JP2015060267A - Current output circuit and two-wire broadband transmitter having the same - Google Patents

Current output circuit and two-wire broadband transmitter having the same Download PDF

Info

Publication number
JP2015060267A
JP2015060267A JP2013191738A JP2013191738A JP2015060267A JP 2015060267 A JP2015060267 A JP 2015060267A JP 2013191738 A JP2013191738 A JP 2013191738A JP 2013191738 A JP2013191738 A JP 2013191738A JP 2015060267 A JP2015060267 A JP 2015060267A
Authority
JP
Japan
Prior art keywords
current
circuit
voltage
source
source circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013191738A
Other languages
Japanese (ja)
Other versions
JP6229831B2 (en
Inventor
陽一 岩野
yoichi Iwano
陽一 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2013191738A priority Critical patent/JP6229831B2/en
Publication of JP2015060267A publication Critical patent/JP2015060267A/en
Application granted granted Critical
Publication of JP6229831B2 publication Critical patent/JP6229831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current output circuit of a two-wire broadband transmitter, which enables stable control without increasing a frequency band and has an improved power efficiency.SOLUTION: A current output circuit 10 includes: a first current source circuit 11 that outputs a first current which is controlled by a control voltage x that is output from a signal processing circuit; a second current source circuit 12 that outputs a second current which is controlled by the first current; a first shunt voltage supply circuit 14 that generates an internal power supply by the second current; a third current source circuit 13 that generates a third current which is controlled by a predetermined voltage source and a fourth current which is controlled by the second current source circuit 12; and a second shunt voltage source circuit 15 that generates a power supply of the second current source circuit 12 by the third current. The third current and fourth current are consumed by an internal power supply #1; and a predetermined current which is controlled by the control voltage x is output via a transmission line to an external circuit by the first current and second current.

Description

本発明は、外部回路と2本の伝送線を介して接続され、外部回路を電源として用いながら外部回路へ所定の電流信号を出力する電流出力回路、および同回路を有する広帯域2線式伝送器に関する。   The present invention relates to a current output circuit that is connected to an external circuit via two transmission lines and outputs a predetermined current signal to the external circuit while using the external circuit as a power source, and a broadband two-wire transmitter having the circuit About.

2線式伝送器は、DCS(分散制御システム)等の外部回路と2本の伝送線を介して接続され、外部回路を電源として用いながら、センサ等から取得した物理量を電流信号に変換して外部回路へ出力する、例えば、フィールド機器である。2線式伝送器は、専用の電源配線が不要であり、安価に設置できることから、プラントにおける差圧・圧力伝送機器や温度伝送器等のフィールド機器として広く利用されている。このフィールド機器は、物理量をフィールド機器の信号として世界標準である4[mA]〜20[mA]の直流電流に変換して外部回路へ送信する。   A two-wire transmitter is connected to an external circuit such as a DCS (distributed control system) via two transmission lines, and converts a physical quantity acquired from a sensor or the like into a current signal while using the external circuit as a power source. For example, a field device that outputs to an external circuit. Two-wire transmitters are widely used as field devices such as differential pressure / pressure transmission devices and temperature transmitters in plants because they do not require dedicated power supply wiring and can be installed at low cost. This field device converts a physical quantity into a DC current of 4 [mA] to 20 [mA], which is a world standard, as a signal of the field device, and transmits it to an external circuit.

例えば、特許文献1には、ツェナーダイオードによらず、シャントレギュレータ(シャント電圧源回路)により任意に内部電圧の設定が可能であり、かつ安定した回路電源を確保することができる2線式伝送器についての発明が開示されている。   For example, Patent Document 1 discloses a two-wire transmitter in which an internal voltage can be arbitrarily set by a shunt regulator (shunt voltage source circuit) without using a zener diode and a stable circuit power source can be secured. The invention is disclosed.

図3には、上記した2線式伝送器において使用される従来の電流出力回路50の構成例が示されている。図3によれば、電流出力回路50は、電圧源回路51と、演算増幅器52(オペアンプ)と、電圧電流変換素子53(NPNトランジスタ)と、カレントミラー回路54と、シャント電圧源回路55と、電流検出抵抗R11と、帰還抵抗R12と、帯域制限抵抗R13および帯域制限容量C11と、を含み構成される。上記構成により、電流出力回路50は、シャント電圧源回路55により電流I1を出力しながら2線式伝送器の内部電源#1(不図示のセンサや信号処理回路の駆動電源)を生成し、正極電源端子VPと負極電源端子VN間に、Iout=(1+R12/R11)*I1になる電流を出力する。   FIG. 3 shows a configuration example of a conventional current output circuit 50 used in the above-described two-wire transmitter. According to FIG. 3, the current output circuit 50 includes a voltage source circuit 51, an operational amplifier 52 (op amp), a voltage / current conversion element 53 (NPN transistor), a current mirror circuit 54, a shunt voltage source circuit 55, A current detection resistor R11, a feedback resistor R12, a band limiting resistor R13, and a band limiting capacitor C11 are included. With the above configuration, the current output circuit 50 generates the internal power supply # 1 of the two-wire transmitter (drive power supply for a sensor or signal processing circuit (not shown)) while outputting the current I1 from the shunt voltage source circuit 55, and the positive electrode A current satisfying Iout = (1 + R12 / R11) * I1 is output between the power supply terminal VP and the negative power supply terminal VN.

特開平9−81883号公報JP-A-9-81883

ところで、図3に示す電流出力回路50によれば、演算増幅器52の出力端子から非反転入力端子(+)に至る負帰還ループ(図3の点線矢印)の中にカレントミラー回路54が挿入されている。このカレントミラー回路54の挿入による不都合を解消するために、演算増幅器52の出力端子と演算増幅器52の反転入力端子(−)間に帯域制限容量C11を接続し、この帯域制限容量C11により、演算増幅器52の出力から入力に至る系の安定性を確保している。   By the way, according to the current output circuit 50 shown in FIG. 3, the current mirror circuit 54 is inserted into the negative feedback loop (dotted arrow in FIG. 3) from the output terminal of the operational amplifier 52 to the non-inverting input terminal (+). ing. In order to eliminate the inconvenience due to the insertion of the current mirror circuit 54, a band limiting capacitor C11 is connected between the output terminal of the operational amplifier 52 and the inverting input terminal (−) of the operational amplifier 52. The stability of the system from the output of the amplifier 52 to the input is ensured.

上記した帯域制限容量C11を接続して演算増幅器52の出力から入力に至る系の安定性を確保する理由は、カレントミラー回路54の持つ極が演算増幅器52の帯域近傍にあり、ループゲインが1倍になる周波数近傍で位相が回り、位相余裕(マージン)が確保できなくなることに基づく。このように、従来の2線式伝送器の電流出力回路50は、図3中、点線矢印で示す演算増幅器52の負帰還ループの中にカレントミラー回路54のような低い極を持つ回路要素が挿入されることにより狭帯域化され、かつ交流的な入力インピーダンスが低くなって耐ノイズ性が悪化するといった課題があった。   The reason for securing the stability of the system from the output of the operational amplifier 52 to the input by connecting the band limiting capacitor C11 is that the pole of the current mirror circuit 54 is in the vicinity of the band of the operational amplifier 52 and the loop gain is 1. This is based on the fact that the phase rotates in the vicinity of the doubling frequency and a phase margin (margin) cannot be secured. As described above, the current output circuit 50 of the conventional two-wire transmitter includes a circuit element having a low pole like the current mirror circuit 54 in the negative feedback loop of the operational amplifier 52 indicated by a dotted arrow in FIG. As a result of the insertion, the band is narrowed, and the AC input impedance is lowered, resulting in deterioration in noise resistance.

このため、出願人は、平成24年11月12日に、図4,図5に一例を示す「電流出力回路、および同回路を有する広帯域2線式伝送器」を特許出願した(特願2012−248042号:以下、先願という)。以下に、その内容について説明する。   For this reason, the applicant filed a patent application on November 12, 2012 for a “current output circuit and a broadband two-wire transmitter having the circuit” shown in FIG. 4 and FIG. 5 (Japanese Patent Application No. 2012). -248042: hereinafter referred to as prior application). The contents will be described below.

