JP2015059821A - 日射量予測装置および方法 - Google Patents

日射量予測装置および方法 Download PDF

Info

Publication number
JP2015059821A
JP2015059821A JP2013193423A JP2013193423A JP2015059821A JP 2015059821 A JP2015059821 A JP 2015059821A JP 2013193423 A JP2013193423 A JP 2013193423A JP 2013193423 A JP2013193423 A JP 2013193423A JP 2015059821 A JP2015059821 A JP 2015059821A
Authority
JP
Japan
Prior art keywords
cloud
image
solar radiation
amount
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013193423A
Other languages
English (en)
Inventor
満 柿元
Mitsuru Kakimoto
満 柿元
智一 河原
Tomokazu Kawahara
智一 河原
雄毅 羽生
Yuki Habu
雄毅 羽生
岳 石井
Takeshi Ishii
岳 石井
小林 英樹
Hideki Kobayashi
英樹 小林
長谷川 義朗
Yoshiro Hasegawa
義朗 長谷川
博幸 日下
Hiroyuki Kusaka
博幸 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
University of Tsukuba NUC
Original Assignee
Toshiba Corp
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, University of Tsukuba NUC filed Critical Toshiba Corp
Priority to JP2013193423A priority Critical patent/JP2015059821A/ja
Publication of JP2015059821A publication Critical patent/JP2015059821A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高精度に日射量を予測することができる。【解決手段】本開示の一実施形態に係る日射量予測装置は、切り出し部、位置特定部、影響度算出部、特徴抽出部、格納部、移動予測部及び日射量予測部を含む。切り出し部は、日射量を測定する測定地点から天空を撮影した第1画像に含まれる少なくとも1つの第1雲塊の第1雲塊画像を抽出する。影響度算出部は、第1雲塊の空間位置が測定地点の日射に影響を与える影響位置である場合、測定地点での日射量に基づいて、第1雲塊が日射量に与える影響度を算出する。格納部は、影響位置にある第1画像特徴量と影響度との対応関係を、影響位置にある第1雲塊ごとにそれぞれ格納する。移動予測部は、影響位置ではない空間位置のある第2雲塊が影響位置に達する時刻を予測する。日射量予測部は、対応関係と第2雲塊の第2画像特徴量とを参照して、前記時刻において第2雲塊が測定地点での日射量に与える影響度を予測する。【選択図】図1

