JP2015061270A - Optical communication system, optical network unit, optical line terminal, and optical communication method - Google Patents

Optical communication system, optical network unit, optical line terminal, and optical communication method Download PDF

Info

Publication number
JP2015061270A
JP2015061270A JP2013195456A JP2013195456A JP2015061270A JP 2015061270 A JP2015061270 A JP 2015061270A JP 2013195456 A JP2013195456 A JP 2013195456A JP 2013195456 A JP2013195456 A JP 2013195456A JP 2015061270 A JP2015061270 A JP 2015061270A
Authority
JP
Japan
Prior art keywords
communication device
optical
side communication
signal
home
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195456A
Other languages
Japanese (ja)
Other versions
JP6073766B2 (en
Inventor
奈美子 池田
Namiko Ikeda
奈美子 池田
和彦 寺田
Kazuhiko Terada
和彦 寺田
寛之 鵜澤
Hiroyuki Uzawa
寛之 鵜澤
浦野 正美
Masami Urano
正美 浦野
弘 小泉
Hiroshi Koizumi
弘 小泉
重松 智志
Satoshi Shigematsu
智志 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013195456A priority Critical patent/JP6073766B2/en
Publication of JP2015061270A publication Critical patent/JP2015061270A/en
Application granted granted Critical
Publication of JP6073766B2 publication Critical patent/JP6073766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement power saving of an Optical Network Unit.SOLUTION: A transmission side optical communication device 1 comprises: an electrical-optical conversion unit 10; an optical-electrical conversion unit 11; and an output change unit 12 for changing intensity of an optical signal output from the electrical-optical conversion unit 10 according to an instruction order included in an optical signal from a reception side optical communication device 2. The reception side optical communication device 2 comprises: an optical-electrical conversion unit 20; a performance value measurement unit 21 for measuring a performance value for evaluating quality of an optical signal from the transmission side optical communication device 1; a reception side evaluation unit 22 for evaluating the quality of the optical signal from the transmission side optical communication device 1 on the basis of the performance value, before making an optical signal including an instruction order for changing intensity of the optical signal from the transmission side optical communication device 1 according to a result of the evaluation be output to the transmission side optical communication device 1; and an electrical-optical conversion unit 23.

Description

本発明は、局側通信装置と宅側通信装置を備える光通信システムに関し、特に宅側通信装置の省電力化を実現する光通信システム、宅側通信装置、局側通信装置および光通信方法に関するものである。   The present invention relates to an optical communication system including a station-side communication device and a home-side communication device, and more particularly to an optical communication system, a home-side communication device, a station-side communication device, and an optical communication method that realize power saving of the home-side communication device. Is.

光通信システムは、光信号の送信および受信を行う通信装置と、それら通信装置を接続する光ファイバで構成される。図10に光通信システムの一例として、10G−EPON(10 Gigabit-Ethernet(登録商標) Passive Optical Network)システムの構成を示す。本システムは、局側通信装置(Optical Line Terminal:OLT)100と複数の宅側通信装置(Optical Network Unit:ONU)101−1〜101−nと光スプリッタ102とから構成され、1つのOLT100を複数のONU101−1〜101−nで共有することで経済的なシステムを実現している。   An optical communication system includes a communication device that transmits and receives optical signals and an optical fiber that connects the communication devices. FIG. 10 shows a configuration of a 10G-EPON (10 Gigabit-Ethernet (registered trademark) Passive Optical Network) system as an example of an optical communication system. This system includes a station side communication device (Optical Line Terminal: OLT) 100, a plurality of home side communication devices (Optical Network Unit: ONU) 101-1 to 101-n, and an optical splitter 102. An economical system is realized by sharing a plurality of ONUs 101-1 to 101-n.

一般に、光通信システムの性能は標準で規格化されており、10G−EPONシステムでは、信号品質として受信時のBER(Bit Error Rate)が10-3以下であることや、OLTとONU間の伝送距離が20km以内であること等が規定されている(非特許文献1)。つまり伝送距離が20kmにおける受信時のBERが10-3以下となるシステムが要求されている。 In general, the performance of an optical communication system is standardized. In the 10G-EPON system, the signal quality is BER (Bit Error Rate) at the time of reception of 10 −3 or less, and transmission between the OLT and the ONU. It is prescribed that the distance is within 20 km (Non-Patent Document 1). That is, a system is required in which the BER at the time of reception at a transmission distance of 20 km is 10 −3 or less.

このような規定に関し実際の使用では、標準で規定された上限値(20km)よりも短い、様々な伝送距離で通信が行われているが、送信装置の出力は一律に伝送距離が20kmの際に受信時のBERが10-3以下となる大きい値で設定されている。そのため、受信時のBERは10-3より十分に低くなるが、送信装置の消費電力は大きくなってしまう。また、一律な送信出力の場合、OLTで受信する信号は、接続されたONUとの距離や伝送状態に応じて、受信信号の強度に大きく差が出るため、受信装置の高性能化も要求される。 In actual use with respect to such provisions, communication is performed at various transmission distances that are shorter than the upper limit value (20 km) prescribed by the standard, but the output of the transmission device is uniformly when the transmission distance is 20 km. Is set to a large value such that the BER at the time of reception is 10 −3 or less. For this reason, the BER at the time of reception is sufficiently lower than 10 −3, but the power consumption of the transmission device is increased. In the case of uniform transmission output, the signal received by the OLT has a large difference in the strength of the received signal depending on the distance from the connected ONU and the transmission state, so that high performance of the receiving device is also required. The

従来、光送信装置の出力レベルを制御する技術として、特許文献1に開示された光通信システムが知られている。この光通信システムでは、図11に示すように、光送信装置211から出力された光信号を伝送路212を介して光受信装置213で受信し、光受信装置213のレベル信号生成部213Aにおいて、受信電力の値に対応した情報を有するレベル信号214を生成して、光送信装置211にフィードバックする。   Conventionally, an optical communication system disclosed in Patent Document 1 is known as a technique for controlling the output level of an optical transmission apparatus. In this optical communication system, as shown in FIG. 11, the optical signal output from the optical transmission device 211 is received by the optical reception device 213 via the transmission path 212, and the level signal generation unit 213 </ b> A of the optical reception device 213 receives the optical signal. A level signal 214 having information corresponding to the value of the received power is generated and fed back to the optical transmitter 211.

光送信装置211の信号処理部211Cは、受信側から伝送されてきたレベル信号214に応答した調整信号を生成し、この調整信号をレベル調整部211Bに出力する。レベル調整部211Bは、信号処理部211Cから出力される調整信号に応答して、光送信部211Aから出力される光信号の電力を調整する。こうして、光受信装置213が受信する光信号の電力が常に一定値になるように調整される。   The signal processing unit 211C of the optical transmission device 211 generates an adjustment signal in response to the level signal 214 transmitted from the reception side, and outputs this adjustment signal to the level adjustment unit 211B. The level adjustment unit 211B adjusts the power of the optical signal output from the optical transmission unit 211A in response to the adjustment signal output from the signal processing unit 211C. In this way, the power of the optical signal received by the optical receiving device 213 is adjusted so as to be always a constant value.

特開2003−163638号公報JP 2003-163638 A

IEEE Std 802.3av,2009IEEE Std 802.3av, 2009

特許文献1に開示された光通信システムでは、光送信装置211の出力レベルを調整するためのレベル信号214の評価(光送信装置211の出力レベルを上げるか下げるかの評価)を光送信装置211の信号処理部211Cで行っていたため、光送信装置211の消費電力が大きくなってしまうという問題点があった。すなわち、光通信システムのONUの消費電力が大きくなってしまうという問題点があった。   In the optical communication system disclosed in Patent Document 1, the evaluation of the level signal 214 for adjusting the output level of the optical transmission device 211 (evaluation of whether to increase or decrease the output level of the optical transmission device 211) is performed. The signal processing unit 211 </ b> C has a problem that the power consumption of the optical transmission device 211 becomes large. That is, there is a problem that the power consumption of the ONU in the optical communication system becomes large.

本発明は、上記課題を解決するためになされたもので、宅側通信装置の省電力化を実現することができる光通信システム、宅側通信装置、局側通信装置および光通信方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides an optical communication system, a home side communication device, a station side communication device, and an optical communication method capable of realizing power saving of the home side communication device. For the purpose.

本発明の光通信システムは、宅側通信装置と、この宅側通信装置と伝送路を介して接続された局側通信装置とから構成され、前記宅側通信装置は、前記局側通信装置へ光信号を出力する第1の光出力手段と、前記局側通信装置からの光信号を入力する第1の光入力手段と、前記局側通信装置からの光信号に含まれる指令命令に従って、前記第1の光出力手段から出力する光信号の強度を変更する出力変更手段とを備え、前記局側通信装置は、前記宅側通信装置へ光信号を出力する第2の光出力手段と、前記宅側通信装置からの光信号を入力する第2の光入力手段と、前記宅側通信装置からの光信号の品質を評価するための性能値を測定する性能値測定手段と、前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記第2の光出力手段から前記宅側通信装置へ出力させる評価手段とを備えることを特徴とするものである。   An optical communication system according to the present invention includes a home side communication device and a station side communication device connected to the home side communication device via a transmission path, and the home side communication device is connected to the station side communication device. In accordance with a first optical output means for outputting an optical signal, a first optical input means for inputting an optical signal from the station side communication apparatus, and a command command included in the optical signal from the station side communication apparatus, Output changing means for changing the intensity of the optical signal output from the first optical output means, the station side communication device, the second optical output means for outputting the optical signal to the home side communication device, A second optical input means for inputting an optical signal from the home side communication device; a performance value measuring means for measuring a performance value for evaluating the quality of the optical signal from the home side communication device; Based on this, the quality of the optical signal from the home side communication device is evaluated. And an evaluation unit that outputs an optical signal including a command command for changing the intensity of the optical signal from the home-side communication device to the home-side communication device from the second optical output unit. It is a feature.

また、本発明の光通信システムの1構成例において、前記宅側通信装置は、さらに、前記局側通信装置へ送る信号の誤り訂正符号化を行う誤り訂正符号化手段を備え、前記局側通信装置の性能値測定手段は、前記宅側通信装置からの信号の誤りを訂正し、ビットエラーレート、誤りを訂正した訂正ビットの数、誤りが訂正できなかった訂正不可コードワードの数、エラービット数、コードワードエラーレート、エラーフレーム数、フレームエラーレートのうち少なくとも1つを前記性能値として測定する誤り訂正復号化手段を備えることを特徴とするものである。
また、本発明の光通信システムの1構成例において、前記局側通信装置の性能値測定手段は、さらに、前記局側通信装置と前記宅側通信装置との通信に要する時間であるラウンドトリップタイムを前記性能値として測定するラウンドトリップタイム測定手段と、前記宅側通信装置からの信号の強度を前記性能値として測定する信号強度測定手段とを備え、前記局側通信装置の評価手段は、前記誤り訂正復号化手段が測定した性能値と、前記ラウンドトリップタイム測定手段が測定したラウンドトリップタイムと、前記信号強度測定手段が測定した信号強度のうち2つ以上を用いて、前記宅側通信装置からの光信号の品質を評価することを特徴とするものである。
In the configuration example of the optical communication system of the present invention, the home side communication device further includes error correction coding means for performing error correction coding of a signal to be sent to the station side communication device, and the station side communication The performance value measuring means of the device corrects the error of the signal from the home-side communication device, the bit error rate, the number of correction bits that have corrected the error, the number of uncorrectable codewords that could not be corrected, the error bit And error correction decoding means for measuring at least one of the number, codeword error rate, error frame number, and frame error rate as the performance value.
Further, in one configuration example of the optical communication system of the present invention, the performance value measuring means of the station side communication device further includes a round trip time which is a time required for communication between the station side communication device and the home side communication device. Round trip time measuring means for measuring as a performance value, and signal strength measuring means for measuring the strength of a signal from the home side communication device as the performance value, and the evaluation means for the station side communication device, Using the performance value measured by the error correction decoding means, the round trip time measured by the round trip time measuring means, and the signal strength measured by the signal strength measuring means, the home-side communication device The quality of the optical signal from is evaluated.

