JP2015059147A - Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material - Google Patents

Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material Download PDF

Info

Publication number
JP2015059147A
JP2015059147A JP2013192656A JP2013192656A JP2015059147A JP 2015059147 A JP2015059147 A JP 2015059147A JP 2013192656 A JP2013192656 A JP 2013192656A JP 2013192656 A JP2013192656 A JP 2013192656A JP 2015059147 A JP2015059147 A JP 2015059147A
Authority
JP
Japan
Prior art keywords
solution composition
mol
aromatic diamine
molecule
oxygen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013192656A
Other languages
Japanese (ja)
Inventor
三津志 田口
Mitsushi Taguchi
三津志 田口
小沢 秀生
Hideo Ozawa
秀生 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013192656A priority Critical patent/JP2015059147A/en
Publication of JP2015059147A publication Critical patent/JP2015059147A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-curable solution composition which has excellent oxidation resistance and provides an imide group-containing molded body having a high glass transition temperature (Tg).SOLUTION: The heat-curable solution composition is obtained by mixing: (A) an aromatic tetracarboxylic acid component containing a 2,3,3',4'-biphenyltetracarboxylic acid compound and a 3,3',4,4'-biphenyltetracarboxylic acid compound, each in the amount of 20 mol% or more; (B) an aromatic diamine component having no oxygen atom in the molecule, containing an aromatic diamine having no oxygen atom in the molecule, having two carbon-nitrogen bond axes positioned on the same straight line and an aromatic diamine having no oxygen atom in the molecule, having two carbon-nitrogen bond axes not positioned on the same straight line, each in the amount of 20 mol% or more; and (C) an end-capping agent having a phenylethynyl group.

Description

本発明は、加熱により末端に付加反応性官能基を有するイミドオリゴマー及びその硬化物を与える加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料に関する。 The present invention relates to a thermosetting solution composition that gives an imide oligomer having an addition-reactive functional group at its terminal by heating and a cured product thereof, a cured product using the same, a prepreg, and a fiber-reinforced composite material.

ポリイミドの両末端を付加反応性の官能基で封止したオリゴマーは、その硬化物が優れた耐熱性を有することから、成形品や繊維強化複合材料のマトリックス樹脂として従来から知られている。なかでも、末端を4−(2−フェニルエチニル)無水フタル酸で封止したイミドオリゴマーは、成形性、耐熱性、力学特性のバランスに優れているとされ、例えば、特許文献1には、硬化物の耐熱性および機械的特性が良好で、実用性の高い末端変性イミドオリゴマーおよびその硬化物を提供することを目的とし、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と芳香族ジアミン化合物と4−(2−フェニルエチニル)無水フタル酸とを反応させて得られ、対数粘度が0.05−1である末端変性イミドオリゴマーおよびその硬化物が開示されている。   Oligomers in which both ends of polyimide are sealed with addition-reactive functional groups are conventionally known as matrix resins for molded products and fiber-reinforced composite materials because their cured products have excellent heat resistance. Among them, an imide oligomer whose terminal is sealed with 4- (2-phenylethynyl) phthalic anhydride is considered to have an excellent balance of moldability, heat resistance, and mechanical properties. For example, Patent Document 1 discloses curing. An object of the present invention is to provide a terminal-modified imide oligomer having excellent heat resistance and mechanical properties and a highly practical product and a cured product thereof, and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, A terminal-modified imide oligomer obtained by reacting an aromatic diamine compound and 4- (2-phenylethynyl) phthalic anhydride and having a logarithmic viscosity of 0.05-1 and a cured product thereof are disclosed.

また、特許文献2には硬化物の形成工程における溶媒除去を容易にするため、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミドなどの高沸点溶媒を用いない加熱硬化性溶液組成物およびそれを繊維状補強材に含浸させた未硬化樹脂複合体を提供することを目的とし、2,3,3’,4’−ビフェニルテトラカルボン酸及び/又は2,2’,3,3’−ビフェニルテトラカルボン酸を主成分とした芳香族テトラカルボン酸化合物の部分低級脂肪族アルキルエステルと芳香族ジアミン化合物と4−(2−フェニルエチニル)フタル酸の部分低級脂肪族アルキルエステルとを低級脂肪族アルコールを主成分とする有機溶媒に溶解してなる加熱硬化性溶液組成物およびそれを用いた未硬化樹脂複合体が開示されている。   Patent Document 2 discloses a thermosetting solution composition that does not use a high-boiling solvent such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide in order to facilitate removal of the solvent in the step of forming a cured product, and For the purpose of providing an uncured resin composite impregnated with a fibrous reinforcing material, 2,3,3 ′, 4′-biphenyltetracarboxylic acid and / or 2,2 ′, 3,3′- Partially lower aliphatic alkyl ester of aromatic tetracarboxylic acid compound mainly composed of biphenyltetracarboxylic acid, aromatic diamine compound and partially lower aliphatic alkyl ester of 4- (2-phenylethynyl) phthalic acid as lower aliphatic A thermosetting solution composition dissolved in an organic solvent containing alcohol as a main component and an uncured resin composite using the same are disclosed.

