JP2015060060A - Optical unit - Google Patents

Optical unit Download PDF

Info

Publication number
JP2015060060A
JP2015060060A JP2013193339A JP2013193339A JP2015060060A JP 2015060060 A JP2015060060 A JP 2015060060A JP 2013193339 A JP2013193339 A JP 2013193339A JP 2013193339 A JP2013193339 A JP 2013193339A JP 2015060060 A JP2015060060 A JP 2015060060A
Authority
JP
Japan
Prior art keywords
optical
shaft member
pole
holding member
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013193339A
Other languages
Japanese (ja)
Other versions
JP6109023B2 (en
Inventor
誠二 岩▲崎▼
Seiji Iwasaki
誠二 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2013193339A priority Critical patent/JP6109023B2/en
Publication of JP2015060060A publication Critical patent/JP2015060060A/en
Application granted granted Critical
Publication of JP6109023B2 publication Critical patent/JP6109023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure And Mechanism Of Cameras (AREA)
  • Endoscopes (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical unit capable of realizing a variety of optical characteristics with a simple configuration.SOLUTION: An optical holding member 53 is pivotally attached to a shaft member 52 so that a movable lens 35 is displaceable between an insertion position of inserting the movable lens 35 on an optical path of an imaging optical system 30 and a retreat position of retreating the movable lens 35 from the optical path in response to rotation of the shaft member 52, and so that the movable lens 35 is displaceable between a progress position and a backward position along an optical axis O of the optical path. First and second electromagnetic drive sources 54 and 55 are respectively arranged at positions offset to one side and the other side in an axial center direction from a peak of a magnetic field generated by the shaft member 52 so as to be able to generate magnetic fields interfering with the magnetic field of the shaft member 52.

Description

本発明は、撮像光学系等の光路に対して光学部材を挿脱させる光学ユニットに関する。   The present invention relates to an optical unit that allows an optical member to be inserted into and removed from an optical path such as an imaging optical system.

従来、小型の撮像装置を挿入部の先端に内蔵した内視鏡(電子内視鏡)や、小型の撮像装置を内蔵した携帯機器等が周知である。近年、これら電子内視鏡や携帯機器等の高性能化に伴い、この種の撮像装置を構成する光学系についても、フォーカス機能や可変絞り機能等を採用することへの要求が高まっている。   2. Description of the Related Art Conventionally, an endoscope (electronic endoscope) in which a small imaging device is built in the distal end of an insertion portion, a portable device in which a small imaging device is built in, and the like are well known. In recent years, with the improvement in performance of these electronic endoscopes, portable devices, etc., there is an increasing demand for adopting a focus function, a variable aperture function, and the like for an optical system constituting this type of imaging apparatus.

このような要求に対し、撮像装置の光学系の光路上にレンズや絞り等の光学部材を挿脱させるための光学ユニットについて各種提案されている。例えば、特許文献1には、光調節手段を回動可能に支持する回転軸部材を着磁し、この回転軸部材を電磁駆動源から発生する磁力によって回転させることにより、光調節手段を、光学開口(光路)から退避した第1の静止位置と、光学開口に重なる第2の静止位置とに相互に移動させる光調節装置(光学ユニット)が開示されている。   In response to such demands, various optical units have been proposed for inserting and removing optical members such as lenses and stops on the optical path of the optical system of the imaging apparatus. For example, in Patent Document 1, a rotating shaft member that rotatably supports the light adjusting unit is magnetized, and the rotating shaft member is rotated by a magnetic force generated from an electromagnetic drive source, whereby the light adjusting unit is optically There is disclosed a light adjusting device (optical unit) that moves between a first stationary position retracted from an opening (optical path) and a second stationary position overlapping the optical aperture.

特開2012−123037号公報JP 2012-123037 A

しかしながら、上述の特許文献1に開示された光学ユニットは、光路上に光学部材を挿入した状態と、光路から光学部材を退避させた状態と、の2種類の光学特性しか得ることができず、更なる機能性の向上が求められていた。   However, the optical unit disclosed in the above-mentioned Patent Document 1 can obtain only two types of optical characteristics, that is, a state where the optical member is inserted on the optical path and a state where the optical member is retracted from the optical path. There was a need for further improvements in functionality.

本発明は上記事情に鑑みてなされたもので、簡単な構成により、バリエーションに富んだ光学特性を実現することができる光学ユニットを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical unit capable of realizing a variety of optical characteristics with a simple configuration.

本発明の一態様による光学ユニットは、軸対象に着磁された永久磁石からなる軸部材と、前記軸部材を軸心周りに回動可能且つ軸心方向に進退移動可能に保持する軸保持部材と、前記軸部材に軸着され、前記軸部材の回動に伴って光学系の光路上に光学部材を挿入する挿入位置と前記光路から前記光学部材を退避させる退避位置とに変位可能であり、且つ、前記軸部材の進退移動に伴って前記光学部材を前記光路の光軸に沿って進出させる進出位置と前記光学部材を前記光路の光軸に沿って後退させる後退位置とに変位可能な光学保持部材と、前記軸部材が形成する磁場のピークよりも軸心方向の一側にオフセットした位置において当該軸部材の磁場と干渉する磁場を発生可能な電磁石を有する第1の電磁駆動源と、前記軸部材が形成する前記磁場のピークよりも軸心方向の他側にオフセットした位置において当該軸部材の磁場と干渉する磁場を発生可能な電磁石を有する第2の電磁駆動源と、を備えたものである。   An optical unit according to an aspect of the present invention includes a shaft member made of a permanent magnet magnetized on a shaft object, and a shaft holding member that holds the shaft member so as to be rotatable about an axis and movable back and forth in the axial direction. And can be displaced between an insertion position for inserting the optical member on the optical path of the optical system and a retreat position for retracting the optical member from the optical path as the shaft member rotates. In addition, as the shaft member moves forward and backward, the optical member can be displaced between an advance position where the optical member advances along the optical axis of the optical path and a retract position where the optical member retracts along the optical axis of the optical path. An optical holding member, and a first electromagnetic drive source having an electromagnet capable of generating a magnetic field that interferes with the magnetic field of the shaft member at a position offset to one side in the axial direction from the peak of the magnetic field formed by the shaft member Before the shaft member is formed A second electromagnetic drive source having an electromagnet capable of generating a magnetic field that interferes with the magnetic field of the shaft member at a position offset to the other side in the axial direction than the peak of the magnetic field, but with a.

本発明の光学ユニットによれば、簡単な構成により、バリエーションに富んだ光学特性を実現することができる。   According to the optical unit of the present invention, a variety of optical characteristics can be realized with a simple configuration.

本発明の第1の実施形態に係わり、内視鏡の構成を示す斜視図The perspective view which concerns on the 1st Embodiment of this invention and shows the structure of an endoscope. 同上、挿入部の先端部分の説明図Same as above, explanatory view of the tip of the insertion part 同上、撮像装置の要部断面図Same as above, main part sectional view of the imaging device 同上、光学ユニットの分解斜視図Same as above, exploded perspective view of optical unit 同上、光学ユニットの斜視図Same as above, perspective view of optical unit 同上、第1,第2の電磁駆動源の平面図Same as above, top view of first and second electromagnetic drive sources 同上、撮像光学系の光路上にレンズを挿入した状態の光学ユニットを第1の電磁駆動源側から示す平面図The top view which shows the optical unit of the state which inserted the lens on the optical path of an imaging optical system from the 1st electromagnetic drive source side same as the above. 同上、撮像光学系の光路上にレンズを挿入した状態の光学ユニットを第2の電磁駆動源側から示す平面図The same as above, the top view which shows the optical unit of the state which inserted the lens on the optical path of an imaging optical system from the 2nd electromagnetic drive source side 同上、撮像光学系からレンズを退避させた状態の光学ユニットを第1の電磁駆動源側から示す平面図The top view which shows the optical unit of the state which retracted the lens from the imaging optical system from the 1st electromagnetic drive source side same as the above. 同上、撮像光学系からレンズを退避させた状態の光学ユニットを第2の電磁駆動源側から示す平面図The same as above, the top view which shows the optical unit of the state which retracted the lens from the imaging optical system from the 2nd electromagnetic drive source side 同上、撮像光学系の光路上にレンズを挿入した状態の光学ユニットの内部構造を示す平面図As above, a plan view showing the internal structure of the optical unit with a lens inserted in the optical path of the imaging optical system 同上、撮像光学系の光路からレンズを退避させた状態の光学ユニットの内部構造を示す平面図As above, a plan view showing the internal structure of the optical unit with the lens retracted from the optical path of the imaging optical system 同上、撮像光学系の光路上の挿入位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを図7のA−A線に沿って示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and the retracted position in the optical axis direction along the line AA in FIG. 同上、撮像光学系の光路からの退避位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを図9のB−B線に沿って示す要部断面図The main part sectional view showing the optical unit in a state where the lens is disposed at the retracted position from the optical path of the imaging optical system and at the retracted position in the optical axis direction along the line BB in FIG. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを図7のA−A線に沿って示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and the advance position in the optical axis direction along the line AA in FIG. 同上、撮像光学系の光路からの退避位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを図9のB−B線に沿って示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the retracted position from the optical path of the imaging optical system and at the advanced position in the optical axis direction along the line BB in FIG. 同上、軸部材及び電磁石で発生する磁場の関係を示す説明図Same as above, explanatory diagram showing the relationship between the magnetic field generated by the shaft member and the electromagnet 同上、第1の電磁駆動源の電磁石と軸部材との間に引力が作用しているときの説明図The same as above, explanatory drawing when attractive force is acting between the electromagnet of the first electromagnetic drive source and the shaft member 同上、第2の電磁駆動源の電磁石と軸部材との間に引力が作用しているときの説明図The same as above, explanatory drawing when attractive force is acting between the electromagnet of the second electromagnetic drive source and the shaft member 同上、電磁駆動源に供給される駆動電流の一例について説明するタイムチャートSame as above, time chart explaining an example of drive current supplied to electromagnetic drive source 本発明の第2の実施形態に係わり、光学ユニットの分解斜視図An exploded perspective view of an optical unit according to the second embodiment of the present invention. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の第1の中途位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図The top view which shows the internal structure of the optical unit of the state which has arrange | positioned the lens in the insertion position on the optical path of an imaging optical system, and the 1st middle position of an optical axis direction as above. 同上、撮像光学系の光路からの退避位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図As above, a plan view showing the internal structure of the optical unit in a state in which a lens is disposed at a retracted position from the optical path of the imaging optical system. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の第2の中途位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図The top view which shows the internal structure of the optical unit of the state which has arrange | positioned the lens in the insertion position on the optical path of an imaging optical system, and the 2nd halfway position of an optical axis direction as above. 同上、撮像光学系の光路上の退避位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the retracted position on the optical path of the imaging optical system and at the retracted position in the optical axis direction. 同上、撮像光学系の光路からの挿入位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position from the optical path of the imaging optical system and at the retracted position in the optical axis direction. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の第1の中途位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and the first intermediate position in the optical axis direction. 同上、撮像光学系の光路からの退避位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the retracted position from the optical path of the imaging optical system and at the advanced position in the optical axis direction. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and the advance position in the optical axis direction. 同上、撮像光学系の光路上の挿入位置且つ光軸方向の第2の中途位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and at the second middle position in the optical axis direction. 同上、電磁駆動源に供給される駆動電流の一例について説明するタイムチャートSame as above, time chart explaining an example of drive current supplied to electromagnetic drive source 本発明の第3の実施形態に係わり、光学ユニットのハウジング内の構成を示す分解斜視図FIG. 6 is an exploded perspective view showing a configuration inside the housing of the optical unit according to the third embodiment of the present invention. 同上、撮像光学系の光路上にフィルタを挿入した状態の光学ユニットの内部構造を示す平面図Same as above, a plan view showing the internal structure of the optical unit with a filter inserted in the optical path of the imaging optical system 同上、撮像光学系の光路からフィルタを退避させた状態の光学ユニットの内部構造を示す平面図As above, a plan view showing the internal structure of the optical unit in a state where the filter is retracted from the optical path of the imaging optical system. 同上、撮像光学系の光路上にフィルタを挿入し、且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where a filter is inserted in the optical path of the imaging optical system and a lens is disposed at a retracted position in the optical axis direction. 同上、撮像光学系の光路からフィルタを退避させ、且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図The main part sectional view showing the optical unit in a state where the filter is retracted from the optical path of the imaging optical system and the lens is disposed at the retracted position in the optical axis direction. 同上、撮像光学系の光路からフィルタを退避させ、且つ光軸方向の進出位置にレンズを配置した状態を示す要部断面図The main part sectional view showing the state where the filter is retracted from the optical path of the imaging optical system and the lens is arranged at the advanced position in the optical axis direction. 同上、撮像光学系の光路上にフィルタを挿入し、且つ光軸方向の進出位置にレンズを配置した状態を示す要部断面図Same as above, a cross-sectional view of the principal part showing a state in which a filter is inserted in the optical path of the imaging optical system and a lens is disposed at the advanced position in the optical axis direction.