図4は、先願の広帯域2線式伝送器の基本構成を示す図である。図4によれば、広帯域2線式伝送器1は、センサ60と、信号処理回路20と、電流出力回路30とから構成され、2本の伝送線L1,L2にそれぞれ接続される、正極電源端子VPと負極電源端子VNを介してDCS等の外部回路40に接続される。   FIG. 4 is a diagram showing a basic configuration of the broadband two-wire transmitter of the prior application. According to FIG. 4, the broadband two-wire transmitter 1 includes a sensor 60, a signal processing circuit 20, and a current output circuit 30, and is connected to two transmission lines L1 and L2, respectively. It is connected to an external circuit 40 such as DCS via a terminal VP and a negative power supply terminal VN.

2線式伝送器1は、例えば、フィールド機器であり、外部回路40から2本の伝送線L1,L2を介して電源の供給を受け、センサ60により測定される物理量を電気信号に変換して信号処理回路20で信号処理し、電流出力回路30により、伝送線L1,L2を介して外部回路40に、例えば、4[mA]〜20[mA]の所定の電流を出力する。   The two-wire transmitter 1 is, for example, a field device, receives power from the external circuit 40 via two transmission lines L1 and L2, and converts a physical quantity measured by the sensor 60 into an electrical signal. The signal processing circuit 20 performs signal processing, and the current output circuit 30 outputs a predetermined current of, for example, 4 [mA] to 20 [mA] to the external circuit 40 via the transmission lines L1 and L2.

電流出力回路30は、電流源回路31(第1の電流源回路),32(第2の電流源回路),33(第3の電流源回路)と、シャント電圧源回路34(第1のシャント電圧源回路),35(第2のシャント電圧源回路)とを含む。電流源回路31は、信号処理回路20から出力される制御電圧(制御信号x)によって制御される電流I1(第1の電流)を生成して電流源回路32へ出力する。電流源回路32(第2の電流源回路)は、電流I1によって制御される電流I2(第2の電流)を生成してシャント電圧源回路34へ出力する。   The current output circuit 30 includes a current source circuit 31 (first current source circuit), 32 (second current source circuit), 33 (third current source circuit), and a shunt voltage source circuit 34 (first shunt circuit). Voltage source circuit) and 35 (second shunt voltage source circuit). The current source circuit 31 generates a current I1 (first current) controlled by the control voltage (control signal x) output from the signal processing circuit 20 and outputs the current I1 to the current source circuit 32. The current source circuit 32 (second current source circuit) generates a current I2 (second current) controlled by the current I1 and outputs the current I2 to the shunt voltage source circuit 34.

シャント電圧源回路34(第1のシャント電圧源回路)は、電流源回路32から出力される電流I2から2線式伝送器1(センサ60と信号処理回路20)の内部電源#1を生成する。電流源回路33は、基準電圧Vrefによって制御される電流I3(第3の電流)を生成する。シャント電圧源回路35は、電流源回路33から出力される電流I3により電流源回路32の電源を生成する。   The shunt voltage source circuit 34 (first shunt voltage source circuit) generates the internal power supply # 1 of the two-wire transmitter 1 (sensor 60 and signal processing circuit 20) from the current I2 output from the current source circuit 32. . The current source circuit 33 generates a current I3 (third current) controlled by the reference voltage Vref. The shunt voltage source circuit 35 generates a power source for the current source circuit 32 based on the current I3 output from the current source circuit 33.

電流出力回路30は、電流源回路31により生成される電流I1,電流源回路32により生成される電流I2,電流源回路33により生成される電流I3により、伝送線L1,L2を介して外部回路40に対し、制御電圧(制御信号x)によって制御される、4〜20[mA]の所定の電流Ioutを出力する。   The current output circuit 30 is connected to an external circuit via transmission lines L1 and L2 by a current I1 generated by the current source circuit 31, a current I2 generated by the current source circuit 32, and a current I3 generated by the current source circuit 33. 40, a predetermined current Iout of 4 to 20 [mA] controlled by a control voltage (control signal x) is output.

図5に電流出力回路30を構成する各電流源回路31,32,33の詳細な回路構成が示されている。図5において、電流源回路31は、演算増幅器OP1と、N型MOS−FETからなる電圧電流変換素子M1(第1の極性を有する電圧電流変換素子)と、電流検出抵抗R1とを含み構成される。   FIG. 5 shows a detailed circuit configuration of each of the current source circuits 31, 32, and 33 constituting the current output circuit 30. In FIG. 5, the current source circuit 31 includes an operational amplifier OP1, a voltage-current conversion element M1 (voltage-current conversion element having a first polarity) made of an N-type MOS-FET, and a current detection resistor R1. The

演算増幅器OP1は、非反転入力端子(+)と伝送線L2に接続される負極電源端子VNとの間に信号処理回路20により生成される制御電圧(制御信号x)が印加される。電圧電流変換素子M1は、ゲート端が演算増幅器OP1の出力端子に、ソース端が演算増幅器OP1の反転入力端子(−)に、ドレイン端が電流源回路32(後述する演算増幅器OP2の非反転入力端子(+)と電圧電流変換抵抗R7の一端)にそれぞれ接続され、ここで(電流源回路31)生成される電流I1を、ドレイン端を介して電流源回路32に出力する。なお、電流検出抵抗R1は、一端が電圧電流変換素子M1のソース端に、他端が負極電源端子VNに接続され、ソース端との接続点が演算増幅器OP1の反転入力端子(−)に接続される。   In the operational amplifier OP1, a control voltage (control signal x) generated by the signal processing circuit 20 is applied between the non-inverting input terminal (+) and the negative power supply terminal VN connected to the transmission line L2. The voltage-current conversion element M1 has a gate terminal at the output terminal of the operational amplifier OP1, a source terminal at the inverting input terminal (−) of the operational amplifier OP1, and a drain terminal at the current source circuit 32 (a non-inverting input of the operational amplifier OP2 described later). The current I1 generated here (current source circuit 31) is output to the current source circuit 32 via the drain end. The current I1 is connected to the terminal (+) and one end of the voltage / current conversion resistor R7. The current detection resistor R1 has one end connected to the source end of the voltage-current conversion element M1, the other end connected to the negative power supply terminal VN, and the connection point with the source end connected to the inverting input terminal (−) of the operational amplifier OP1. Is done.

電流源回路32は、演算増幅器OP2と、P型MOS−FETからなる電圧電流変換素子M2(第2の極性を有する電圧電流変換素子)と、電流検出抵抗R3と、電圧電流変換抵抗R7とを含み構成される。   The current source circuit 32 includes an operational amplifier OP2, a voltage / current conversion element M2 (voltage / current conversion element having a second polarity) made of a P-type MOS-FET, a current detection resistor R3, and a voltage / current conversion resistor R7. Consists of.

演算増幅器OP2は、非反転入力端子(+)に電流源回路31(電圧電流変換素子M1のドレイン端)の出力が、反転入力端子(−)に電流検出抵抗R3を介して伝送線L1が接続される正極電源端子VPがそれぞれ接続される。電圧電流変換素子M2は、ゲート端が演算増幅器OP2の出力端子に、ソース端が演算増幅器OP2の反転入力端子(−)に、ドレイン端がシャント電圧源回路34にそれぞれ接続され、ドレイン端を介し、電流源回路31により生成される電流I1によって制御される電流I2を生成してシャント電圧源回路34に出力する。なお、電流検出抵抗R3は、一端が電圧電流変換素子M2のソース端に、他端が負極電源端子VNに接続され、ソース端との接続点が演算増幅器OP2の反転入力端子(−)に接続される。また、電圧電流変換抵抗R7は、正極電源端子VPと演算増幅器OP2の非反転入力端子(+)との間に接続される。   In the operational amplifier OP2, the output of the current source circuit 31 (the drain terminal of the voltage-current conversion element M1) is connected to the non-inverting input terminal (+), and the transmission line L1 is connected to the inverting input terminal (−) via the current detection resistor R3. The positive power supply terminals VP to be connected are respectively connected. The voltage-current conversion element M2 has a gate terminal connected to the output terminal of the operational amplifier OP2, a source terminal connected to the inverting input terminal (−) of the operational amplifier OP2, a drain terminal connected to the shunt voltage source circuit 34, and via the drain terminal. The current I 2 controlled by the current I 1 generated by the current source circuit 31 is generated and output to the shunt voltage source circuit 34. The current detection resistor R3 has one end connected to the source end of the voltage-current conversion element M2, the other end connected to the negative power supply terminal VN, and the connection point with the source end connected to the inverting input terminal (−) of the operational amplifier OP2. Is done. The voltage / current conversion resistor R7 is connected between the positive power supply terminal VP and the non-inverting input terminal (+) of the operational amplifier OP2.