また、本発明の光通信システムの1構成例において、前記宅側通信装置の出力変更手段は、前記局側通信装置とのリンクを確立する際に、前記局側通信装置から登録許可信号を受信するまで、リンク確立のための登録要請信号の強度を漸次増大させつつ、前記第1の光出力手段から前記局側通信装置へ前記登録要請信号を繰り返し出力させ、前記局側通信装置から登録許可信号を受信した場合に、前記第1の光出力手段から前記局側通信装置へ受信確認信号を出力させ、前記局側通信装置の評価手段は、前記宅側通信装置からの光信号の品質が良いと判定した場合に、前記第2の光出力手段から前記宅側通信装置へ登録許可信号を出力させることを特徴とするものである。
また、本発明の光通信システムの1構成例において、前記評価手段は、前記性能値をあらかじめ設定された対応する閾値と比較することで、前記宅側通信装置からの光信号の品質を評価し、この光信号の品質が良くなる方向に前記宅側通信装置からの光信号の強度を変更するための前記指令命令を生成することを特徴とするものである。
In one configuration example of the optical communication system of the present invention, the output changing unit of the home side communication device receives a registration permission signal from the station side communication device when establishing a link with the station side communication device. The registration request signal is repeatedly output from the first optical output means to the station side communication device while gradually increasing the strength of the registration request signal for establishing a link, and the station side communication device permits registration. When a signal is received, a reception confirmation signal is output from the first optical output unit to the station-side communication device, and the evaluation unit of the station-side communication device determines that the quality of the optical signal from the home-side communication device is If it is determined that the registration is good, a registration permission signal is output from the second light output means to the home communication device.
In the configuration example of the optical communication system according to the present invention, the evaluation unit evaluates the quality of the optical signal from the home side communication device by comparing the performance value with a corresponding threshold value set in advance. The command command for changing the intensity of the optical signal from the home side communication device in a direction in which the quality of the optical signal is improved is generated.

また、本発明の宅側通信装置は、局側通信装置へ光信号を出力する光出力手段と、前記局側通信装置からの光信号を入力する光入力手段と、前記光出力手段から出力する光信号の強度を変更する出力変更手段とを備え、前記出力変更手段は、前記宅側通信装置から前記局側通信装置へ入力される光信号の品質の評価結果に応じて前記局側通信装置から出力される光信号を受信したときに、この光信号に含まれる指令命令に従って、前記光出力手段から出力する光信号の強度を変更することを特徴とするものである。
また、本発明の局側通信装置は、宅側通信装置へ光信号を出力する光出力手段と、前記宅側通信装置からの光信号を入力する光入力手段と、前記宅側通信装置からの光信号の品質を評価するための性能値を測定する性能値測定手段と、前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記光出力手段から前記宅側通信装置へ出力させる評価手段とを備えることを特徴とするものである。
Further, the home side communication device of the present invention outputs an optical output means for outputting an optical signal to the station side communication device, an optical input means for inputting an optical signal from the station side communication device, and an output from the optical output means. Output changing means for changing the intensity of the optical signal, the output changing means according to the evaluation result of the quality of the optical signal input from the home side communication apparatus to the station side communication apparatus When the optical signal output from the optical signal is received, the intensity of the optical signal output from the optical output means is changed according to a command command included in the optical signal.
The station-side communication device of the present invention includes an optical output unit that outputs an optical signal to the home-side communication device, an optical input unit that inputs an optical signal from the home-side communication device, and the home-side communication device. Performance value measuring means for measuring a performance value for evaluating the quality of the optical signal, and evaluating the quality of the optical signal from the home side communication device based on the performance value, and the home side according to the evaluation result And an evaluation unit that outputs an optical signal including a command command for changing the intensity of the optical signal from the communication device to the home communication device from the optical output unit.

また、本発明の光通信方法は、宅側通信装置が、伝送路を介して接続された局側通信装置へ光信号を出力する送信ステップと、前記局側通信装置が、前記宅側通信装置からの光信号に基づいて信号品質を評価するための性能値を測定する性能値測定ステップと、前記局側通信装置が、前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記宅側通信装置へ出力する評価ステップと、前記宅側通信装置が、前記局側通信装置からの光信号に含まれる指令命令に従って、自装置から出力する光信号の強度を変更する出力変更ステップとを含むことを特徴とするものである。   The optical communication method of the present invention includes a transmission step in which the home side communication device outputs an optical signal to a station side communication device connected via a transmission line, and the station side communication device is connected to the home side communication device. A performance value measuring step for measuring a performance value for evaluating the signal quality based on the optical signal from, and the station side communication device determines the quality of the optical signal from the home side communication device based on the performance value. An evaluation step of evaluating and outputting an optical signal including a command command for changing the intensity of the optical signal from the home-side communication device to the home-side communication device according to the evaluation result; and the home-side communication device Includes an output changing step of changing the intensity of the optical signal output from the own apparatus in accordance with a command command included in the optical signal from the station side communication apparatus.

本発明によれば、局側通信装置に性能値測定手段と評価手段とを設けることにより、宅側通信装置内で信号品質を評価する手段を不要化できるので、従来の構成に比べて、宅側通信装置の小型化、省電力化および低価格化を実現することができる。本発明では、複数の宅側通信装置からの受信信号の評価を局側通信装置の性能値測定手段と評価手段とで宅側通信装置毎に行うことができ、信号を評価するためのデバイスの増加を抑えることができる。   According to the present invention, since the performance value measuring means and the evaluation means are provided in the station side communication device, the means for evaluating the signal quality in the home side communication device can be made unnecessary. The side communication device can be reduced in size, saved in power, and reduced in price. In the present invention, evaluation of received signals from a plurality of home-side communication devices can be performed for each home-side communication device by the performance value measuring means and the evaluation means of the station-side communication device, and a device for evaluating signals The increase can be suppressed.

また、本発明では、ビットエラーレート、誤りを訂正した訂正ビットの数、誤りが訂正できなかった訂正不可コードワードの数、エラービット数、コードワードエラーレート、エラーフレーム数、フレームエラーレートのうち少なくとも1つを性能値として測定することにより、宅側通信装置からの信号の強度が大きい場合でも、性能値から評価される信号の品質が悪い場合には宅側通信装置からの光信号の強度を上げることで、信号品質を向上させることができる。また、宅側通信装置からの信号の強度が小さい場合でも、性能値から評価される信号の品質が良い場合には宅側通信装置からの光信号の強度を下げることができ、効率よく省電力化を実現することができる。   Also, in the present invention, the bit error rate, the number of correction bits that have corrected the error, the number of uncorrectable code words that could not be corrected, the number of error bits, the code word error rate, the number of error frames, and the frame error rate Even if the strength of the signal from the home-side communication device is high by measuring at least one as the performance value, the strength of the optical signal from the home-side communication device when the quality of the signal evaluated from the performance value is poor By raising the signal quality, the signal quality can be improved. In addition, even when the signal strength from the home side communication device is small, if the quality of the signal evaluated from the performance value is good, the strength of the optical signal from the home side communication device can be lowered, and power can be efficiently saved. Can be realized.

また、本発明では、誤り訂正復号化手段が測定した性能値と、ラウンドトリップタイム測定手段が測定したラウンドトリップタイムと、信号強度測定手段が測定した信号強度のうち2つ以上を用いて、宅側通信装置からの光信号の品質を評価することにより、2つ以上の判定で宅側通信装置の光出力を上げるべきという判定結果が出た場合に光出力を上げることで、1つの性能値のみを用いる場合よりも、より正確に信号品質を評価することができる。また、2つ以上の判定で宅側通信装置の光出力を下げるべきという判定結果が出た場合に光出力を下げることで、1つの性能値のみを用いる場合よりも、光出力を下げ過ぎてデータのロスが生じることを避けることができる。また、1つの判定で宅側通信装置の光出力を上げるべきという判定結果が出た場合に光出力を上げ、2つ以上の判定で宅側通信装置の光出力を下げるべきという判定結果が出た場合に光出力を下げることで、宅側通信装置からの光信号が劣化したときに光出力をすぐに上げて、データのロスが生じることを避けることができ、光出力を下げる場合については光出力を上げる場合よりも判定を厳しくすることにより、光出力を下げ過ぎてデータのロスが生じることを避けることができる。また、2つ以上の判定で宅側通信装置の光出力を上げるべきという判定結果が出た場合に光出力を上げ、3つ以上の判定で宅側通信装置の光出力を下げるべきという判定結果が出た場合に光出力を下げることで、1つの性能値のみを用いる場合よりも、より正確に信号品質を評価することができ、光出力を下げる場合については光出力を上げる場合よりも判定を厳しくすることにより、光出力を下げ過ぎてデータのロスが生じることを避けることができる。   In the present invention, two or more of the performance value measured by the error correction decoding means, the round trip time measured by the round trip time measuring means, and the signal strength measured by the signal strength measuring means are used to By evaluating the quality of the optical signal from the communication device on the side, if the determination result that the optical output of the home communication device should be increased by two or more determinations, the optical output is increased to achieve one performance value The signal quality can be evaluated more accurately than the case where only the signal is used. In addition, when the determination result that the optical output of the home-side communication device should be reduced is obtained by two or more determinations, the optical output is decreased too much than when only one performance value is used. Data loss can be avoided. In addition, when the determination result that the optical output of the home side communication device should be increased by one determination, the optical output is increased when the determination result that the optical output of the home side communication device should be decreased by two or more determinations. If the optical output from the home side communication device deteriorates, the optical output can be immediately increased to avoid data loss. By making the judgment more strict than when the optical output is increased, it is possible to avoid the occurrence of data loss due to the excessive decrease of the optical output. In addition, when the determination result that the optical output of the home side communication device should be increased by two or more determinations, the optical output is increased when the determination result that the optical output of the home side communication device should be increased is determined by three or more determinations. By lowering the light output when light is emitted, the signal quality can be evaluated more accurately than when only one performance value is used. Therefore, it is possible to avoid a loss of data due to excessively low optical output.

また、本発明では、宅側通信装置と局側通信装置とのリンクを確立する際に、宅側通信装置が、局側通信装置から登録許可信号を受信するまで、リンク確立のための登録要請信号の強度を漸次増大させつつ、宅側通信装置の第1の光出力手段から局側通信装置へ登録要請信号を繰り返し出力させ、局側通信装置の評価手段が、宅側通信装置からの光信号の品質が良いと判定した場合に、局側通信装置の第2の光出力手段から宅側通信装置へ登録許可信号を出力させることにより、宅側通信装置と局側通信装置とのリンクを確立することができる。   Further, in the present invention, when establishing a link between the home side communication device and the station side communication device, the registration request for link establishment is received until the home side communication device receives a registration permission signal from the station side communication device. While gradually increasing the intensity of the signal, the registration request signal is repeatedly output from the first optical output unit of the home side communication device to the station side communication device, and the evaluation unit of the station side communication device receives the light from the home side communication device. When it is determined that the signal quality is good, the registration permission signal is output from the second optical output unit of the station side communication device to the home side communication device, thereby establishing a link between the home side communication device and the station side communication device. Can be established.