Description

本発明の実施形態は、日射量予測装置および方法に関する。
日射量を予測するには、所定の場所への太陽光の照射に雲が与える影響を推定する必要がある。この影響には、日射をさえぎる遮蔽効果、散乱により日射を増幅する効果を含む。従来の雲画像を用いた日射量予測では、雲が所定の場所と太陽との間に入ってくるかどうかを予測する手法が用いられる。雲が所定の場所の日射をさえぎるならば日射量は大きく低下すると予想する。逆に、日射を遮らないならば日射量は晴天の場合と同じであると推定する。
特開2007−184354号公報
しかしながら、この方法では、雲の性質による日射量の変化を反映することはできない。日常でも、空を見たときに雲が多様な形態や色をしていることから分かるように、雲の物理的性質は様々である。より具体的には、雲は、雲粒の密度、大きさの分布、相状態(水か氷か)などが多様である。また、雲に多様な形があることから分かるように雲粒の分布は空間的に大きく変化している。これらの物理的性質は雲による光の散乱に、ひいては地上の日射量に大きく影響する。
また、雲の物理的性質がたとえ正確に推定できたとしても、雲による光の散乱過程は多くの雲粒の複数回の散乱を伴う複雑なものであり、精度よく計算することは困難である。加えて、雲の物理的性質を正確に予想するのはさらに難しい。
そこで、大気の運動や、雲形成の過程を数値的に計算機上で再現することで雲の物理的性質を計算する数値気象シミュレーションがある。しかし、基本となる流体力学的計算が持つ非線形性のため、原理的に予測の精度を挙げることは難しい。さらに、水蒸気の密度分布や雲形成の核となる微粒子の分布の変化や化学的性質を考慮せねばならず大変複雑な計算となる。このように雲の持つ性質を反映した日射量予測の有効な手法はない。
本発明は、上述した課題を解決するためになされたものであり、煩雑な計算をすることなくかつ高精度に日射量を予測することができる日射量予測装置および方法を提供することを目的とする。
本発明の一実施形態に係る日射量予測装置は、切り出し部、位置特定部、影響度算出部、特徴抽出部、格納部、移動予測部および日射量予測部を含む。切り出し部は、日射量を測定する測定地点から天空を撮影した第1画像に含まれる少なくとも1つの第1雲塊の画像領域である第1雲塊画像を抽出する。位置特定部は、前記第1雲塊画像から前記第1雲塊の空間位置を特定する。影響度算出部は、前記第1雲塊の前記空間位置が前記測定地点の日射に影響を与える空間位置である影響位置である場合、前記測定地点での日射量に基づいて、該第1雲塊が該日射量に与える影響度を算出する。特徴抽出部は、前記影響位置にある前記第1雲塊の画像の特徴を示す第1画像特徴量を抽出する。格納部は、前記第1画像特徴量と前記影響度との対応関係を、前記影響位置にある第1雲塊ごとにそれぞれ格納する。移動予測部は、前記影響位置ではない空間位置のある第2雲塊の移動行程を予測し、該第2雲塊が該影響位置に達する時刻を予測する。日射量予測部は、前記対応関係と前記第2雲塊の第2画像特徴量とを参照して、前記時刻において該第2雲塊が前記測定地点での日射量に与える影響度を予測する。
第1の実施形態に係る日射量予測装置を示すブロック図。 第1の実施形態に係る日射量の測定環境を示す概念図。 複数の雲塊が測定地点上を通過する場合の処理方法の一例を示す図。 雲塊の移動に関する時間的な関係を示す図。 第1の実施形態に係る日射量予測装置の学習処理を示すフローチャート。 マップ格納部に格納される影響度マップの一例を示す図。 第1の実施形態に係る日射量予測装置の予測処理を示すフローチャート。 第1の実施形態に係る予測日射量の時系列データの一例を示す図。 複数の雲塊が測定地点に達する場合を示す図。 第1の実施形態の変形例に係る予測日射量 第2の実施形態において予測対象となる雲塊を示す概念図。 第2の実施形態に係る日射量予測装置を示すブロック図。 第2の実施形態に係る日射量予測装置の予測処理を示すフローチャート。 第2の実施形態に係る雲塊の特定方法の一例を示す図。 雲塊の画像特徴量が地上カメラの視野の範囲内で変化する場合を示すグラフ。 第3の実施形態に係る日射量予測装置を示すブロック図。 第3の実施形態に係る雲塊の特定方法の一例を示す図。
以下、図面を参照しながら本開示の一実施形態に係る日射量予測装置および方法について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行なうものとして、重ねての説明を省略する。
(第1の実施形態)
第1の実施形態に係る日射量予測装置について図1のブロック図を参照して説明する。
第1の実施形態に係る日射量予測装置100は、カメラ画像データベース101(以下、カメラ画像DB101という)、雲切り出し部102、雲位置特定部103、雲移動追跡部104、画像特徴抽出部105、撮影条件データベース106(以下、撮影条件DB106という)、日射量データベース107(以下、日射量DB107という)、快晴時日射量計算部108、影響度算出部109、マップ生成部110、マップ格納部111、カメラ150、雲切り出し部132、雲位置特定部133、雲移動予測部134、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137、日射量予測部138および予測出力部139を含む。
また、カメラ画像DB101、雲切り出し部102、雲位置特定部103、雲移動追跡部104、画像特徴抽出部105、撮影条件DB106、日射量DB107、快晴時日射量計算部108、影響度算出部109およびマップ生成部110をまとめて、学習部120ともいう。
また、雲切り出し部132、雲位置特定部133、雲移動予測部134、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137、日射量予測部138および予測出力部139をまとめて予測部130ともいう。
カメラ150は、日射量を測定する地点である測定地点に設置され、雲塊の画像を撮影するために天空を撮影する。カメラ150の撮影(撮像)間隔は、ミリ秒オーダーの短い時間間隔でなくともよく、30秒間隔程度の撮影でもよい。
カメラ画像DB101は、測定地点に設定されるカメラ150から、天空方向を撮影したカメラ画像を、時系列に沿って複数取得して格納する。
雲切り出し部102は、カメラ画像DB101からカメラ画像を受け取り、カメラ画像から雲塊の画像領域を抽出して雲塊画像を得る。画像の抽出処理は一般的な手法を用いればよいため、ここでの説明を省略する。
雲位置特定部103は、雲切り出し部102から雲塊画像を受け取り、雲塊の三次元空間での位置である空間位置を特定する。三次元での位置の特定は、一般的な手法は用いればよいが、特に2台以上のカメラを用いて立体視する手法を用いることで、雲塊の位置を正確に特定することができる。
雲移動追跡部104は、雲位置特定部103から雲塊画像および雲塊の空間位置を特定した空間位置情報を受け取り、雲塊の動きを追跡して、測定地点の日射に影響を与える空間位置である影響位置に雲塊が位置するかどうかを判定する。なお、本実施形態では、雲塊が影響位置に達したことを「測定地点に達した」と表現する。
画像特徴抽出部105は、雲移動追跡部104から雲塊画像および推定時刻を受け取り、影響位置にある雲塊の雲塊画像から画像の特徴量である画像特徴量を抽出する。画像特徴量を抽出する手法としては、例えば、明るさの分布(平均値および分散値など)、色、周波数成分、エッジ、エッジ画像、Histogram of Gradient(HOG)、Local Binary Pattern(LBP)、Co-occurrence of Histogram of Gradient(CoHOG)、Haar-like 特徴、Joint Haar-like 特徴を用いる手法が挙げられる。以下では、画像特徴量として、雲塊の明度と色相とを用いる場合を例に説明する。なお、上述した画像特徴量の算出方法に限らず、画像処理分野で画像の特徴量を抽出する手法は数多く知られているので、どのような手法を用いてもよい。