以下、図面を参照して本発明の形態を説明する。図1乃至図20は本発明の第1の実施形態に係わり、図1は内視鏡の構成を示す斜視図、図2は挿入部の先端部分の説明図、図3は撮像装置の要部断面図、図4は光学ユニットの分解斜視図、図5は光学ユニットの斜視図、図6は第1,第2の電磁駆動源の平面図、図7は撮像光学系の光路上にレンズを挿入した状態の光学ユニットを第1の電磁駆動源側から示す平面図、図8は撮像光学系の光路上にレンズを挿入した状態の光学ユニットを第2の電磁駆動源側から示す平面図、図9は撮像光学系からレンズを退避させた状態の光学ユニットを第1の電磁駆動源側から示す平面図、図10は撮像光学系からレンズを退避させた状態の光学ユニットを第2の電磁駆動源側から示す平面図、図11は撮像光学系の光路上にレンズを挿入した状態の光学ユニットの内部構造を示す平面図、図12は撮像光学系の光路からレンズを退避させた状態の光学ユニットの内部構造を示す平面図、図13は撮像光学系の光路上の挿入位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを図7のA−A線に沿って示す要部断面図、図14は撮像光学系の光路からの退避位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを図9のB−B線に沿って示す要部断面図、図15は撮像光学系の光路上の挿入位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを図7のA−A線に沿って示す要部断面図、図16は撮像光学系の光路からの退避位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを図9のB−B線に沿って示す要部断面図、図17は軸部材及び電磁石で発生する磁場の関係を示す説明図、図18は第1の電磁駆動源の電磁石と軸部材との間に引力が作用しているときの説明図、図19は第2の電磁駆動源の電磁石と軸部材との間に引力が作用しているときの説明図、図20は電磁駆動源に供給される駆動電流の一例について説明するタイムチャートである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 20 relate to the first embodiment of the present invention, FIG. 1 is a perspective view showing the configuration of the endoscope, FIG. 2 is an explanatory view of the distal end portion of the insertion portion, and FIG. 4 is an exploded perspective view of the optical unit, FIG. 5 is a perspective view of the optical unit, FIG. 6 is a plan view of the first and second electromagnetic drive sources, and FIG. 7 is a lens on the optical path of the imaging optical system. FIG. 8 is a plan view showing the optical unit in the inserted state from the first electromagnetic drive source side, and FIG. 8 is a plan view showing the optical unit in a state where a lens is inserted on the optical path of the imaging optical system from the second electromagnetic drive source side. FIG. 9 is a plan view showing the optical unit with the lens retracted from the imaging optical system from the first electromagnetic drive source side, and FIG. 10 shows the second electromagnetic unit with the lens retracted from the imaging optical system. FIG. 11 is a plan view from the drive source side, and FIG. 11 shows a state in which a lens is inserted on the optical path of the imaging optical system. 12 is a plan view showing the internal structure of the optical unit, FIG. 12 is a plan view showing the internal structure of the optical unit with the lens retracted from the optical path of the imaging optical system, and FIG. 13 is an insertion position and light on the optical path of the imaging optical system. FIG. 14 is a cross-sectional view of the main part showing the optical unit in a state where the lens is arranged at the retracted position in the axial direction along the line AA in FIG. 7, and FIG. 14 shows the retracted position from the optical path of the imaging optical system and the retracted position in the optical axis direction. FIG. 15 is a cross-sectional view of the main part showing the optical unit in the state where the lens is arranged along the line BB in FIG. 9, and FIG. 15 shows the lens arranged at the insertion position on the optical path of the imaging optical system and at the advance position in the optical axis direction. FIG. 16 is a cross-sectional view of the principal part showing the optical unit in the state along line AA in FIG. 7, and FIG. 16 shows the optical unit in a state in which the lens is disposed at the retracted position from the optical path of the imaging optical system and at the advanced position in the optical axis direction. FIG. 9 is a cross-sectional view of the main part taken along line BB in FIG. 7 is an explanatory view showing the relationship between the magnetic field generated by the shaft member and the electromagnet, FIG. 18 is an explanatory view when an attractive force is acting between the electromagnet of the first electromagnetic drive source and the shaft member, and FIG. FIG. 20 is an explanatory diagram when an attractive force is acting between the electromagnet of the electromagnetic drive source 2 and the shaft member, and FIG. 20 is a time chart for explaining an example of a drive current supplied to the electromagnetic drive source.

図1に示す内視鏡1は、被検体内に挿入可能な長尺な挿入部2と、挿入部2の基端側に連設された操作部3と、操作部3の側部から延出されたユニバーサルコード4と、を有して構成されている。   An endoscope 1 shown in FIG. 1 includes a long insertion portion 2 that can be inserted into a subject, an operation portion 3 that is connected to the proximal end side of the insertion portion 2, and a side portion of the operation portion 3. And a universal cord 4 that is provided.

操作部3は操作把持部を構成する操作部本体10を有し、この操作部本体10の先端側が、折れ止め部11を介して、挿入部2の基端側に接続されている。また、操作部本体10の先端寄りには、挿入部2内に処置具を挿通させる管路である処置具挿通チャンネル28(図2参照)の基端側の開口部となる処置具挿通口13が設けられている。一方、操作部本体10の基端寄りには、アングルレバー14が設けられるとともに、各種内視鏡機能のスイッチ類15が設けられている。   The operation unit 3 includes an operation unit main body 10 constituting an operation gripping unit, and a distal end side of the operation unit main body 10 is connected to a proximal end side of the insertion unit 2 via a bend preventing unit 11. Further, near the distal end of the operation unit main body 10, the treatment instrument insertion port 13 serving as an opening on the proximal end side of the treatment instrument insertion channel 28 (see FIG. 2), which is a conduit through which the treatment instrument is inserted into the insertion section 2. Is provided. On the other hand, an angle lever 14 and switches 15 for various endoscope functions are provided near the proximal end of the operation unit main body 10.

ユニバーサルコード4の一端側は、折れ止め部16を介して操作部本体10の側部に連設されている。一方、ユニバーサルコード4の他端側である延出端には、スコープコネクタ部20が設けられている。このスコープコネクタ部20の端部には、図示しない光源装置に着脱自在な光源側コネクタ21が設けられている。光源側コネクタ21には、挿入部2側から延在するライトガイド(図示せず)の基端部が突設されるとともに、電気接点22が配設されており、光源側コネクタ21が光源装置に接続されると、ライドガイドが光源装置内の光源と光学的に接続されるとともに、電気接点22が光源装置内の電源と電気的に接続される。また、スコープコネクタ部20の側部には、図示しないビデオプロセッサに着脱自在な電気コネクタ23が設けられている。   One end side of the universal cord 4 is connected to the side portion of the operation unit main body 10 via a bend preventing portion 16. On the other hand, a scope connector portion 20 is provided at the extended end which is the other end side of the universal cord 4. A light source side connector 21 detachably attached to a light source device (not shown) is provided at the end of the scope connector unit 20. The light source side connector 21 is provided with a proximal end portion of a light guide (not shown) extending from the insertion portion 2 side, and an electrical contact 22 is provided. The light source side connector 21 is connected to the light source device. The ride guide is optically connected to the light source in the light source device, and the electrical contact 22 is electrically connected to the power source in the light source device. In addition, an electrical connector 23 detachably attached to a video processor (not shown) is provided on the side of the scope connector unit 20.

挿入部2は、先端部5と、先端部5の基端側に配設される湾曲自在な湾曲部6と、湾曲部6の基端側に配設された長尺で可撓性を有する可撓管部7と、が先端から順に連設されて構成されている。   The insertion portion 2 has a distal end portion 5, a bendable bending portion 6 disposed on the proximal end side of the distal end portion 5, and a long and flexible disposed on the proximal end side of the bending portion 6. The flexible tube portion 7 is configured to be connected in order from the tip.

例えば、図2に示すように、先端部5には、被検体内を照明するための照明光学系25や被検体を撮像するための撮像装置26等が設けられるとともに、被検体内の被検部位に向けて流体を供給する送気送水チャンネル27や鉗子等の処置具が導出される処置具挿通チャンネル28等が形成されている。   For example, as shown in FIG. 2, the distal end portion 5 is provided with an illumination optical system 25 for illuminating the inside of the subject, an imaging device 26 for imaging the subject, and the like. An air supply / water supply channel 27 for supplying fluid toward the site, a treatment instrument insertion channel 28 from which a treatment instrument such as forceps is led out, and the like are formed.

図3に示すように、撮像装置26は先端側にレンズ枠31を有し、このレンズ枠31内には、撮像光学系30(光学系)を構成する光学部材として、例えば、対物レンズ32と、絞り33と、レンズ34と、が先端側から順に光軸O方向に沿って保持されている。また、レンズ枠31内において、絞り33とレンズ34との間には、これらが形成する光路に対し、光学部材としての可動レンズ35を変位させることが可能な光学ユニット50が配設されている。   As shown in FIG. 3, the imaging device 26 has a lens frame 31 on the distal end side. In the lens frame 31, as an optical member constituting the imaging optical system 30 (optical system), for example, an objective lens 32 and The diaphragm 33 and the lens 34 are held along the optical axis O direction in order from the front end side. In the lens frame 31, an optical unit 50 capable of displacing the movable lens 35 as an optical member is disposed between the diaphragm 33 and the lens 34 with respect to the optical path formed by these. .

また、レンズ枠31の基端側には撮像枠37が外嵌され、この撮像枠37内には、固体撮像素子等からなるイメージセンサ38がカバーガラス39を介して保持されている。また、撮像枠37内において、イメージセンサ38の基端側には電気基板40が配設され、この電気基板40には、イメージセンサ38に対する各種駆動信号の供給や、イメージセンサ38で取得した画像信号の伝送等を行うための信号ケーブル41が接続されている。   An imaging frame 37 is fitted on the base end side of the lens frame 31, and an image sensor 38 made of a solid-state imaging device or the like is held in the imaging frame 37 via a cover glass 39. In the imaging frame 37, an electric board 40 is disposed on the base end side of the image sensor 38. Various electric signals are supplied to the image sensor 38 and images acquired by the image sensor 38 are provided on the electric board 40. A signal cable 41 for transmitting signals and the like is connected.

ここで、信号ケーブル41からは駆動用ケーブル42が分岐されており、この駆動用ケーブル42は、撮像枠37及びレンズ枠31の内面に沿って配索された配線パターン43を介して、光学ユニット50に接続されている。これにより、光学ユニット50には、例えば、術者等によるスイッチ類15に対する操作入力に応じて、光源装置内等に配設された電源制御部80から駆動電流が供給される。   Here, a drive cable 42 is branched from the signal cable 41, and this drive cable 42 is connected to the optical unit via a wiring pattern 43 arranged along the inner surfaces of the imaging frame 37 and the lens frame 31. 50. Thereby, for example, in response to an operation input to the switches 15 by an operator or the like, the optical unit 50 is supplied with a drive current from the power control unit 80 disposed in the light source device or the like.

図4,5に示すように、光学ユニット50は、軸保持部材としてのハウジング51と、このハウジング51に保持される軸部材52と、軸部材52に軸着された光学保持部材53と、軸部材52を回動動作させる第1,第2の電磁駆動源54,55と、を有して構成されている。   4 and 5, the optical unit 50 includes a housing 51 as a shaft holding member, a shaft member 52 held by the housing 51, an optical holding member 53 pivotally attached to the shaft member 52, a shaft The first and second electromagnetic drive sources 54 and 55 for rotating the member 52 are configured.

ハウジング51は、例えば、互いに対向する第1の基板56及び第2の基板57を有する。これら第1,第2の基板56,57は、円形部56a,57aと矩形部56b,57bとが一体となった外観形状をなす平板状の部材によって構成されている。   The housing 51 includes, for example, a first substrate 56 and a second substrate 57 that face each other. The first and second substrates 56 and 57 are constituted by flat plate members having an external shape in which circular portions 56a and 57a and rectangular portions 56b and 57b are integrated.