本発明の第1の実施の形態に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光通信システムの具体例を示すブロック図である。It is a block diagram which shows the specific example of the optical communication system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光通信システムの動作を説明するシークエンス図である。It is a sequence diagram explaining operation | movement of the optical communication system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態において送信側光通信装置が受信側光通信装置とリンクを確立する際の光通信システムの動作を説明するシークエンス図である。It is a sequence diagram explaining operation | movement of the optical communication system when the transmission side optical communication apparatus establishes a link with the reception side optical communication apparatus in the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態における局側通信装置の送信出力制御の1例を示す図である。It is a figure which shows one example of the transmission output control of the station side communication apparatus in the 4th Embodiment of this invention. 本発明の第4の実施の形態において局側通信装置が宅側通信装置とリンクを確立する際の光通信システムの動作を説明するシークエンス図である。It is a sequence diagram explaining operation | movement of the optical communication system when a station side communication apparatus establishes a link with a home side communication apparatus in the 4th Embodiment of this invention. 本発明の第4の実施の形態において局側通信装置が宅側通信装置とリンクを確立する際の光通信システムの別の動作を説明するシークエンス図である。It is a sequence diagram explaining another operation | movement of the optical communication system when a station side communication apparatus establishes a link with a home side communication apparatus in the 4th Embodiment of this invention. 光通信システムの一例である10G−EPONシステムの構成を示すブロック図である。It is a block diagram which shows the structure of 10G-EPON system which is an example of an optical communication system. 光送信装置の出力レベルを制御する従来の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional optical communication system which controls the output level of an optical transmitter.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1は本発明の第1の実施の形態に係る光通信システムの構成を示すブロック図である。本実施の形態の光通信システムは、送信側光通信装置1と、受信側光通信装置2と、送信側光通信装置1と受信側光通信装置2とを接続する光ファイバ等の伝送路3とから構成される。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of an optical communication system according to the first embodiment of the present invention. The optical communication system according to the present embodiment includes a transmission-side optical communication device 1, a reception-side optical communication device 2, and a transmission path 3 such as an optical fiber that connects the transmission-side optical communication device 1 and the reception-side optical communication device 2. It consists of.

送信側光通信装置1は、受信側光通信装置2への送信信号を光信号に変換して出力する電気−光変換部10(第1の光出力手段)と、受信側光通信装置2からの光信号を入力して電気信号に変換する光−電気変換部11(第1の光入力手段)と、受信側光通信装置2からの光信号に含まれる指令命令に従って、電気−光変換部10から出力する光信号の強度を変更する出力変更部12とを備える。   The transmission-side optical communication device 1 includes an electro-optical conversion unit 10 (first optical output means) that converts a transmission signal to the reception-side optical communication device 2 into an optical signal and outputs the optical signal, and the reception-side optical communication device 2 The optical-electrical conversion unit 11 (first optical input means) that inputs the optical signal of the optical signal and converts it into an electrical signal, and the electrical-optical conversion unit according to a command command included in the optical signal from the reception-side optical communication device 2 And an output changing unit 12 that changes the intensity of the optical signal output from the unit 10.

受信側光通信装置2は、送信側光通信装置1から出力される光信号を入力して電気信号に変換する光−電気変換部20(第2の光入力手段)と、送信側光通信装置1からの光信号の品質を評価するための性能値を測定する性能値測定部21と、性能値に基づいて送信側光通信装置1からの光信号の品質を評価し、この評価結果に応じて送信側光通信装置1からの光信号の強度を変更するための指令命令を含む光信号を送信側光通信装置1へ出力させる受信側評価部22(評価手段)と、送信側光通信装置1への送信信号を光信号に変換して出力する電気−光変換部23(第2の光出力手段)とを備える。   The reception-side optical communication device 2 includes an optical-electric conversion unit 20 (second optical input means) that inputs an optical signal output from the transmission-side optical communication device 1 and converts the optical signal into an electrical signal, and a transmission-side optical communication device. The performance value measuring unit 21 that measures the performance value for evaluating the quality of the optical signal from 1 and the quality of the optical signal from the transmission side optical communication device 1 are evaluated based on the performance value, and according to the evaluation result A receiving side evaluation unit 22 (evaluating means) for outputting an optical signal including a command command for changing the intensity of the optical signal from the transmitting side optical communication device 1 to the transmitting side optical communication device 1, and a transmitting side optical communication device And an electro-optical converter 23 (second optical output means) for converting the transmission signal to 1 into an optical signal and outputting the optical signal.

一般に、光通信システムでは、送信側光通信装置1と受信側光通信装置2間の伝送路3で生じるエラーを訂正するため、誤り訂正符号化機能および誤り訂正復号化機能を搭載している。例えば、光通信システムの一例である10G−EPONシステムでは、誤り訂正符号としてReed Solomon(RS(255,223))符号を採用している。誤り訂正符号化機能および誤り訂正復号化機能を搭載する場合の光通信システムの具体的な構成を図2に示す。   In general, an optical communication system is equipped with an error correction encoding function and an error correction decoding function in order to correct an error occurring in the transmission path 3 between the transmission side optical communication apparatus 1 and the reception side optical communication apparatus 2. For example, a 10G-EPON system, which is an example of an optical communication system, employs a Reed Solomon (RS (255, 223)) code as an error correction code. FIG. 2 shows a specific configuration of an optical communication system in which an error correction coding function and an error correction decoding function are installed.

送信側光通信装置1は、図1に示した構成に加えて、受信側光通信装置2へ送る信号の誤り訂正符号化を行う誤り訂正符号化部13を備える。電気−光変換部10は、誤り訂正符号化部13によって誤り訂正符号化された信号を光信号に変換して出力する。
受信側光通信装置2は、性能値測定部21として、入力した信号の誤りを訂正する誤り訂正復号化部21Aを備える。
In addition to the configuration shown in FIG. 1, the transmission side optical communication device 1 includes an error correction encoding unit 13 that performs error correction encoding of a signal to be sent to the reception side optical communication device 2. The electro-optical converter 10 converts the signal error-encoded by the error correction encoder 13 into an optical signal and outputs the optical signal.
The receiving-side optical communication device 2 includes an error correction decoding unit 21A that corrects an error in the input signal as the performance value measurement unit 21.

図3は、本実施の形態の光通信システムの動作を説明するシークエンス図である。ここでは、送信側光通信装置1をONUとし、受信側光通信装置2をOLTとする。
送信側光通信装置1の電気−光変換部10は、光信号(ユーザデータ)を伝送路3を介して受信側光通信装置2に送る(図3ステップS10)。
FIG. 3 is a sequence diagram for explaining the operation of the optical communication system according to the present embodiment. Here, the transmission side optical communication device 1 is an ONU, and the reception side optical communication device 2 is an OLT.
The electro-optical converter 10 of the transmission side optical communication apparatus 1 sends an optical signal (user data) to the reception side optical communication apparatus 2 via the transmission path 3 (step S10 in FIG. 3).

受信側光通信装置2の光−電気変換部20は、送信側光通信装置1からの光信号を受信し、電気信号に変換して誤り訂正復号化部21Aに出力する。誤り訂正復号化部21Aは、光−電気変換部20から入力された信号の誤りを訂正し、この信号の入力ビット数と、誤りを訂正した訂正ビットの数と、誤り訂正処理を行う単位となるコードワード(RS(255,223)符号の場合255byte)のうち誤りが訂正出来なかった訂正不可コードワードの数とをカウントする(図3ステップS11)。   The optical-electric conversion unit 20 of the reception-side optical communication device 2 receives the optical signal from the transmission-side optical communication device 1, converts it to an electrical signal, and outputs it to the error correction decoding unit 21A. The error correction decoding unit 21A corrects an error in the signal input from the photoelectric conversion unit 20, and the number of input bits of the signal, the number of correction bits for correcting the error, and a unit for performing the error correction processing The number of uncorrectable codewords in which the error could not be corrected is counted (step S11 in FIG. 3) among the following codewords (255 bytes in the case of RS (255, 223) code).

受信側光通信装置2の受信側評価部22は、誤り訂正復号化部21Aがカウントした結果を用いて、送信側光通信装置1から入力された光信号の品質を評価する。具体的には、受信側評価部22は、訂正不可コードワード数に、訂正不可コードワードに含まれ得る既知の最小の誤りビット数(前記RS(255,223)符号の場合17bit)を乗じた値に、訂正ビット数を加えることでエラービット数を求め、このエラービット数を入力ビット数で割ることでエラーレート(BER)を算出する(図3ステップS12)。本実施の形態の手法は、1つの訂正不可コードワードに含まれ得る最小の誤りビット数をコードワード内の全ビット数で割った値より、BERが十分低い場合に誤差が少なく適用できる。   The reception side evaluation unit 22 of the reception side optical communication device 2 evaluates the quality of the optical signal input from the transmission side optical communication device 1 using the result counted by the error correction decoding unit 21A. Specifically, the receiving side evaluation unit 22 multiplies the number of uncorrectable code words by the known minimum number of error bits that can be included in the uncorrectable code word (17 bits in the case of the RS (255, 223) code). The number of error bits is obtained by adding the number of correction bits to the value, and the error rate (BER) is calculated by dividing the number of error bits by the number of input bits (step S12 in FIG. 3). The technique of this embodiment can be applied with less error when the BER is sufficiently lower than the value obtained by dividing the minimum number of error bits that can be included in one uncorrectable codeword by the total number of bits in the codeword.

そして、受信側評価部22は、算出したBERを信号品質の評価対象である性能値として、このBERをあらかじめ設定された閾値と比較し、BERが閾値以下であれば信号品質が良いと判定して、送信側光通信装置1の光出力を小さくすることを指令する指令命令(評価結果)を拡張MPCPフレームあるいは拡張OAMフレーム等の制御信号に格納する。また、受信側評価部22は、BERが閾値より大であれば信号品質が悪いと判定して、送信側光通信装置1の光出力を大きくすることを指令する指令命令(評価結果)を拡張MPCPフレームあるいは拡張OAMフレーム等の制御信号に格納する(図3ステップS13)。   Then, the receiving side evaluation unit 22 uses the calculated BER as a performance value to be evaluated for signal quality, compares this BER with a preset threshold value, and determines that the signal quality is good if the BER is equal to or less than the threshold value. Thus, a command command (evaluation result) for instructing to reduce the optical output of the transmission side optical communication apparatus 1 is stored in a control signal such as an extended MPCP frame or an extended OAM frame. Further, the receiving side evaluation unit 22 determines that the signal quality is poor if the BER is larger than the threshold value, and extends a command command (evaluation result) for instructing to increase the optical output of the transmitting side optical communication device 1. It is stored in a control signal such as an MPCP frame or an extended OAM frame (step S13 in FIG. 3).

受信側光通信装置2の電気−光変換部23は、受信側評価部22から入力された制御信号を光信号に変換して送信側光通信装置1に送る(図3ステップS14)。   The electro-optical conversion unit 23 of the reception-side optical communication device 2 converts the control signal input from the reception-side evaluation unit 22 into an optical signal and sends the optical signal to the transmission-side optical communication device 1 (step S14 in FIG. 3).