撮影条件DB106は、カメラ画像を撮影したときの情報である撮影情報を格納する。撮影情報は、例えば、撮影位置(緯度、経度、高度)、撮影時刻、およびカメラ150の設置条件を含む。撮影時刻は、カメラ画像を撮影した年月日及び時刻情報である。カメラ150の設置条件は、撮影時にカメラ150が向いている方向、すなわち、光軸の方向とその周りの回転角度と、カメラ150の画角とを含む。なお、カメラ画像は連続的に撮影されるので、特定のコマが撮影された時刻がわかればよい。例えば、撮影開始時刻と、コマ撮りの時の時間間隔がわかれば、コマの撮影時刻を特定できる。
日射量DB107は、測定地点で測定された日射量を格納する。日射量の測定は、日射計などで測定した値を用いればよい。
快晴時日射量計算部108は、天気が快晴であるときの測定地点で測定された日射量を測定して快晴時日射量として得る。
影響度算出部109は、日射量DB107から日射量を、快晴時日射量計算部108から快晴時日射量をそれぞれ受け取り、測定地点での日射量に与える影響の度合いを示す影響度を計算する。第1の実施形態では、影響度は、雲塊が日射を遮蔽する度合いである遮蔽度を想定する。
マップ生成部110は、画像特徴抽出部105から画像特徴量を、撮影条件DB106から撮影情報を、影響度算出部109から遮蔽度をそれぞれ受け取る。マップ生成部110は、画像特徴量、撮影情報および遮蔽度に基づいて、雲塊の画像特徴量と雲塊の遮蔽度との対応関係を表す影響度マップを生成する。
マップ格納部111は、マップ生成部110から影響度マップを受け取って格納する。
雲切り出し部132は、カメラ150から現在撮影しているカメラ画像を受け取り、雲塊の画像領域を抽出して予測対象となる雲塊の雲塊画像を得る。
雲位置特定部133は、雲切り出し部132から雲塊画像を受け取り、雲塊の空間位置を特定し、空間位置情報を得る。
雲移動予測部134は、雲位置特定部133から雲塊画像および雲塊の空間位置情報を受け取り、雲塊が移動することにより、測定地点に達すると想定される時刻である推定時刻を予測する。雲塊の移動は、撮影した画像上の雲の動きから移動行程を推定すればよい。また、雲は風に乗って移動するので、風向および風速を推定することで、雲の移動行程を推定してもよい。
画像特徴抽出部135は、雲移動予測部134から雲塊画像および推定時刻を受け取り、予測対象となる雲塊の雲塊画像の画像特徴量を抽出する。
快晴時日射量計算部136は、測定地点における快晴時の日射量を計算する。
撮影条件収集部137は、撮影時の撮影条件を収集する。
日射量予測部138は、画像特徴抽出部135から画像特徴量および推定時刻を、快晴時日射量計算部136から快晴時日射量を、撮影条件収集部137から撮影条件を、マップ格納部111から影響度マップをそれぞれ受け取る。日射量予測部138は、影響度マップに基づいて、推定時刻における測定地点での日射量を予測して予測日射量を得る。
予測出力部139は、日射量予測部138から予測日射量を受け取り、外部へ出力する。
なお、雲切り出し部102および132、雲位置特定部103および133、画像特徴抽出部105および135、快晴時日射量計算部108および136は、説明の便宜上2つに分けた構成としているが、同様の処理を行うため1つの構成でもよい。
次に、本実施形態における日射量の予測環境について図2の概念図を参照して説明する。
図2は、ある測定地点における日射量の測定例であり、測定地点における天空の画像を撮影するカメラ201と、測定地点における日射量を計測する日射計202とが設置される。
カメラ201は、一般的な家庭用デジタルビデオカメラでもよいが、気象観測で専用に用いられる全天カメラを用いることが望ましい。全天カメラの場合は、光軸は天頂方向を向いて設置され、画角は180度になる。なお、後述する学習処理に用いるカメラ画像と、予測対象となる雲塊を撮影する処理対象のカメラ画像とは、同じ位置に設置したカメラ201で撮影することが望ましいが、ある程度異なった位置に配置したカメラにより撮影したカメラ画像であってもよい。
日射計202は、測定地点において、単位面積及び単位時間当たりの日光203からの放射エネルギー量(KW/m)を日射量として測定する。日射量は所定の時間間隔で測定する。
例えば、雲塊204が移動し、T1時間経過後に測定地点に陰をつくる場合、雲塊204の影響により、グラフ205に示すように測定地点で計測される日射量は少なくなる。さらに、T2時間経過後に雲塊204よりも明るさが暗い雲塊206が測定地点に陰をつくる場合、測定地点で計測される日射量は、雲塊204の影響による場合よりも少なくなる。
一般に、雲塊の明るさは雲塊で起こる散乱の強さを反映している。従って、雲塊の明るさは雲塊の遮蔽効果を推定するための重要な手かがりになりうる。つまり、画像内の画素の明るさの平均値を画像特徴量とすることができる。さらに、雲塊が部分的に明るかったり、暗かったりする場合、雲内での散乱にばらつきがある可能性があり、これも雲塊の遮蔽効果推定の手かがりとなる。従って、画像内の画素の明るさの分散も画像特徴量に含むことができる。
雲塊による可視光の散乱強度は、周波数にあまり依存しないので通常雲塊は白く見える。もし雲塊に色がある場合、雲塊の内部の何らかの状態がその色を引き起こしていると考えられる。例えば、空は雲塊と比較して青みがかっているので、もし雲塊が青いならば雲が薄く、空が透けて見えている可能性が考えられる。従って、雲塊の色も画像特徴量に含むことができる。ただし、夕暮れ時などで元々雲塊に当たっている光が白色でない場合は、撮影時の時間や季節を考慮した補正が必要となることに留意する。なお、色は一般的に、(青、緑、赤)の3つの成分に分けて数量化するが、(色相、彩度、明度)で表す方法を用いてもよい。
また、雲塊は様々な模様を有し、模様は雲塊の形成過程を強く反映しているので、雲塊の性質を知る上で大きな手がかりになる。従って、この模様を反映した画像特徴量を作ることが望ましい。例えば、二次元フーリエ変換はこの模様を数値化する一つの手法である。さらに、雲の形状として、いわゆるうろこ雲など、繰り返しのある構造が現れることはしばしばある。この構造はフーリエ変換後の周波数空間上でのモードとして現れる。このモードの位置(周波数)が雲の模様を反映した一つの画像特徴量になる。
次に、複数の雲塊が測定地点上を通過する場合の処理方法の一例について図3を参照して説明する。
上記の説明では、便宜的に、連続した画像上でひとつの雲塊を取り出して、その雲塊に着目して、画像を時間的に再生して雲塊を追跡していくように説明しているが、このようにすると対象となる雲塊を変更するたびに画像の巻き戻しを伴うことになるため、処理の効率が低下する可能性がある。そこで、ひとつの再生で複数の雲塊を並行的に扱うのが望ましい。
図3の例は、複数の雲塊が同時にカメラ視野内に存在する場合の例であり、ある時間でのカメラ視野内での複数の雲塊の動きを時系列で示したものである。大きな円がカメラの視野301を表す。中心点は測定地点302を表す。太線の円は雲塊303を表す。点線で表したのが以前の雲塊の位置304で、矢印で雲塊の移動を表現する。図3に示す雲塊の移動は、以下の通りである。
時刻t1 雲塊C1がカメラの視野内に入る。
時刻t2 雲塊C2がカメラの視野内に入る。
時刻t3 雲塊C1が測定地点に到達する。
時刻t4 雲塊C3がカメラ視野内で発生する。
時刻t5 雲塊C2がカメラの視野外に出る。雲塊C2は、測定地点に到達せずに通過することになる。
時刻t6 雲塊C1がカメラの視野外に出る。
時刻t7 雲塊C3が測定地点に到達する。
時刻t8 雲塊C3が消滅する。
次に、図3に示す雲塊の移動に関する時間的な関係について図4を参照して説明する。
図4は、図3に示す複数の雲塊の時間的推移をシーケンスでまとめた図であり、3つの雲塊(C1,C2および3)について並行に処理する。なお、以下の説明では「時刻tに.....」とは、実際の時刻ではなく、「カメラ画像DB101に記録された画像を再生する課程で、観測時の時刻tに達したら...」ということを意味する。
雲塊C1の場合、時刻t1に雲塊C1がカメラの視野内に流入してから、雲塊の切り出しが行われ、雲塊の空間位置を特定するとともに、抽出された画像が記録される。続いて、時刻t3に雲塊C1が測定地点に到達するので、日射量の推定処理が行われる。最終的には雲塊C1が時刻t6にカメラの視野外にでるまで処理が行われ、雲塊の画像特徴量と雲塊がもたらす影響度とが、影響度マップを作成するための学習セットに追加される。