電流源回路33は、演算増幅器OP3と、P型MOS−FETからなる電圧電流変換素子M3と、電流検出抵抗R5とを含み構成される。   The current source circuit 33 includes an operational amplifier OP3, a voltage / current conversion element M3 made of a P-type MOS-FET, and a current detection resistor R5.

演算増幅器OP3は、非反転入力端子(+)と負極電源端子VN間に基準電圧が印加される。電圧電流変換素子M3は、ゲート端が演算増幅器OP3の出力端子に、ソース端が演算増幅器OP3の反転入力端子(−)に、ドレイン端がシャント電圧源回路35にそれぞれ接続され、ドレイン端を介して電流I3を生成してシャント電圧源回路35に出力する。なお、電流検出抵抗R5は、電圧電流変換素子M3のソース端と負極電源端子VNとの間に接続され、電圧電流変換素子M3のソース端との接続点が演算増幅器OP3の反転入力端子(−)に接続される。   In the operational amplifier OP3, a reference voltage is applied between the non-inverting input terminal (+) and the negative power supply terminal VN. The voltage-current conversion element M3 has a gate terminal connected to the output terminal of the operational amplifier OP3, a source terminal connected to the inverting input terminal (−) of the operational amplifier OP3, a drain terminal connected to the shunt voltage source circuit 35, and via the drain terminal. Current I3 is generated and output to the shunt voltage source circuit 35. The current detection resistor R5 is connected between the source end of the voltage-current conversion element M3 and the negative power supply terminal VN, and the connection point between the source end of the voltage-current conversion element M3 is the inverting input terminal (− ).

以下、電流出力回路30の動作を説明する。まず、センサ60は、圧力や温度等の物理量を電気信号に変換して信号処理回路20へ出力する。信号処理回路20は、センサ60から出力される電気信号に対して、例えば、歪み補正やノイズ除去等の所定の処理を施して制御信号x(制御電圧)を生成し、電流源回路31を構成する演算増幅器OP1の非反転入力端子(+)と負極電源端子VN端子間に印加する。   Hereinafter, the operation of the current output circuit 30 will be described. First, the sensor 60 converts physical quantities such as pressure and temperature into electrical signals and outputs them to the signal processing circuit 20. The signal processing circuit 20 performs a predetermined process such as distortion correction and noise removal on the electrical signal output from the sensor 60 to generate a control signal x (control voltage), and configures the current source circuit 31. This is applied between the non-inverting input terminal (+) and the negative power supply terminal VN terminal of the operational amplifier OP1.

電流源回路31は、この制御電圧(制御信号x)によって制御される電流I1を生成する。すなわち、演算増幅器OP1は、電圧電流変換素子M1のゲート・ソース間の電圧を制御して、電流検出抵抗R1の両端に印加される電圧と制御電圧xとが同じ電圧値になるように制御する。結果的に、制御電圧(制御信号x)が電流I1に変換され、その電流I1は、電圧電流変換素子M1のドレイン端を介し、電流源回路32(演算増幅器OP2の非反転端子および電圧電流変換抵抗R7の一端)へ出力される。   The current source circuit 31 generates a current I1 controlled by this control voltage (control signal x). That is, the operational amplifier OP1 controls the voltage between the gate and the source of the voltage-current conversion element M1 so that the voltage applied to both ends of the current detection resistor R1 and the control voltage x have the same voltage value. . As a result, the control voltage (control signal x) is converted into the current I1, and the current I1 is supplied to the current source circuit 32 (the non-inverting terminal of the operational amplifier OP2 and the voltage-current conversion) via the drain terminal of the voltage-current conversion element M1. To one end of the resistor R7.

次に、電流源回路32は、電流源回路31により生成される電流I1によって制御される電流I2を生成する。すなわち、電圧電流変換抵抗R7に電流I1が流れることにより電圧降下が発生して電流I1が再度電圧に変換され、その電圧は、演算増幅器OP2の非反転入力端子(+)と正極電源端子VP間に印加される。そして、このVP基準の電圧により、演算増幅器OP2は、電圧電流変換素子M2のゲート・ソース間電圧を制御し、電流検出抵抗R3の両端に印加される電圧とVP基準の電圧とが同じ電圧値になるように制御する。結果的に、ドレイン端を介して生成した電流I2をシャント電圧源回路34に出力する。シャント電圧源回路34は、この電流I2を利用し、センサ60と信号処理回路20を駆動する内部電源#1を生成する。   Next, the current source circuit 32 generates a current I2 controlled by the current I1 generated by the current source circuit 31. That is, a voltage drop occurs due to the current I1 flowing through the voltage-current conversion resistor R7, and the current I1 is converted into a voltage again. The voltage is between the non-inverting input terminal (+) of the operational amplifier OP2 and the positive power supply terminal VP. To be applied. The operational amplifier OP2 controls the voltage between the gate and the source of the voltage / current conversion element M2 based on the VP reference voltage, and the voltage applied to both ends of the current detection resistor R3 and the VP reference voltage have the same voltage value. Control to become. As a result, the current I2 generated through the drain terminal is output to the shunt voltage source circuit 34. The shunt voltage source circuit 34 uses this current I2 to generate an internal power supply # 1 that drives the sensor 60 and the signal processing circuit 20.

なお、電流源回路32を構成する電圧電流変換素子(P型MOS−FET)の主要なキャリアはホール(正孔)であり、ゲート端に入力される電圧がソース端より低い場合(ゲート・ソース間電圧)、ソースからドレインへ電流が流れるが、その電流は、入力電圧が−側であるほど大きくなり、+側であるほど小さくなり、所定の値で0になる。   The main carrier of the voltage-current conversion element (P-type MOS-FET) constituting the current source circuit 32 is a hole (hole), and the voltage input to the gate end is lower than the source end (gate-source) Current) flows from the source to the drain. The current increases as the input voltage is on the negative side, decreases as the input voltage is on the positive side, and becomes zero at a predetermined value.

次に、電流源回路33とシャント電圧源回路35は、電流源回路32の電源を生成する。すなわち、電流源回路33では、演算増幅器OP3の非反転入力端子(+)と正極電源端子VP間に基準電圧Vrefが印加されており、演算増幅器OP3は、電圧電流変換素子M3のゲート・ソース間電圧を制御することによって、電流検出抵抗R5の両端に印加される電圧が基準電圧と同じ値になるように制御する。結果的に基準電圧Vrefが電流I3に変換され、電圧電流変換素子M3のドレイン端を介してシャント電圧源回路35に出力される。シャント電圧源回路35は、この電流I3により電流源回路32の電源を生成する。   Next, the current source circuit 33 and the shunt voltage source circuit 35 generate a power source for the current source circuit 32. That is, in the current source circuit 33, the reference voltage Vref is applied between the non-inverting input terminal (+) of the operational amplifier OP3 and the positive power supply terminal VP, and the operational amplifier OP3 is connected between the gate and the source of the voltage-current conversion element M3. By controlling the voltage, the voltage applied to both ends of the current detection resistor R5 is controlled to be the same value as the reference voltage. As a result, the reference voltage Vref is converted into the current I3 and output to the shunt voltage source circuit 35 via the drain terminal of the voltage-current conversion element M3. The shunt voltage source circuit 35 generates a power source for the current source circuit 32 based on the current I3.