なお、BERの算出は、誤り訂正復号化部21Aがカウントする入力ビット数が、算出したいBERの逆数の定数倍(例えばBERが10-3の場合、10倍の104ビットなど)に達する毎に行っても良いし、あらかじめ設定した単位時間毎に行っても良い。十分な数の入力ビット数を確保するために、1つ前の算出で用いた入力ビット数の一部(例えば、最後の100bit、あるいは100nsec分など)を用いても良い。 The calculation of the BER is performed every time the number of input bits counted by the error correction decoding unit 21A reaches a constant multiple of the inverse of the BER to be calculated (for example, 10 times 10 4 bits when the BER is 10 −3 ). Or may be performed every preset unit time. In order to ensure a sufficient number of input bits, a part of the number of input bits used in the previous calculation (for example, the last 100 bits or 100 nsec) may be used.

また、受信側評価部22にあらかじめ設定する閾値としては、標準で規定されているBERの上限値(例えば10-3)に対して、伝送路3の熱雑音(ホワイトノイズ)を考慮して1/10マージンをとった値(例えば10-4)を用いても良い。一般に熱雑音によるエラーでは、エラーが局所的に集中した場合でも、BERが平均より10倍以上大きくなる可能性は低く、例えば10-4を閾値としておけば、BERが10-4の10倍の値である10-3を超える可能性は低い。 The threshold value set in advance in the receiving side evaluation unit 22 is 1 considering the thermal noise (white noise) of the transmission line 3 with respect to the upper limit value (for example, 10 −3 ) of the BER specified in the standard. A value obtained by taking a / 10 margin (for example, 10 −4 ) may be used. In general, in the case of errors due to thermal noise, even when errors are concentrated locally, it is unlikely that the BER will be more than 10 times larger than the average. For example, if 10 −4 is set as a threshold, the BER is 10 times 10 −4 . The possibility of exceeding the value of 10 −3 is low.

同様に、デバイス由来のバーストノイズを考慮して1/100マージンをとった10-5を閾値としても良い。送信側光通信装置1あるいは受信側光通信装置2を設置する際に、エラーの分布を調べ、このエラーの分布に応じて(エラーが熱雑音によるものかバーストノイズによるものかを判定する等して)、閾値を設定しても良い。 Similarly, 10 −5 taking a 1/100 margin in consideration of device-derived burst noise may be used as the threshold value. When installing the transmission side optical communication device 1 or the reception side optical communication device 2, the error distribution is examined, and according to this error distribution (whether the error is caused by thermal noise or burst noise, etc. is determined). And a threshold value may be set.

送信側光通信装置1の光−電気変換部11は、受信側光通信装置2からの光信号を受信し、電気信号に変換して出力変更部12に出力する。
出力変更部12は、光−電気変換部11から入力された信号が制御信号で、この制御信号に上記の指令命令が含まれている場合、この指令命令に応じて電気−光変換部10の光出力を変更する。具体的には、出力変更部12は、光出力を小さくする指令命令を受けた場合、データを出力しない期間(例えばDiscovery Window等の期間)において、あらかじめ設定された値(例えば1dB等)だけ光出力を下げる変更を行い、光出力を大きくする指令命令を受けた場合、データを出力しない期間において、あらかじめ設定された値だけ光出力を上げる変更を行う(図3ステップS15)。
The optical-electrical conversion unit 11 of the transmission-side optical communication device 1 receives the optical signal from the reception-side optical communication device 2, converts it into an electrical signal, and outputs it to the output changing unit 12.
When the signal input from the photoelectric conversion unit 11 is a control signal and the command signal is included in the control signal, the output changing unit 12 receives the command of the electrical / optical conversion unit 10 according to the command command. Change the light output. Specifically, when receiving a command command to reduce the light output, the output changing unit 12 emits light for a preset value (for example, 1 dB) during a period in which data is not output (for example, a Discovery Window period, etc.). When a command to increase the light output is received by changing the output, a change is made to increase the light output by a preset value during a period in which no data is output (step S15 in FIG. 3).

従来技術と異なり、本実施の形態では、ONU(送信側光通信装置1)に評価部(図11の信号処理部211C)を持たないことで、個数の多いONUの小型化、省電力化および低価格化を実現することができる。OLT(受信側光通信装置2)は複数のONUに接続されている。本実施の形態では、複数のONUからの受信信号の評価をOLTの性能値測定部21と受信側評価部22とでONU毎に行うことができる。複数のONUからの信号に対し性能値測定部21と受信側評価部22を共有することができ、信号を評価するためのデバイスの増加を抑えることができる。   Unlike the prior art, in this embodiment, the ONU (transmission-side optical communication device 1) does not have an evaluation unit (the signal processing unit 211C in FIG. 11), thereby reducing the number of ONUs, reducing power consumption, and Low price can be realized. The OLT (receiving optical communication device 2) is connected to a plurality of ONUs. In the present embodiment, the evaluation of received signals from a plurality of ONUs can be performed for each ONU by the OLT performance value measurement unit 21 and the reception side evaluation unit 22. The performance value measurement unit 21 and the reception side evaluation unit 22 can be shared for signals from a plurality of ONUs, and an increase in devices for evaluating signals can be suppressed.

なお、Discovery Windowとは、リンクを確立していないONUがOLTに対してリンク確立を要請する登録要請信号(Register Req.)を送信するための期間であり、リンク確立済みのONUがデータ出力を行わない期間である。送信側光通信装置1の光出力変更を行う期間は、Discovery Windowの期間に限らず、スリープ期間や10G−EPONシステムにおけるDBAサイクルにおいて他のONUの出力期間等、送信側光通信装置1自らがデータを出力しない期間ならいつでも良い。   The Discovery Window is a period in which an ONU that has not established a link transmits a registration request signal (Register Req.) For requesting link establishment to the OLT. It is a period not to be performed. The period for changing the optical output of the transmission side optical communication apparatus 1 is not limited to the Discovery Window period, but the transmission side optical communication apparatus 1 itself, such as a sleep period or an output period of other ONUs in a DBA cycle in the 10G-EPON system, Any period that does not output data is acceptable.

本実施の形態では、閾値と比較する性能値としてBERを用いているが、これに限るものではなく、スリープ期間やDBAサイクル等の任意の期間における訂正不可コードワード数を性能値としても良いし、任意の期間における訂正ビット数を性能値としても良いし、任意の期間における上記エラービット数を性能値としても良いし、任意の期間における訂正不可コードワード数(または訂正不可コードワード数と訂正ビットを含むコードワード数の和)を当該任意の期間における全受信コードワード数で割ることで算出されるコードワードエラーレートを性能値としても良い。   In this embodiment, BER is used as a performance value to be compared with a threshold value, but the performance value is not limited to this, and the number of uncorrectable code words in an arbitrary period such as a sleep period or a DBA cycle may be used as the performance value. The number of correction bits in an arbitrary period may be used as a performance value, the number of error bits in an arbitrary period may be used as a performance value, or the number of uncorrectable code words (or the number of uncorrectable code words and corrections in an arbitrary period). The codeword error rate calculated by dividing the sum of the number of codewords including bits) by the total number of received codewords in the arbitrary period may be used as the performance value.

また、FCS(Frame Check Sequence)機能で実現されるエラーフレーム数を性能値としても良いし、エラーフレーム数を全受信フレーム数で割ることで算出されるフレームエラーレートを性能値としても良い。   Further, the number of error frames realized by an FCS (Frame Check Sequence) function may be used as a performance value, or a frame error rate calculated by dividing the number of error frames by the number of all received frames may be used as a performance value.

送信側光通信装置1の光出力変更の仕方としては、例えば、周囲温度と光出力強度とに対応するレーザーのバイアス電流と変調電流とを記録したテーブルをあらかじめ作成しておけば良い。出力変更部12は、電気−光変換部10の光出力を変更する際は、送信側光通信装置1の周囲温度を計測する図示しない温度計測手段から周囲温度の値を取得し、この周囲温度と変更後の光出力強度とに対応するバイアス電流および変調電流の値をテーブルから取得して、電気−光変換部10のレーザーのバイアス電流と変調電流とを取得した値に設定すれば良い。   As a method of changing the optical output of the transmission side optical communication apparatus 1, for example, a table in which the laser bias current and the modulation current corresponding to the ambient temperature and the optical output intensity are recorded in advance may be prepared. When changing the light output of the electro-optical converter 10, the output changing unit 12 acquires the value of the ambient temperature from a temperature measuring unit (not shown) that measures the ambient temperature of the transmission side optical communication device 1, and this ambient temperature. The values of the bias current and the modulation current corresponding to the light output intensity after the change and the modulation current may be obtained from the table, and the laser bias current and the modulation current of the electro-optical converter 10 may be set to the obtained values.

図4は、送信側光通信装置1(ONU)が受信側光通信装置2(OLT)とリンクを確立する際の光通信システムの動作を説明するシークエンス図である。
リンク確立の際は、受信側光通信装置2の電気−光変換部23からリンク未確立の送信側光通信装置1に対し、登録要請(Register Req.)信号を送信する期間(Discovery Windows)を指示するDiscovery Gate信号を送信する(図4ステップS20)。
FIG. 4 is a sequence diagram for explaining the operation of the optical communication system when the transmission side optical communication device 1 (ONU) establishes a link with the reception side optical communication device 2 (OLT).
At the time of link establishment, a period (Discovery Windows) for transmitting a registration request (Register Req.) Signal from the electro-optical conversion unit 23 of the reception side optical communication apparatus 2 to the transmission side optical communication apparatus 1 with no link established. The Discovery Gate signal to be instructed is transmitted (step S20 in FIG. 4).

リンク未確立の送信側光通信装置1の電気−光変換部10は、受信側光通信装置2から指示された期間(Discovery Windows)において、登録要請信号を受信側光通信装置2に送信する(図4ステップS21)。   The electro-optical conversion unit 10 of the transmission side optical communication apparatus 1 that has not established a link transmits a registration request signal to the reception side optical communication apparatus 2 during a period (Discovery Windows) instructed by the reception side optical communication apparatus 2 ( FIG. 4 step S21).

受信側光通信装置2の受信側評価部22は、送信側光通信装置1から受信した信号の品質評価を上記の手法で行う。このリンク確立時においては、受信側評価部22は、信号品質が悪いと判定した場合、直前の送信処理(ステップS20)と同様に、受信側光通信装置2の電気−光変換部23からDiscovery Gate信号を送信させる(図4ステップS22)。   The reception side evaluation unit 22 of the reception side optical communication device 2 performs the quality evaluation of the signal received from the transmission side optical communication device 1 by the above method. At the time of this link establishment, when it is determined that the signal quality is poor, the reception side evaluation unit 22 performs the discovery from the electro-optical conversion unit 23 of the reception side optical communication device 2 similarly to the previous transmission process (step S20). A Gate signal is transmitted (step S22 in FIG. 4).

送信側光通信装置1の出力変更部12は、受信側光通信装置2からRegister信号を受ける前に、再度Discovery Gate信号を受信した場合、直前の登録要請(Register Req.)信号の光強度P1よりも出力を上げる変更を行い、変更後の光強度P2で電気−光変換部10から登録要請(Register Req.)信号を再度送信させる(図4ステップS23)。こうして、受信側光通信装置2からRegister信号を受信するまで、送信側光通信装置1の光出力を徐々に増大させる処理を、あらかじめ設定された最大回数まで繰り返す。   If the output changing unit 12 of the transmission side optical communication apparatus 1 receives the Discovery Gate signal again before receiving the Register signal from the reception side optical communication apparatus 2, the light intensity P1 of the immediately preceding registration request (Register Req.) Signal is received. The output is changed more so that the registration request (Register Req.) Signal is transmitted again from the electro-optic conversion unit 10 with the changed light intensity P2 (step S23 in FIG. 4). Thus, the process of gradually increasing the optical output of the transmission side optical communication device 1 is repeated up to a preset maximum number of times until a Register signal is received from the reception side optical communication device 2.