雲塊C2の場合、時刻t2にカメラ視野内に流入してから、時刻t5に流出するまで雲塊の抽出処理および雲塊の位置特定処理が行われる。時刻t5に雲塊C2が流出したときに、雲が到達しなかったと判定される。この時点で雲塊C2についての処理は終了し、雲塊C2に関する情報は学習セットに追加されず、学習セットの変更はない。
雲塊C3の場合、雲塊が発生した位置がカメラの視野内であるので、時刻t4に雲塊の生成が観測されるとともに、雲塊の抽出処理および雲塊の位置特定処理が行われる。その後の処理は雲塊C1に対するものと基本的に同じであるが、学習セットへの追加処理は、時刻t8に雲塊C3の消滅が観測された時点で行われる。
次に、第1の実施形態に係る日射量予測装置100の学習処理について図5のフローチャートを参照して説明する。学習処理は、測定地点に達した雲塊の画像特徴量と雲塊がもたらす日射量への影響度との関係性を蓄積し、画像特徴量と影響度との対応関係を表す影響度マップを生成する処理であり、主に学習部120で行われる。
ステップS501では、雲切り出し部102が、カメラ画像DB101に格納される画像を受け取って画像から雲塊画像を抽出する。
ステップS502では、雲位置特定部103が、雲塊画像に基づいて、雲塊の空間位置を特定する。
ステップS503では、雲移動追跡部104が、雲塊が測定地点に達したかどうかを判定する。雲塊が測定地点に達した場合は、ステップS504に進み、雲塊が測定地点に達していない場合、または測定地点に達する前に消滅するような場合は、ステップS501に戻り、同様の処理を繰り返す。
ステップS504では、雲移動追跡部104が、雲塊が測定地点に達した時刻を計算する。
ステップS505では、画像特徴抽出部105が、測定地点に達した雲塊の雲塊画像の画像特徴量を計算する。
ステップS506では、快晴時日射量計算部108が、快晴時日射量を計算する。快晴時日射量Sは、快晴時を想定した場合の放射エネルギー量(KW/m)を計算することで求めることができる。なお、快晴時日射量Sは、日付、時刻、測定地点の緯度および経度といった条件で変化するものであるが、原理的に天文学的な手法により計算することもできる。
ステップS507では、影響度算出部109が、雲塊が日射量に与えた影響度(ここでは遮蔽度)を計算する。遮蔽度Pの計算は、時刻Tに測定地点で測定された日射量Rと、快晴時日射量Sとを用いて式(1)のように表すことができる。
Figure 2015059821
ステップS508では、マップ生成部110が、画像特徴量および遮蔽度を学習セットに追加する。
ステップS509では、雲位置特定部103が、画像の未処理の雲塊が存在するかどうかを判定する。未処理の雲塊が存在すれば、ステップS501に戻り、未処理の雲塊に対して同様の処理を行なう。画像に未処理の雲塊が存在しなければ、ステップS510に進む。
ステップS510では、マップ生成部110が、学習セットに基づいて影響度マップを作成する。本実施形態では、明度B、彩度Hおよび遮蔽度Pに基づいて、学習により影響度マップを生成するために線形回帰モデルを用いる。この線形回帰モデルでは、変数間の関係を以下のように表す。
Figure 2015059821
ここで、a,b,cは、学習により決定する係数である。この定式化では、B,Hを回帰の説明変数、Pを目的変数と呼ぶ。
なお、日射量DB107から明度B、彩度Hおよび遮蔽度Pの組をN組得ると仮定する。
Figure 2015059821
以下、この明度B、彩度Hおよび遮蔽度Pのデータの組をデータセットと呼ぶ。データセットから回帰式の係数を決定する方法は多数知られている。ここでは最小二乗法を用いる。最小二乗法は、
Figure 2015059821
が最も小さくなるようにa,b,cを決めるものである。
Figure 2015059821
として出てくる連立方程式を解いてa,b,cを得ることができる。以上で日射量予測装置の学習処理を終了する。
なお、ここでは画像特徴量のみを説明変数としたが、同様の枠組みで撮影時条件から得られる変数、例えば気温などを説明変数としてもよい。また、ここではあらかじめ決められた変数を用いて回帰式を構成しているが、複数の変数の中から適切な変数を選択するといった統計学の変数選択の分野で多数提案される手法を用いてもよい。
次に、マップ格納部111に格納される影響度マップの一例を図6に示す。
影響度マップ600は、明度601と彩度602との組み合わせに対して、遮蔽度の値が対応付けられたテーブルであり、それぞれの値が正規化されている。具体的には、例えば、雲塊の画像特徴量として、明度が「0.1」、彩度が「0.1」が得られれば、影響度マップ600を参照することで、この雲塊の遮蔽度は「0.5」であることがわかる。なお、図6に示すようなテーブル形式に限らず、影響度マップとして数式を用いてもよく、数式が決まっていれば上述の計算で得られた係数を数式に与えることで遮蔽度を一意に決定することができる。
次に、第1の実施形態に係る日射量予測装置の予測処理について図7のフローチャートを参照して説明する。予測処理は、学習処理で蓄積した影響度マップを参照して、現在撮影される雲塊が測定地点に達した場合にどのくらい日射に影響するかを予測する処理であり、主に予測部130で行われる。
なお、ステップS701からステップS706までは、処理対象となる画像が現在カメラで撮影している画像であるか、カメラ画像DB101に格納された画像であるかが異なること以外は、図5に示すステップS501からステップS506までの処理と同様である。図7の各ステップで処理する画像は、現在カメラで撮影しているカメラ画像である。
ステップS707では、日射量予測部138が、影響度マップを参照して、現在の雲塊画像の画像特徴量に対応する雲塊の遮蔽度を推定する。
ステップS708では、日射量予測部138が、雲塊の遮蔽度と快晴時日射量とから予測日射量を推定する。具体的には、雲移動予測部134により計算された雲塊が測定地点に達する到達時刻Tに基づいて、快晴時日射量計算部136から到達時刻Tにおける快晴時日射量Sを受け取る。画像特徴量B、Hと影響度マップとを参照して、日射量の遮蔽度Pを算出し、その後、式(1)に基づいて、予測日射量R’を算出する。
ステップS709では、日射量予測部138が、画像に含まれる全ての雲塊について処理が終了したかどうかを判定する。全ての雲塊について処理が終了した場合は、ステップS710に進み、全ての雲塊について処理が終了しておらず、未処理の雲塊が存在する場合は、ステップS701に戻り、未処理の雲塊に対して同様の処理を繰り返す。
ステップS710では、予測出力部139が、全ての雲塊の予測日射量を合算し、予測日射量の時系列データを外部へ出力する。以上で日射量予測装置の予測処理を終了する。
次に、第1の実施形態に係る予測出力部139から出力される予測日射量の時系列データの一例について図8を参照して説明する。
図8は、日射量の時系列データであり、横軸が時間、縦軸が日射量を示す。図8の例では、3つの雲塊が、T1時間経過後、T2時間経過後、およびT3時間経過後に測定地点に達し、測定地点での日射量がそれぞれR1、R2およびR3となるという予測を示す。また、雲塊が測定地点に達しない場合の日射量は、快晴時日射量である。
以上に示した第1の実施形態によれば、カメラにより撮影した雲塊の画像特徴量に基づいて、雲塊がもたらす日射量への影響を学習して影響度マップを生成し、予測対象となる雲塊の画像特徴量と影響度マップとを参照することで、雲の物理的性質を推定するような煩雑な計算をすることなく、雲塊が測定地点に達したときの日射量を容易にかつ高精度に予測することができる。
(第1の実施形態の変形例)
第1の実施形態では、雲塊が測定地点への日射を遮る位置にあって、測定地点で観測される日射量が減少する場合を想定した。しかし、測定地点への太陽からの直接光を雲塊が遮蔽せず、かつ測定地点と太陽とを結ぶ直線(以下、太陽光軸と呼ぶ)付近に存在する場合、雲塊が光を散乱することで、測定地点での日射量が増加することがある。本変形例では、雲塊により日射量が増加する場合についても予測することで、より詳細な日射量の予測をおこなうことができる。
第1の実施形態の変形例に係る日射量予測装置は、雲移動追跡部104、マップ生成部110、雲移動予測部134および日射量予測部138の処理以外は、第1の実施形態に係る図1に示すブロック図と同様の構成であるのでここでの説明は省略する。