特開2000−219741号公報JP 2000-219741 A 特開2007−308519号公報JP 2007-308519 A

特許文献1及び2に記載の硬化物は、優れた物理的特性および化学的特性を有している。しかしながら、耐酸化性においては更なる改善の余地がある。特に、芳香族ジアミン成分として、1,3−ビス(4−アミノフェノキシ)ベンゼンや4,4’−ジアミノジフェニルエーテルのようなエーテル結合があるジアミンを用いると良好な耐酸化性が得られないという問題がある。
本発明の目的は、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与える加熱硬化性溶液組成物を提供することにある。
本発明の他の目的は、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物を提供することにある。
本発明のさらに他の目的は、上記加熱硬化性溶液組成物を用いた硬化物、プリプレグ及び繊維強化複合材料を提供することにある。
The hardened | cured material of patent document 1 and 2 has the outstanding physical property and chemical property. However, there is room for further improvement in oxidation resistance. In particular, when an diamine having an ether bond such as 1,3-bis (4-aminophenoxy) benzene or 4,4′-diaminodiphenyl ether is used as an aromatic diamine component, a problem that good oxidation resistance cannot be obtained. There is.
An object of the present invention is to provide a thermosetting solution composition that provides a cured product having excellent oxidation resistance and a high glass transition temperature (Tg).
Another object of the present invention is to provide a thermosetting solution composition suitable for use in the production of a fiber-reinforced composite material, in which no reaction failure is observed during curing.
Still another object of the present invention is to provide a cured product, a prepreg, and a fiber-reinforced composite material using the above-mentioned thermosetting solution composition.

以上の目的を達成するために、本発明者らは鋭意検討した結果、芳香族ジアミン成分として分子内に酸素原子を有しない特定の芳香族ジアミンを用いることで、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与えることができ、また、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料を得ることができることを見出し、本発明に至った。
本発明の第1の態様によると、(A)2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、(B)アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分、及び(C)フェニルエチニル基を有する末端封止剤を混合して得られたことを特徴とする加熱硬化性溶液組成物が提供される。
In order to achieve the above object, the present inventors have intensively studied. As a result, by using a specific aromatic diamine having no oxygen atom in the molecule as an aromatic diamine component, the present invention has excellent oxidation resistance and a glass transition. A thermosetting solution composition that can give a cured product having a high temperature (Tg) and that does not exhibit a reaction failure during curing and is suitable for use in the production of a fiber-reinforced composite material, and a cured product using the same The present inventors have found that a prepreg and a fiber-reinforced composite material can be obtained, and have reached the present invention.
According to the first aspect of the present invention, (A) 2,3,3 ′, 4′-biphenyltetracarboxylic acid compound and 3,3 ′, 4,4′-biphenyltetracarboxylic acid compound are each 20 An aromatic tetracarboxylic acid component containing at least mol%, (B) an aromatic diamine in which two carbon-nitrogen bond axes derived from an amino group are located on the same straight line and has no oxygen atom in the molecule, and an amino group An aromatic diamine having no oxygen atom in the molecule, wherein the two derived carbon-nitrogen bond axes are not located on the same straight line and each contains 20 mol% or more of an aromatic diamine having no oxygen atom in the molecule. There is provided a heat-curable solution composition obtained by mixing a component and an end-capping agent having (C) a phenylethynyl group.

上記加熱硬化性溶液組成物において、前記(B)のアミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンを、1,4−ジアミノベンゼンとし、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンを、1,3−ジアミノベンゼンとすることができる。
また、前記(C)のフェニルエチニル基を有する末端封止剤を、4−(2−フェニルエチニル)フタル酸化合物とすることができる。
また、芳香族ジアミン成分と芳香族テトラカルボン酸成分のモル比(芳香族ジアミン成分のモル数/芳香族テトラカルボン酸成分のモル数)を、1.067〜1.125とすることができる。
In the above thermosetting solution composition, aromatic diamines having two carbon-nitrogen bond axes derived from the amino group (B) on the same straight line and having no oxygen atom in the molecule, -Diaminobenzene, an aromatic diamine that does not have two carbon-nitrogen bond axes derived from an amino group on the same straight line and has no oxygen atom in the molecule can be 1,3-diaminobenzene .
Moreover, the terminal blocker which has the said phenylethynyl group of (C) can be made into a 4- (2-phenylethynyl) phthalic acid compound.
The molar ratio of the aromatic diamine component to the aromatic tetracarboxylic acid component (number of moles of aromatic diamine component / number of moles of aromatic tetracarboxylic acid component) can be 1.067 to 1.125.

本発明の第2の態様によると、前記加熱硬化性溶液組成物を加熱硬化して得られたことを特徴とする硬化物が提供される。   According to the 2nd aspect of this invention, the hardened | cured material obtained by heat-curing the said thermosetting solution composition is provided.