受信側光通信装置2の受信側評価部22は、信号品質が良いと判定した場合、電気−光変換部23から送信側光通信装置1へ登録許可(Register)信号を送信させる(図4ステップS24)。   When it is determined that the signal quality is good, the reception side evaluation unit 22 of the reception side optical communication device 2 causes the electro-optical conversion unit 23 to transmit a registration permission (Register) signal to the transmission side optical communication device 1 (step in FIG. 4). S24).

送信側光通信装置1の出力変更部12は、受信側光通信装置2からRegister信号を受信した場合、直前の登録要請(Register Req.)信号と同じ光強度で電気−光変換部10から受信側光通信装置2へ受信確認(Register ACK)信号を送信させる(図4ステップS25)。こうして、送信側光通信装置1と受信側光通信装置2との間のリンクが確立する。   When the output change unit 12 of the transmission side optical communication device 1 receives the Register signal from the reception side optical communication device 2, the output change unit 12 receives from the electro-optical conversion unit 10 with the same light intensity as that of the immediately preceding registration request (Register Req.) Signal. A reception confirmation (Register ACK) signal is transmitted to the side optical communication device 2 (step S25 in FIG. 4). In this way, a link between the transmission side optical communication device 1 and the reception side optical communication device 2 is established.

図4で説明したリンク確立時は出力の切り替えを粗いnレベルで行うことで短時間でリンクが確立できるようにし、図3で説明したリンク確立後の動作では出力の切り替えを細かいm(m>n)レベルで行なうこととする。これにより、リンク確立に要する時間増大への影響を小さくすることができ、かつリンク確立後は細かい出力制御を行うことで、最適な省電力化を行うことが可能である。   When the link described in FIG. 4 is established, the output is switched at a rough n level so that the link can be established in a short time. In the operation after the link establishment described in FIG. n) Perform at level. As a result, it is possible to reduce the influence on the increase in time required for link establishment, and to perform optimum power saving by performing fine output control after link establishment.

ビットレベルの高い精度の評価を行うためには、送信側光通信装置1からテスト信号を受信側光通信装置2に送信し、受信側光通信装置2の受信側評価部22があらかじめ格納されたエラーフリーのテスト信号パターンと受信したテスト信号とを比較して、信号品質を評価しても良い。この場合、テストフレームを必要とするが、誤り訂正の性能を超えたエラーが伝送路3で生じても正確に品質が評価できるというメリットがある。   In order to evaluate the bit level with high accuracy, a test signal is transmitted from the transmission side optical communication apparatus 1 to the reception side optical communication apparatus 2, and the reception side evaluation unit 22 of the reception side optical communication apparatus 2 is stored in advance. The signal quality may be evaluated by comparing the error-free test signal pattern with the received test signal. In this case, although a test frame is required, there is an advantage that the quality can be accurately evaluated even if an error exceeding the error correction performance occurs in the transmission line 3.

これに対し、フレーム単位の評価しか出来ないが、追加のフレームや、既存の装置への変更を必要としない評価手法として、拡張フレーム(拡張OAMフレーム)を用いる手法がある。本手法では、送信側光通信装置1から受信側光通信装置2に拡張フレーム(拡張OAMフレーム)が送信されたときに、拡張OAMフレームを誤り訂正のみでエラー無しで受信できた場合のみ、受信したことを示す受信確認信号が受信側光通信装置2から送信側光通信装置1に送られることを利用し、その受信確認信号の有無によって品質を評価する。   On the other hand, there is a method using an extended frame (extended OAM frame) as an evaluation method that can only be evaluated in units of frames but does not require an additional frame or a change to an existing device. In this method, when an extended frame (extended OAM frame) is transmitted from the transmission side optical communication apparatus 1 to the reception side optical communication apparatus 2, the reception is performed only when the extended OAM frame can be received without error by only error correction. Using the fact that the reception confirmation signal indicating that the reception has been performed is sent from the reception-side optical communication apparatus 2 to the transmission-side optical communication apparatus 1, the quality is evaluated based on the presence or absence of the reception confirmation signal.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。第1の実施の形態では、1つの性能値を閾値と比較して信号品質を評価しているが、複数の性能値をそれぞれ対応する閾値と比較するようにしても良い。例えば、上記の誤り訂正におけるカウント結果あるいはエラーレートと、受信した信号の強度と、送信側光通信装置1と受信側光通信装置2間の通信に要する時間であるRound Trip Time(RTT)のうち2つ以上を用いて信号品質を評価しても良い。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the first embodiment, signal quality is evaluated by comparing one performance value with a threshold value. However, a plurality of performance values may be compared with corresponding threshold values. For example, the count result or error rate in the above error correction, the strength of the received signal, and the round trip time (RTT) that is the time required for communication between the transmission side optical communication device 1 and the reception side optical communication device 2 Signal quality may be evaluated using two or more.

図5は本発明の第2の実施の形態に係る光通信システムの構成を示すブロック図であり、図1、図2と同様の構成には同一の符号を付してある。
本実施の形態の例では、受信側光通信装置2の性能値測定部21aとして、誤り訂正復号化部21Aと、信号強度測定部21Bと、RTT測定部21Cとを備えている。
FIG. 5 is a block diagram showing a configuration of an optical communication system according to the second embodiment of the present invention. The same reference numerals are given to the same configurations as those in FIGS.
In the example of the present embodiment, an error correction decoding unit 21A, a signal strength measurement unit 21B, and an RTT measurement unit 21C are provided as the performance value measurement unit 21a of the reception-side optical communication device 2.

誤り訂正復号化部21Aの動作は、第1の実施の形態で説明したとおりである。信号強度測定部21Bは、光−電気変換部20から入力された受信信号の強度を測定する。RTT測定部21Cは、例えば測定用の信号を用いてRTTを測定する。なお、RTTの測定手法は周知の技術であるので、詳細な説明は省略する。   The operation of the error correction decoding unit 21A is as described in the first embodiment. The signal strength measuring unit 21 </ b> B measures the strength of the received signal input from the photoelectric conversion unit 20. The RTT measurement unit 21C measures RTT using a measurement signal, for example. Since the RTT measurement technique is a well-known technique, detailed description thereof is omitted.

受信側光通信装置2の受信側評価部22aは、誤り訂正復号化部21Aが求めた性能値(BER、訂正不可コードワード数、訂正ビット数、エラービット数、コードワードエラーレート、エラーフレーム数、フレームエラーレートのいずれか)をあらかじめ設定された対応する閾値と比較すると共に、信号強度測定部21Bが測定した受信信号の強度をあらかじめ設定された対応する閾値と比較し、さらにRTT測定部21Cが測定したRTTをあらかじめ設定された対応する閾値と比較する。   The receiving side evaluation unit 22a of the receiving side optical communication apparatus 2 determines the performance values (BER, number of uncorrectable codewords, number of correction bits, number of error bits, codeword error rate, number of error frames) obtained by the error correction decoding unit 21A. , Any one of the frame error rates) is compared with a corresponding threshold value set in advance, the intensity of the received signal measured by the signal strength measurement unit 21B is compared with a corresponding threshold value set in advance, and the RTT measurement unit 21C Compare the measured RTT with a corresponding preset threshold.

受信側評価部22aは、誤り訂正復号化部21Aが求めた性能値と受信信号強度とRTTのうち2つ以上で送信側光通信装置1の光出力を下げるべきという判定結果が出た場合、送信側光通信装置1の光出力を小さくすることを指令する指令命令(評価結果)を拡張MPCPフレームあるいは拡張OAMフレーム等の制御信号に格納する。また、受信側評価部22は、誤り訂正復号化部21Aが求めた性能値と受信信号強度とRTTのうち2つ以上で送信側光通信装置1の光出力を上げるべきという判定結果が出た場合、送信側光通信装置1の光出力を大きくすることを指令する指令命令(評価結果)を拡張MPCPフレームあるいは拡張OAMフレーム等の制御信号に格納する。   When the reception side evaluation unit 22a determines that the optical output of the transmission side optical communication device 1 should be reduced by two or more of the performance value, reception signal strength, and RTT obtained by the error correction decoding unit 21A, A command command (evaluation result) for instructing to reduce the optical output of the transmission side optical communication apparatus 1 is stored in a control signal such as an extended MPCP frame or an extended OAM frame. Further, the reception side evaluation unit 22 has determined that the optical output of the transmission side optical communication device 1 should be increased by two or more of the performance value, reception signal strength, and RTT obtained by the error correction decoding unit 21A. In this case, a command command (evaluation result) for instructing to increase the optical output of the transmission side optical communication apparatus 1 is stored in a control signal such as an extended MPCP frame or an extended OAM frame.

受信側評価部22aは、第1の実施の形態と同様に、誤り訂正復号化部21Aが求めた性能値が対応する閾値以下であれば、信号品質が良く、送信側光通信装置1の光出力を下げるべきと判定し、誤り訂正復号化部21Aが求めた性能値が対応する閾値より大であれば、信号品質が悪く、送信側光通信装置1の光出力を上げるべきと判定する。   Similarly to the first embodiment, the reception side evaluation unit 22a has good signal quality and the optical performance of the transmission side optical communication device 1 if the performance value obtained by the error correction decoding unit 21A is equal to or less than the corresponding threshold value. If it is determined that the output should be reduced and the performance value obtained by the error correction decoding unit 21A is larger than the corresponding threshold value, it is determined that the signal quality is poor and the optical output of the transmission side optical communication apparatus 1 should be increased.

また、受信側評価部22aは、受信信号強度が対応する閾値より大であれば、信号品質が良く、送信側光通信装置1の光出力を下げるべきと判定し、受信信号強度が対応する閾値未満であれば、信号品質が悪く、送信側光通信装置1の光出力を上げるべきと判定する。また、受信側評価部22aは、RTTが対応する閾値以下であれば、信号品質が良く、送信側光通信装置1の光出力を下げるべきと判定し、RTTが対応する閾値より大であれば、信号品質が悪く、送信側光通信装置1の光出力を上げるべきと判定する。   Further, if the received signal strength is greater than the corresponding threshold value, the receiving side evaluation unit 22a determines that the signal quality is good and the optical output of the transmitting side optical communication device 1 should be lowered, and the received signal strength corresponds to the threshold value. If it is less, the signal quality is poor and it is determined that the optical output of the transmission side optical communication apparatus 1 should be increased. Further, the receiving side evaluation unit 22a determines that the signal quality is good if the RTT is equal to or less than the corresponding threshold value, and that the optical output of the transmitting side optical communication device 1 should be lowered, and if the RTT is larger than the corresponding threshold value. It is determined that the signal quality is poor and the optical output of the transmission side optical communication apparatus 1 should be increased.