また、図5及び図7のフローチャートに示す日射量予測装置の学習処理および予測処理の動作についても、影響度として遮蔽度の代わりに増幅度を算出すること以外は同様の処理であるので、説明を省略する。
雲移動追跡部104は、雲位置特定部103から雲塊画像および雲塊の空間位置を特定した空間位置情報を受け取り、雲塊の動きを追跡して、雲塊と太陽光軸との距離が閾値以内であるかどうかを判定する。雲塊と太陽光軸との距離が閾値以内であれば、散乱により日射量を増幅することが可能な状態にあるとする。この状態を増幅可能状態と呼ぶ。第1の実施形態では、測定地点に達しない雲塊は学習セットから除外されるが、第1の実施形態の変形例では、測定地点に達しなくとも雲塊が増幅可能状態であれば、学習セットに追加する対象となる。なお、雲塊と太陽光軸との距離が閾値よりも離れている場合は、この雲塊を学習セットから除外される。
影響度算出部109は、日射量DB107から日射量を、快晴時日射量計算部108から快晴時日射量をそれぞれ受け取り、第1の実施形態に係る遮蔽度Pに代わり、雲塊が日射量に与えた増幅度Qを計算する。増幅度Qの計算は、実際に測定された日射量Rと、快晴時日射量Sとを用いて式(6)のように表すことができる。
Figure 2015059821
マップ生成部110は、画像特徴抽出部105から画像特徴量を、撮影条件DB106から撮影情報を、影響度算出部109から増幅度をそれぞれ受け取る。マップ生成部110は、画像特徴量、撮影情報および増幅度に基づいて、学習セットを生成し、学習セットに含まれる雲塊の画像特徴量と雲塊の増幅度との対応関係を表す影響度マップを生成する。
雲移動予測部134は、雲位置特定部133から雲塊画像および雲塊の空間位置情報を受け取り、雲塊の動きを予測し、雲塊が増幅可能状態になると想定される推定時刻を予測する。
日射量予測部138は、画像特徴抽出部135から画像特徴量および推定時刻を、快晴時日射量計算部136から快晴時日射量を、撮影条件収集部137から撮影条件を、マップ格納部111から影響度マップをそれぞれ受け取る。雲塊が増幅可能状態になると予測される時刻において、影響度マップを参照して、雲塊の画像特徴量に対応する増幅度を算出し、日射量の予測を行なう。
なお、複数の雲塊が測定地点に達する場合は増幅度の算出が困難となる場合がある。
複数の雲塊が測定地点に達する場合について図9を参照して説明する。
図9は、太陽光軸901を中心とした円を増幅可能状態の閾値境界902とした図であり、雲塊903および雲塊904が閾値境界902内に存在し、それぞれの雲塊が増幅可能状態にあることを示す。ここで、図9(a)では、雲塊903および雲塊904が共に増幅可能状態にあるので、日射量の増幅がある場合にどちらの雲塊により日射量が増幅したかが不明である。よって、このような状況の雲塊は、学習セットから除外される。
また、図9(b)は、雲塊904が増幅可能状態にあるものの、雲塊903が太陽光軸901上に重なり日射を遮蔽している状態を示す。このような場合も、日射量の増減が遮蔽度の影響か、それとも増幅度の影響かが不明となるため、これらの雲塊についても学習セットから除外される。
次に、第1の実施形態の変形例に係る予測出力部から出力される予測日射量の時系列データの一例について図10を参照して説明する。
図10は、図8と同様の予測日射量の時系列データである。ここで、増幅可能状態にある雲塊により日射量が快晴時日射量よりも増加している部分(R1、R2およびR3)と、第1の実施形態と同様に雲塊が測定地点に達して日射量が減少する部分とが予測日射量の時系列データとして得ることができる。
以上に示した第1の実施形態の変形例によれば、雲塊による光の散乱により測定地点で測定される日射量が増加する場合でも、増幅度を算出することにより、より正確に日射量を予測することができる。
(第2の実施形態)
第1の実施形態では、観測装置としてカメラを用いて日射量を予測する方法について説明したが、これに限らず、他の観測装置の画像データに基づいて雲塊が日射量に及ぼす影響を算出してもよい。第2の実施形態では、カメラの画像と、気象観測衛星の取り付けられたカメラから撮影した可視光の衛星画像とを組み合わせて、日射量を予測する点が第1の実施形態と異なる。
第2の実施形態において予測対象となる雲塊の概念について図11を参照して説明する。
以下では便宜上、第1の実施形態において地上に設定されたカメラを地上カメラ、衛星に取り付けられたカメラを衛星カメラと呼ぶ。図11は、衛星カメラで撮影される衛星画像範囲1101と、地上カメラで撮影される地上画像範囲1102とを示す。また、円の中心は測定地点1103を示す。
気象観測衛星は広域の撮影を行っており、衛星画像範囲1101と地上画像範囲1102との比較からわかるように、衛星画像は広い範囲での雲塊の空間的分布を把握することができる。つまり、地上カメラで観測できる雲塊1104の他に、地上カメラでは視野外であるが衛星カメラで撮影できる雲塊1105についても予測対象の雲塊とすることができる。しかし、衛星画像は地表からの距離が遠く、例えば静止衛星の場合は地表から約36,000kmの距離がある。このため、衛星画像では雲塊の特徴を正確に捉えるほどの分解能がない場合が多い。
一方、地上のカメラで撮影した画像からは、雲塊の特徴を正確に捉えることができる。同質な雲塊はある程度空間的な広がりを有しているため、衛星画像の範囲にも地上のカメラで観測した雲塊と同じ性質の雲塊が広がっていると仮定することができる。従って、雲塊の性質は地上のカメラから、雲塊の位置は衛星画像から得ればよい。このようにすることで、より広範囲の雲塊の動きを予測に組み込むことができ、より長い時間で日射量予測が可能となる。
次に、第2の実施形態に係る日射量予測装置のブロック図について図12を参照して説明する。
第2の実施形態に係る日射量予測装置1200は、学習部120、マップ格納部111、雲切り出し部132、雲位置特定部133、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137、予測出力部139、衛星画像雲切り出し部1201、衛星画像雲位置特定部1202、衛星画像雲移動予測部1203、衛星画像特徴量推定部1204および日射量予測部1205を含む。
学習部120、マップ格納部111、雲切り出し部132、雲位置特定部133、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137および予測出力部139については、第1の実施形態と同様の処理を行なうのでここでの説明を省略する。
衛星カメラ1250は、気象観測衛星に取り付けられているカメラであり、衛星画像を撮影後、衛星画像を地上に送信する。
衛星画像雲切り出し部1201は、衛星カメラ1250から衛星画像を受け取り、衛星画像から雲塊を切り出して雲塊画像を得る。
衛星画像雲位置特定部1202は、衛星画像雲切り出し部1201から雲塊画像を受け取り、雲塊の空間位置を特定する。
衛星画像雲移動予測部1203は、衛星画像雲位置特定部1202から雲塊の空間位置を受け取り、雲塊が時間経過と共にどのように移動するかを予測し、予測情報を生成する。
衛星画像特徴量推定部1204は、衛星画像雲位置特定部1202から空間的位置を、画像特徴抽出部135から画像特徴量をそれぞれ受け取る。衛星画像特徴量推定部1204は、画像特徴抽出部135から画像特徴量に基づいて、衛星画像の雲塊の画像特徴量を推定する。
日射量予測部1205は、快晴時日射量計算部136から快晴時日射量を、衛星画像特徴量推定部1204から画像特徴量を、衛星画像雲移動予測部1203から予測情報を、撮影条件収集部137から撮影条件を、マップ格納部111から影響度マップをそれぞれ受け取る。日射量予測部1205は、影響度マップを参照して、画像特徴量に対応する影響度を用いて日射量を予測し、予測日射量を得る。
次に、第2の実施形態に係る日射量予測装置1200の予測処理について図13のフローチャートを参照して説明する。
ステップS1301では、衛星画像雲切り出し部1201が、衛星画像から雲塊を切り出して予測対象となる雲塊の雲塊画像を得る。
ステップS1302では、衛星画像雲位置特定部1202が、雲塊画像から雲塊の空間的位置を特定し、空間位置情報を得る。