本発明の第3の態様によると、前記加熱硬化性溶液組成物を繊維状補強材に含浸させたことを特徴とするプリプレグが提供される。   According to a third aspect of the present invention, there is provided a prepreg characterized in that a fibrous reinforcing material is impregnated with the thermosetting solution composition.

本発明の第4の態様によると、前記プリプレグを加熱硬化して得られたことを特徴とする繊維強化複合材料が提供される。   According to a fourth aspect of the present invention, there is provided a fiber-reinforced composite material obtained by heat-curing the prepreg.

以上のように、本発明によれば、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与えることができ、また、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料を提供することができる。   As described above, according to the present invention, a cured product having excellent oxidation resistance and a high glass transition temperature (Tg) can be provided, and no reaction failure is observed at the time of curing, thereby producing a fiber-reinforced composite material. A thermosetting solution composition suitable for use in the present invention, a cured product using the composition, a prepreg, and a fiber-reinforced composite material can be provided.

以下、本発明の加熱硬化性溶液組成物について、好適な実施形態を詳細に説明する。
本実施形態の加熱硬化性溶液組成物は、加熱により末端に付加反応性官能基を有するイミドオリゴマーおよびその硬化物を与える溶液組成物である。そのイミドオリゴマーは、2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、および、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分で構成され、末端に付加反応性官能基であるフェニルエチニル基を有するものである。芳香族テトラカルボン酸成分及び芳香族ジアミン成分の組成が上記範囲外であると、硬化時にイミド化及び/又は付加反応が十分に進行せず、硬化物の靱性が十分でない場合がある。そのような場合、良好な物性を有する繊維強化複合材料を得るのが難しい。
Hereinafter, suitable embodiment is described in detail about the thermosetting solution composition of this invention.
The heat-curable solution composition of this embodiment is a solution composition that gives an imide oligomer having an addition-reactive functional group at the terminal and a cured product thereof by heating. The imide oligomer is an aromatic tetracarboxylic acid containing at least 20 mol% of 2,3,3 ′, 4′-biphenyltetracarboxylic acid compound and 3,3 ′, 4,4′-biphenyltetracarboxylic acid compound. An acid component and two carbon-nitrogen bond axes derived from an amino group are located on the same straight line, an aromatic diamine having no oxygen atom in the molecule, and two carbon-nitrogen bond axes derived from an amino group Is composed of an aromatic diamine component that does not have an oxygen atom in the molecule, each containing 20 mol% or more of an aromatic diamine that is not located on the same straight line and does not have an oxygen atom in the molecule. Having a phenylethynyl group which is a functional group. If the composition of the aromatic tetracarboxylic acid component and the aromatic diamine component is outside the above range, imidization and / or addition reaction does not proceed sufficiently during curing, and the toughness of the cured product may not be sufficient. In such a case, it is difficult to obtain a fiber reinforced composite material having good physical properties.

本実施形態に係る加熱硬化性溶液組成物の(A)成分である芳香族テトラカルボン酸成分は、2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを含有するが、その含有率は(A)成分中にそれぞれ20モル%以上であることが好ましく、特にそれぞれ30モル%以上含有することが好ましい。これらのビフェニルテトラカルボン酸化合物の含有率が低いと、得られる硬化物のガラス転移温度(Tg)が低くなり、靱性も十分でないことがあるため好ましくない。また、芳香族テトラカルボン酸成分は、他のビフェニルテトラカルボン酸化合物を含んでいてもよく、他のビフェニルテトラカルボン酸化合物としては2,2’,3,3’−ビフェニルテトラカルボン酸化合物などを挙げることができる。   The aromatic tetracarboxylic acid component which is the component (A) of the thermosetting solution composition according to the present embodiment includes 2,3,3 ′, 4′-biphenyltetracarboxylic acid compound, 3,3 ′, 4, The 4'-biphenyltetracarboxylic acid compound is contained, and the content thereof is preferably 20 mol% or more in the component (A), particularly preferably 30 mol% or more. If the content of these biphenyltetracarboxylic acid compounds is low, the glass transition temperature (Tg) of the resulting cured product will be low, and the toughness may not be sufficient. The aromatic tetracarboxylic acid component may contain other biphenyltetracarboxylic acid compounds. Examples of other biphenyltetracarboxylic acid compounds include 2,2 ′, 3,3′-biphenyltetracarboxylic acid compounds. Can be mentioned.