最終的に、電流出力回路30は、電流源回路31により生成される電流I1と、電流源回路32により生成される電流I2と、電流源回路33により生成される電流I3とにより、制御電圧(制御信号x)によって制御される4〜20[mA]の電流Ioutを生成し、2本の伝送線L1,L2を介してDCS等の外部回路40へ出力するとともに、センサ60と信号処理回路20とを駆動する内部電源#1を生成する。ここで、電流源回路31の伝達関数をf(x),電流源回路32の伝達関数をg(I2)とすれば、I1=f(x),I2=g(f(x)),Iout=f(x)+g(f(x))+13になる。   Finally, the current output circuit 30 generates a control voltage (a current I1 generated by the current source circuit 31, a current I2 generated by the current source circuit 32, and a current I3 generated by the current source circuit 33 by the control voltage ( A current Iout of 4 to 20 [mA] controlled by the control signal x) is generated and output to the external circuit 40 such as DCS via the two transmission lines L1 and L2, and the sensor 60 and the signal processing circuit 20 are output. An internal power supply # 1 is generated to drive. Here, if the transfer function of the current source circuit 31 is f (x) and the transfer function of the current source circuit 32 is g (I2), I1 = f (x), I2 = g (f (x)), Iout = F (x) + g (f (x)) + 13.

上記した電流出力回路30によれば、図中、実線矢印で示した電流源回路31,32を構成する演算増幅器(それぞれOP1,OP2)の負帰環ループの内部に、カレントミラー回路のような低い局を持つ要素が含まれない(応答の遅い要素を除外した)ため、帯域制限の必要がなくなり、したがって広帯域化が可能な2線式伝送器1を提供することができる。具体的に、2線式伝送器1は、外部回路40に対し、4〜20[mA]の直流アナログ信号に交流デジタル信号を重畳して伝送するが、例えば、HART(Highway Addressable Remote Transducer)のようなキャリア周波数の低い通信波形から、Foundation Field BUSのようなキャリア周波数の高い通信波形を一つの2線式伝送器1(フィールド機器)内で、定数を変更することなく出力が可能になる。   According to the current output circuit 30 described above, a current mirror circuit or the like is provided inside the negative feedback loop of the operational amplifiers (OP1 and OP2 respectively) constituting the current source circuits 31 and 32 indicated by solid arrows in the drawing. Since an element having a low station is not included (excluding an element having a slow response), there is no need for band limitation, and therefore, the two-wire transmitter 1 capable of widening the band can be provided. Specifically, the two-wire transmitter 1 transmits an AC digital signal superimposed on a DC analog signal of 4 to 20 [mA] to the external circuit 40. For example, the HART (Highway Addressable Remote Transducer) From a communication waveform having a low carrier frequency, a communication waveform having a high carrier frequency such as Foundation Field BUS can be output in one two-wire transmitter 1 (field device) without changing the constant.

また、広帯域化により、交流的な入力インピーダンスが向上し、入力インピーダンスが向上することでノイズ耐性が向上するといった派生的効果も得られる。なお、電流を出力しながら内部電源を生成することも可能である。   In addition, the wideband increases the AC input impedance, and the derivative effect that the noise resistance is improved by improving the input impedance is also obtained. It is also possible to generate an internal power supply while outputting current.

ところで、図5の電流出力回路30の定電流源回路32に注目すれば、安定制御のためには演算増幅器OP2の周波数帯域を大きくする必要があり、この場合、他の回路ブロック31,33に比較して相対的に消費電力も大きくなる。また、定電流源回路32で使用される電流は定電流源回路33により決定され、定電流源回路32の中で閉じて使用されるが、定電流源回路32で使用される電流を、電流出力回路30を構成する他の回路ブロック31,33でも使用できれば電力効率が高まるため好ましい。   When attention is paid to the constant current source circuit 32 of the current output circuit 30 in FIG. 5, it is necessary to increase the frequency band of the operational amplifier OP2 for stable control. In comparison, the power consumption is relatively large. The current used in the constant current source circuit 32 is determined by the constant current source circuit 33 and is used by being closed in the constant current source circuit 32. If the other circuit blocks 31 and 33 constituting the output circuit 30 can be used, it is preferable because power efficiency is increased.

本発明は上記した課題を解決するためになされたものであり、周波数帯域を大きくすることなく安定制御が可能であり、電力効率の向上をはかった電流出力回路、および同回路を有する広帯域2線式伝送器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of stable control without increasing the frequency band, and a current output circuit that improves power efficiency, and a broadband two-wire having the circuit An object of the present invention is to provide a transmitter.

上記した課題を解決するために本発明は、外部回路から2本の伝送線を介して電源の供給を受け、センサにより測定される物理量を電気信号に変換して信号処理回路で信号処理し、前記伝送線を介して前記外部回路に所定の電流を出力しながら内部電源を生成する2線式伝送器の電流出力回路であって、前記信号処理回路から出力される制御電圧によって制御される第1の電流を出力する第1の電流源回路と、前記第1の電流によって制御される第2の電流を出力する第2の電流源回路と、前記第2の電流により前記内部電源を生成する第1のシャント電圧源回路と、所定の電圧源により制御される第3の電流と前記第2の電流源回路により制御される第4の電流を生成する第3の電流源回路と、前記第3の電流により前記第2の電流源回路の電源を生成する第2のシャント電圧源回路と、を有し、前記第3の電流と前記第4の電流を前記内部電源で消費するとともに、前記第1の電流と前記第2の電流とにより、前記外部回路に前記伝送線を介して前記制御電圧によって制御される前記所定の電流を出力することを特徴とする。   In order to solve the above-described problems, the present invention receives power supply from an external circuit via two transmission lines, converts a physical quantity measured by a sensor into an electric signal, and performs signal processing by a signal processing circuit. A current output circuit of a two-wire transmitter that generates an internal power supply while outputting a predetermined current to the external circuit via the transmission line, and is controlled by a control voltage output from the signal processing circuit. A first current source circuit that outputs a first current; a second current source circuit that outputs a second current controlled by the first current; and the internal power source is generated by the second current. A first shunt voltage source circuit; a third current source circuit that generates a third current controlled by a predetermined voltage source; and a fourth current controlled by the second current source circuit; The second current source circuit with a current of 3 A second shunt voltage source circuit for generating a power source, and consuming the third current and the fourth current by the internal power source, and by the first current and the second current The predetermined current controlled by the control voltage is output to the external circuit via the transmission line.

本発明において、前記第3の電流源回路は、非反転入力端子と前記2本の伝送線のうちの一方の負極電源端子間に所定の電圧が印加される演算増幅器と、ゲート端が前記演算増幅器の出力端子に、ソース端が前記演算増幅器の反転入力端子に、ドレイン端が前記第2のシャント電圧源回路にそれぞれ接続され、前記ドレイン端を介して前記第3の電流を出力する第2の極性を有する電圧電流変換素子と、前記電圧電流変換素子のソース端と前記負極電源端子との間に前記第1のシャント電圧源を介して接続され、前記電圧電流変換素子のソース端との接続点が前記演算増幅器の反転入力端子に接続される第1の電流検出抵抗と、前記第2の電流源回路が有する第2の電流検出抵抗に接続され、前記第4の電流を流して前記演算増幅器と前記電圧源とを駆動する定電流ダイオードまたは駆動抵抗とを含み、前記演算増幅器は、前記電圧電流変換素子のゲート・ソース間電圧を制御して前記第1の電流検出抵抗に印加される電圧と前記所定の電圧源の電圧とが同じになるように制御して前記電圧電流変換素子のドレイン端に前記第3の電流を出力することを特徴とする。   In the present invention, the third current source circuit includes an operational amplifier to which a predetermined voltage is applied between a non-inverting input terminal and a negative power supply terminal of one of the two transmission lines, and a gate terminal of the operational amplifier. A second output terminal is connected to the output terminal of the amplifier, the source terminal is connected to the inverting input terminal of the operational amplifier, the drain terminal is connected to the second shunt voltage source circuit, and the third current is output via the drain terminal. A voltage-current conversion element having the following polarity: and a source end of the voltage-current conversion element and the negative power supply terminal connected via the first shunt voltage source, and a source end of the voltage-current conversion element A connection point is connected to a first current detection resistor connected to the inverting input terminal of the operational amplifier and a second current detection resistor included in the second current source circuit, and the fourth current is supplied to the second current detection resistor. An operational amplifier and the power supply A constant current diode or a driving resistor for driving a source, and the operational amplifier controls a voltage between the gate and the source of the voltage-current conversion element and applies the voltage applied to the first current detection resistor and the predetermined current The third current is output to the drain terminal of the voltage-current conversion element by controlling so that the voltage of the voltage source becomes the same.