第1,第2の基板56,57には、円形部56a,57aの中央に、撮像光学系30の光路に対応して開口する開口部56c,57cが設けられている。また、第1,第2の基板56,57には、円形部56a,57aの開口部56c,57cから矩形部56b,57b寄りにオフセットした位置に、軸受孔56d,57dが設けられている。さらに、第1の基板56には、円形部56a上の反矩形部56b側にオフセットした位置に略L字状をなす第1のスペーサ58aが立設されるとともに、矩形部56b上の反円形部56a側にオフセットした位置に略I字状をなす第2のスペーサ58bが立設されている。そして、これら第1,第2のスペーサ58a,58bを介して第1,第2の基板56,57が連結されることにより、中空のハウジング51が構成されている。   The first and second substrates 56 and 57 are provided with openings 56c and 57c that open corresponding to the optical path of the imaging optical system 30 in the center of the circular portions 56a and 57a. The first and second substrates 56 and 57 are provided with bearing holes 56d and 57d at positions offset from the openings 56c and 57c of the circular portions 56a and 57a toward the rectangular portions 56b and 57b. Further, the first substrate 56 is provided with a first spacer 58a having a substantially L shape at a position offset toward the anti-rectangular portion 56b on the circular portion 56a, and an anti-circular shape on the rectangular portion 56b. A second spacer 58b having a substantially I-shape is erected at a position offset toward the portion 56a. A hollow housing 51 is configured by connecting the first and second substrates 56 and 57 via the first and second spacers 58a and 58b.

軸部材52は、第1の磁極としてのS極と、第2の磁極としてのN極と、が軸対象に着磁された略円柱形状をなす永久磁石によって構成されている。そして、この軸部材52は、ハウジング51の第1,第2の基板56,57の軸受孔56d,57dに対し、軸心周りに回動可能且つ軸心方向(すなわち、撮像光学系30の光軸O方向)に進退移動可能な状態にて挿通されている。   The shaft member 52 is configured by a permanent magnet having a substantially cylindrical shape in which an S pole as a first magnetic pole and an N pole as a second magnetic pole are magnetized on an axis target. The shaft member 52 is rotatable about the axis with respect to the bearing holes 56d and 57d of the first and second substrates 56 and 57 of the housing 51 and is axially (that is, the light of the imaging optical system 30). It is inserted in a state in which it can move back and forth in the direction of the axis O).

光学保持部材53は、一端側が接着等によって軸部材52に軸着されたアーム部53aと、アーム部53aの他端側に可動レンズ35を保持する円環状の光学保持部53bと、が一体形成された平板状の部材によって構成されている。この光学保持部材53は、ハウジング51内に配設されることにより、軸部材52の軸受孔56d,57dからの脱落を防止するとともに、軸部材52の回動及び進退移動に連動してハウジング51内を変位することが可能となっている。   The optical holding member 53 is integrally formed with an arm portion 53a whose one end is pivotally attached to the shaft member 52 by bonding or the like, and an annular optical holding portion 53b that holds the movable lens 35 on the other end side of the arm portion 53a. It is comprised by the made flat member. The optical holding member 53 is disposed in the housing 51, thereby preventing the shaft member 52 from falling off the bearing holes 56 d and 57 d and interlocking with the rotation and forward / backward movement of the shaft member 52. It is possible to displace inside.

第1の電磁駆動源54は、例えば、第1の基板56上に固設されるベース部材62と、このベース部材62の各端部にそれぞれ連設する第1,第2のコアアーム63,64と、が一体の磁性体によって形成されたヨーク61を有する。   The first electromagnetic drive source 54 includes, for example, a base member 62 fixed on the first substrate 56, and first and second core arms 63, 64 respectively connected to the end portions of the base member 62. And a yoke 61 formed of an integral magnetic body.

本実施形態において、ベース部材62は、第1の基板56の円形部56aの外面において、開口部56cを挟んで軸受孔56d側の位置に固設されている(図7,9参照)。ベース部材62の各端部には他の部位よりも細形に形成された第1,第2の連結部62a,62bが設けられ、これら第1,第2の連結部62a,62bには、第1,第2のコアアーム63,64の基端側がそれぞれ連結されている。   In the present embodiment, the base member 62 is fixed on the outer surface of the circular portion 56a of the first substrate 56 at a position on the bearing hole 56d side with the opening 56c interposed therebetween (see FIGS. 7 and 9). Each end of the base member 62 is provided with first and second connecting portions 62a and 62b which are formed to be narrower than other portions. The first and second connecting portions 62a and 62b include The base end sides of the first and second core arms 63 and 64 are connected to each other.

第1,第2のコアアーム63,64は、第1の基板56の外面に沿って、軸受孔56d側に延設されている。これら第1,第2のコアアーム63,64の外周部には、一連の巻線が順次巻回されることにより、第1,第2の電磁コイル65,66が形成されている。そして、これら第1,第2のコアアーム63,64と第1,第2の電磁コイル65,66とにより、第1,第2の電磁石67,68が構成されている。また、第1,第2の電磁石67,68の先端側には、第1,第2のコアアーム63,64の先端部が第1,第2のコアヘッド63a,64aとして突出され、これら第1,第2のコアヘッド63a,64aは、軸受孔56dから突出する軸部材52の側部(外周部)に臨まされている。   The first and second core arms 63 and 64 extend to the bearing hole 56 d side along the outer surface of the first substrate 56. The first and second electromagnetic coils 65 and 66 are formed on the outer peripheral portions of the first and second core arms 63 and 64 by sequentially winding a series of windings. The first and second core arms 63 and 64 and the first and second electromagnetic coils 65 and 66 constitute first and second electromagnets 67 and 68, respectively. Further, on the distal end side of the first and second electromagnets 67 and 68, the distal end portions of the first and second core arms 63 and 64 are projected as first and second core heads 63a and 64a. The second core heads 63a and 64a face the side portion (outer peripheral portion) of the shaft member 52 protruding from the bearing hole 56d.

同様に、第2の電磁駆動源55は、例えば、第2の基板57上に固設されるベース部材72と、このベース部材72の各端部にそれぞれ連設する第3,第4のコアアーム73,74と、が一体の磁性体によって形成されたヨーク71を有する。   Similarly, the second electromagnetic drive source 55 includes, for example, a base member 72 fixed on the second substrate 57, and third and fourth core arms respectively connected to each end of the base member 72. 73 and 74 have a yoke 71 formed of an integral magnetic body.

本実施形態において、ベース部材72は、第2の基板57の円形部57aの外面において、開口部57cを挟んで軸受孔57dの反対側の位置に固設されている(図4,8,10参照)。ベース部材72の各端部には他の部位よりも細形に形成された第3,第4の連結部72a,72bが設けられ、これら第3,第4の連結部72a,72bには、第3,第4のコアアーム73,74の基端側がそれぞれ連結されている。   In this embodiment, the base member 72 is fixed on the outer surface of the circular portion 57a of the second substrate 57 at a position opposite to the bearing hole 57d with the opening 57c interposed therebetween (FIGS. 4, 8, and 10). reference). Each end portion of the base member 72 is provided with third and fourth connecting portions 72a and 72b which are formed to be narrower than other portions. In the third and fourth connecting portions 72a and 72b, The proximal ends of the third and fourth core arms 73 and 74 are connected to each other.

第3,第4のコアアーム73,74は、第2の基板57の外面に沿って、軸受孔57d側に延設されている。これら第3,第4のコアアーム73,74の外周部には、一連の巻線が順次巻回されることにより、第3,第4の電磁コイル75,76が形成されている。そして、これら第3,第4のコアアーム73,74と第3,第4の電磁コイル75,76とにより、第3,第4の電磁石77,78が構成されている。また、第3,第4の電磁石77,78の先端側には、第3,第4のコアアーム73,74の先端部が第3,第4のコアヘッド73a,74aとして突出され、これら第3,第4のコアヘッド73a,74aは、軸受孔57dから突出する軸部材52の側部(外周部)に臨まされている。   The third and fourth core arms 73 and 74 are extended along the outer surface of the second substrate 57 toward the bearing hole 57d. A third and fourth electromagnetic coils 75 and 76 are formed on the outer peripheral portions of the third and fourth core arms 73 and 74 by sequentially winding a series of windings. These third and fourth core arms 73 and 74 and third and fourth electromagnetic coils 75 and 76 constitute third and fourth electromagnets 77 and 78, respectively. Further, on the tip side of the third and fourth electromagnets 77 and 78, the tip portions of the third and fourth core arms 73 and 74 protrude as third and fourth core heads 73a and 74a. The fourth core heads 73a and 74a face the side portion (outer peripheral portion) of the shaft member 52 protruding from the bearing hole 57d.

ここで、このように構成された本実施形態の光学ユニット50において、ハウジング51を構成する第1,第2のスペーサ58a,58bは、光学保持部材53の回動を規制するストッパとしての機能を有している。そして、光学保持部材53は、第1のスペーサ58aに当接されて軸部材52周りの一方向への回動が規制されることにより、光学保持部53bを各円形部56a,57aの開口部56c,57cと同軸上に重畳させる位置に位置決めされる。すなわち、光学保持部材53は、可動レンズ35を光路上に挿入する挿入位置に位置決めされる(図7,8,11参照)。一方、光学保持部材53は、第2のスペーサ58bに当接されて軸部材52周りの他方向への回動が規制されることにより、光学保持部53bを矩形部56b側に配置させる位置に位置決めされる。すなわち、光学保持部材53は、可動レンズ35を光路から退避させる退避位置に位置決めされる(図9,10,12参照)。   Here, in the optical unit 50 of the present embodiment configured as described above, the first and second spacers 58a and 58b constituting the housing 51 function as a stopper for restricting the rotation of the optical holding member 53. Have. The optical holding member 53 is in contact with the first spacer 58a and is restricted from rotating in one direction around the shaft member 52, so that the optical holding portion 53b is opened in the openings of the circular portions 56a and 57a. It is positioned at a position where it is superimposed on the same axis as 56c and 57c. That is, the optical holding member 53 is positioned at the insertion position where the movable lens 35 is inserted on the optical path (see FIGS. 7, 8, and 11). On the other hand, the optical holding member 53 is in contact with the second spacer 58b and is restricted from rotating in the other direction around the shaft member 52, so that the optical holding portion 53b is positioned at the rectangular portion 56b side. Positioned. That is, the optical holding member 53 is positioned at a retracted position for retracting the movable lens 35 from the optical path (see FIGS. 9, 10, and 12).

また、ハウジング51を構成する第1,第2の基板56,57は、光学保持部材53の進退移動を規制するストッパとしての機能を有している。そして、光学保持部材53は、第1の基板56に当接され、光軸O方向に沿う一方向への移動が規制されることにより、可動レンズ35を予め設定された位置まで後退させる後退位置に位置決めされる(図13,14参照)。一方、光学保持部材53は、可動レンズ35を介して第2の基板57に当接され、光軸O方向に沿う他方向への移動が規制されることにより、可動レンズ35を予め設定された位置まで進出させる進出位置に位置決めされる(図15,16参照)。   In addition, the first and second substrates 56 and 57 constituting the housing 51 have a function as a stopper for restricting the forward and backward movement of the optical holding member 53. The optical holding member 53 is in contact with the first substrate 56, and the movement in one direction along the optical axis O direction is restricted, so that the movable lens 35 is moved back to a preset position. (See FIGS. 13 and 14). On the other hand, the optical holding member 53 is brought into contact with the second substrate 57 via the movable lens 35, and the movement of the optical holding member 53 in the other direction along the optical axis O direction is restricted, so that the movable lens 35 is preset. It is positioned at the advance position to advance to the position (see FIGS. 15 and 16).

また、軸部材52は、例えば、光学保持部材53が挿入位置にあるとき、N極が第1,第3のコアヘッド63a,73aに対向するとともに、S極が第2,第4のコアヘッド64a,74aに対向し(図7,8参照)、且つ、光学保持部材53が退避位置にあるとき、S極が第1,第3のコアヘッド63a,73aに対向するとともに、N極が第2,第4のコアヘッド64a,74aに対向するよう(図9,10参照)、アーム部53aとの相対位置(アーム部53aに対する回転位置)が設定されている。   Further, for example, when the optical holding member 53 is in the insertion position, the shaft member 52 has the N pole facing the first and third core heads 63a and 73a and the S pole having the second and fourth core heads 64a and 64a. 74a (see FIGS. 7 and 8), and when the optical holding member 53 is in the retracted position, the south pole faces the first and third core heads 63a and 73a, and the north pole is the second and second cores. The position relative to the arm portion 53a (rotational position with respect to the arm portion 53a) is set so as to face the fourth core heads 64a and 74a (see FIGS. 9 and 10).