2,3,3’,4’−ビフェニルテトラカルボン酸化合物には、2,3,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれる。
同様に、3,3’,4,4’−ビフェニルテトラカルボン酸化合物には、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、3,3’,4,4’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれ、2,2’,3,3’−ビフェニルテトラカルボン酸化合物には、2,2’,3,3’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれる。
2,3,3 ′, 4′-biphenyltetracarboxylic acid compounds include 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (A-BPDA), an ester or salt of 2,3,3 ′, 4′-biphenyltetracarboxylic acid.
Similarly, 3,3 ′, 4,4′-biphenyltetracarboxylic acid compounds include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid. Dianhydrides (s-BPDA), esters or salts of 3,3 ′, 4,4′-biphenyltetracarboxylic acid are included, and 2,2 ′, 3,3′-biphenyltetracarboxylic acid compounds include 2 , 2 ′, 3,3′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, ester or salt of 2,2 ′, 3,3′-biphenyltetracarboxylic acid Is included.

本実施形態に係る加熱硬化性溶液組成物の(B)成分である分子内に酸素原子を有しない芳香族ジアミン成分は、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを含む。本実施形態においては、これらの芳香族ジアミンを(B)成分中にそれぞれ20モル%以上含むことが好ましく、特にそれぞれ30モル%以上含有することが好ましい。ここで、分子内に酸素原子を有しないとは、分子中にエーテル結合、カルボニル基等を有しないことを指す。
アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンとして、1,4−ジアミノベンゼン(PPD)、2,5−ジアミノトルエン、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメチルベンジジン、3,3’,5,5’−テトラメチルベンジジン、4,4−ジアミノオクタフルオロビフェニルなどを挙げることができる。これらは、単独で用いても良いし、複数を混合して用いても良い。
また、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとして、1,3−ジアミノベンゼン(MPD)、2,4−ジアミノトルエン、2,6−ジアミノトルエン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、9,9’−ビス(4−アミノフェニル)フルオレンなどを挙げることができる。これらは、単独で用いても良いし、複数を混合して用いても良い。
In the aromatic diamine component having no oxygen atom in the molecule as the component (B) of the thermosetting solution composition according to the present embodiment, the two carbon-nitrogen bond axes derived from the amino group are located on the same straight line. And an aromatic diamine having no oxygen atom in the molecule and an aromatic diamine in which the two carbon-nitrogen bond axes derived from the amino group are not located on the same straight line and have no oxygen atom in the molecule. . In the present embodiment, these aromatic diamines are preferably contained in the component (B) in an amount of 20 mol% or more, particularly preferably 30 mol% or more, respectively. Here, having no oxygen atom in the molecule means having no ether bond, carbonyl group or the like in the molecule.
As aromatic diamines in which two carbon-nitrogen bond axes derived from an amino group are located on the same straight line and have no oxygen atom in the molecule, 1,4-diaminobenzene (PPD), 2,5-diaminotoluene, 2,2′-bis (trifluoromethyl) benzidine, 2,2′-dimethylbenzidine, 3,3′-dimethylbenzidine, 3,3 ′, 5,5′-tetramethylbenzidine, 4,4-diaminooctafluoro Biphenyl and the like can be mentioned. These may be used alone or in combination.
Further, as an aromatic diamine in which two carbon-nitrogen bond axes derived from an amino group are not located on the same straight line and do not have an oxygen atom in the molecule, 1,3-diaminobenzene (MPD), 2,4- Diaminotoluene, 2,6-diaminotoluene, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 2,2-bis (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) Examples include propane and 9,9′-bis (4-aminophenyl) fluorene. These may be used alone or in combination.

本実施形態においては、分子内に酸素原子を有しない芳香族ジアミン成分として、1,4−ジアミノベンゼン(パラフェニレンジアミン、PPD)と、1,3−ジアミノベンゼン(メタフェニレンジアミン、MPD)とを併用するのが好適である。   In the present embodiment, 1,4-diaminobenzene (paraphenylenediamine, PPD) and 1,3-diaminobenzene (metaphenylenediamine, MPD) are used as aromatic diamine components having no oxygen atom in the molecule. It is suitable to use together.

本実施形態に係る加熱硬化性溶液組成物の(C)成分である末端に付加反応性官能基を導入するために用いる末端封止剤としては、エチニル基を有するものが好ましく、特に、フェニルエチニル基を有するものが好適である。また、封止する末端は、アミン末端、カルボン酸末端のいずれでも構わないが、アミン末端と反応してイミド基を形成するものが好ましい。このような末端封止剤として、4−(2−フェニルエチニル)フタル酸化合物を挙げることができる。4−(2−フェニルエチニル)フタル酸化合物には、4−(2−フェニルエチニル)フタル酸無水物、4−(2−フェニルエチニル)フタル酸のエステルまたは塩が含まれる。   As an end-capping agent used for introducing an addition-reactive functional group at the end which is the component (C) of the thermosetting solution composition according to this embodiment, one having an ethynyl group is preferable, and in particular, phenylethynyl. Those having a group are preferred. Further, the end to be sealed may be either an amine end or a carboxylic acid end, but those that react with the amine end to form an imide group are preferred. Examples of such a terminal blocking agent include 4- (2-phenylethynyl) phthalic acid compounds. 4- (2-Phenylethynyl) phthalic acid compounds include 4- (2-phenylethynyl) phthalic anhydride and esters or salts of 4- (2-phenylethynyl) phthalic acid.