本発明の電流出力回路を有する広帯域2線式電送器は、センサと、信号処理回路と、外部回路から2本の伝送線がそれぞれ接続される正極電源端子と負極電源端子を介して電源の供給を受け、前記センサにより測定される物理量を電気信号に変換して前記信号処理回路で信号処理し、前記伝送線を介して前記外部回路に所定の電流を出力する電流出力回路と、を有することを特徴とする。   The broadband two-wire electric transmitter having the current output circuit of the present invention supplies power through a sensor, a signal processing circuit, and a positive power supply terminal and a negative power supply terminal to which two transmission lines are connected from an external circuit, respectively. A current output circuit that converts a physical quantity measured by the sensor into an electrical signal, processes the signal by the signal processing circuit, and outputs a predetermined current to the external circuit via the transmission line. It is characterized by.

本発明によれば、周波数帯域を大きくすることなく安定制御が可能であり、電力効率の向上をはかった電流出力回路、および同回路を有する広帯域2線式伝送器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, stable control is possible, without enlarging a frequency band, the current output circuit which aimed at the improvement of power efficiency, and the broadband 2-wire transmitter which has the same circuit can be provided.

本発明の実施の形態にかかる電流出力回路の回路構成を示す図である。It is a figure which shows the circuit structure of the current output circuit concerning embodiment of this invention. 本発明の実施の形態にかかる電流出力回路の変形例の回路構成を示す図である。It is a figure which shows the circuit structure of the modification of the current output circuit concerning embodiment of this invention. 従来の電流出力回路の構成を示す図である。It is a figure which shows the structure of the conventional current output circuit. 先願の広帯域2線式伝送器の基本構成を示す図である。It is a figure which shows the basic composition of the broadband 2-wire type transmitter of a prior application. 先願の電流出力回路の回路構成を示す図である。It is a figure which shows the circuit structure of the current output circuit of a prior application.

以下、添付図面を参照して本発明を実施するための実施の形態(以下、単に実施形態という)について詳細に説明する。   Hereinafter, an embodiment for carrying out the present invention (hereinafter simply referred to as an embodiment) will be described in detail with reference to the accompanying drawings.

(実施形態の構成)
図1は、本実施形態にかかる電流出力回路の回路構成を示す図である。本実施形態の電流出力回路10は、外部回路(図4の符号40)から2本の伝送線(図4の符号L1,L2)を介して電源の供給を受け、センサ(図4の符号60)により測定される物理量を電気信号に変換して信号処理回路(図4の符号20)で信号処理し、伝送線L1,L2を介して外部回路40に所定の電流を出力しながら内部電源(内部電源#1)を生成する広帯域2線式伝送器(図4の符号1)に使用される。
(Configuration of the embodiment)
FIG. 1 is a diagram illustrating a circuit configuration of a current output circuit according to the present embodiment. The current output circuit 10 of this embodiment is supplied with power from an external circuit (reference numeral 40 in FIG. 4) via two transmission lines (reference numerals L1 and L2 in FIG. 4), and receives a sensor (reference numeral 60 in FIG. 4). ) Is converted into an electrical signal, signal processing is performed by a signal processing circuit (reference numeral 20 in FIG. 4), and a predetermined current is output to the external circuit 40 via the transmission lines L1 and L2, while the internal power supply ( Used for a broadband two-wire transmitter (reference 1 in FIG. 4) that generates an internal power supply # 1).

図1によれば、電流出力回路10は、電流源回路11(第1の電流源回路)と,電流源回路12(第2の電流源回路)と,電流源回路13(第3の電流源回路)と、シャント電圧源回路14(第1のシャント電圧源回路),シャント電圧源回路15(第2のシャント電圧源回路)とを含み構成される。   According to FIG. 1, the current output circuit 10 includes a current source circuit 11 (first current source circuit), a current source circuit 12 (second current source circuit), and a current source circuit 13 (third current source). Circuit), a shunt voltage source circuit 14 (first shunt voltage source circuit), and a shunt voltage source circuit 15 (second shunt voltage source circuit).

電流源回路11は、信号処理回路20から出力される制御電圧(制御信号x)によって制御される電流I1(第1の電流)を生成して電流源回路12へ出力する。電流源回路12(第2の電流源回路)は、電流I1によって制御される電流I2(第2の電流)を生成してシャント電圧源回路14へ出力する。   The current source circuit 11 generates a current I1 (first current) controlled by the control voltage (control signal x) output from the signal processing circuit 20 and outputs the current I1 to the current source circuit 12. The current source circuit 12 (second current source circuit) generates a current I2 (second current) controlled by the current I1 and outputs the current I2 to the shunt voltage source circuit 14.

電流源回路13(第3の電流源回路)は、所定の電圧源により制御される電流I3(第3の電流)と電流源回路12により制御される電流I4(第4の電流)を生成して第1の電流源回路11へ出力する。シャント電圧源回路14(第1のシャント電圧源回路)は、電流I2により内部電源#1を生成し、電流I3と電流I4を消費する。また、シャント電圧源回路15(第2のシャント電圧源回路)は、電流I3により電流源回路12の電源を生成する。   The current source circuit 13 (third current source circuit) generates a current I3 (third current) controlled by a predetermined voltage source and a current I4 (fourth current) controlled by the current source circuit 12. Output to the first current source circuit 11. The shunt voltage source circuit 14 (first shunt voltage source circuit) generates the internal power supply # 1 by the current I2, and consumes the current I3 and the current I4. Further, the shunt voltage source circuit 15 (second shunt voltage source circuit) generates a power source for the current source circuit 12 based on the current I3.

電流出力回路10は、電流源回路11により生成される電流I1と電流源回路12により生成される電流I2とにより、伝送線L1,L2を介して外部回路(図4の符号40)に対し、制御電圧(制御信号x)によって制御される、4〜20[mA]の所定の電流Ioutを出力する。   The current output circuit 10 uses a current I1 generated by the current source circuit 11 and a current I2 generated by the current source circuit 12 to the external circuit (reference numeral 40 in FIG. 4) via the transmission lines L1 and L2. A predetermined current lout of 4 to 20 [mA] controlled by the control voltage (control signal x) is output.

図1において、図5に示す先願の電流出力回路30との構成上の差異は、電流源回路13の構成と内部電源#1への接続形態にあり、特徴的には、電流源回路12により生成される電流I3と電流I4が内部電源#1の電流として消費されることにある。他の構成は、図5と同様である。このため、以下に、説明の重複を回避する意味で電流源回路13の構成に着目して説明する。   1, the difference in configuration from the current output circuit 30 of the prior application shown in FIG. 5 is in the configuration of the current source circuit 13 and the connection form to the internal power supply # 1, and the current source circuit 12 is characteristically different. The current I3 and the current I4 generated by the above are consumed as the current of the internal power supply # 1. Other configurations are the same as those in FIG. For this reason, the following description will focus on the configuration of the current source circuit 13 in order to avoid duplication of explanation.

電流源回路13は、演算増幅器OP3と、P型MOS−FETからなる電圧電流変換素子M3と、電圧源になるツェナーダイオード16と、分圧抵抗R2,R4と、定電流ダイオードD1と、電流検出抵抗R5と、を含み構成される。   The current source circuit 13 includes an operational amplifier OP3, a voltage-current conversion element M3 composed of a P-type MOS-FET, a Zener diode 16 serving as a voltage source, voltage dividing resistors R2 and R4, a constant current diode D1, and a current detection. And a resistor R5.