その他の構成の動作は第1の実施の形態で説明したとおりである。このように、性能値と受信信号強度とRTTのうち2つ以上の判定で送信側光通信装置1の光出力を上げるべきという判定結果が出た場合に光出力を上げることで、第1の実施の形態のように1つの性能値のみを用いる場合よりも、より正確に信号品質を評価することができる。また、性能値と受信信号強度とRTTのうち2つ以上の判定で送信側光通信装置1の光出力を下げるべきという判定結果が出た場合に光出力を下げることで、第1の実施の形態のように1つの性能値のみを用いる場合よりも、光出力を下げ過ぎてデータのロスが生じることを避けることができる。なお、性能値と受信信号強度とRTTのうち1つの判定で送信側光通信装置1の光出力を上げるべきという判定結果が出た場合に光出力を上げ、2つ以上の判定で送信側光通信装置1の光出力を下げるべきという判定結果が出た場合に光出力を下げるようにしてもよい。これにより、送信側光通信装置1からの光信号が劣化したときに送信側光通信装置1の光出力をすぐに上げて、データのロスが生じることを避けることができ、光出力を下げる場合については光出力を上げる場合よりも判定を厳しくすることにより、光出力を下げ過ぎてデータのロスが生じることを避けることができる。また、性能値と受信信号強度とRTTのうち2つ以上の判定で送信側光通信装置1の光出力を上げるべきという判定結果が出た場合に光出力を上げ、3つ以上の判定で送信側光通信装置1の光出力を下げるべきという判定結果が出た場合に光出力を下げるようにしてもよい。これにより、第1の実施の形態のように1つの性能値のみを用いる場合よりも、より正確に信号品質を評価することができ、光出力を下げる場合については光出力を上げる場合よりも判定を厳しくすることにより、光出力を下げ過ぎてデータのロスが生じることを避けることができる。   The operation of the other configuration is as described in the first embodiment. As described above, when the determination result that the optical output of the transmission side optical communication device 1 should be increased is obtained by two or more determinations among the performance value, the received signal strength, and the RTT, the first optical output is increased. The signal quality can be evaluated more accurately than when only one performance value is used as in the embodiment. In addition, when the determination result that the optical output of the transmission-side optical communication device 1 should be reduced is obtained by two or more determinations among the performance value, the received signal strength, and the RTT, the optical output is decreased to reduce the optical output. Rather than using only one performance value as in the embodiment, it is possible to avoid the loss of data due to too low optical output. Note that if one of the performance value, the received signal strength, and the RTT determines that the optical output of the transmission side optical communication device 1 should be increased, the optical output is increased and two or more determinations indicate the transmission side light. The light output may be lowered when a determination result indicating that the light output of the communication device 1 should be lowered is obtained. Thereby, when the optical signal from the transmission-side optical communication device 1 is deteriorated, the optical output of the transmission-side optical communication device 1 can be immediately increased to avoid data loss, and the optical output is decreased. By making the judgment more strict than when raising the light output, it is possible to avoid the loss of data due to the light output being lowered too much. In addition, when the determination result that the optical output of the transmission side optical communication apparatus 1 should be increased is obtained by two or more determinations among the performance value, the received signal strength, and the RTT, the optical output is increased and the transmission is performed by three or more determinations. The optical output may be reduced when a determination result indicating that the optical output of the side optical communication device 1 should be reduced is obtained. As a result, the signal quality can be evaluated more accurately than when only one performance value is used as in the first embodiment, and when the light output is reduced, the determination is higher than when the light output is increased. Therefore, it is possible to avoid a loss of data due to excessively low optical output.

なお、第1、第2の実施の形態において、受信側光通信装置2の処理量を少なくしたい場合には、受信側光通信装置2の受信側評価部22,22aからは、信号強度やRTTの値、誤り訂正復号化部21Aによるカウント結果のみを出力して電気−光変換部23から送信側光通信装置1に送り、送信側光通信装置1の出力変更部12で前述したエラーレートの算出や閾値処理を行うことで信号品質を評価し、送信側光通信装置1の光出力を変更してもよい。   In the first and second embodiments, when it is desired to reduce the processing amount of the reception side optical communication device 2, the signal strength and RTT are received from the reception side evaluation units 22 and 22a of the reception side optical communication device 2. Only the count result by the error correction decoding unit 21A is output from the electro-optical conversion unit 23 to the transmission side optical communication device 1, and the output change unit 12 of the transmission side optical communication device 1 sets the error rate described above. Signal quality may be evaluated by performing calculation or threshold processing, and the optical output of the transmission side optical communication apparatus 1 may be changed.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図6は本発明の第3の実施の形態に係る光通信システムの構成を示すブロック図であり、図1と同様の構成には同一の符号を付してある。本実施の形態は、性能値測定部21,21aと同内容の処理を行う性能値測定部14と、受信側評価部22,22aと同内容の処理を行う送信側評価部15とを送信側光通信装置1に設けたものである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 6 is a block diagram showing a configuration of an optical communication system according to the third embodiment of the present invention. The same reference numerals are given to the same configurations as those in FIG. In the present embodiment, a performance value measuring unit 14 that performs the same processing as the performance value measuring units 21 and 21a, and a transmitting side evaluating unit 15 that performs the same processing as the receiving side evaluation units 22 and 22a are provided on the transmitting side. The optical communication apparatus 1 is provided.

性能値測定部14は、光−電気変換部11が受信した信号を基に、評価信号(第1、第2の実施の形態で説明した誤り訂正復号化部が求める性能値、受信信号強度、RTTのうち少なくとも1つ)を作成する。   Based on the signal received by the photoelectric conversion unit 11, the performance value measurement unit 14 evaluates the evaluation signal (the performance value obtained by the error correction decoding unit described in the first and second embodiments, the received signal strength, At least one of the RTTs).

送信側評価部15は、性能値測定部14から入力された評価信号を基に、光−電気変換部11が受信した信号の品質を評価し、この評価結果を基に、電気−光変換部10の光出力を変更する指令命令を出力変更部12に対して出力する。出力変更部12は、指令命令に応じて電気−光変換部10の光出力を変更する。   The transmission side evaluation unit 15 evaluates the quality of the signal received by the opto-electric conversion unit 11 based on the evaluation signal input from the performance value measurement unit 14, and based on the evaluation result, the electro-optical conversion unit. A command command for changing the optical output of 10 is output to the output changing unit 12. The output changing unit 12 changes the light output of the electro-optical converting unit 10 in accordance with the command command.

本実施の形態は、受信側光通信装置2に性能値測定部21,21aと受信側評価部22,22aを持つ構成と合わせたもので、例えば、送信側光通信装置1への受信信号の品質が悪くなったらすぐに、受信側光通信装置2での評価を待たず送信側光通信装置1の光出力を上げることで、信号品質の悪化に素早く対応できるという利点がある。
なお、受信側光通信装置2の処理量を少なくするために、図6の受信側光通信装置2から性能値測定部21と受信側評価部22とを削除し、送信側光通信装置1側で信号品質を評価し光出力を変更するようにしてもよい。
In the present embodiment, the receiving side optical communication device 2 is combined with the configuration having the performance value measuring units 21 and 21a and the receiving side evaluation units 22 and 22a. For example, the received signal to the transmitting side optical communication device 1 is transmitted. As soon as the quality deteriorates, there is an advantage that it is possible to quickly cope with the deterioration of the signal quality by increasing the optical output of the transmission side optical communication apparatus 1 without waiting for the evaluation at the reception side optical communication apparatus 2.
In order to reduce the processing amount of the reception side optical communication device 2, the performance value measurement unit 21 and the reception side evaluation unit 22 are deleted from the reception side optical communication device 2 of FIG. The signal output may be evaluated and the light output may be changed.

[第4の実施の形態]
第1〜第3の実施の形態では、ONUの光出力を変更する例を述べたが、同様の手法でOLTを送信側光通信装置1、ONUを受信側光通信装置2として、OLTの光出力を変更しても良い。図10に示したようにOLTは複数のONUに接続されているため、OLTから各ONU宛の信号は時分割で送信される。OLTの光出力を送信先のONU毎に変える場合、近い光出力をなるべく続けて送信することで、光出力制御の回数及び一回に制御する光出力差を少なくできる。
[Fourth Embodiment]
In the first to third embodiments, an example in which the optical output of the ONU is changed has been described. With the same method, the OLT is set as the transmission-side optical communication device 1 and the ONU is set as the reception-side optical communication device 2, so that the OLT optical output is changed. The output may be changed. As shown in FIG. 10, since the OLT is connected to a plurality of ONUs, signals addressed to each ONU are transmitted from the OLT in a time division manner. When the optical output of the OLT is changed for each ONU of the transmission destination, the number of times of optical output control and the optical output difference to be controlled at a time can be reduced by transmitting near optical outputs as much as possible.

例えば、図10のONU101−1からONU101−4の4台のみがOLTに接続されており、OLTからONU101−1宛に光出力P2で信号を送信し、OLTからONU101−3宛に光出力P1(P1>P2)で信号を送信し、OLTからONU101−2と101−4宛に光出力P3(P2>P3)で信号を送信すると判定された場合、図7の順番で送るようにしても良い。   For example, only four units of ONU 101-1 to ONU 101-4 in FIG. 10 are connected to the OLT, and a signal is transmitted from the OLT to the ONU 101-1 with the optical output P2, and the optical output P1 from the OLT to the ONU 101-3. When it is determined that the signal is transmitted with (P1> P2) and the signal is transmitted with the optical output P3 (P2> P3) from the OLT to the ONUs 101-2 and 101-4, the signals may be transmitted in the order shown in FIG. good.

図8は、OLT(送信側光通信装置1)がONU(受信側光通信装置2)とリンクを確立する際の光通信システムの動作を説明するシークエンス図である。
リンク確立の際は、OLTの電気−光変換部10からリンク未確立のONUに対し、登録要請(Register Req.)信号を送信する期間(Discovery Windows)を指示するDiscovery Gate信号を光強度Paで送信する(図8ステップS30)。
FIG. 8 is a sequence diagram for explaining the operation of the optical communication system when the OLT (transmission-side optical communication device 1) establishes a link with the ONU (reception-side optical communication device 2).
At the time of link establishment, a Discovery Gate signal indicating a period (Discovery Windows) for transmitting a registration request (Register Req.) Signal from the OLT electro-optical conversion unit 10 to the ONU that has not established the link is used with the light intensity Pa. Transmit (step S30 in FIG. 8).

ONUの受信側評価部22は、OLTから受信した信号の品質評価を上記の手法で行う。このリンク確立時においては、受信側評価部22は、信号品質が悪いと判定した場合、何らの処理も実行しない。   The receiving side evaluation unit 22 of the ONU performs the quality evaluation of the signal received from the OLT by the above method. At the time of this link establishment, if the receiving side evaluation unit 22 determines that the signal quality is poor, it does not execute any processing.

OLTの出力変更部12は、Discovery Windowsの期間においてONUからの登録要請(Register Req.)信号を受信しない場合、直前のDiscovery Gate信号の光強度Paよりも出力を上げる変更を行い、変更後の光強度Pb(Pa<Pb)で電気−光変換部10からDiscovery Gate信号を再度送信させる(図8ステップS31)。こうして、ONUから登録要請(Register Req.)信号を受信するまで、OLTの光出力を徐々に上げていく処理を、あらかじめ設定された最大回数まで繰り返す。ONUから登録要請(Register Req.)信号を受信する前に、最大回数まで繰り返したら、再度OLTの光出力をPaに戻し、再びOLTの光出力を徐々に上げていく。   When the OLT output changing unit 12 does not receive a registration request (Register Req.) Signal from the ONU during the Discovery Windows period, the output changing unit 12 changes the output to be higher than the light intensity Pa of the immediately preceding Discovery Gate signal. The Discovery Gate signal is transmitted again from the electro-optic converter 10 at the light intensity Pb (Pa <Pb) (step S31 in FIG. 8). In this way, the process of gradually increasing the optical output of the OLT is repeated up to a preset maximum number of times until a registration request (Register Req.) Signal is received from the ONU. Before receiving the registration request (Register Req.) Signal from the ONU, if the maximum number of times is repeated, the optical output of the OLT is returned to Pa again, and the optical output of the OLT is gradually increased again.