また、本実施形態の加熱硬化性溶液組成物には、イミド化反応を促進する作用を有する成分が含有されていてもよい。含有量は、全成分の量に対して0.01〜3質量%の範囲であることが好ましい。例えば、イミダゾール化合物は、溶液組成物を調製する際に溶解を促進する作用を有し溶解時間を短縮することができる。更に、未硬化成形体を加圧下に加熱して硬化物(硬化成形体)を製造する際に硬化を促進する作用も有しており、特性が優れた硬化成形体を容易に得ることが可能になる。イミダゾール化合物としては、例えば2−メチルイミダゾールや1,2−ジメチルイミダゾールなどのポリイミドのイミド化触媒として公知の化合物を挙げることができる。   Moreover, the component which has the effect | action which accelerates | stimulates imidation reaction may contain in the thermosetting solution composition of this embodiment. The content is preferably in the range of 0.01 to 3% by mass relative to the amount of all components. For example, an imidazole compound has an action of promoting dissolution when preparing a solution composition, and can shorten the dissolution time. Furthermore, it has the effect of accelerating curing when an uncured molded body is heated under pressure to produce a cured product (cured molded body), and a cured molded body with excellent characteristics can be easily obtained. become. Examples of the imidazole compound include known compounds as polyimide imidation catalysts such as 2-methylimidazole and 1,2-dimethylimidazole.

アミン末端を封止したイミドオリゴマーを得るためには、芳香族ジアミン成分を、芳香族テトラカルボン酸成分に対して化学量論的に過剰モル量で用いることが好ましい。用いる芳香族ジアミン成分の量は、得られるイミドオリゴマーが所望の分子量となるように適宜調整するが、芳香族ジアミン成分を、芳香族テトラカルボン酸成分1モルに対して、1.067〜1.167モルの範囲内の量で用いることが好ましく、特に、1.083〜1.125モルの範囲内の量で用いることが好ましい。また、末端封止剤は、芳香族ジアミン成分のモル量と芳香族テトラカルボン酸成分のモル量との差に相当するモル量の1.8〜2.2倍、好ましくは、1.95〜2.0倍のモル量を用いることが好ましい。なお、本実施形態においては、個別に製造された分子量の異なるイミドオリゴマーを混合して用いることもできる。   In order to obtain an imide oligomer having an amine terminal blocked, the aromatic diamine component is preferably used in a stoichiometrically excess molar amount with respect to the aromatic tetracarboxylic acid component. The amount of the aromatic diamine component to be used is appropriately adjusted so that the resulting imide oligomer has a desired molecular weight, but the aromatic diamine component is used in an amount of 1.067 to 1. It is preferably used in an amount in the range of 167 mol, and particularly preferably in an amount in the range of 1.083 to 1.125 mol. Further, the end-capping agent is 1.8 to 2.2 times the molar amount corresponding to the difference between the molar amount of the aromatic diamine component and the molar amount of the aromatic tetracarboxylic acid component, preferably 1.95 to It is preferable to use a 2.0 times molar amount. In the present embodiment, imide oligomers having different molecular weights produced individually can be mixed and used.

本実施形態の加熱硬化性溶液組成物は、公知の方法で上記芳香族テトラカルボン酸成分、芳香族ジアミン成分および末端封止剤を混合することにより得られる。例えば、第1の方法として、芳香族テトラカルボン酸二無水物、芳香族ジアミンおよび4−(2−フェニルエチニル)フタル酸無水物を、酸無水基の全量とアミノ基の全量とがほぼ等量になるように使用して、各成分を溶媒中で約100℃以下、特に、80℃以下の温度で混合することにより調製することができる。   The thermosetting solution composition of the present embodiment can be obtained by mixing the aromatic tetracarboxylic acid component, the aromatic diamine component and the terminal blocking agent by a known method. For example, as a first method, aromatic tetracarboxylic dianhydride, aromatic diamine and 4- (2-phenylethynyl) phthalic anhydride are substantially equal in the total amount of acid anhydride groups and the total amount of amino groups. Can be prepared by mixing each component in a solvent at a temperature of about 100 ° C. or lower, particularly 80 ° C. or lower.

前記の方法で用いる溶媒としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチルカプロラクタム、γ−ブチロラクトン(GBL)、シクロヘキサノンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の選択に関してはポリイミド前駆体溶液組成物の公知技術を適用することができる。   As the solvent used in the above method, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methylcaprolactam, γ -Butyrolactone (GBL), cyclohexanone, etc. are mentioned. These solvents may be used alone or in combination of two or more. With respect to the selection of these solvents, a known technique of a polyimide precursor solution composition can be applied.