演算増幅器OP3には、非反転入力端子(+)と負極電源端子VN間にツェナーダイオード16による電圧源が印加される。電圧電流変換素子M3は、ゲート端が演算増幅器OP3の出力端子に、ソース端が演算増幅器OP3の反転入力端子(−)に、ドレイン端がシャント電圧源回路15にそれぞれ接続され、ドレイン端を介して電流I3を生成してシャント電圧源回路15に出力する。なお、電流検出抵抗R5は、電圧電流変換素子M3のソース端と負極電源端子VNとの間にシャント電圧源回路14を介して接続され、電圧電流変換素子M3のソース端との接続点が演算増幅器OP3の反転入力端子(−)に接続される。   A voltage source by a Zener diode 16 is applied to the operational amplifier OP3 between the non-inverting input terminal (+) and the negative power supply terminal VN. The voltage-current conversion element M3 has a gate terminal connected to the output terminal of the operational amplifier OP3, a source terminal connected to the inverting input terminal (−) of the operational amplifier OP3, a drain terminal connected to the shunt voltage source circuit 15, and via the drain terminal. Current I3 is generated and output to the shunt voltage source circuit 15. The current detection resistor R5 is connected between the source end of the voltage / current conversion element M3 and the negative power supply terminal VN via the shunt voltage source circuit 14, and the connection point between the voltage detection element R3 and the source end of the voltage / current conversion element M3 is calculated. It is connected to the inverting input terminal (−) of the amplifier OP3.

演算増幅器OP3は、電流検出抵抗R5の両端の電圧をツェナーダイオード16等の電圧源を抵抗R1,R2で分圧して得られる電圧Yになるように、電圧電流変換素子M3のゲート電圧を制御する。この動作により、電圧Y/電流検出抵抗R5で求まる電流I3が流れ、電流源回路12の演算増幅器OP2とツェナーダイオード14とを駆動することができる。   The operational amplifier OP3 controls the gate voltage of the voltage-current conversion element M3 so that the voltage across the current detection resistor R5 becomes a voltage Y obtained by dividing the voltage source such as the Zener diode 16 with the resistors R1 and R2. . By this operation, the current I3 obtained by the voltage Y / current detection resistor R5 flows, and the operational amplifier OP2 and the Zener diode 14 of the current source circuit 12 can be driven.

このとき、定電流ダイオードD1は、演算増幅器OP3や電圧源であるツェナーダイオード16を駆動する電流I4を流す。この定電流ダイオードD1を電流源回路12の電流検出抵抗R3に接続することにより、電流I4は、電流源回路12により制御される電流I2の一部となる。したがって、定電流ダイオードD1の電流精度や電流変動は、演算増幅器OP3によって吸収され、したがって出力電流Ioutの誤差にはならない。このように、電流I3,I4を内部電源#1の電流として消費できるため、2線式伝送器1の回路全体としての電力効率が向上する。   At this time, the constant current diode D1 passes a current I4 that drives the operational amplifier OP3 and the Zener diode 16 that is a voltage source. By connecting the constant current diode D1 to the current detection resistor R3 of the current source circuit 12, the current I4 becomes a part of the current I2 controlled by the current source circuit 12. Therefore, the current accuracy and current fluctuation of the constant current diode D1 are absorbed by the operational amplifier OP3, and therefore do not become an error of the output current Iout. Thus, since the currents I3 and I4 can be consumed as the current of the internal power supply # 1, the power efficiency of the entire circuit of the two-wire transmitter 1 is improved.

(実施形態の動作)
以下、本実施形態にかかる電流出力回路10の動作について詳細に説明する。まず、センサ60は、圧力や温度等の物理量を電気信号に変換して信号処理回路20へ出力する。信号処理回路20は、センサ60から出力される電気信号に対して、例えば、歪み補正やノイズ除去等の所定の処理を施して制御信号x(制御電圧)を生成し、電流源回路11を構成する演算増幅器OP1の非反転入力端子(+)と負極電源端子VN端子間に印加する。
(Operation of the embodiment)
Hereinafter, the operation of the current output circuit 10 according to the present embodiment will be described in detail. First, the sensor 60 converts physical quantities such as pressure and temperature into electrical signals and outputs them to the signal processing circuit 20. The signal processing circuit 20 performs a predetermined process such as distortion correction and noise removal on the electrical signal output from the sensor 60 to generate a control signal x (control voltage), and configures the current source circuit 11. This is applied between the non-inverting input terminal (+) and the negative power supply terminal VN terminal of the operational amplifier OP1.

電流源回路11は、この制御電圧(制御信号x)によって制御される電流I1を生成する。すなわち、演算増幅器OP1は、電圧電流変換素子M1のゲート・ソース間の電圧を制御して、電流検出抵抗R1の両端に印加される電圧と制御電圧xとが同じ電圧値になるように制御する。結果的に、制御電圧(制御信号x)が電流I1に変換され、その電流I1は、電圧電流変換素子M1のドレイン端を介し、電流源回路12(演算増幅器OP2の非反転端子および電圧電流変換抵抗R7の一端)へ出力される。   The current source circuit 11 generates a current I1 controlled by this control voltage (control signal x). That is, the operational amplifier OP1 controls the voltage between the gate and the source of the voltage-current conversion element M1 so that the voltage applied to both ends of the current detection resistor R1 and the control voltage x have the same voltage value. . As a result, the control voltage (control signal x) is converted into a current I1, and the current I1 passes through the drain terminal of the voltage-current conversion element M1, and the current source circuit 12 (the non-inverting terminal of the operational amplifier OP2 and the voltage-current conversion). To one end of the resistor R7.

次に、電流源回路12は、電流源回路11により生成される電流I1によって制御される電流I2を生成する。すなわち、電圧電流変換抵抗R7に電流I1が流れることにより電圧降下が発生して電流I1が再度電圧に変換され、その電圧は、演算増幅器OP2の非反転入力端子(+)と正極電源端子VP間に印加される。そして、このVP基準の電圧により、演算増幅器OP2は、電圧電流変換素子M2のゲート・ソース間電圧を制御し、電流検出抵抗R3の両端に印加される電圧とVP基準の電圧とが同じ電圧値になるように制御する。結果的に、ドレイン端を介して生成した電流I2をシャント電圧源回路14に出力する。シャント電圧源回路14は、この電流I2によりセンサ60と信号処理回路20を駆動する内部電源#1を生成する。   Next, the current source circuit 12 generates a current I2 controlled by the current I1 generated by the current source circuit 11. That is, a voltage drop occurs due to the current I1 flowing through the voltage-current conversion resistor R7, and the current I1 is converted into a voltage again. The voltage is between the non-inverting input terminal (+) of the operational amplifier OP2 and the positive power supply terminal VP. To be applied. The operational amplifier OP2 controls the voltage between the gate and the source of the voltage / current conversion element M2 based on the VP reference voltage, and the voltage applied to both ends of the current detection resistor R3 and the VP reference voltage have the same voltage value. Control to become. As a result, the current I2 generated through the drain terminal is output to the shunt voltage source circuit 14. The shunt voltage source circuit 14 generates an internal power supply # 1 that drives the sensor 60 and the signal processing circuit 20 by the current I2.

なお、電流源回路12を構成する電圧電流変換素子(P型MOS−FET)の主要なキャリアはホール(正孔)であり、ゲート端に入力される電圧がソース端より低い場合(ゲート・ソース間電圧)、ソースからドレインへ電流が流れるが、その電流は、入力電圧が−側であるほど大きくなり、+側であるほど小さくなり、所定の値で0になる。   The main carrier of the voltage-current conversion element (P-type MOS-FET) constituting the current source circuit 12 is a hole (hole), and the voltage input to the gate end is lower than the source end (gate-source) Current) flows from the source to the drain. The current increases as the input voltage is on the negative side, decreases as the input voltage is on the positive side, and becomes zero at a predetermined value.