さらに、例えば、図17に示すように、軸部材52は、当該軸部材52が形成する磁場のピークよりも軸心方向の一側にオフセットした位置に第1,第2のコアヘッド63a,64aが臨まされ、且つ、軸部材52が形成する磁場のピークよりも軸心方向の他側にオフセットした位置に第3,第4のコアヘッド73a,74aが臨まされるよう、アーム部53aとの相対位置(アーム部53aに対する軸心方向の位置)が設定されている。すなわち、例えば、本実施形態において、軸部材52は軸心方向の略中央に磁場のピークを有しており、光学保持部材53のアーム部53aは、軸部材52の軸心方向の中央近傍に固設されている。そして、このように軸部材52に固設された光学保持部材53の進退移動の範囲が第1,第2の基板56,57によって制限されることにより、第1,第2のコアヘッド63a,64aは、軸部材52の磁場のピークに対して軸心方向の一側に常にオフセットした位置から磁場を発生させることが可能となり、且つ、第3,第4のコアヘッド73a,74aは、軸部材52の磁場のピークに対して軸心方向に他側に常にオフセットした位置から磁場を発生させることが可能となっている。   Further, for example, as shown in FIG. 17, the shaft member 52 has the first and second core heads 63 a and 64 a at positions offset to one side in the axial direction from the peak of the magnetic field formed by the shaft member 52. Relative position with respect to the arm portion 53a so that the third and fourth core heads 73a and 74a are exposed to a position that is faced and offset to the other side in the axial direction from the peak of the magnetic field formed by the shaft member 52. (Position in the axial direction with respect to the arm portion 53a) is set. That is, for example, in the present embodiment, the shaft member 52 has a magnetic field peak at substantially the center in the axial direction, and the arm portion 53a of the optical holding member 53 is near the center of the shaft member 52 in the axial direction. It is fixed. The first and second core heads 63a and 64a are thus limited by the first and second substrates 56 and 57 limiting the range of the optical holding member 53 fixed to the shaft member 52. Can generate a magnetic field from a position that is always offset to one side in the axial direction with respect to the peak of the magnetic field of the shaft member 52, and the third and fourth core heads 73 a and 74 a It is possible to generate a magnetic field from a position that is always offset to the other side in the axial direction with respect to the peak of the magnetic field.

また、第1,第2の電磁コイル65,66は、互いに異なる方向の磁場を発生するよう、その巻回方向が設定されている。すなわち、例えば、電源制御部80から第1の電磁駆動源54に対して所定の正電流I(図6参照)が供給されたとき、第1の電磁コイル65は第1のコアヘッド63a側を第1の磁極であるS極に帯磁させる磁場を発生させ、第2の電磁コイル66は第2のコアヘッド64a側を第2の磁極であるN極に帯磁させる磁場を発生させる。一方、例えば、電源制御部80から第2の電磁駆動源54に対して所定の負電流−Iが供給されたとき、第1の電磁コイル65は第1のコアヘッド63a側を第2の磁極であるN極に帯磁させる磁場を発生させ、第2の電磁コイル66は第2のコアヘッド64a側を第1の磁極であるS極に帯磁させる磁場を発生させる。   The winding directions of the first and second electromagnetic coils 65 and 66 are set so as to generate magnetic fields in different directions. That is, for example, when a predetermined positive current I (see FIG. 6) is supplied from the power supply control unit 80 to the first electromagnetic drive source 54, the first electromagnetic coil 65 is connected to the first core head 63a side. The second electromagnetic coil 66 generates a magnetic field that magnetizes the second core head 64a side to the N pole that is the second magnetic pole. On the other hand, for example, when a predetermined negative current −I is supplied from the power supply control unit 80 to the second electromagnetic drive source 54, the first electromagnetic coil 65 uses the second magnetic pole on the first core head 63 a side. A magnetic field that magnetizes a certain N pole is generated, and the second electromagnetic coil 66 generates a magnetic field that magnetizes the second core head 64a side to the S pole that is the first magnetic pole.

同様に、第3,第4の電磁コイル75,76は、互いに異なる方向に磁場を発生するよう、その巻回方向が設定されている、すなわち、例えば、電源制御部80から第2の電磁駆動源55に対して所定の正電流I(図6参照)が供給されたとき、第3の電磁コイル75は第1のコアヘッド73a側を第1の磁極であるS極に帯磁させる磁場を発生させ、第4の電磁コイル76は第4のコアヘッド74a側を第2の磁極であるN極に帯磁させる磁場を発生させる。一方、例えば、電源制御部80から第2の電磁駆動源55に対して所定の負電流−Iが供給されたとき、第3の電磁コイル75は第1のコアヘッド73a側を第2の磁極であるN極に帯磁させる磁場を発生させ、第4の電磁コイル76は第4のコアヘッド74a側を第1の磁極であるS極に帯磁させる磁場を発生させる。   Similarly, the winding directions of the third and fourth electromagnetic coils 75 and 76 are set so as to generate magnetic fields in different directions, that is, for example, the second electromagnetic drive from the power supply control unit 80. When a predetermined positive current I (see FIG. 6) is supplied to the source 55, the third electromagnetic coil 75 generates a magnetic field that magnetizes the first core head 73a side to the S pole that is the first magnetic pole. The fourth electromagnetic coil 76 generates a magnetic field that magnetizes the fourth core head 74a side to the N pole that is the second magnetic pole. On the other hand, for example, when a predetermined negative current −I is supplied from the power supply control unit 80 to the second electromagnetic drive source 55, the third electromagnetic coil 75 uses the second magnetic pole as the first core head 73a side. A magnetic field that magnetizes a certain N pole is generated, and the fourth electromagnetic coil 76 generates a magnetic field that magnetizes the fourth core head 74a side to the S pole that is the first magnetic pole.

次に、このような光学ユニット50の作用について、図7乃至図20を参照して説明する。   Next, the operation of the optical unit 50 will be described with reference to FIGS.

例えば、図7,11に示すように、光学保持部材53が可動レンズ35を光路上に挿入する挿入位置にあるとき、軸部材52のS極は第2,第4のコアヘッド64a,74aに対向され、且つ、軸部材52のN極は第1,第3のコアヘッド63a,73aに対向されている。このような状態において、例えば、第1の電磁駆動源54に対して正電流Iが供給されると(図20中のタイミングt1までを参照)、第1,第2の電磁コイル65,66は励磁され、第1のコアヘッド63a側がS極に帯磁されるとともに、第2のコアヘッド64a側がN極に帯磁される。そして、S極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のN極との引力、及び、N極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される。加えて、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第1,第2のコアヘッド63a,64aとの間の各引力には、軸心方向に引き合う成分が発生する(図18参照)。これにより、光学保持部材53は、第1の基板56側に引き寄せられ、予め設定された後退位置に保持される(図13参照)。   For example, as shown in FIGS. 7 and 11, when the optical holding member 53 is in the insertion position for inserting the movable lens 35 on the optical path, the S pole of the shaft member 52 faces the second and fourth core heads 64a and 74a. In addition, the N pole of the shaft member 52 is opposed to the first and third core heads 63a and 73a. In such a state, for example, when a positive current I is supplied to the first electromagnetic drive source 54 (see timing t1 in FIG. 20), the first and second electromagnetic coils 65 and 66 are When excited, the first core head 63a side is magnetized to the S pole and the second core head 64a side is magnetized to the N pole. Then, the attractive force between the first core head 63a magnetized in the S pole and the N pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the N pole and the second Due to the attractive force with the S pole of the shaft member 52 facing the core head 64a, the optical holding portion 53b pivotally attached to the shaft member 52 abuts on the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a, 64a (see FIG. 17), the shaft member 52 and the first, second In each attractive force between the core heads 63a and 64a, a component attracting in the axial direction is generated (see FIG. 18). As a result, the optical holding member 53 is drawn toward the first substrate 56 and is held at a preset retracted position (see FIG. 13).

また、このように光学保持部材53が挿入位置且つ後退位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第1の電磁駆動源54に供給されていた駆動電流が正電流Iから負電流−Iに切り替えられる(図20中のタイミングt1参照)。これにより、第1,第2の電磁コイル65,66の励磁状態が反転し、第1のコアヘッド63a側がN極に帯磁されるとともに、第2のコアヘッド64a側がS極に帯磁される。そして、N極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のN極との斥力、及び、S極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のS極との斥力により、軸部材52が回動され、光学保持部材53は可動レンズ35を光路から退避させる退避位置に変位される(図9,12参照)。このとき、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第1,第2のコアヘッド63a,64aとの間の各斥力には、軸心方向に反発し合う成分が発生する。これにより、光学保持部材53は第1の基板56側から一時的に離間され、軸部材52の回動時における摺動抵抗が軽減される。   Further, in the state where the optical holding member 53 is held at the insertion position and the retracted position in this way, for example, when an operator input is made to the switches 15 of the operation unit 3, the first electromagnetic drive The drive current supplied to the source 54 is switched from the positive current I to the negative current −I (see timing t1 in FIG. 20). As a result, the excitation states of the first and second electromagnetic coils 65 and 66 are reversed, and the first core head 63a side is magnetized to the N pole, and the second core head 64a side is magnetized to the S pole. Then, the repulsive force between the first core head 63a magnetized in the N pole and the N pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the S pole and the second The shaft member 52 is rotated by the repulsive force with the S pole of the shaft member 52 facing the core head 64a, and the optical holding member 53 is displaced to the retracted position for retracting the movable lens 35 from the optical path (see FIGS. 9 and 12). ). At this time, the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a and 64a (see FIG. 17). In each repulsive force between the core heads 63a and 64a, components repelling in the axial direction are generated. Thereby, the optical holding member 53 is temporarily separated from the first substrate 56 side, and the sliding resistance when the shaft member 52 is rotated is reduced.

また、光学保持部材53が退避位置に変位すると、軸部材52のS極は第1,第3のコアヘッド63a,73aに対向され、且つ、軸部材52のN極は第2,第4のコアヘッド64a,74aに対向される。そして、N極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のS極との引力、及び、S極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のN極との引力により、軸部材52に軸着された光学保持部53bが第2のスペーサ58bに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、退避位置に保持される。加えて、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第1,第2のコアヘッド63a,64aとの間の各引力には、軸心方向に引き合う成分が発生する(図18参照)。これにより、光学保持部材53は、第1の基板56側に引き寄せられ、予め設定された後退位置に保持される(図14参照)。   When the optical holding member 53 is displaced to the retracted position, the S pole of the shaft member 52 is opposed to the first and third core heads 63a and 73a, and the N pole of the shaft member 52 is the second and fourth core heads. 64a and 74a. Then, the attractive force between the first core head 63a magnetized in the N pole and the S pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the S pole and the second Due to the attractive force of the shaft member 52 facing the core head 64a with the N pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the second spacer 58b, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the retracted position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a, 64a (see FIG. 17), the shaft member 52 and the first, second In each attractive force between the core heads 63a and 64a, a component attracting in the axial direction is generated (see FIG. 18). As a result, the optical holding member 53 is drawn toward the first substrate 56 and is held at a preset retracted position (see FIG. 14).

また、このように光学保持部材53が退避位置且つ後退位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第1の電磁駆動源54に供給されていた駆動電流がオフされるとともに、第2の電磁駆動源55に駆動電流として所定の負電流−Iが供給される(図20中のタイミングt3参照)。これにより、第3,第4の電磁コイル75,76は励磁され、第3のコアヘッド73a側がN極に帯磁されるとともに、第4のコアヘッド74a側がS極に帯磁される。そして、N極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のS極との引力、及び、S極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のN極との引力により、軸部材52に軸着された光学保持部53bが第2のスペーサ58bに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、退避位置に保持される(図10,12参照)。加えて、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力には、軸心方向に引き合う成分が発生する(図19参照)。これにより、光学保持部材53は、第2の基板57側に引き寄せられ、予め設定された進出位置まで変位し、当該進出位置に保持される(図16参照)。   Further, in the state where the optical holding member 53 is held in the retracted position and the retracted position in this way, for example, when an operator input is made to the switches 15 of the operation unit 3, the first electromagnetic drive The drive current supplied to the source 54 is turned off, and a predetermined negative current −I is supplied to the second electromagnetic drive source 55 as the drive current (see timing t3 in FIG. 20). As a result, the third and fourth electromagnetic coils 75 and 76 are excited, the third core head 73a side is magnetized to the N pole, and the fourth core head 74a side is magnetized to the S pole. Then, the attractive force between the third core head 73a magnetized in the N pole and the S pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized in the S pole and the fourth core Due to the attractive force of the shaft member 52 facing the core head 74a with the N pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the second spacer 58b, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the retracted position (see FIGS. 10 and 12). In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a, 74a (see FIG. 17), the shaft member 52 and the third, fourth, In each attractive force between the core heads 73a and 74a, a component attracting in the axial direction is generated (see FIG. 19). As a result, the optical holding member 53 is drawn toward the second substrate 57, displaced to a preset advance position, and held at the advance position (see FIG. 16).