ONUの受信側評価部22は、OLTからの信号の品質が良いと判定した場合、OLTから指示された期間(Discovery Windows)において、電気−光変換部23からOLTへ登録要請(Register Req.)信号を送信させる(図8ステップS32)。   When the reception side evaluation unit 22 of the ONU determines that the quality of the signal from the OLT is good, a registration request (Register Req.) From the electro-optical conversion unit 23 to the OLT during a period instructed by the OLT (Discovery Windows). A signal is transmitted (step S32 in FIG. 8).

OLTの出力変更部12は、ONUから登録要請(Register Req.)信号を受信した場合、直前のDiscovery Gate信号と同じ光強度で電気−光変換部10からONUへ登録許可(Register)信号を送信させる(図8ステップS33)。   When receiving a registration request (Register Req.) Signal from the ONU, the output changing unit 12 of the OLT transmits a registration permission (Register) signal from the electro-optical conversion unit 10 to the ONU with the same light intensity as that of the immediately preceding Discovery Gate signal. (Step S33 in FIG. 8).

ONUの電気−光変換部23は、OLTからRegister信号を受信した場合、OLTに受信確認(Register ACK)信号を送信する(図8ステップS34)。こうして、OLTとONUとの間のリンクが確立する。   When receiving the Register signal from the OLT, the electro-optical conversion unit 23 of the ONU transmits a reception confirmation (Register ACK) signal to the OLT (Step S34 in FIG. 8). Thus, a link between the OLT and the ONU is established.

なお、例えば光強度PaのDiscovery gate信号でも十分評価結果が良いのに、たまたまONUの接続後初めて受信した光強度PbのDiscovery gate信号に対し、評価が良いと判定され、ONUから登録要請(Register Req.)信号が送信される可能性もある。この場合には、OLTの十分な省電力化ができないことになる。そこで、出力切り替え数と同じ回数以上Discovery gate信号をONUで受信し、信号品質が良いと判定した受信信号の中で、受信信号強度が最小の信号をONUで再度受信した際にONUから登録要請(Register Req.)信号を送信することで、OLTの光出力を、信号品質が良い最小の光出力に設定することができる。   For example, although the evaluation result is sufficiently good even with the Discovery gate signal with the light intensity Pa, it is determined that the evaluation is good for the Discovery gate signal with the light intensity Pb received for the first time after connection of the ONU, and a registration request (Register) is received from the ONU. Req.) Signal may be transmitted. In this case, sufficient power saving of the OLT cannot be performed. Therefore, when the Discovery gate signal is received by the ONU for the same number of times as the number of output switching, and the signal with the lowest received signal strength is received again by the ONU, the registration request is received from the ONU. By transmitting the (Register Req.) Signal, the optical output of the OLT can be set to the minimum optical output with good signal quality.

また、図9に示すように、OLTの電気−光変換部10が異なる光出力の複数のDiscovery gate信号を連続で送信しても良い(図9ステップS40,41)。この場合、ONUの受信側評価部22は、受信した複数のDiscovery gate信号の中で、品質が良いと判定し、かつ最小の信号強度のDiscovery gate信号を選択する。そして、受信側評価部22は、選択したDiscovery gate信号で指示されている期間(Discovery Windows)において、電気−光変換部23からOLTへ登録要請(Register Req.)信号を送信させる(図9ステップS42)。こうして、OLTの光出力を、信号品質が良い最小の光出力に設定することができ、省電力化が実現できる。   As shown in FIG. 9, the OLT electro-optical converter 10 may continuously transmit a plurality of Discovery gate signals with different optical outputs (steps S40 and S41 in FIG. 9). In this case, the receiving side evaluation unit 22 of the ONU determines that the quality is good among the plurality of received discovery gate signals, and selects the discovery gate signal having the minimum signal strength. Then, the reception side evaluation unit 22 transmits a registration request (Register Req.) Signal from the electro-optical conversion unit 23 to the OLT during the period (Discovery Windows) indicated by the selected Discovery gate signal (step in FIG. 9). S42). In this way, the optical output of the OLT can be set to the minimum optical output with good signal quality, and power saving can be realized.

さらに、第1〜第4の実施の形態において、装置の省電力化を高めるために、上記の評価結果から、誤り訂正処理の程度を変更する、あるいは誤り訂正処理の有無を制御しても良い。例えば、評価部15,22,22aで受信信号の品質が良いと判定した場合、性能値測定部14,21,21a内の誤り訂正復号化部で行う誤り訂正処理を、無効とするか、あるいは訂正性能は低いが消費電力の低いRS(255,239)などの誤り訂正処理に変更し、評価部15,22,22aで受信信号の品質が悪いと判定した場合、性能値測定部14,21,21a内の誤り訂正復号化部で行う誤り訂正処理を、消費電力は高いが訂正性能が高いRS(255,223)などの誤り訂正処理に変更するようにしても良い。   Furthermore, in the first to fourth embodiments, the degree of error correction processing may be changed or the presence / absence of error correction processing may be controlled from the above evaluation results in order to increase the power saving of the apparatus. . For example, if the evaluation units 15, 22, and 22a determine that the quality of the received signal is good, the error correction processing performed by the error correction decoding unit in the performance value measurement units 14, 21, and 21a is invalidated, or When the correction performance is low but the power consumption is changed to an error correction process such as RS (255, 239) with low power consumption, and the evaluation units 15, 22, and 22a determine that the quality of the received signal is poor, the performance value measurement units 14, 21 , 21a may be changed to error correction processing such as RS (255, 223) with high power consumption but high correction performance.

第1〜第4の実施の形態で説明した送信側光通信装置1と受信側光通信装置2の各々の装置のうち、少なくとも送信側光通信装置1の性能値測定部14と送信側評価部15と、受信側光通信装置2の性能値測定部21,21aと受信側評価部22,22aとは、CPU(Central Processing Unit)、メモリ及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。各々の装置のCPUは、メモリに格納されたプログラムに従って第1〜第4の実施の形態で説明した処理を実行する。   Among the devices of the transmission side optical communication device 1 and the reception side optical communication device 2 described in the first to fourth embodiments, at least the performance value measurement unit 14 and the transmission side evaluation unit of the transmission side optical communication device 1 15 and the performance value measuring units 21 and 21a and the receiving side evaluation units 22 and 22a of the receiving side optical communication apparatus 2 are a computer having a CPU (Central Processing Unit), a memory and an interface, and hardware resources thereof. It can be realized by a program to be controlled. The CPU of each device executes the processing described in the first to fourth embodiments in accordance with a program stored in the memory.

本発明は、局側通信装置と宅側通信装置を備える光通信システムにおいて宅側通信装置の省電力化を実現する技術に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a technique for realizing power saving of a home side communication device in an optical communication system including a station side communication device and a home side communication device.

1…送信側光通信装置、2…受信側光通信装置、3…伝送路、10…電気−光変換部、11…光−電気変換部、12…出力変更部、13…誤り訂正符号化部、14…性能値測定部、15…送信側評価部、20…光−電気変換部、21,21a…性能値測定部、21A…誤り訂正復号化部、21B…信号強度測定部、21C…RTT測定部、22,22a…受信側評価部、23…電気−光変換部。   DESCRIPTION OF SYMBOLS 1 ... Transmission side optical communication apparatus, 2 ... Reception side optical communication apparatus, 3 ... Transmission path, 10 ... Electric-light conversion part, 11 ... Optical-electric conversion part, 12 ... Output change part, 13 ... Error correction encoding part , 14 ... performance value measurement unit, 15 ... transmission side evaluation unit, 20 ... optical-electrical conversion unit, 21 and 21a ... performance value measurement unit, 21A ... error correction decoding unit, 21B ... signal strength measurement unit, 21C ... RTT Measurement unit, 22, 22a... Reception side evaluation unit, 23... Electro-optical conversion unit.

Claims (8)