次に、電流源回路13を構成する演算増幅器OP3は、電流検出抵抗R5の両端の電圧をツェナーダイオード16等の電圧源を抵抗R1,R2で分圧して得られる電圧Yになるように、電圧電流変換素子M3のゲート電圧を制御する。この動作により、電圧Y/抵抗R5で求まる電流I3が流れ、電流源回路12の演算増幅器OP2とツェナーダイオード14とを駆動する。このとき、定電流ダイオードD1は、演算増幅器OP3や電圧源であるツェナーダイオード16を駆動する電流I4を流す。この定電流ダイオードD1を電流源回路12の電流検出抵抗R3に接続することにより、電流I4は、電流源回路12により制御される電流I2の一部となる。したがって、定電流ダイオードD1の電流変動は演算増幅器OP3により吸収され、したがって、定電流ダイオードD1の精度や電流変動が出力電流Ioutの誤差になることはない。   Next, the operational amplifier OP3 constituting the current source circuit 13 has a voltage so that the voltage at both ends of the current detection resistor R5 becomes a voltage Y obtained by dividing the voltage source such as the Zener diode 16 by the resistors R1 and R2. The gate voltage of the current conversion element M3 is controlled. By this operation, the current I3 obtained by the voltage Y / resistor R5 flows, and the operational amplifier OP2 and the Zener diode 14 of the current source circuit 12 are driven. At this time, the constant current diode D1 passes a current I4 that drives the operational amplifier OP3 and the Zener diode 16 that is a voltage source. By connecting the constant current diode D1 to the current detection resistor R3 of the current source circuit 12, the current I4 becomes a part of the current I2 controlled by the current source circuit 12. Therefore, the current fluctuation of the constant current diode D1 is absorbed by the operational amplifier OP3. Therefore, the accuracy and current fluctuation of the constant current diode D1 do not become an error of the output current Iout.

なお、電流源回路13とシャント電圧源回路15は、電流源回路12の電源を生成する。すなわち、電流源回路13では、演算増幅器OP3の非反転入力端子(+)と正極電源端子VP間に電圧源となるツェナーダイオード16による電圧が印加されており、演算増幅器OP3は、電圧電流変換素子M3のゲート・ソース間電圧を制御することによって、電流検出抵抗R5の両端に印加される電圧が基準電圧と同じ値になるように制御する。結果的に電流I3に変換され、電圧電流変換素子M3のドレイン端を介してシャント電圧源回路15に出力される。シャント電圧源回路15は、この電流I3により電流源回路13の電源を生成する。   The current source circuit 13 and the shunt voltage source circuit 15 generate a power source for the current source circuit 12. That is, in the current source circuit 13, a voltage by the Zener diode 16 serving as a voltage source is applied between the non-inverting input terminal (+) of the operational amplifier OP3 and the positive power supply terminal VP, and the operational amplifier OP3 has a voltage-current conversion element. By controlling the gate-source voltage of M3, the voltage applied to both ends of the current detection resistor R5 is controlled to be the same value as the reference voltage. As a result, the current is converted into I3 and output to the shunt voltage source circuit 15 through the drain terminal of the voltage-current conversion element M3. The shunt voltage source circuit 15 generates a power source for the current source circuit 13 based on the current I3.

最終的に、電流出力回路10は、電流源回路11により生成される電流I1と、電流源回路12により生成される電流I2と、電流源回路13により生成される電流I3とにより、制御電圧(制御信号x)によって制御される4〜20[mA]の電流Ioutを生成し、2本の伝送線L1,L2を介してDCS等の外部回路40へ出力するとともに、センサ60と信号処理回路20とを駆動する内部電源#1を生成する。   Finally, the current output circuit 10 generates a control voltage (current voltage I1 generated by the current source circuit 11, current I2 generated by the current source circuit 12, and current I3 generated by the current source circuit 13 by the control voltage ( A current Iout of 4 to 20 [mA] controlled by the control signal x) is generated and output to the external circuit 40 such as DCS via the two transmission lines L1 and L2, and the sensor 60 and the signal processing circuit 20 are output. An internal power supply # 1 is generated to drive.

図2に変形例の構成が示されている。図1に示す実施形態との差異は、定電流回路13を構成する定電流ダイオードD1を、演算増幅器OP3と電圧源であるツェナーダイオード16とを駆動する駆動抵抗R6で代替したことにある。この場合も電流I4の変動は、演算増幅器OP3により吸収されるため、出力電流Ioutの誤差になることはない。   FIG. 2 shows a configuration of a modified example. The difference from the embodiment shown in FIG. 1 is that the constant current diode D1 constituting the constant current circuit 13 is replaced with a drive resistor R6 that drives an operational amplifier OP3 and a Zener diode 16 that is a voltage source. Also in this case, the fluctuation of the current I4 is absorbed by the operational amplifier OP3, so that it does not cause an error of the output current Iout.

(実施形態の効果)
以上説明のように本実施形態にかかる電流出力回路10によれば、電流源回路13により生成される電流I3と、電流源回路12により生成される電流I2の一部であるI4を内部電源#1で消費する構成とすることで、電力効率の向上をはかった電流出力回路10、及び同回路を有する2線式伝送器1を提供することができる。
(Effect of embodiment)
As described above, according to the current output circuit 10 according to the present embodiment, the current I3 generated by the current source circuit 13 and the current I2 generated by the current source circuit 12 are converted into the internal power supply #. By using the configuration of consuming 1, it is possible to provide the current output circuit 10 with improved power efficiency and the two-wire transmitter 1 having the circuit.

また、本実施形態にかかる電流出力回路10によれば、電流源回路11,12を構成する演算増幅器(それぞれOP1,OP2)の負帰環ループの内部に、カレントミラー回路のような低い局を持つ要素が含まれない(応答の遅い要素を除外した)ため、帯域制限の必要がなくなり、したがって広帯域化が可能な2線式伝送器1を提供することができる。また、広帯域化により、交流的な入力インピーダンスが向上し、入力インピーダンスが向上することでノイズ耐性が向上するといった派生的効果も得られる。なお、電流を出力しながら内部電源を生成することも可能である。   Further, according to the current output circuit 10 according to the present embodiment, a low station such as a current mirror circuit is provided in the negative feedback loop of the operational amplifiers (OP1 and OP2 respectively) constituting the current source circuits 11 and 12. Since no elements are included (excluding elements with slow response), there is no need for band limitation, and therefore a two-wire transmitter 1 capable of widening the bandwidth can be provided. In addition, the wideband increases the AC input impedance, and the derivative effect that the noise resistance is improved by improving the input impedance is also obtained. It is also possible to generate an internal power supply while outputting current.

以上、本発明の好ましい実施形態について詳述したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although preferred embodiment of this invention was explained in full detail, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiments. Further, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

1…広帯域2線式伝送器、10…電流出力回路、11…第1の電流源回路、12…第2の電流源回路、13…第3の電流源回路、14…第1のシャント電圧源回路、15…第2のシャント電圧源回路、16…ツェナーダイオード、20…信号処理回路、40…外部回路、60…センサ、OP1,OP2,OP3…演算増幅回路、R2,R4…分圧抵抗、R1,R3,R5…電流検出抵抗、R6…駆動抵抗、R7…電圧電流変換抵抗、D1…定電流ダイオード、M1,M2,M3…電圧電流変換素子(MOS−FET)   DESCRIPTION OF SYMBOLS 1 ... Broadband 2-wire transmitter, 10 ... Current output circuit, 11 ... 1st current source circuit, 12 ... 2nd current source circuit, 13 ... 3rd current source circuit, 14 ... 1st shunt voltage source Circuit 15, second shunt voltage source circuit 16, Zener diode 20, signal processing circuit 40, external circuit 60, sensor, OP 1, OP 2, OP 3, operational amplifier, R 2, R 4, voltage dividing resistor, R1, R3, R5 ... current detection resistor, R6 ... drive resistor, R7 ... voltage-current conversion resistor, D1 ... constant current diode, M1, M2, M3 ... voltage-current conversion element (MOS-FET)

Claims (3)