また、このように光学保持部材53が退避位置且つ進出位置に保持されている状態において、例えば、操作部4のスイッチ類15等に対する術者等の操作入力がなされると、第2の電磁駆動源55に供給されていた駆動電流が負電流−Iから正電流Iに切り替えられる(図20中のタイミングt4参照)。これにより第3,第4の電磁コイル75,76の励磁状態が反転し、第3のコアヘッド73a側がS極に帯磁されるとともに、第4のコアヘッド74a側がN極に帯磁される。そして、S極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のS極との斥力、及び、N極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のN極との斥力によって軸部材52が回動され、光学保持部材53は可動レンズ35を光路上に挿入させる挿入位置に変位される(図8,11参照)。このとき、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第3,第4のコアヘッド73a,74aとの間の各斥力には、軸心方向に反発し合う成分が発生する。これにより、光学保持部材53(可動レンズ35)は第2の基板57側から一時的に離間され、軸部材52の回動時における摺動抵抗が軽減される。   Further, in the state where the optical holding member 53 is held at the retracted position and the advanced position in this way, for example, when an operator input is made to the switches 15 of the operation unit 4 or the like, the second electromagnetic drive The drive current supplied to the source 55 is switched from the negative current −I to the positive current I (see timing t4 in FIG. 20). As a result, the excited states of the third and fourth electromagnetic coils 75 and 76 are reversed, the third core head 73a side is magnetized to the S pole, and the fourth core head 74a side is magnetized to the N pole. The repulsive force between the third core head 73a magnetized to the S pole and the S pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized to the N pole and the fourth core The shaft member 52 is rotated by the repulsive force with the north pole of the shaft member 52 facing the core head 74a, and the optical holding member 53 is displaced to the insertion position for inserting the movable lens 35 on the optical path (see FIGS. 8 and 11). ). At this time, the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a and 74a (see FIG. 17). In each repulsive force between the core heads 73a and 74a, components repelling in the axial direction are generated. Thereby, the optical holding member 53 (movable lens 35) is temporarily separated from the second substrate 57 side, and the sliding resistance when the shaft member 52 is rotated is reduced.

また、光学保持部材53が侵入位置に変位すると、軸部材52のS極は第2,第4のコアヘッド64a,74aに対向され、且つ、軸部材52のN極は第1,第3のコアヘッド63a,73aに対向される。そして、S極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のN極との引力、及び、N極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される。加えて、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため(図17参照)、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力には、軸心方向に引き合う成分が発生する(図19参照)。これにより、光学保持部材53は、第2の基板57側に引き寄せられ、予め設定された後退位置に保持される(図15参照)。   When the optical holding member 53 is displaced to the intrusion position, the S pole of the shaft member 52 is opposed to the second and fourth core heads 64a and 74a, and the N pole of the shaft member 52 is the first and third core heads. It is opposed to 63a, 73a. Then, the attractive force between the third core head 73a magnetized at the S pole and the N pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized at the N pole and the fourth core Due to the attractive force of the shaft member 52 facing the core head 74a with the S pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a, 74a (see FIG. 17), the shaft member 52 and the third, fourth, In each attractive force between the core heads 73a and 74a, a component attracting in the axial direction is generated (see FIG. 19). As a result, the optical holding member 53 is drawn toward the second substrate 57 and is held at a preset retracted position (see FIG. 15).

このような実施形態によれば、軸部材52を軸心周りに回動可能且つ軸心方向に進退移動可能となるようハウジング51に保持するとともに、軸部材52の回動に伴って撮像光学系30の光路上に可動レンズ35を挿入する挿入位置と光路から退避させる退避位置とに変位可能であり、且つ、軸部材52の進退移動に伴って可動レンズ35を光路の光軸Oに沿って進出させる進出位置と光路の光軸Oに沿って後退させる後退位置とに変位可能となるよう光学保持部材53を軸部材52に軸着し、さらに、軸部材52が形成する磁場のピークよりも軸心方向の一側にオフセットした位置において軸部材52の磁場と干渉する磁場を発生可能な第1,第2の電磁石67,68を有する第1の電磁駆動源54と、軸部材52が形成する磁場のピークよりも軸心方向の他側にオフセットした位置において軸部材52の磁場と干渉する磁場を発生可能な第3,第4の電磁石77,78を有する第2の電磁駆動源55と、をハウジング51に配設したことにより、簡単な構成により、バリエーションに富んだ光学特性を実現することができる。   According to such an embodiment, the shaft member 52 is held by the housing 51 so as to be rotatable about the axis and movable back and forth in the axial direction, and the imaging optical system is accompanied with the rotation of the shaft member 52. The movable lens 35 can be displaced between an insertion position for inserting the movable lens 35 on the optical path 30 and a retracted position for retracting from the optical path, and the movable lens 35 is moved along the optical axis O of the optical path as the shaft member 52 moves forward and backward. The optical holding member 53 is axially attached to the shaft member 52 so as to be displaceable between an advance position to advance and a retract position to retract along the optical axis O of the optical path, and moreover than the peak of the magnetic field formed by the shaft member 52. A first electromagnetic drive source 54 having first and second electromagnets 67 and 68 capable of generating a magnetic field that interferes with the magnetic field of the shaft member 52 at a position offset to one side in the axial direction, and the shaft member 52 are formed. Magnetic field peak A second electromagnetic drive source 55 having third and fourth electromagnets 77 and 78 capable of generating a magnetic field that interferes with the magnetic field of the shaft member 52 at a position offset to the other side in the axial direction. With the arrangement, optical characteristics rich in variations can be realized with a simple configuration.

すなわち、撮像光学系30の光路に対する挿入位置と退避位置のみならず、撮像光学系30の光軸O方向の進出位置と後退位置に対しても可動レンズ35を変位可能とすることにより、単一の光学ユニット50によって3値以上の光学特性を実現することが可能となる。より具体的には、撮像光学系30は、光学ユニット50の作用に応じて、光学部材である可動レンズ35を光路から退避させた状態での光学特性と、可動レンズ35を光路上の後退位置に挿入させた状態での光学特性と、可動レンズ35を光路上の進出位置に挿入させた状態での光学特性とを実現することができる。   That is, by making the movable lens 35 displaceable not only with respect to the insertion position and retraction position of the imaging optical system 30 with respect to the optical path, but also with respect to the advance position and the retract position in the optical axis O direction of the imaging optical system 30 With the optical unit 50, it is possible to realize optical characteristics of three or more values. More specifically, the imaging optical system 30 has optical characteristics in a state where the movable lens 35 that is an optical member is retracted from the optical path in accordance with the action of the optical unit 50, and a retracted position of the movable lens 35 on the optical path. It is possible to realize the optical characteristics in a state where the movable lens 35 is inserted into the optical path and the optical characteristics in a state where the movable lens 35 is inserted into the advance position on the optical path.

次に、図21乃至図31は本発明の第2の実施形態に係わり、図21は光学ユニットの分解斜視図、図22は撮像光学系の光路上の挿入位置且つ光軸方向の第1の中途位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図、図23は撮像光学系の光路からの退避位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図、図24は撮像光学系の光路上の挿入位置且つ光軸方向の第2の中途位置にレンズを配置した状態の光学ユニットの内部構造を示す平面図、図25は撮像光学系の光路上の退避位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図、図26は撮像光学系の光路からの挿入位置且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図、図27は撮像光学系の光路上の挿入位置且つ光軸方向の第1の中途位置にレンズを配置した状態の光学ユニットを示す要部断面図、図28は撮像光学系の光路からの退避位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを示す要部断面図、図29は撮像光学系の光路上の挿入位置且つ光軸方向の進出位置にレンズを配置した状態の光学ユニットを示す要部断面図、図30は撮像光学系の光路上の挿入位置且つ光軸方向の第2の中途位置にレンズを配置した状態の光学ユニットを示す要部断面図、図31は電磁駆動源に供給される駆動電流の一例について説明するタイムチャートである。なお、本実施形態は、進出位置と後退位置との間において、可動レンズ35をより多段階に変位可能とした点が、上述の第1の実施形態に対して主として異なる。その他、上述の第1の実施形態と同様の点については、適宜同符号を付して説明を省略する。   Next, FIGS. 21 to 31 relate to a second embodiment of the present invention, FIG. 21 is an exploded perspective view of the optical unit, and FIG. 22 is a first insertion position on the optical path of the imaging optical system and the first in the optical axis direction. FIG. 23 is a plan view showing the internal structure of the optical unit in a state where the lens is disposed at a midway position, and FIG. 23 is a plan view showing the internal structure of the optical unit in a state where the lens is disposed at the retracted position from the optical path of the imaging optical system. FIG. 25 is a plan view showing the internal structure of the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and at a second midway position in the optical axis direction, and FIG. 25 is a retracted position on the optical path of the imaging optical system; FIG. 26 is a cross-sectional view of the principal part showing the optical unit in a state where the lens is disposed at the retracted position in the optical axis direction, and FIG. 26 is an optical unit in a state where the lens is disposed at the insertion position from the optical path of the imaging optical system and the retracted position in the optical axis direction. FIG. FIG. 28 is a cross-sectional view of the principal part showing the optical unit in a state in which the lens is disposed at the insertion position on the optical path of the imaging optical system and at the first halfway position in the optical axis direction, and FIG. FIG. 29 is a cross-sectional view of the main part showing the optical unit in a state where the lens is arranged at the advance position in the axial direction. FIG. 29 shows the optical unit in a state where the lens is arranged at the insertion position on the optical path of the imaging optical system and at the advance position in the optical axis direction. FIG. 30 is a fragmentary sectional view showing an optical unit in a state where a lens is arranged at the insertion position on the optical path of the imaging optical system and at a second middle position in the optical axis direction, and FIG. 31 is an electromagnetic drive source. 6 is a time chart for explaining an example of a drive current supplied to the circuit. Note that the present embodiment is mainly different from the first embodiment described above in that the movable lens 35 can be displaced in more stages between the advanced position and the retracted position. In addition, about the point similar to the above-mentioned 1st Embodiment, the same code | symbol is attached | subjected suitably and description is abbreviate | omitted.

図21に示すように、本実施形態において、第1のスペーサ58aには、例えば、規制部材として板状の係止板85が突設されている。この係止板85は、例えば、光学保持部材53が挿入位置にあるときにのみ、進出位置と後退位置との間に設定された中間位置にて光学保持部53bと干渉し、光学保持部材53の光軸O方向への移動を規制することが可能となっている。   As shown in FIG. 21, in the present embodiment, for example, a plate-like locking plate 85 is projected from the first spacer 58a as a regulating member. For example, the locking plate 85 interferes with the optical holding portion 53b at an intermediate position set between the advanced position and the retracted position only when the optical holding member 53 is in the insertion position, and the optical holding member 53 Movement in the direction of the optical axis O can be restricted.

次に、このような光学ユニット50の作用について、図22乃至図31を参照して説明する。   Next, the operation of such an optical unit 50 will be described with reference to FIGS.

例えば、図23,25に示すように、光学保持部材53が可動レンズ35を光路から退避させる退避位置にあるとき、軸部材52のS極は第1,第3のコアヘッド63a,73aに対向され、且つ、軸部材52のN極は第2,第4のコアヘッド64a,74aに対向されている。このような状態において、例えば、第1の電磁駆動源54に対して負電流−Iが供給されると(図31中のタイミングt5までを参照)、第1,第2のコイル65,66は励磁され、第1のコイルヘッド63a側がN極に帯磁されるとともに、第2のコアヘッド64a側がS極に帯磁される。そして、N極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のS極との引力、及び、S極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のN極との引力により、軸部材52に軸着された光学保持部53bが第2のスペーサ58bに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、退避位置に保持される。加えて、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため、軸部材52と第1,第2のコアヘッド63a,64aとの間の各引力には、軸心方向に引き合う成分が発生する。これにより、光学保持部材53は、第1の基板56側に引き寄せられ、予め設定された後退位置に保持される(図25参照)。   For example, as shown in FIGS. 23 and 25, when the optical holding member 53 is in the retracted position for retracting the movable lens 35 from the optical path, the S pole of the shaft member 52 is opposed to the first and third core heads 63a and 73a. The N pole of the shaft member 52 is opposed to the second and fourth core heads 64a and 74a. In such a state, for example, when a negative current −I is supplied to the first electromagnetic drive source 54 (see timing t5 in FIG. 31), the first and second coils 65 and 66 are When excited, the first coil head 63a side is magnetized to the N pole, and the second core head 64a side is magnetized to the S pole. Then, the attractive force between the first core head 63a magnetized in the N pole and the S pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the S pole and the second Due to the attractive force of the shaft member 52 facing the core head 64a with the N pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the second spacer 58b, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the retracted position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a and 64a, the shaft member 52 and the first and second core heads 63a and 64a are offset. In each attractive force between the two, a component attracting in the axial direction is generated. As a result, the optical holding member 53 is drawn toward the first substrate 56 and is held at a preset retracted position (see FIG. 25).

