforcing panel parts and panel parts reinforced by the method Active JP6015956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198571A JP6015956B2 (en) 2013-09-25 2013-09-25 Method for reinforcing panel parts and panel parts reinforced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198571A JP6015956B2 (en) 2013-09-25 2013-09-25 Method for reinforcing panel parts and panel parts reinforced by the method

Publications (2)

Publication Number Publication Date
JP2015063235A true JP2015063235A (en) 2015-04-09
JP6015956B2 JP6015956B2 (en) 2016-10-26

Family

ID=52831522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198571A Active JP6015956B2 (en) 2013-09-25 2013-09-25 Method for reinforcing panel parts and panel parts reinforced by the method

Country Status (1)

Country Link
JP (1) JP6015956B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105114427A (en) * 2015-07-30 2015-12-02 苏州玄禾物联网科技有限公司 Intelligent autorotation electric control screw
JP2016218785A (en) * 2015-05-21 2016-12-22 Jfeスチール株式会社 Panel inversion prediction method for vehicle opening/closing component and vehicle opening/closing component prepared for panel inversion using the method
JP2018149966A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Flare rigidity improvement method for vehicle door panel component, and vehicle door panel component
CN111263705B (en) * 2017-11-01 2023-08-11 杰富意钢铁株式会社 Reinforcing structure and reinforcing method for automobile door panel part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171349A (en) * 1999-12-16 2001-06-26 Mitsubishi Automob Eng Co Ltd Reinforcement arrangement method for panel structure
JP2003205741A (en) * 2002-01-10 2003-07-22 Nissan Shatai Co Ltd Door structure for automobile
JP2011251624A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Reinforcing member of vehicle body outer plate for automobile and reinforcing structure of vehicle body outer plate for automobile having the reinforcing member
JP2012101763A (en) * 2010-11-12 2012-05-31 Suzuki Motor Corp Door structure for vehicle
JP2012221114A (en) * 2011-04-06 2012-11-12 Jfe Steel Corp Flare rigidity evaluation method, attachment and design method of reinforcement member and flare rigidity evaluation device
JP2013054611A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for predicting tensile rigidity distribution of metal panel
JP2013130429A (en) * 2011-12-20 2013-07-04 Jfe Steel Corp Panel evaluation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171349A (en) * 1999-12-16 2001-06-26 Mitsubishi Automob Eng Co Ltd Reinforcement arrangement method for panel structure
JP2003205741A (en) * 2002-01-10 2003-07-22 Nissan Shatai Co Ltd Door structure for automobile
JP2011251624A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Reinforcing member of vehicle body outer plate for automobile and reinforcing structure of vehicle body outer plate for automobile having the reinforcing member
JP2012101763A (en) * 2010-11-12 2012-05-31 Suzuki Motor Corp Door structure for vehicle
JP2012221114A (en) * 2011-04-06 2012-11-12 Jfe Steel Corp Flare rigidity evaluation method, attachment and design method of reinforcement member and flare rigidity evaluation device
JP2013054611A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for predicting tensile rigidity distribution of metal panel
JP2013130429A (en) * 2011-12-20 2013-07-04 Jfe Steel Corp Panel evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218785A (en) * 2015-05-21 2016-12-22 Jfeスチール株式会社 Panel inversion prediction method for vehicle opening/closing component and vehicle opening/closing component prepared for panel inversion using the method
CN105114427A (en) * 2015-07-30 2015-12-02 苏州玄禾物联网科技有限公司 Intelligent autorotation electric control screw
JP2018149966A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Flare rigidity improvement method for vehicle door panel component, and vehicle door panel component
CN111263705B (en) * 2017-11-01 2023-08-11 杰富意钢铁株式会社 Reinforcing structure and reinforcing method for automobile door panel part

Also Published As

Publication number Publication date
JP6015956B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6015956B2 (en) Method for reinforcing panel parts and panel parts reinforced by the method
Patil et al. Vehicle mass optimization for frontal structure using I-sight and study of weld parameterization for mass improvement
US20110295570A1 (en) Sheet Metal Forming Failure Prediction Using Numerical Simulations
CN102867075A (en) Acceleration frequency response analysis-based body floor optimal design method
CN106066921A (en) A kind of CAE simulated prediction method of car load road vibration noise
CN105960365A (en) Vehicle-body structure for vehicle
Chandru et al. Finite element and experimental modal analysis of car roof with and without damper
CN102567552A (en) Method for realizing optimization of vehicle body structure on basis of normal rigidity analysis of metal plates of vehicle body
KR101622584B1 (en) Panel part evaluation method, panel part evaluation device, and method for manufacturing panel part for automobiles
Rastogi Stress analysis and lay-up optimization of an all-composite pick-up truck chassis structure
Han et al. Interior sound field refinement of a passenger car using modified panel acoustic contribution analysis
Grujicic et al. Application of topology, size and shape optimization methods in polymer metal hybrid structural lightweight engineering
Kaushik et al. Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness
Ji Lightweight design of vehicle side door
KR101922820B1 (en) Structure design support device, structure design support method, computer program storaged in recording medium, and recording medium
Adduri et al. Car body optimization considering crashworthiness, NVH and static responses
Cui et al. Topology optimization and robust analysis of welding spot layout for a heavy duty truck cab based on element strain energy density
JP2014196023A (en) Back door for automobile made of polypropylene having enclosure type iron reinforcement designed by using cae technique
CN110008614B (en) Method for optimizing torsional rigidity of white car body
Senthil Kumar et al. Vibration analysis and improvement of a vehicle chassis structure
Pasupuleti et al. Validation of material models: design and analysis of composite front bumper crush-can system
Reddy et al. Analysis of light motor vehicle component using topology optimization method
Prasanth et al. Body induced boom noise control by hybrid integrated approach for a passenger car
Lenzi et al. New insights of an energy flow visualization into vehicle design
Farahani et al. Towards Automotive NVH Enhancement: Structural Dynamics Analysis of a Vehicle Wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6015956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250