外部回路から2本の伝送線を介して電源の供給を受け、センサにより測定される物理量を電気信号に変換して信号処理回路で信号処理し、前記伝送線を介して前記外部回路に所定の電流を出力しながら内部電源を生成する2線式伝送器の電流出力回路であって、
前記信号処理回路から出力される制御電圧によって制御される第1の電流を出力する第1の電流源回路と、
前記第1の電流によって制御される第2の電流を出力する第2の電流源回路と、
前記第2の電流により前記内部電源を生成する第1のシャント電圧源回路と、
所定の電圧源により制御される第3の電流と前記第2の電流源回路により制御される第4の電流を生成する第3の電流源回路と、
前記第3の電流により前記第2の電流源回路の電源を生成する第2のシャント電圧源回路と、を有し、
前記第3の電流と前記第4の電流を前記内部電源で消費するとともに、前記第1の電流と前記第2の電流とにより、前記外部回路に前記伝送線を介して前記制御電圧によって制御される前記所定の電流を出力することを特徴とする電流出力回路。
Power is supplied from an external circuit via two transmission lines, a physical quantity measured by a sensor is converted into an electric signal, signal processing is performed by a signal processing circuit, and a predetermined amount is supplied to the external circuit via the transmission line. A current output circuit for a two-wire transmitter that generates an internal power supply while outputting current,
A first current source circuit that outputs a first current controlled by a control voltage output from the signal processing circuit;
A second current source circuit for outputting a second current controlled by the first current;
A first shunt voltage source circuit for generating the internal power supply by the second current;
A third current source circuit that generates a third current controlled by a predetermined voltage source and a fourth current controlled by the second current source circuit;
A second shunt voltage source circuit for generating a power source for the second current source circuit by the third current,
The third current and the fourth current are consumed by the internal power source, and controlled by the control voltage via the transmission line to the external circuit by the first current and the second current. A current output circuit for outputting the predetermined current.
前記第3の電流源回路は、
非反転入力端子と前記2本の伝送線のうちの一方の負極電源端子間に所定の電圧が印加される演算増幅器と、
ゲート端が前記演算増幅器の出力端子に、ソース端が前記演算増幅器の反転入力端子に、ドレイン端が前記第2のシャント電圧源回路にそれぞれ接続され、前記ドレイン端を介して前記第3の電流を出力する第2の極性を有する電圧電流変換素子と、
前記電圧電流変換素子のソース端と前記負極電源端子との間に前記第1のシャント電圧源を介して接続され、前記電圧電流変換素子のソース端との接続点が前記演算増幅器の反転入力端子に接続される第1の電流検出抵抗と、
前記第2の電流源回路が有する第2の電流検出抵抗に接続され、前記第4の電流を流して前記演算増幅器と前記電圧源とを駆動する定電流ダイオードまたは駆動抵抗とを含み、
前記演算増幅器は、
前記電圧電流変換素子のゲート・ソース間電圧を制御して前記第1の電流検出抵抗に印加される電圧と前記所定の電圧源の電圧とが同じになるように制御して第1の電圧電流変換素子のドレイン端に前記第3の電流を出力することを特徴とする請求項1記載の電流出力回路。
The third current source circuit includes:
An operational amplifier in which a predetermined voltage is applied between a non-inverting input terminal and a negative power supply terminal of one of the two transmission lines;
The gate terminal is connected to the output terminal of the operational amplifier, the source terminal is connected to the inverting input terminal of the operational amplifier, the drain terminal is connected to the second shunt voltage source circuit, and the third current is connected via the drain terminal. A voltage-current conversion element having a second polarity for outputting
The source terminal of the voltage-current conversion element and the negative power supply terminal are connected via the first shunt voltage source, and the connection point with the source terminal of the voltage-current conversion element is the inverting input terminal of the operational amplifier A first current sensing resistor connected to
A constant current diode or a driving resistor connected to a second current detection resistor included in the second current source circuit and configured to flow the fourth current and drive the operational amplifier and the voltage source;
The operational amplifier is
The voltage between the gate and the source of the voltage-current conversion element is controlled so that the voltage applied to the first current detection resistor is the same as the voltage of the predetermined voltage source. The current output circuit according to claim 1, wherein the third current is output to a drain terminal of the conversion element.
センサと、
信号処理回路と、
外部回路から2本の伝送線がそれぞれ接続される正極電源端子と負極電源端子を介して電源の供給を受け、前記センサにより測定される物理量を電気信号に変換して前記信号処理回路で信号処理し、前記伝送線を介して前記外部回路に所定の電流を出力する請求項1または請求項2記載の電流出力回路と、
を有することを特徴とする広帯域2線式伝送器。
A sensor,
A signal processing circuit;
Power is supplied from a positive power supply terminal and a negative power supply terminal to which two transmission lines are respectively connected from an external circuit, and a physical quantity measured by the sensor is converted into an electrical signal, and signal processing is performed by the signal processing circuit. And a current output circuit according to claim 1 or 2, wherein a predetermined current is output to the external circuit via the transmission line;
A broadband two-wire transmitter characterized by comprising:
JP2013191738A 2013-09-17 2013-09-17 Current output circuit, and broadband two-wire transmitter having the same circuit Active JP6229831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191738A JP6229831B2 (en) 2013-09-17 2013-09-17 Current output circuit, and broadband two-wire transmitter having the same circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191738A JP6229831B2 (en) 2013-09-17 2013-09-17 Current output circuit, and broadband two-wire transmitter having the same circuit

Publications (2)

Publication Number Publication Date
JP2015060267A true JP2015060267A (en) 2015-03-30
JP6229831B2 JP6229831B2 (en) 2017-11-15

Family

ID=52817774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191738A Active JP6229831B2 (en) 2013-09-17 2013-09-17 Current output circuit, and broadband two-wire transmitter having the same circuit

Country Status (1)

Country Link
JP (1) JP6229831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557553A1 (en) 2018-04-19 2019-10-23 Yokogawa Electric Corporation Transmitter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250490A (en) * 1979-01-19 1981-02-10 Rosemount Inc. Two wire transmitter for converting a varying signal from a remote reactance sensor to a DC current signal
JPS5688596A (en) * 1979-12-21 1981-07-18 Hitachi Ltd Twoowire transmitter
JPS6139199A (en) * 1983-11-11 1986-02-25 ロ−ズマウント・インコ−ポレ−テツド Convertor circuit for converting capacitance to dc current signal
JPH0386489U (en) * 1989-12-25 1991-09-02
JPH08329380A (en) * 1995-05-24 1996-12-13 Endress & Hauser Gmbh & Co Device for signal transmission between transmitting station and receiving station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250490A (en) * 1979-01-19 1981-02-10 Rosemount Inc. Two wire transmitter for converting a varying signal from a remote reactance sensor to a DC current signal
JPS5688596A (en) * 1979-12-21 1981-07-18 Hitachi Ltd Twoowire transmitter
JPS6139199A (en) * 1983-11-11 1986-02-25 ロ−ズマウント・インコ−ポレ−テツド Convertor circuit for converting capacitance to dc current signal
JPH0386489U (en) * 1989-12-25 1991-09-02
JPH08329380A (en) * 1995-05-24 1996-12-13 Endress & Hauser Gmbh & Co Device for signal transmission between transmitting station and receiving station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557553A1 (en) 2018-04-19 2019-10-23 Yokogawa Electric Corporation Transmitter
US10735830B2 (en) 2018-04-19 2020-08-04 Yokogawa Electric Corporation Transmitter

Also Published As

Publication number Publication date
JP6229831B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP5673750B2 (en) Current output circuit, and broadband two-wire transmitter having the same circuit
CN106557106B (en) For the compensation network of adjuster circuit
TW200625801A (en) Power supply driver circuit
CN112306131A (en) Reference voltage circuit
RU2404527C2 (en) Interface and method of bus loop supply
JP6229831B2 (en) Current output circuit, and broadband two-wire transmitter having the same circuit
US20060176084A1 (en) Amplitude adjusting circuit
CN205103699U (en) Electric circuit
JPS58149595A (en) Current transmitter
KR20150019000A (en) Reference current generating circuit and method for driving the same
US8704504B2 (en) Power supply circuit comprising detection circuit including reference voltage circuits as reference voltage generation circuits
CN110618725B (en) Circuit arrangement for generating a regulated supply low voltage
CN209821691U (en) Direct current power supply circuit
JP2014099734A (en) Two-wire transmitter startup circuit
JP5820303B2 (en) 2-wire electromagnetic flow meter
US9654074B2 (en) Variable gain amplifier circuit, controller of main amplifier and associated control method
JP2009145277A (en) Current detection circuit
CN106981977B (en) Current ripple suppression system and power supply system
JP5040520B2 (en) 2-wire transmitter
CN117420874A (en) Power supply circuit and control method thereof
JP4830058B2 (en) 2-wire transmitter
KR20080016122A (en) Cmos temperature sensor
JP2013186120A (en) Humidity detector
JP2023142058A (en) Two-wire type transmitter
JP2005347785A (en) Signal generating circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6229831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250