また、このように光学保持部材53が退避位置且つ後退位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第1の電磁駆動源54に供給されていた駆動電流が負電流−Iから正電流Iに切り替えられる(図31中のタイミングt5参照)。これにより、第1,第2の電磁コイル65,66の励磁状体が反転し、第1のコアヘッド63a側がS極に帯磁されるとともに、第2のコアヘッド64a側がN極に帯磁される、そして、S極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のS極との斥力、及び、N極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のN極との斥力により、軸部材52が回動され、光学保持部材53が可動レンズ35を光路上に挿入する挿入位置に変位される(図26参照)。このとき、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため、軸部材52と第1,第2のコアヘッド63a,64aとの間の各斥力には、軸心方向に反発し合う成分が発生する。これにより、光学保持部材53は第1の基板56側から一時的に離間され、軸部材52の回動時における摺動抵抗が軽減される。   Further, in the state where the optical holding member 53 is held in the retracted position and the retracted position in this way, for example, when an operator input is made to the switches 15 of the operation unit 3, the first electromagnetic drive The drive current supplied to the source 54 is switched from the negative current −I to the positive current I (see timing t5 in FIG. 31). As a result, the excited state of the first and second electromagnetic coils 65 and 66 are reversed, the first core head 63a side is magnetized to the S pole, and the second core head 64a side is magnetized to the N pole. The repulsive force between the first core head 63a magnetized in the S pole and the S pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the N pole and the second core The shaft member 52 is rotated by the repulsive force with the north pole of the shaft member 52 facing the core head 64a, and the optical holding member 53 is displaced to the insertion position for inserting the movable lens 35 on the optical path (see FIG. 26). At this time, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a and 64a, the shaft member 52 and the first and second core heads 63a and 64a are offset. In each repulsive force between them, a component repelling in the axial direction is generated. Thereby, the optical holding member 53 is temporarily separated from the first substrate 56 side, and the sliding resistance when the shaft member 52 is rotated is reduced.

また、光学保持部材53が挿入位置に変位すると、軸部材52のS極は第2,第4のコアヘッド64a,74a側に対向され、且つ、軸部材52のN極は第1,第3のコアヘッド63a,73aに対向される。そして、S極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のN極との引力、及び、N極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される。加えて、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対してオフセットされているため、軸部材52と第1,第2のコアヘッド63a,64aとの間の各引力には、軸心方向に引き合う成分が発生する。これにより、光学保持部材53は、第1の基板56側に引き寄せられ、予め設定された後退位置に保持される(図26参照)。   When the optical holding member 53 is displaced to the insertion position, the S pole of the shaft member 52 is opposed to the second and fourth core heads 64a and 74a, and the N pole of the shaft member 52 is the first and third. It faces the core heads 63a and 73a. Then, the attractive force between the first core head 63a magnetized in the S pole and the N pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the N pole and the second Due to the attractive force with the S pole of the shaft member 52 facing the core head 64a, the optical holding portion 53b pivotally attached to the shaft member 52 abuts on the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset with respect to the first and second core heads 63a and 64a, the space between the shaft member 52 and the first and second core heads 63a and 64a. In each attractive force, a component attracting in the axial direction is generated. As a result, the optical holding member 53 is drawn toward the first substrate 56 and is held at a preset retracted position (see FIG. 26).

また、このように光学保持部材53が挿入位置且つ後退位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第1の電磁駆動源54に供給されていた駆動電流がオフされるとともに、第2の電磁駆動源55に駆動電流として所定の正電流Iが供給される(図31中のタイミングt6参照)。これにより、第3,第4の電磁コイル75,76は励磁され、第3のコアヘッド73a側がS極に帯磁されるとともに、第4のコアヘッド74a側がN極に帯磁される。そして、S極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のN極との引力、及び、N極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される(図23参照)。加えて、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力には、軸心方向に引き合う成分が発生する。この軸心方向の成分により、光学保持部材53は、第2の基板57側に引き寄せられるが、後退位置から進出位置まで変位する中途において、光学保持部53bが係止板85に干渉されて係止される。これにより、光学保持部材53は、第2の基板57側への移動が規制され、可動レンズ35を予め設定された第1の中途位置に保持する(図27参照)。   Further, in the state where the optical holding member 53 is held at the insertion position and the retracted position in this way, for example, when an operator input is made to the switches 15 of the operation unit 3, the first electromagnetic drive The drive current supplied to the source 54 is turned off, and a predetermined positive current I is supplied as a drive current to the second electromagnetic drive source 55 (see timing t6 in FIG. 31). Thereby, the third and fourth electromagnetic coils 75 and 76 are excited, the third core head 73a side is magnetized to the S pole, and the fourth core head 74a side is magnetized to the N pole. Then, the attractive force between the third core head 73a magnetized at the S pole and the N pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized at the N pole and the fourth core Due to the attractive force of the shaft member 52 facing the core head 74a with the S pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position (see FIG. 23). In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a and 74a, the shaft member 52 and the third and fourth core heads 73a and 74a are offset. In each attractive force between the two, a component attracting in the axial direction is generated. Due to this axial component, the optical holding member 53 is drawn toward the second substrate 57 side. However, the optical holding portion 53b is interfered with the locking plate 85 in the middle of the displacement from the retracted position to the advanced position. Stopped. Thereby, the optical holding member 53 is restricted from moving toward the second substrate 57, and holds the movable lens 35 at a first intermediate position set in advance (see FIG. 27).

また、このように光学保持部材53が挿入位置且つ第1の中途位置に保持されている場合において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第2の電磁駆動源55に供給されていた駆動電流が正電流Iから負電流−Iに切り替えられる(図31中のタイミングt7参照)。これにより、第3,第4の電磁コイル75,76の励磁状体が反転し、第3のコアヘッド73a側がN極に帯磁されるとともに、第4のコアヘッド74a側がS極に帯磁される。そして、N極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のN極との斥力、及び、S極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aと対向する軸部材52のS極との斥力により、軸部材52が回動され、光学保持部材53は可動レンズ35を光路から退避させる退避位置に変位される。さらに、この光学保持部材53の退避位置への変位により、光学保持部53bと係止板85との係止状体が解除される。   Further, when the optical holding member 53 is held at the insertion position and the first midway position as described above, for example, when an operation input by an operator or the like is made to the switches 15 of the operation unit 3, the second The drive current supplied to the electromagnetic drive source 55 is switched from the positive current I to the negative current −I (see timing t7 in FIG. 31). As a result, the excited bodies of the third and fourth electromagnetic coils 75 and 76 are reversed, the third core head 73a side is magnetized to the N pole, and the fourth core head 74a side is magnetized to the S pole. Then, the repulsive force between the third core head 73a magnetized in the N pole and the N pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized in the S pole and the fourth core. The shaft member 52 is rotated by the repulsive force with the S pole of the shaft member 52 facing the core head 74a, and the optical holding member 53 is displaced to the retracted position for retracting the movable lens 35 from the optical path. Further, due to the displacement of the optical holding member 53 to the retracted position, the locking body of the optical holding portion 53b and the locking plate 85 is released.

また、光学保持部材53が退避位置に変位すると、軸部材52のS極は第1,第3のコアヘッド63a,73aに対向され、且つ、軸部材52のN極は第2,第4のコアヘッド64a,74aに対向される。そして、N極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のS極との引力、及び、S極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のN極との引力により、軸部材52に軸着された光学保持部53bが第2のスペーサ58bに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、退避位置に保持される。加えて、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力には、軸心方向に引き合う成分が発生する。これにより、光学保持部材53は、第2の基板57側に引き寄せられ、予め設定された進出位置に保持される(図28参照)。すなわち、光学保持部材53の退避位置への変位によって光学保持部53bと係止板85との係止状態が解除され、且つ、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力に軸心方向の成分が発生していることにより、光学保持部材53は、第1の中途位置から進出位置まで変位し、その後保持される。   When the optical holding member 53 is displaced to the retracted position, the S pole of the shaft member 52 is opposed to the first and third core heads 63a and 73a, and the N pole of the shaft member 52 is the second and fourth core heads. 64a and 74a. Then, the attractive force between the third core head 73a magnetized in the N pole and the S pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized in the S pole and the fourth core Due to the attractive force of the shaft member 52 facing the core head 74a with the N pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the second spacer 58b, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the retracted position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a and 74a, the shaft member 52 and the third and fourth core heads 73a and 74a are offset. In each attractive force between the two, a component attracting in the axial direction is generated. As a result, the optical holding member 53 is drawn toward the second substrate 57 and is held at a preset advance position (see FIG. 28). That is, when the optical holding member 53 is displaced to the retracted position, the locked state between the optical holding portion 53b and the locking plate 85 is released, and between the shaft member 52 and the third and fourth core heads 73a and 74a. Since an axial component is generated in each of the attractive forces, the optical holding member 53 is displaced from the first midway position to the advanced position, and then held.

また、このように光学保持部材53が退避位置且つ進出位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第2の電磁駆動源55に供給されていた駆動電流が負電流−Iから正電流Iに切り替えられる(図31中のタイミングt8参照)。これにより、第3,第4の電磁コイル75,76の励磁状態が反転し、第3のコアヘッド73a側がS極に帯磁されるとともに、第4のコアヘッド74a側がN極に帯磁される。そして、S極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のS極との斥力、及び、N極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aと対向する軸部材52のN極との斥力により、軸部材52が回動され、光学保持部材53は可動レンズ35を光路上に挿入する挿入位置に変位される(図24参照)。このとき、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため、軸部材52と第3,第4のコアヘッド73a,74aとの間の各斥力には、軸心方向に反発し合う成分が発生する。これにより、光学保持部材53は第2の基板56側から一時的に離間され、軸部材52の回動時における摺動抵抗が軽減される。   Further, in the state where the optical holding member 53 is held at the retracted position and the advanced position as described above, for example, when an operator input is made to the switches 15 of the operation unit 3, the second electromagnetic drive The drive current supplied to the source 55 is switched from the negative current −I to the positive current I (see timing t8 in FIG. 31). As a result, the excitation states of the third and fourth electromagnetic coils 75 and 76 are reversed, the third core head 73a side is magnetized to the S pole, and the fourth core head 74a side is magnetized to the N pole. The repulsive force between the third core head 73a magnetized to the S pole and the S pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized to the N pole and the fourth core The shaft member 52 is rotated by the repulsive force with the N pole of the shaft member 52 facing the core head 74a, and the optical holding member 53 is displaced to the insertion position for inserting the movable lens 35 on the optical path (see FIG. 24). . At this time, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a and 74a, the shaft member 52 and the third and fourth core heads 73a and 74a are offset. In each repulsive force between them, a component repelling in the axial direction is generated. Thereby, the optical holding member 53 is temporarily separated from the second substrate 56 side, and the sliding resistance when the shaft member 52 is rotated is reduced.

また、光学保持部材53が挿入位置に変位すると、軸部材52のS極は第2,第4のコアヘッド64a,74aに対向され、且つ、軸部材52のN極は第1,第3のコアヘッド63a,73aに対向される。そして、S極に帯磁された第3のコアヘッド73aと当該第3のコアヘッド73aに対向する軸部材52のN極との引力、及び、N極に帯磁された第4のコアヘッド74aと当該第4のコアヘッド74aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される。加えて、軸部材52が形成する磁場のピークが第3,第4のコアヘッド73a,74aに対して軸心方向にオフセットされているため、軸部材52と第3,第4のコアヘッド73a,74aとの間の各引力には、軸心方向に引き合う成分が発生する。これにより、光学保持部材53は、第2の基板57側に引き寄せられ、予め設定された進出位置に保持される(図29参照)。   When the optical holding member 53 is displaced to the insertion position, the S pole of the shaft member 52 is opposed to the second and fourth core heads 64a and 74a, and the N pole of the shaft member 52 is the first and third core heads. It is opposed to 63a, 73a. Then, the attractive force between the third core head 73a magnetized at the S pole and the N pole of the shaft member 52 facing the third core head 73a, and the fourth core head 74a magnetized at the N pole and the fourth core Due to the attractive force of the shaft member 52 facing the core head 74a with the S pole, the optical holding portion 53b pivotally attached to the shaft member 52 comes into contact with the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position. In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the third and fourth core heads 73a and 74a, the shaft member 52 and the third and fourth core heads 73a and 74a are offset. In each attractive force between the two, a component attracting in the axial direction is generated. As a result, the optical holding member 53 is drawn toward the second substrate 57 and is held at a preset advance position (see FIG. 29).