ステップS1303では、衛星画像雲移動予測部1203が、雲塊が測定地点に達するかどうかを予測する。雲塊が測定地点に到達する場合はステップS1304に進み、雲塊が測定地点に達しない場合はステップS1303に戻り、次の雲塊に対して同様の処理を繰り返す。雲塊の移動予測は、第1の実施形態と同様の移動予測手法を用いればよいが、第1の実施形態よりも広域の大気の動きを予測できる数値気象シミュレーションを用いるのが望ましい。
ステップS1304では、衛星画像雲移動予測部1203が、雲塊が測定地点に達する推定時刻を予測する。
ステップS1305では、衛星画像特徴量推定部1204が、地上カメラが撮影した雲塊について算出した画像特徴量を用いて、衛星画像の雲塊の画像特徴量を推定する。
ステップS1306からステップS1310は、図7に示すステップS706からステップS710と同様の処理であるので、ここでの説明は省略する。以上で日射量予測装置の予測処理を終了する。
次に、第2の実施形態に係る雲塊の特定方法の一例について図14を参照して説明する。
図14は、衛星画像範囲1101に雲塊1401が撮影されており、雲塊1401が測定地点1103を通過する場合を示す。
地上カメラの画像から算出された画像特徴量から、衛星カメラにより撮影された画像特徴量を推定するためのひとつの方法は、現在地上カメラが捉えている雲の性質が広範囲にわたって変わらないと仮定し、雲塊の画像特徴量を現在のカメラ直上の雲塊、あるいはその近辺にある雲塊と同じであると推定することである。地上カメラの視野の範囲内に撮影されている雲塊の特徴量がほぼ一定であるならば、この仮定は妥当性があると考えることができる。
一方、地上カメラで撮影された雲塊の画像特徴量が、地上カメラの視野の範囲内で変化する場合について図15を参照して説明する。
図15は、雲塊の位置に応じた画像特徴量の大きさを示すグラフ1501であり、各位置(C、A’、D、B)は、図14におけるそれぞれの記号の位置に対応する。すなわち、位置A’は測定地点1103であり、位置Bは雲塊1401の位置であり、A’とBとを結ぶ直線状で、地上カメラが撮影可能な範囲との交点をそれぞれ位置C、位置Dとする。
図15に示すように、地上カメラの地点Aから衛星カメラが捉えた雲塊の地点Bまでにある雲塊の画像特徴量が徐々に変化しているものとする。このような場合は、画像特徴量の変化の傾向を捉えて、変化の傾向を雲塊の位置まで外挿することにより画像特徴量を推定することができる。
具体的には、位置CD間には地上カメラで観測可能な雲塊がいくつかあり、それぞれの特徴量が観測可能である。例えば、画像特徴量が位置Cから位置Dに向かって減少する傾向がある場合、その傾向を位置Bまで外挿することで、位置Bにある雲塊の特徴量を推定することができる。
以上に示した第2の実施形態によれば、衛星画像を用いて雲塊の位置を特定し画像特徴量を算出することで、より広範囲の雲塊の動きを予測に組み込むことができ、より長い予測時間で日射量を予測することができる。
(第3の実施形態)
第2の実施形態では、広域の雲塊を撮影するため、衛星カメラの衛星画像を用いるが、第3の実施形態では、気象レーダーによる画像を用いる点が異なる。
第3の実施形態に係る日射量予測装置1600のブロック図について図16を参照して説明する。
第3の実施形態に係る日射量予測装置1600は、学習部120、マップ格納部111、雲切り出し部132、雲位置特定部133、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137、予測出力部139、レーダー画像雲推定部1601、レーダー画像雲位置特定部1602、レーダー画像雲移動予測部1603、レーダー画像特徴量推定部1604、日射量予測部1605を含む。
学習部120、マップ格納部111、雲切り出し部132、雲位置特定部133、画像特徴抽出部135、快晴時日射量計算部136、撮影条件収集部137および予測出力部139については、第1の実施形態と同様の処理を行なうのでここでの説明を省略する。
また、レーダー画像雲推定部1601、レーダー画像雲位置特定部1602、レーダー画像雲移動予測部1603およびレーダー画像特徴量推定部1604の動作についても、第2の実施形態に係る衛星画像雲切り出し部1201、衛星画像雲位置特定部1202、衛星画像雲移動予測部1203、衛星画像特徴量推定部1204の動作において、衛星画像がレーダー画像に置き換わっている点を除いてほぼ同じである。ただし、衛星カメラによる衛星画像が雲塊の位置を直接捉えるのに対して、レーダー装置1650は雲塊を直接観測することができないので、レーダー装置1650では雲塊の位置を推定する。
次に、第3の実施形態に係る雲塊の特定方法の一例について図17を参照して説明する。
図17は、地上カメラで撮影する地上画像範囲1102とレーダー装置により観測されるレーダー画像範囲1701とを示す。また、レーダー画像上の降雨域であるレーダー画像降雨域1702およびレーダー画像降雨域1703が映っているものとする。また、カメラ画像上にはカメラ画像雲塊1704が映っている。
一般に、レーダー装置による観測範囲は地上カメラによる観測範囲よりも広域になる。従って衛星カメラ画像をレーダー画像で置き換えた構成により、ほぼ同様の処理ができる。ただし、相違点として、レーダーは波長が可視光よりもかなり長いため、雲のような水滴の直径がμmオーダーのように小さい場合は、雲塊が視覚で捉えることができてもレーダーでは捉えることができない。レーダーで捉えることができるのは降雨の有無である。
よって、雲塊を推定するための一例としては、降雨のある位置には雲塊がある、という推定である。しかし、降雨がなくても雲塊が存在する可能性はあるので、このように推定した雲塊は小さすぎる可能性がある。
そこで、カメラ画像に含まれる雲塊がレーダー画像降雨域よりも大きいとする。すなわち、図17の例では、カメラ画像雲塊1704はレーダー画像降雨域1702よりも大きく設定し、カメラ画像雲塊1705はレーダー画像降雨域1703よりも大きく設定する。このとき、カメラ画像雲塊1704がレーダー画像降雨域1702よりもどのくらい周辺まで広がっているかを表す拡張距離rを算出する。雲塊の性質が一定であると仮定すると、この拡張距離rはカメラ画像範囲の外にあるレーダー画像降雨域にも当てはめることができ、雲塊の広がりを推定できる。
以上に示した第3の実施形態によれば、レーダー装置により観測した降雨域のレーダー画像を用いて雲塊の位置を特定することにより、衛星画像よりも広範囲の雲塊の動きを予測に組み込むことができ、より長い時間で日射量予測が可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100,1200,1600・・・日射量予測装置、101・・・カメラ画像データベース(カメラ画像DB)、102,132・・・雲切り出し部、103,133・・・雲位置特定部、104・・・雲移動追跡部、105,135・・・画像特徴抽出部、106・・・撮影条件データベース(撮影条件DB)、107・・・日射量データベース(日射量DB)、108,136・・・快晴時日射量計算部、109・・・影響度算出部、110・・・マップ生成部、111・・・マップ格納部、120・・・学習部、130・・・予測部、134・・・雲移動予測部、137・・・撮影条件収集部、138,1205,1605・・・日射量予測部、139・・・予測出力部、150,201・・・カメラ、202・・・日射計、203・・・日光、204,206,303,903,904,1104,1105,1401・・・雲塊、205,1501・・・グラフ、301・・・視野、302・・・測定地点、304・・・位置、600・・・影響度マップ、601・・・明度、602・・・彩度、901・・・太陽光軸、902・・・閾値境界、1101・・・衛星画像範囲、1102・・・地上画像範囲、1103・・・測定地点、1201・・・衛星画像雲切り出し部、1202・・・衛星画像雲位置特定部、1203・・・衛星画像雲移動予測部、1204・・・衛星画像特徴量推定部、1250・・・衛星カメラ、1601・・・レーダー画像雲推定部、1602・・・レーダー画像雲位置特定部、1603・・・レーダー画像雲移動予測部、1604・・・レーダー画像特徴量推定部、1650・・・レーダー装置、1701・・・レーダー画像範囲、1702,1703・・・レーダー画像降雨域、1704,1705・・・カメラ画像雲塊。