得られた溶液は、そのままか、あるいは、適宜濃縮または希釈するかして使用することができる。また、必要であれば、この溶液を水中等に注ぎ込んで粉末状の生成物として単離し、その粉末生成物を適宜溶媒に溶解して本実施形態の加熱硬化性溶液組成物として使用することもできる。   The obtained solution can be used as it is or after being appropriately concentrated or diluted. Further, if necessary, this solution is poured into water or the like and isolated as a powder product, and the powder product is appropriately dissolved in a solvent and used as the thermosetting solution composition of the present embodiment. it can.

また、本実施形態の加熱硬化性溶液組成物は、例えば、第2の方法として、芳香族テトラカルボン酸二無水物および4−(2−フェニルエチニル)フタル酸無水物を、低級脂肪族アルコールを含有する溶液に添加し、生成する懸濁液を加熱することにより部分低級脂肪族アルキルエステルに変換して溶解させ、次いで、この溶液に芳香族ジアミンを加えることにより、調製することもできる。得られた溶液は、そのままか、あるいは、適宜濃縮または希釈するかして使用することができる。   In addition, the thermosetting solution composition of the present embodiment includes, for example, aromatic tetracarboxylic dianhydride and 4- (2-phenylethynyl) phthalic anhydride, lower aliphatic alcohol as the second method. It can also be prepared by adding to the containing solution, converting the resulting suspension to a partially lower aliphatic alkyl ester by heating and dissolving it, and then adding an aromatic diamine to the solution. The obtained solution can be used as it is or after being appropriately concentrated or diluted.

前記の方法で用いる溶液としては、低級脂肪族アルコール(炭素原子数が1〜6の一価脂肪族アルコール)を主成分として含む有機溶媒が挙げられる。特に、低級脂肪族アルコールがメタノールもしくはエタノールであることが好ましい。低級脂肪族アルコールは、混合物を使用することもできるが、その混合物は、メタノールもしくはエタノールを50容量%以上含むことが好ましく、特にメタノールもしくはエタノールを80容量%以上含むことが好ましい。ここで、低級脂肪族アルコール以外の低沸点溶媒(例、ケトン)を併用することができるが、その場合の低級脂肪族アルコール以外の低沸点溶媒の使用量は、30容量%以下であることが望ましい。   Examples of the solution used in the above method include an organic solvent containing a lower aliphatic alcohol (a monovalent aliphatic alcohol having 1 to 6 carbon atoms) as a main component. In particular, the lower aliphatic alcohol is preferably methanol or ethanol. A mixture of lower aliphatic alcohols may be used, but the mixture preferably contains 50% by volume or more of methanol or ethanol, and particularly preferably contains 80% by volume or more of methanol or ethanol. Here, a low-boiling solvent other than the lower aliphatic alcohol (eg, ketone) can be used in combination, and the amount of the low-boiling solvent other than the lower aliphatic alcohol in that case is 30% by volume or less. desirable.

上記部分低級脂肪族アルキルエステルを得るために用いる低級脂肪族アルコールとしてはメタノールが特に好ましい。低級脂肪族アルキルエステルとしてメチルエステルを用いると、加熱硬化性溶液組成物を用いて硬化体を製造する際に優れた形状維持性を示す。   Methanol is particularly preferred as the lower aliphatic alcohol used for obtaining the partial lower aliphatic alkyl ester. When methyl ester is used as the lower aliphatic alkyl ester, excellent shape maintainability is exhibited when a cured product is produced using the heat curable solution composition.

上記の加熱硬化性溶液組成物を用いた未硬化体から溶媒を蒸発除去する際、またそれに続く硬化体を得るために高温で加熱する際に発生するメタノールによる環境汚染を回避したい場合には、メタノールを用いて加熱硬化性溶液組成物を製造した後、その溶液組成物を一旦乾燥して、加熱硬化性粉末組成物を得て、この粉末組成物をエタノールなどの環境負荷が低い溶媒に溶解して改めて加熱硬化性溶液組成物とし、それを用いて未硬化体を調製して硬化体の製造を行なう方法を利用することもできる。   When it is desired to avoid environmental pollution caused by methanol generated when evaporating and removing a solvent from an uncured body using the above-mentioned heat curable solution composition and heating at a high temperature to obtain a subsequent cured body, After manufacturing a thermosetting solution composition using methanol, the solution composition is dried once to obtain a thermosetting powder composition, and this powder composition is dissolved in a solvent with low environmental impact such as ethanol. Then, a method of preparing a heat-curable solution composition again and preparing an uncured body using the composition can be used.

加熱硬化性粉末組成物を得るために溶媒を蒸発除去する温度は、60℃以下であることが好ましい。加熱硬化性粉末組成物において、少量の溶媒が残存してもよいが、残存溶媒や高温で加熱して硬化体を得る際に発生するアルコールなどからなる揮発成分が18〜25%の範囲のものが好ましく、20〜22%の範囲のものが更に好ましい。   The temperature at which the solvent is removed by evaporation to obtain the heat-curable powder composition is preferably 60 ° C. or lower. A small amount of solvent may remain in the heat curable powder composition, but the volatile component composed of the remaining solvent or alcohol generated when heated at a high temperature to obtain a cured product is in the range of 18 to 25%. Are preferable, and the thing of 20 to 22% of range is still more preferable.