また、このように光学保持部材53が挿入位置且つ進出位置に保持されている状態において、例えば、操作部3のスイッチ類15等に対する術者等の操作入力がなされると、第2の電磁駆動源55に供給されていた駆動電流がオフされるとともに、第1の電磁駆動源54に駆動電流として所定の正電流Iが供給される(図31中のタイミングt9参照)。これにより、第1,第2の電磁コイル65,66は励磁され、第1のコアヘッド63a側がS極に帯磁されるとともに、第2のコアヘッド64a側がN極に帯磁される。そして、S極に帯磁された第1のコアヘッド63aと当該第1のコアヘッド63aに対向する軸部材52のN極との引力、及び、N極に帯磁された第2のコアヘッド64aと当該第2のコアヘッド64aに対向する軸部材52のS極との引力により、軸部材52に軸着された光学保持部53bが第1のスペーサ58aに当接して、軸心周りの回動が禁止される。これにより、光学保持部材53は、挿入位置に保持される(図24参照)。加えて、軸部材52が形成する磁場のピークが第1,第2のコアヘッド63a,64aに対して軸心方向にオフセットされているため、軸部材52と第1,第2のコアヘッド63a,64aとの間の各引力には、軸心方向に引き合う成分が発生する。この軸心方向の成分により、光学保持部材53は、第1の基板56側に引き寄せられるが、進出位置から後退位置まで変位する中途において、光学保持部53bが係止板85に干渉されて係止される。これにより、光学保持部材53は、第1の基板56側への移動が規制され、可動レンズ35を予め設定された第2の中途位置に保持する(図30参照)。なお、図27と図30との比較からも明らかな通り、第2の中途位置は、第1の中途位置に対し、光学保持部材53及び係止板85の板厚分だけ可動レンズ35を進出位置側に保持する位置である。   Further, in the state where the optical holding member 53 is held at the insertion position and the advanced position in this way, for example, when an operator input is made to the switches 15 of the operation unit 3, the second electromagnetic drive The drive current supplied to the source 55 is turned off, and a predetermined positive current I is supplied as the drive current to the first electromagnetic drive source 54 (see timing t9 in FIG. 31). As a result, the first and second electromagnetic coils 65 and 66 are excited, the first core head 63a side is magnetized to the S pole, and the second core head 64a side is magnetized to the N pole. Then, the attractive force between the first core head 63a magnetized in the S pole and the N pole of the shaft member 52 facing the first core head 63a, and the second core head 64a magnetized in the N pole and the second Due to the attractive force with the S pole of the shaft member 52 facing the core head 64a, the optical holding portion 53b pivotally attached to the shaft member 52 abuts on the first spacer 58a, and rotation about the shaft center is prohibited. . Thereby, the optical holding member 53 is held at the insertion position (see FIG. 24). In addition, since the peak of the magnetic field formed by the shaft member 52 is offset in the axial direction with respect to the first and second core heads 63a and 64a, the shaft member 52 and the first and second core heads 63a and 64a are offset. In each attractive force between the two, a component attracting in the axial direction is generated. The optical holding member 53 is pulled toward the first substrate 56 by the component in the axial direction, but the optical holding portion 53b is interfered with the locking plate 85 in the middle of the displacement from the advanced position to the retracted position. Stopped. As a result, the optical holding member 53 is restricted from moving toward the first substrate 56, and holds the movable lens 35 at a preset second intermediate position (see FIG. 30). As is clear from comparison between FIG. 27 and FIG. 30, the second halfway position advances the movable lens 35 by the thickness of the optical holding member 53 and the locking plate 85 with respect to the first halfway position. It is a position to hold on the position side.

このような実施形態によれば、光学保持部材53が挿入位置にあるとき光学保持部53bと係止可能な係止板85を設け、可動レンズ35の保持位置である進出位置と後退位置との間に第1,第2の中途位置を設定することにより、よりバリエーションに富んだ光学特性を実現することができる。   According to such an embodiment, when the optical holding member 53 is in the insertion position, the locking plate 85 that can be locked with the optical holding portion 53b is provided, and the advance position and the reverse position that are the holding positions of the movable lens 35 are provided. By setting the first and second midway positions in between, it is possible to realize more varied optical characteristics.

次に、図32乃至図38は本発明の第3の実施形態に係わり、図32は光学ユニットのハウジング内の構成を示す分解斜視図、図33は撮像光学系の光路上にフィルタを挿入した状態の光学ユニットの内部構造を示す平面図、図34は撮像光学系の光路からフィルタを退避させた状態の光学ユニットの内部構造を示す平面図、図35は撮像光学系の光路上にフィルタを挿入し、且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図、図36は撮像光学系の光路からフィルタを退避させ、且つ光軸方向の後退位置にレンズを配置した状態の光学ユニットを示す要部断面図、図37は撮像光学系の光路からフィルタを退避させ、且つ光軸方向の進出位置にレンズを配置した状態を示す要部断面図、図38は撮像光学系の光路上にフィルタを挿入し、且つ光軸方向の進出位置にレンズを配置した状態を示す要部断面図である。なお、本実施形態は、可動レンズに代えて光学フィルタを光学保持部材に保持させた点、及び、光学保持部材とは別に副光学保持部材を設けた点が、上述の第1の実施形態に対して主として異なる。その他、上述の第1の実施形態と同様の点については、適宜同符号を付して説明を省略する。   Next, FIGS. 32 to 38 relate to a third embodiment of the present invention, FIG. 32 is an exploded perspective view showing the configuration inside the housing of the optical unit, and FIG. 33 is a diagram in which a filter is inserted on the optical path of the imaging optical system. FIG. 34 is a plan view showing the internal structure of the optical unit in a state where the filter is retracted from the optical path of the imaging optical system, and FIG. 35 is a plan view showing the internal structure of the optical unit in the imaging optical system. FIG. 36 is a cross-sectional view of the principal part showing the optical unit inserted and the lens is disposed at the retracted position in the optical axis direction; FIG. 36 is a diagram illustrating the filter retracted from the optical path of the imaging optical system and the lens at the retracted position in the optical axis direction; FIG. 37 is a cross-sectional view of the main part showing the optical unit in an arranged state, FIG. 37 is a cross-sectional view of the main part showing a state in which the filter is retracted from the optical path of the imaging optical system and the lens is placed at the advanced position in the optical axis direction. Imaging optical system Insert the filter into the optical path, a and fragmentary cross-sectional view showing a state in which a lens in the optical axis direction of the advanced position to place. This embodiment is different from the first embodiment in that the optical filter is held by the optical holding member instead of the movable lens, and the sub optical holding member is provided separately from the optical holding member. It differs mainly. In addition, about the point similar to the above-mentioned 1st Embodiment, the same code | symbol is attached | subjected suitably and description is abbreviate | omitted.

図35〜図38に示すように、本実施形態において、光学保持部材53には、光学部材として光学フィルタ90が保持されている。   As shown in FIGS. 35 to 38, in this embodiment, the optical holding member 53 holds an optical filter 90 as an optical member.

また、例えば、図32に示すように、ハウジング51を構成する第1,第2の基板56,57には、各軸受孔56d,57dに近設する位置にピン孔56e,57eが穿設され、これらピン孔56e,57eを介してガイドピン92が軸部材52と平行に保持されている。   Also, for example, as shown in FIG. 32, pin holes 56e and 57e are formed in the first and second substrates 56 and 57 constituting the housing 51 at positions close to the bearing holes 56d and 57d. The guide pin 92 is held in parallel with the shaft member 52 through the pin holes 56e and 57e.

また、本実施形態のハウジング51内には、副光学保持部材93が設けられている。この副光学保持部材93は、一端側が軸部材52及びガイドピン92に摺動自在に軸支されたアーム部93aと、アーム部93aの他端側に副光学部材としての可動レンズ95を保持する円環状の副光学保持部93bと、が一体形成された平板状の部材によって構成されている。   In addition, a sub optical holding member 93 is provided in the housing 51 of the present embodiment. The sub optical holding member 93 holds an arm portion 93a whose one end side is slidably supported by the shaft member 52 and the guide pin 92, and a movable lens 95 as a sub optical member on the other end side of the arm portion 93a. An annular sub optical holding portion 93b is formed of a flat plate member integrally formed.

ここで、副光学保持部材93は、アーム部93aに軸部材52及びガイドピン92が挿通されることにより、ハウジング51内において回動不能に支持され、可動レンズ95を、常に撮像光学系30の光路上(挿入位置)に保持することが可能となっている。   Here, the sub optical holding member 93 is supported in a non-rotatable manner in the housing 51 by inserting the shaft member 52 and the guide pin 92 into the arm portion 93 a, and the movable lens 95 is always attached to the imaging optical system 30. It can be held on the optical path (insertion position).

また、軸部材52にはストッパリング96が固設され、このストッパリング96と光学保持部材53のアーム部53aとの間には、副光学保持部材93のアーム部93aが介装されている。これにより、副光学保持部材93は、軸部材52に対する軸心方向の移動が規制され、光学保持部材53と一体に進出位置と後退位置との間で変位することが可能となっている。   A stopper ring 96 is fixed to the shaft member 52, and an arm portion 93 a of the sub optical holding member 93 is interposed between the stopper ring 96 and the arm portion 53 a of the optical holding member 53. Thereby, the sub optical holding member 93 is restricted from moving in the axial direction with respect to the shaft member 52, and can be displaced between the advanced position and the retracted position integrally with the optical holding member 53.

すなわち、本実施形態において、副光学保持部材93は、軸部材52の回動とは独立して撮像光学系の挿入位置に可動レンズ95を保持し、且つ、光学フィルタ90の光軸に沿った変位に伴って可動レンズ95を進出位置と後退位置とに変位させることが可能となっている(図33,34参照)。   That is, in this embodiment, the sub optical holding member 93 holds the movable lens 95 at the insertion position of the imaging optical system independently of the rotation of the shaft member 52 and is along the optical axis of the optical filter 90. With the displacement, the movable lens 95 can be displaced between the advanced position and the retracted position (see FIGS. 33 and 34).

このような構成において、光学保持部材53は、上述の第1の実施形態と同様の作用により、挿入位置と退避位置との間で変位するとともに、進出位置と後退位置との間で変位する。一方、副光学保持部材93は、光学保持部材53の進出位置と後退位置との間の変位にのみ連動する。   In such a configuration, the optical holding member 53 is displaced between the insertion position and the retracted position and displaced between the advanced position and the retracted position by the same action as in the first embodiment. On the other hand, the sub optical holding member 93 is interlocked only with the displacement between the advanced position and the retracted position of the optical holding member 53.

これにより、本実施形態の光学ユニット50は、光学フィルタ90及び可動レンズ95を撮像光学系30の光路上の挿入位置であって且つ軸心方向の後退位置に配置した状態(図35参照)と、可動レンズ95のみを撮像光学系30の挿入位置であって且つ軸心方向の後退位置に配置した状態(図36参照)と、可動レンズ95のみを撮像光学系30の挿入位置であって且つ軸心方向の進出位置に配置した状態(図37参照)と、光学フィルタ90及び可動レンズ95を撮像光学系30の光路上の挿入位置であって且つ軸心方向の進出位置に配置した状態(図38参照)と、の4通りの形態を実現する。   As a result, the optical unit 50 of the present embodiment has the optical filter 90 and the movable lens 95 arranged at the insertion position on the optical path of the imaging optical system 30 and at the retracted position in the axial direction (see FIG. 35). The state in which only the movable lens 95 is disposed at the insertion position of the imaging optical system 30 and the retracted position in the axial direction (see FIG. 36), and only the movable lens 95 is the insertion position of the imaging optical system 30 and A state in which the optical filter 90 and the movable lens 95 are arranged at the advance position in the axial direction (see FIG. 37), and the optical filter 90 and the movable lens 95 are arranged at the insertion position on the optical path of the imaging optical system 30 (See FIG. 38).

このような実施形態によれば、光学保持部材53に加えて副光学保持部材93を設け、これら光学保持部材53と副光学保持部材93のそれぞれにより、光学部材としての光学フィルタ90と、副光学部材としての可動レンズ95と、を撮像光学系30の光路に対して変位させることにより、よりバリエーションに富んだ光学特性を実現することができる。   According to such an embodiment, the sub optical holding member 93 is provided in addition to the optical holding member 53. The optical holding member 53 and the sub optical holding member 93 respectively provide the optical filter 90 as the optical member and the sub optical unit. By displacing the movable lens 95 as a member with respect to the optical path of the imaging optical system 30, optical characteristics rich in variations can be realized.

なお、本発明は、以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であり、それらも本発明の技術的範囲内である。例えば、上述の各実施形態の構成を適宜組み合わせてもよいことは勿論である。   In addition, this invention is not limited to each embodiment described above, A various deformation | transformation and change are possible, and they are also in the technical scope of this invention. For example, it goes without saying that the configurations of the above-described embodiments may be appropriately combined.