Claims (5)

  1. 日射量を測定する測定地点から天空を撮影した第1画像に含まれる少なくとも1つの第1雲塊の画像領域である第1雲塊画像を抽出する切り出し部と、
    前記第1雲塊画像から前記第1雲塊の空間位置を特定する位置特定部と、
    前記第1雲塊の前記空間位置が前記測定地点の日射に影響を与える空間位置である影響位置である場合、前記測定地点での日射量に基づいて、該第1雲塊が該日射量に与える影響度を算出する影響度算出部と、
    前記影響位置にある前記第1雲塊の画像の特徴を示す第1画像特徴量を抽出する特徴抽出部と、
    前記第1画像特徴量と前記影響度との対応関係を、前記影響位置にある第1雲塊ごとにそれぞれ格納する格納部と、
    前記影響位置ではない空間位置のある第2雲塊の移動行程を予測し、該第2雲塊が該影響位置に達する時刻を予測する移動予測部と、
    前記対応関係と前記第2雲塊の第2画像特徴量とを参照して、前記時刻において該第2雲塊が前記測定地点での日射量に与える影響度を予測する日射量予測部と、を具備することを特徴とする日射量予測装置。
  2. 前記影響度は、前記測定地点での日射が遮蔽される度合いである遮蔽度、および前記測定地点での日射が増幅される度合いである増幅度の少なくともどちらか1つであることを特徴とする請求項1に記載の日射量予測装置。
  3. 前記第2雲塊は、前記第1画像を撮影した第1撮影装置よりも広い範囲を撮影可能な第2撮影装置により撮影された第2画像から抽出され、
    前記特徴抽出部は、前記第1撮影装置により撮影された画像に含まれる雲塊の特徴量に基づいて、前記第2画像特徴量を決定することを特徴とする請求項1または請求項2に記載の日射量予測装置。
  4. 前記第2撮影装置は、気象観測衛星または気象レーダーであることを特徴とする請求項3に記載の日射量予測装置。
  5. 日射量を測定する測定地点から天空を撮影した第1画像に含まれる少なくとも1つの第1雲塊の画像領域である第1雲塊画像を抽出し、
    前記第1雲塊画像から前記第1雲塊の空間位置を特定し、
    前記第1雲塊の前記空間位置が前記測定地点の日射に影響を与える空間位置である影響位置である場合、前記測定地点での日射量に基づいて、該第1雲塊が該日射量に与える影響度を算出し、
    前記影響位置にある前記第1雲塊の画像の特徴を示す第1画像特徴量を抽出し、
    前記第1画像特徴量と前記影響度との対応関係を、前記影響位置にある第1雲塊ごとに格納手段にそれぞれ格納し、
    前記影響位置ではない空間位置のある第2雲塊の移動行程を予測し、該第2雲塊が該影響位置に達する時刻を予測し、
    前記対応関係と前記第2雲塊の第2画像特徴量とを参照して、前記時刻において該第2雲塊が前記測定地点での日射量に与える影響度を予測することを特徴とする日射量予測方法。
JP2013193423A 2013-09-18 2013-09-18 日射量予測装置および方法 Pending JP2015059821A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013193423A JP2015059821A (ja) 2013-09-18 2013-09-18 日射量予測装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193423A JP2015059821A (ja) 2013-09-18 2013-09-18 日射量予測装置および方法