宅側通信装置と、この宅側通信装置と伝送路を介して接続された局側通信装置とから構成され、
前記宅側通信装置は、
前記局側通信装置へ光信号を出力する第1の光出力手段と、
前記局側通信装置からの光信号を入力する第1の光入力手段と、
前記局側通信装置からの光信号に含まれる指令命令に従って、前記第1の光出力手段から出力する光信号の強度を変更する出力変更手段とを備え、
前記局側通信装置は、
前記宅側通信装置へ光信号を出力する第2の光出力手段と、
前記宅側通信装置からの光信号を入力する第2の光入力手段と、
前記宅側通信装置からの光信号の品質を評価するための性能値を測定する性能値測定手段と、
前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記第2の光出力手段から前記宅側通信装置へ出力させる評価手段とを備えることを特徴とする光通信システム。
Consists of a home side communication device and a station side communication device connected to the home side communication device via a transmission line,
The home-side communication device is
First optical output means for outputting an optical signal to the station side communication device;
First optical input means for inputting an optical signal from the station side communication device;
An output changing means for changing the intensity of the optical signal output from the first optical output means in accordance with a command instruction included in the optical signal from the station side communication device;
The station side communication device is:
Second optical output means for outputting an optical signal to the home side communication device;
Second optical input means for inputting an optical signal from the home-side communication device;
Performance value measuring means for measuring a performance value for evaluating the quality of the optical signal from the home side communication device;
An optical signal including a command command for evaluating the quality of the optical signal from the home side communication device based on the performance value and changing the intensity of the optical signal from the home side communication device according to the evaluation result An optical communication system comprising: an evaluation unit that outputs the second optical output unit to the home communication device.
請求項1記載の光通信システムにおいて、
前記宅側通信装置は、さらに、前記局側通信装置へ送る信号の誤り訂正符号化を行う誤り訂正符号化手段を備え、
前記局側通信装置の性能値測定手段は、前記宅側通信装置からの信号の誤りを訂正し、ビットエラーレート、誤りを訂正した訂正ビットの数、誤りが訂正できなかった訂正不可コードワードの数、エラービット数、コードワードエラーレート、エラーフレーム数、フレームエラーレートのうち少なくとも1つを前記性能値として測定する誤り訂正復号化手段を備えることを特徴とする光通信システム。
The optical communication system according to claim 1.
The home side communication device further comprises error correction coding means for performing error correction coding of a signal to be sent to the station side communication device,
The performance value measuring means of the station side communication device corrects the error of the signal from the home side communication device, and corrects the bit error rate, the number of correction bits that have corrected the error, and the uncorrectable codeword in which the error could not be corrected. An optical communication system comprising error correction decoding means for measuring at least one of a number, an error bit number, a code word error rate, an error frame number, and a frame error rate as the performance value.
請求項2記載の光通信システムにおいて、
前記局側通信装置の性能値測定手段は、
さらに、前記局側通信装置と前記宅側通信装置との通信に要する時間であるラウンドトリップタイムを前記性能値として測定するラウンドトリップタイム測定手段と、
前記宅側通信装置からの信号の強度を前記性能値として測定する信号強度測定手段とを備え、
前記局側通信装置の評価手段は、前記誤り訂正復号化手段が測定した性能値と、前記ラウンドトリップタイム測定手段が測定したラウンドトリップタイムと、前記信号強度測定手段が測定した信号強度のうち2つ以上を用いて、前記宅側通信装置からの光信号の品質を評価することを特徴とする光通信システム。
The optical communication system according to claim 2.
The performance value measuring means of the station side communication device,
Furthermore, round trip time measuring means for measuring a round trip time which is a time required for communication between the station side communication device and the home side communication device as the performance value,
Signal strength measuring means for measuring the signal strength from the home side communication device as the performance value,
The evaluation unit of the station side communication apparatus is configured to calculate 2 out of the performance value measured by the error correction decoding unit, the round trip time measured by the round trip time measurement unit, and the signal strength measured by the signal strength measurement unit. The optical communication system characterized by evaluating the quality of the optical signal from the said home side communication apparatus using two or more.
請求項1乃至3のいずれか1項に記載の光通信システムにおいて、
前記宅側通信装置の出力変更手段は、前記局側通信装置とのリンクを確立する際に、前記局側通信装置から登録許可信号を受信するまで、リンク確立のための登録要請信号の強度を漸次増大させつつ、前記第1の光出力手段から前記局側通信装置へ前記登録要請信号を繰り返し出力させ、前記局側通信装置から登録許可信号を受信した場合に、前記第1の光出力手段から前記局側通信装置へ受信確認信号を出力させ、
前記局側通信装置の評価手段は、前記宅側通信装置からの光信号の品質が良いと判定した場合に、前記第2の光出力手段から前記宅側通信装置へ登録許可信号を出力させることを特徴とする光通信システム。
The optical communication system according to any one of claims 1 to 3,
The output changing means of the home side communication device, when establishing a link with the station side communication device, increases the strength of the registration request signal for link establishment until a registration permission signal is received from the station side communication device. When the registration request signal is repeatedly output from the first optical output unit to the station side communication device while gradually increasing, and the registration permission signal is received from the station side communication device, the first optical output unit Output a reception confirmation signal from the station side communication device,
The evaluation unit of the station side communication device causes the second optical output unit to output a registration permission signal to the home side communication device when it is determined that the quality of the optical signal from the home side communication device is good. An optical communication system.
請求項1乃至4のいずれか1項に記載の光通信システムにおいて、
前記評価手段は、前記性能値をあらかじめ設定された対応する閾値と比較することで、前記宅側通信装置からの光信号の品質を評価し、この光信号の品質が良くなる方向に前記宅側通信装置からの光信号の強度を変更するための前記指令命令を生成することを特徴とする光通信システム。
The optical communication system according to any one of claims 1 to 4,
The evaluation means evaluates the quality of the optical signal from the home-side communication device by comparing the performance value with a corresponding threshold set in advance, and the home-side in a direction in which the quality of the optical signal is improved. An optical communication system, wherein the command command for changing the intensity of an optical signal from a communication device is generated.
伝送路を介して局側通信装置と接続された宅側通信装置において、
前記局側通信装置へ光信号を出力する光出力手段と、
前記局側通信装置からの光信号を入力する光入力手段と、
前記光出力手段から出力する光信号の強度を変更する出力変更手段とを備え、
前記出力変更手段は、前記宅側通信装置から前記局側通信装置へ入力される光信号の品質の評価結果に応じて前記局側通信装置から出力される光信号を受信したときに、この光信号に含まれる指令命令に従って、前記光出力手段から出力する光信号の強度を変更することを特徴とする宅側通信装置。
In the home side communication device connected to the station side communication device through the transmission path,
Optical output means for outputting an optical signal to the station side communication device;
An optical input means for inputting an optical signal from the station side communication device;
Output changing means for changing the intensity of the optical signal output from the light output means,
The output changing means receives the optical signal output from the station side communication device according to the evaluation result of the quality of the optical signal input from the home side communication device to the station side communication device. A home-side communication apparatus characterized by changing the intensity of an optical signal output from the optical output means in accordance with a command instruction included in the signal.
伝送路を介して宅側通信装置と接続された局側通信装置において、
前記宅側通信装置へ光信号を出力する光出力手段と、
前記宅側通信装置からの光信号を入力する光入力手段と、
前記宅側通信装置からの光信号の品質を評価するための性能値を測定する性能値測定手段と、
前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記光出力手段から前記宅側通信装置へ出力させる評価手段とを備えることを特徴とする局側通信装置。
In the station side communication device connected to the home side communication device via the transmission path,
Optical output means for outputting an optical signal to the home-side communication device;
Optical input means for inputting an optical signal from the home side communication device;
Performance value measuring means for measuring a performance value for evaluating the quality of the optical signal from the home side communication device;
An optical signal including a command command for evaluating the quality of the optical signal from the home side communication device based on the performance value and changing the intensity of the optical signal from the home side communication device according to the evaluation result And a station side communication device comprising: an evaluation unit that outputs the light output unit to the home side communication device.
宅側通信装置が、伝送路を介して接続された局側通信装置へ光信号を出力する送信ステップと、
前記局側通信装置が、前記宅側通信装置からの光信号に基づいて信号品質を評価するための性能値を測定する性能値測定ステップと、
前記局側通信装置が、前記性能値に基づいて前記宅側通信装置からの光信号の品質を評価し、この評価結果に応じて前記宅側通信装置からの光信号の強度を変更するための指令命令を含む光信号を、前記宅側通信装置へ出力する評価ステップと、
前記宅側通信装置が、前記局側通信装置からの光信号に含まれる指令命令に従って、自装置から出力する光信号の強度を変更する出力変更ステップとを含むことを特徴とする光通信方法。
A transmission step in which the home-side communication device outputs an optical signal to the station-side communication device connected via the transmission path;
A performance value measuring step in which the station side communication device measures a performance value for evaluating signal quality based on an optical signal from the home side communication device;
The station side communication device evaluates the quality of the optical signal from the home side communication device based on the performance value, and changes the intensity of the optical signal from the home side communication device according to the evaluation result An evaluation step of outputting an optical signal including a command command to the home-side communication device;
An optical communication method comprising: an output changing step in which the home side communication device changes the intensity of an optical signal output from the own device in accordance with a command command included in the optical signal from the station side communication device.
JP2013195456A 2013-09-20 2013-09-20 Optical communication system, station side communication apparatus, and optical communication method Active JP6073766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195456A JP6073766B2 (en) 2013-09-20 2013-09-20 Optical communication system, station side communication apparatus, and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195456A JP6073766B2 (en) 2013-09-20 2013-09-20 Optical communication system, station side communication apparatus, and optical communication method

Publications (2)

Publication Number Publication Date
JP2015061270A true JP2015061270A (en) 2015-03-30
JP6073766B2 JP6073766B2 (en) 2017-02-01

Family

ID=52818452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195456A Active JP6073766B2 (en) 2013-09-20 2013-09-20 Optical communication system, station side communication apparatus, and optical communication method

Country Status (1)

Country Link
JP (1) JP6073766B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045298A1 (en) * 2018-08-29 2020-03-05 日本電信電話株式会社 Simulation signal light generation device and simulation signal light generation method
JP2021136652A (en) * 2020-02-28 2021-09-13 アンリツ株式会社 Network test device and network test method
JP2021136651A (en) * 2020-02-28 2021-09-13 アンリツ株式会社 Network test device and network test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250377A (en) * 1994-03-10 1995-09-26 Matsushita Electric Ind Co Ltd Radio communication equipment
JP2007104571A (en) * 2005-10-07 2007-04-19 Sumitomo Electric Ind Ltd Optical line terminal and optical network unit in optical communication system
JP2009089323A (en) * 2007-10-03 2009-04-23 Nec Access Technica Ltd Pon system, slave station in pon system, and slave station registration method
JP2010103809A (en) * 2008-10-24 2010-05-06 Hitachi Ltd Optical access system and optical line terminal
JP2011160022A (en) * 2010-01-29 2011-08-18 Fujitsu Telecom Networks Ltd Pon system and optical signal transmission and reception control method
JP2011239294A (en) * 2010-05-12 2011-11-24 Sumitomo Electric Ind Ltd Optical communication system and control method of transmission power thereof
JP2013179695A (en) * 2013-06-05 2013-09-09 Fujitsu Telecom Networks Ltd Pon system and station side device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250377A (en) * 1994-03-10 1995-09-26 Matsushita Electric Ind Co Ltd Radio communication equipment
JP2007104571A (en) * 2005-10-07 2007-04-19 Sumitomo Electric Ind Ltd Optical line terminal and optical network unit in optical communication system
JP2009089323A (en) * 2007-10-03 2009-04-23 Nec Access Technica Ltd Pon system, slave station in pon system, and slave station registration method
JP2010103809A (en) * 2008-10-24 2010-05-06 Hitachi Ltd Optical access system and optical line terminal
JP2011160022A (en) * 2010-01-29 2011-08-18 Fujitsu Telecom Networks Ltd Pon system and optical signal transmission and reception control method
JP2011239294A (en) * 2010-05-12 2011-11-24 Sumitomo Electric Ind Ltd Optical communication system and control method of transmission power thereof
JP2013179695A (en) * 2013-06-05 2013-09-09 Fujitsu Telecom Networks Ltd Pon system and station side device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016027371; 小原一歩,堀内幸夫: '予備系を必要としないPON冗長方式' 映像情報メディア学会技術報告 第32巻,第52号, 20081120, p.113-116 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045298A1 (en) * 2018-08-29 2020-03-05 日本電信電話株式会社 Simulation signal light generation device and simulation signal light generation method
JP2020036176A (en) * 2018-08-29 2020-03-05 日本電信電話株式会社 Analog signal light generating device and analog signal light generating method
JP7052646B2 (en) 2018-08-29 2022-04-12 日本電信電話株式会社 Simulated signal light generator and simulated signal light generation method
US11575981B2 (en) 2018-08-29 2023-02-07 Nippon Telegraph And Telephone Corporation Simulation signal light generation device and simulation signal light generation method
JP2021136652A (en) * 2020-02-28 2021-09-13 アンリツ株式会社 Network test device and network test method
JP2021136651A (en) * 2020-02-28 2021-09-13 アンリツ株式会社 Network test device and network test method
JP7142046B2 (en) 2020-02-28 2022-09-26 アンリツ株式会社 Network test device and network test method
JP7142045B2 (en) 2020-02-28 2022-09-26 アンリツ株式会社 Network test device and network test method

Also Published As

Publication number Publication date
JP6073766B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US9209897B2 (en) Adaptive forward error correction in passive optical networks
Curri et al. Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation
WO2006063510A1 (en) Pon and data communication methodthereof
Man et al. A low-cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation
JP4737528B2 (en) Control station side apparatus and terminal station side apparatus in optical communication system
JP6073766B2 (en) Optical communication system, station side communication apparatus, and optical communication method
WO2016070846A1 (en) Working channel adjustment method, device and system, onu, and olt
EP3876447A1 (en) Forward error correction
CN101359965B (en) Method and apparatus optimizing determination level of optical receiver
WO2017193538A1 (en) Signal generation method and device
JP2007325010A (en) Pon system
JP6084913B2 (en) Optical communication system, optical communication apparatus, and optical communication method
JP6262050B2 (en) Optical communication system and control method thereof
WO2014071639A1 (en) Communication method for optical network system, system and device
TWI506970B (en) Optical network terminal network device and method for adjusting optical signal power
US20230145196A1 (en) Monitoring apparatus, monitoring method, and non-transitory computer-readable medium containing program
JP2010141683A (en) Optical transmission apparatus and dispersion compensator
KR101953861B1 (en) Optical receiving apparatus having improved receiving performance for multilevel optical signal and method thereof
WO2017049429A1 (en) Information transmission method and apparatus, and passive optical network system
Asyari et al. Optical network design for 4G long term evolution distribution network in Sleman
US10476632B2 (en) Device and method for transmitting frame in optical transmission system
JP5921285B2 (en) PON system, OLT, ONU, and optical signal transmission / reception control method
US20220329319A1 (en) Communication device, communication controlling method, non-transitory computer-readable medium, and optical communication system
JP2011029803A (en) Device and method for receiving optical signal
JP6932255B2 (en) Optical transmitter / receiver, optical communication device, control method, and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170105

R150 Certificate of patent or registration of utility model

Ref document number: 6073766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150