上記のようにして得られた加熱硬化性溶液組成物は、単独、または、これを繊維状補強材に含浸させた複合材とし、硬化触媒の存在下または不存在下で加熱することにより硬化物とすることができる。例えば、加熱硬化性溶液組成物を支持体に塗布し、260〜500℃で5〜200分間加熱硬化することによりフィルムが得られる。また、上記の加熱硬化性粉末組成物を金型内に充填し、常圧又は減圧下10〜260℃で1〜240分程度加熱イミド化し、常圧又は0.1〜20MPaの圧力下で260〜500℃で10分〜40時間程度加熱することにより、成形体を製造することができる。本実施形態の加熱硬化性溶液組成物を用いることにより、Tgが340℃以上、または340℃以下ではTgが確認できない硬化物(イミド基含有成形体)を得ることができる。   The heat curable solution composition obtained as described above is a cured product obtained by heating in the presence or absence of a curing catalyst, either alone or as a composite material obtained by impregnating a fibrous reinforcing material. It can be. For example, a film is obtained by apply | coating a thermosetting solution composition to a support body, and heat-hardening at 260-500 degreeC for 5-200 minutes. Further, the above thermosetting powder composition is filled in a mold, heated and imidized at 10 to 260 ° C. for about 1 to 240 minutes under normal pressure or reduced pressure, and 260 under normal pressure or 0.1 to 20 MPa pressure. A molded body can be produced by heating at about 500 ° C. for about 10 minutes to 40 hours. By using the thermosetting solution composition of this embodiment, a cured product (imide group-containing molded product) in which Tg cannot be confirmed at Tg of 340 ° C. or higher or 340 ° C. or lower can be obtained.

また、本実施形態の加熱硬化性溶液組成物を用いて繊維強化複合材料を得るためには、まず、高強度繊維のシート状マトリックス材料に加熱硬化性溶液組成物を含浸させ、必要により、溶媒の一部を加熱などで蒸発除去させることによって未硬化繊維強化複合材料(プリプレグ)を調製する。プリプレグには、加圧下で加熱して繊維強化複合材料を製造する際の良好な取扱い性(ドレープ性、タック性)を確保するための適切な揮発分含有量と、得られる繊維強化複合材料が良好な樹脂含量を有するための樹脂を形成する成分の適切な付着量とが要求される。このためには、デップ法、キャスト法等の方法で、適切な量の樹脂を形成する成分を含む加熱硬化性溶液組成物を高強度繊維のシート状マトリックス材料に含浸させ、次いで熱風オーブン等で加熱乾燥して余分な揮発分を蒸発除去することが好適である。通常、所定量の加熱硬化性溶液組成物を高強度繊維のシート状マトリックス材料に含浸させ、加熱乾燥条件とし、温度範囲:40〜150℃、時間範囲:0.5〜30分とすることで、好ましい樹脂含有量(Rc):30〜50質量%、揮発分含有量(Vc):10〜30質量%のプリプレグを好適に調製できる。   In order to obtain a fiber reinforced composite material using the heat curable solution composition of the present embodiment, first, a sheet-like matrix material of high-strength fibers is impregnated with the heat curable solution composition and, if necessary, a solvent. An uncured fiber reinforced composite material (prepreg) is prepared by evaporating and removing a part of the material by heating or the like. The prepreg has an appropriate volatile content for ensuring good handleability (drapability and tackiness) when producing a fiber-reinforced composite material by heating under pressure, and an obtained fiber-reinforced composite material. In order to have a good resin content, an appropriate adhesion amount of the component forming the resin is required. For this purpose, a high-strength fiber sheet-like matrix material is impregnated with a thermosetting solution composition containing a component that forms an appropriate amount of resin by a method such as a dipping method or a casting method, and then in a hot air oven or the like. It is preferable to evaporate and remove excess volatile components by heating and drying. Usually, a high-strength fiber sheet matrix material is impregnated with a predetermined amount of a thermosetting solution composition, and is heated and dried. Temperature range: 40 to 150 ° C., time range: 0.5 to 30 minutes A prepreg having a preferable resin content (Rc) of 30 to 50% by mass and a volatile content (Vc) of 10 to 30% by mass can be suitably prepared.

プリプレグを製造するために用いる、高強度繊維からなるシート状マトリックス材料としては、繊維強化複合材料を製造するために用いられる公知の高強度繊維からなるものを好適に用いることができる。好ましい高強度繊維は、カーボン繊維、アラミド繊維、ガラス繊維、およびチラノ繊維(二酸化チタン繊維)などのセラミック繊維である。   As a sheet-like matrix material made of high-strength fibers used for producing a prepreg, those made of known high-strength fibers used for producing a fiber-reinforced composite material can be suitably used. Preferred high-strength fibers are carbon fibers, aramid fibers, glass fibers, and ceramic fibers such as Tyranno fibers (titanium dioxide fibers).