Publications (1)

Publication Number Publication Date
JP2015059821A true JP2015059821A (ja) 2015-03-30

Family

ID=52817470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193423A Pending JP2015059821A (ja) 2013-09-18 2013-09-18 日射量予測装置および方法

Country Status (1)

Country Link
JP (1) JP2015059821A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405120A (zh) * 2015-10-22 2016-03-16 华北电力大学(保定) 在天空图像中提取云图形的方法
JP2019515250A (ja) * 2016-03-07 2019-06-06 フライバイ ソシエタ ア レスポンサビリタ リミタタ 個人の太陽放射への暴露を算出するためのシステム
JP2019086325A (ja) * 2017-11-02 2019-06-06 国立大学法人九州工業大学 日射量推定システム及び日射量推定方法
KR20210034238A (ko) * 2019-09-20 2021-03-30 한국에너지기술연구원 일사량 추정 장치 및 그 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405120A (zh) * 2015-10-22 2016-03-16 华北电力大学(保定) 在天空图像中提取云图形的方法
JP2019515250A (ja) * 2016-03-07 2019-06-06 フライバイ ソシエタ ア レスポンサビリタ リミタタ 個人の太陽放射への暴露を算出するためのシステム
JP6990191B2 (ja) 2016-03-07 2022-01-12 スィヘルス フォトニクス ソシエタ ア レスポンサビリタ リミタタ 個人の太陽放射への暴露を算出するためのシステム
JP2019086325A (ja) * 2017-11-02 2019-06-06 国立大学法人九州工業大学 日射量推定システム及び日射量推定方法
KR20210034238A (ko) * 2019-09-20 2021-03-30 한국에너지기술연구원 일사량 추정 장치 및 그 방법
KR102360578B1 (ko) * 2019-09-20 2022-02-09 한국에너지기술연구원 일사량 추정 장치 및 그 방법

Similar Documents

Publication Publication Date Title
Bernecker et al. Continuous short-term irradiance forecasts using sky images
CN106875415B (zh) 一种动态背景中弱小动目标的连续稳定跟踪方法
CN106856002B (zh) 一种无人机拍摄图像质量评价方法
CN107256225B (zh) 一种基于视频分析的热度图生成方法及装置
Yang et al. An automated cloud detection method based on the green channel of total-sky visible images
WO2015157643A1 (en) Solar energy forecasting
CN104620282A (zh) 用于抑制图像中的噪声的方法和系统
CN102346015A (zh) 基于视频差异分析的输电线路绝缘子覆冰厚度测量方法
Moriondo et al. Use of digital images to disclose canopy architecture in olive tree
CA3008810A1 (en) Systems and methods for detecting imaged clouds
JP2015059821A (ja) 日射量予測装置および方法
CN104657995B (zh) 利用区域分裂技术的遥感影像分割方法
Bell et al. Accurate vehicle speed estimation from monocular camera footage
KR101092250B1 (ko) 레인지 영상으로부터의 객체 분할 장치 및 방법
CN114373130A (zh) 一种天基红外暗弱小运动目标检测方法
CN112581301B (zh) 一种基于深度学习的农田残膜残留量的检测预警方法及系统
CN105139432B (zh) 基于高斯模型的红外弱小目标图像仿真方法
US20150029230A1 (en) System and method for estimating target size
CN109242900B (zh) 焦平面定位方法、处理装置、焦平面定位系统及存储介质
CN110020572B (zh) 基于视频图像的人数统计方法、装置、设备及存储介质
CN104010165B (zh) 降水粒子阴影图像自动采集装置
KR102209866B1 (ko) 지상기반 전운량 자동 산출을 위한 왜곡 영상 전처리 방법
CN111145344B (zh) 一种用于雪雕3d重建的结构光测量方法
CN104966273A (zh) 适用于光学遥感影像的dcm-htm去雾霾方法
JP2008257382A (ja) 動き検出装置、動き検出方法、及び、動き検出プログラム