また、上述の実施形態においては、光学部材として可動レンズ或いは光学フィルタを、光学系の光路に挿脱させる一例について説明したが、本発明はこれに限定されるものではなく、例えば、絞りやプリズム等を挿脱させる構成であってもよい。   In the above-described embodiment, an example in which the movable lens or the optical filter is inserted into and removed from the optical path of the optical system as the optical member has been described. However, the present invention is not limited to this example. The structure which inserts and removes etc. may be sufficient.

また、本発明が適用される光学系としては、撮像光学系に限定されるものでなく、例えば、被写体等に対して照明光を照射する照明光学系等に対しても適用が可能である。   The optical system to which the present invention is applied is not limited to the imaging optical system, and can be applied to, for example, an illumination optical system that irradiates illumination light to a subject or the like.

また、上述の各実施形態においては、S極を第1の磁極、N極を第2の磁極として説明したが、これら第1,第2の磁極の対応付けは逆であっても良いことは勿論である。   In each of the above embodiments, the S pole is described as the first magnetic pole, and the N pole as the second magnetic pole. However, the correspondence between the first and second magnetic poles may be reversed. Of course.

1…内視鏡、2…挿入部、3…操作部、4…ユニバーサルコード、4…操作部、5…先端部、6…湾曲部、7…可撓管部、10…操作部本体、11…折れ止め部、13…処置具挿通口、14…アングルレバー、15…スイッチ類、16…折れ止め部、20…スコープコネクタ部、21…光源側コネクタ、22…電気接点、23…電気コネクタ、25…照明光学系、26…撮像装置、27…送気送水チャンネル、28…処置具挿通チャンネル、30…撮像光学系、31…レンズ枠、32…対物レンズ、34…レンズ、35…可動レンズ(光学部材)、37…撮像枠、38…イメージセンサ、39…カバーガラス、40…電気基板、41…信号ケーブル、42…駆動用ケーブル、43…配線パターン、50…光学ユニット、51…ハウジング、52…軸部材、53…光学保持部材、53a…アーム部、53b…光学保持部、54…第1の電磁駆動源、55…第2の電磁駆動源、56…第1の基板、56a…円形部、56b…矩形部、56c…開口部、56d…軸受孔、56e…ピン孔、57…第2の基板、57a…円形部、57b…矩形部、57c…開口部、57d…軸受孔、57a…ピン孔、58a…第1のスペーサ、58b…第2のスペーサ、61…ヨーク、62…ベース部材、62a…第1の連結部、62b…第2の連結部、63…第1のコアアーム、63a…第1のコアヘッド、64…第2のコアアーム、64a…第2のコアヘッド、65…第1の電磁コイル、66…第2の電磁コイル、67…第1の電磁石、68…第2の電磁石、71…ヨーク、72…ベース部材、72a…第1の連結部、72b…第2の連結部、73…第3のコアアーム、73a…第3のコアヘッド、74…第4のコアアーム、74a…第4のコアヘッド、75…第3の電磁コイル、76…第4の電磁コイル、77…第3の電磁石、78…第4の電磁石、80…電源制御部、85…係止板(規制部材)、90…光学フィルタ(光学部材)、92…ガイドピン、93…副光学保持部材、93a…アーム部、93b…副光学保持部、95…可動レンズ(副光学部材)、96…ストッパリング   DESCRIPTION OF SYMBOLS 1 ... Endoscope, 2 ... Insertion part, 3 ... Operation part, 4 ... Universal cord, 4 ... Operation part, 5 ... Tip part, 6 ... Bending part, 7 ... Flexible pipe part, 10 ... Operation part main body, 11 DESCRIPTION OF SYMBOLS ... Folding prevention part, 13 ... Treatment instrument insertion port, 14 ... Angle lever, 15 ... Switches, 16 ... Folding prevention part, 20 ... Scope connector part, 21 ... Light source side connector, 22 ... Electric contact, 23 ... Electric connector, 25 ... Illumination optical system, 26 ... Imaging device, 27 ... Air supply / water supply channel, 28 ... Treatment instrument insertion channel, 30 ... Imaging optical system, 31 ... Lens frame, 32 ... Objective lens, 34 ... Lens, 35 ... Movable lens ( Optical member), 37 ... Imaging frame, 38 ... Image sensor, 39 ... Cover glass, 40 ... Electrical board, 41 ... Signal cable, 42 ... Driving cable, 43 ... Wiring pattern, 50 ... Optical unit, 51 ... Housing, 5 ... Shaft member, 53 ... Optical holding member, 53a ... Arm part, 53b ... Optical holding part, 54 ... First electromagnetic drive source, 55 ... Second electromagnetic drive source, 56 ... First substrate, 56a ... Circular part 56b ... rectangular portion, 56c ... opening, 56d ... bearing hole, 56e ... pin hole, 57 ... second substrate, 57a ... circular portion, 57b ... rectangular portion, 57c ... opening, 57d ... bearing hole, 57a ... Pin hole, 58a ... 1st spacer, 58b ... 2nd spacer, 61 ... Yoke, 62 ... Base member, 62a ... 1st connection part, 62b ... 2nd connection part, 63 ... 1st core arm, 63a ... 1st core head, 64 ... 2nd core arm, 64a ... 2nd core head, 65 ... 1st electromagnetic coil, 66 ... 2nd electromagnetic coil, 67 ... 1st electromagnet, 68 ... 2nd electromagnet, 71 ... Yoke, 72 ... Base member, 72a ... 1 connection part, 72b ... 2nd connection part, 73 ... 3rd core arm, 73a ... 3rd core head, 74 ... 4th core arm, 74a ... 4th core head, 75 ... 3rd electromagnetic coil, 76 ... 4th electromagnetic coil, 77 ... 3rd electromagnet, 78 ... 4th electromagnet, 80 ... Power supply control part, 85 ... Locking plate (regulation member), 90 ... Optical filter (optical member), 92 ... Guide pin 93 ... Sub optical holding member, 93a ... Arm part, 93b ... Sub optical holding part, 95 ... Movable lens (sub optical member), 96 ... Stopper ring

Claims (3)

軸対象に着磁された永久磁石からなる軸部材と、
前記軸部材を軸心周りに回動可能且つ軸心方向に進退移動可能に保持する軸保持部材と、
前記軸部材に軸着され、前記軸部材の回動に伴って光学系の光路上に光学部材を挿入する挿入位置と前記光路から前記光学部材を退避させる退避位置とに変位可能であり、且つ、前記軸部材の進退移動に伴って前記光学部材を前記光路の光軸に沿って進出させる進出位置と前記光学部材を前記光路の光軸に沿って後退させる後退位置とに変位可能な光学保持部材と、
前記軸部材が形成する磁場のピークよりも軸心方向の一側にオフセットした位置において当該軸部材の磁場と干渉する磁場を発生可能な電磁石を有する第1の電磁駆動源と、
前記軸部材が形成する前記磁場のピークよりも軸心方向の他側にオフセットした位置において当該軸部材の磁場と干渉する磁場を発生可能な電磁石を有する第2の電磁駆動源と、を備えたことを特徴とする光学ユニット。
A shaft member made of a permanent magnet magnetized on the shaft object;
A shaft holding member that holds the shaft member so as to be rotatable about an axis and capable of moving back and forth in the axial direction;
It is pivotally attached to the shaft member, and is displaceable between an insertion position for inserting the optical member on an optical path of an optical system and a retreat position for retracting the optical member from the optical path as the shaft member rotates. An optical holding that is displaceable between an advanced position where the optical member is advanced along the optical axis of the optical path and a retracted position where the optical member is retracted along the optical axis of the optical path as the shaft member moves forward and backward Members,
A first electromagnetic drive source having an electromagnet capable of generating a magnetic field that interferes with the magnetic field of the shaft member at a position offset to one side in the axial direction from the peak of the magnetic field formed by the shaft member;
A second electromagnetic drive source having an electromagnet capable of generating a magnetic field that interferes with the magnetic field of the shaft member at a position offset to the other side in the axial direction from the peak of the magnetic field formed by the shaft member. An optical unit characterized by that.
前記光学保持部材が前記挿入位置にあるときにのみ、前記進出位置と前記後退位置との間に設定された中途位置にて前記光学保持部材と干渉して当該光学保持部材の光軸方向への移動を規制する規制部材を備えたことを特徴とする請求項1に記載の光学ユニット。   Only when the optical holding member is in the insertion position, the optical holding member interferes with the optical holding member at a midway position set between the advance position and the retracted position in the optical axis direction of the optical holding member. The optical unit according to claim 1, further comprising a regulating member that regulates movement. 前記軸部材の回動とは独立して前記光学系の挿入位置に副光学部材を保持し、且つ、前記副光学部材を前記光学保持部材の前記光軸に沿った変位に伴って前記進出位置と前記後退位置とに変位可能な副光学保持部材を備えたことを特徴とする請求項1に記載の光学ユニット。   The sub optical member is held at the insertion position of the optical system independently of the rotation of the shaft member, and the sub optical member is moved to the advanced position along with the displacement of the optical holding member along the optical axis. The optical unit according to claim 1, further comprising a sub-optical holding member that is displaceable to the retracted position.
JP2013193339A 2013-09-18 2013-09-18 Optical unit Active JP6109023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013193339A JP6109023B2 (en) 2013-09-18 2013-09-18 Optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193339A JP6109023B2 (en) 2013-09-18 2013-09-18 Optical unit

Publications (2)

Publication Number Publication Date
JP2015060060A true JP2015060060A (en) 2015-03-30
JP6109023B2 JP6109023B2 (en) 2017-04-05

Family

ID=52817644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193339A Active JP6109023B2 (en) 2013-09-18 2013-09-18 Optical unit

Country Status (1)

Country Link
JP (1) JP6109023B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246765A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Rotary movable section linear motor
JP2005121859A (en) * 2003-10-16 2005-05-12 Sankyo Seiki Mfg Co Ltd Lens driving device and portable equipment with camera
JP2006039153A (en) * 2004-07-26 2006-02-09 Ricoh Co Ltd Lens barrel, camera and personal digital assistant
JP2009080470A (en) * 2007-09-04 2009-04-16 Olympus Corp Incident-light adjusting apparatus
JP2009258760A (en) * 2003-06-27 2009-11-05 Nokia Corp Camera lens-positioning device using shape memory alloy and camera using the same
JP2010262107A (en) * 2009-05-01 2010-11-18 Hoya Corp Retracting structure for lens frame

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246765A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Rotary movable section linear motor
JP2009258760A (en) * 2003-06-27 2009-11-05 Nokia Corp Camera lens-positioning device using shape memory alloy and camera using the same
JP2005121859A (en) * 2003-10-16 2005-05-12 Sankyo Seiki Mfg Co Ltd Lens driving device and portable equipment with camera
JP2006039153A (en) * 2004-07-26 2006-02-09 Ricoh Co Ltd Lens barrel, camera and personal digital assistant
JP2009080470A (en) * 2007-09-04 2009-04-16 Olympus Corp Incident-light adjusting apparatus
JP2010262107A (en) * 2009-05-01 2010-11-18 Hoya Corp Retracting structure for lens frame

Also Published As

Publication number Publication date
JP6109023B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5834074B2 (en) Electromagnetic actuator for surgical instruments
JP2009075170A (en) Imaging device
US8599503B2 (en) Barrel unit and image pickup apparatus
WO2018229865A1 (en) Optical unit and endoscope
WO2015118711A1 (en) Optical unit and endoscope
WO2019026445A1 (en) Linear actuator for endoscope, optical unit for endoscope, and endoscope
US20190274526A1 (en) Stereoscopic image pickup apparatus and stereoscopic endoscope
EP1884813B1 (en) Image pick up unit
JP6109023B2 (en) Optical unit
WO2017094126A1 (en) Optical unit and endoscope
JP6395424B2 (en) Light control device
JP6461321B2 (en) Light control device and diagnostic device
JP2015208635A (en) Optical device and endoscope having the same
JP6444765B2 (en) Imaging apparatus and endoscope
US20200400915A1 (en) Drive unit, image pickup apparatus, and endoscope
JP5998014B2 (en) Imaging apparatus and endoscope apparatus
JP2016099514A (en) Imaging device
US20200319448A1 (en) Optical unit for endoscope and endoscope
JP6099533B2 (en) Optical unit
WO2021176655A1 (en) Optical unit, imaging device, endoscope, and driving method for optical unit
JP6883474B2 (en) Optical device
WO2023084656A1 (en) Optical unit and endoscope
JP2015210501A (en) Optical device and endoscope including optical device
JP2006030779A (en) Imaging apparatus and driving motor
JP6129035B2 (en) Optical unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R151 Written notification of patent or utility model registration

Ref document number: 6109023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250