得られたプリプレグは、その両面のそれぞれを、ポリエチレンテレフタレート(PET)などの樹脂シート、あるいは紙などの被覆シートにより被覆した状態で保存や輸送することが好ましく、このような被覆状態にあるプリプレグは、通常、ロール状態で保存と輸送がされる。   The obtained prepreg is preferably stored and transported in a state where each of both surfaces thereof is covered with a resin sheet such as polyethylene terephthalate (PET) or a covering sheet such as paper. The prepreg in such a covering state is Usually, it is stored and transported in a roll state.

プリプレグから繊維強化複合材料(硬化体)を製造する方法は公知のものを適用すればよい。例えば、ロール状のプリプレグを所望のサイズに切断し、切断した未硬化繊維強化複合材料片を複数枚(数枚から100枚以上まで)積層した後、加熱プレス、または、オートクレーブを用いて、140〜310℃で常圧又は減圧下で5〜270分間加熱して乾燥およびイミド化した後、250〜500℃の温度で、常圧または0.1〜20MPaの圧力下で、1秒〜240分間程度加熱することにより、繊維強化複合材料が得られる。   As a method for producing a fiber reinforced composite material (cured body) from a prepreg, a known method may be applied. For example, after cutting a roll-shaped prepreg to a desired size and laminating a plurality of cut uncured fiber reinforced composite material pieces (from several to 100 or more), using a heating press or an autoclave, 140 After drying and imidization by heating at ˜310 ° C. for 5 to 270 minutes under normal pressure or reduced pressure, at a temperature of 250 to 500 ° C. under normal pressure or 0.1 to 20 MPa for 1 second to 240 minutes. By heating to a certain extent, a fiber reinforced composite material is obtained.

本実施形態の加熱硬化性溶液組成物を繊維状補強材に含浸させた未硬化繊維強化複合材料(プリプレグ)を加熱硬化して得られる繊維強化複合材料は、機械的特性などにも優れ、航空機や宇宙産業用機器等の用途に好適である。   A fiber reinforced composite material obtained by heat curing an uncured fiber reinforced composite material (prepreg) in which a fibrous reinforcing material is impregnated with the heat curable solution composition of the present embodiment is excellent in mechanical properties and the like. It is suitable for applications such as space industry equipment.

以下、具体例を示して本発明を説明する。まず、各測定値等は次の方法によるものである。   Hereinafter, the present invention will be described with reference to specific examples. First, each measured value is based on the following method.

(1)熱酸化安定性(TOS)
樹脂フィルムについては、270℃で4時間乾燥後の重量を基準とし、イナートガスオーブンINH−21CD−S(光洋サーモシステム株式会社)を用いて350℃で100時間流動空気に露呈した後の重量減少を、基準の重量に対する重量パーセントで表した。測定は3つのサンプルについて同時に行い、これらの平均値をTOS値とした。
CFRP板については、274℃、1000時間または3000時間の条件とした以外は、上記と同様にしてTOS値を算出した。
(1) Thermal oxidation stability (TOS)
For resin film, based on the weight after drying at 270 ° C. for 4 hours, the weight loss after exposure to flowing air at 350 ° C. for 100 hours using inert gas oven INH-21CD-S (Koyo Thermo System Co., Ltd.) Expressed in percent by weight relative to the reference weight. The measurement was performed on three samples at the same time, and the average value of these was taken as the TOS value.
For the CFRP plate, the TOS value was calculated in the same manner as above except that the conditions were 274 ° C., 1000 hours or 3000 hours.

(2)ガラス転移温度(Tg)
樹脂フィルムについては、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量測定装置Q100シリーズを用い、窒素雰囲気下(20ml/min)、20℃/minで昇温しながらDSC曲線を測定した。DSC曲線の変曲点における、接線の交点の温度をガラス転移温度とした。
CFRP板については、ティー・エイ・インスツルメント・ジャパン社製の固体粘弾性アナライザーRSAIIIを用い、窒素中、周波数10Hz、10℃/minで昇温しながら3点曲げモードで粘弾性を測定した。温度に対して貯蔵弾性係数をプロットしたグラフの変曲点について接線を引き、その交点の温度をガラス転移温度とした。また、tanδのピークトップの温度から求めたTgは、Tg(tanδ)とした。
(3)引張強度、引張弾性率、破断伸び
測定には、インストロン社製の万能試験機(型番5582)を用いた。試験片は、樹脂フィルムを規格IEC−540打抜き刃で作製した。引張り速度は、2mm/min。試験は、室温で行った。
(2) Glass transition temperature (Tg)
For the resin film, a DSC curve was measured using a differential scanning calorimeter Q100 series manufactured by TA Instruments Japan Co., Ltd. while raising the temperature at 20 ° C./min in a nitrogen atmosphere (20 ml / min). . The temperature at the intersection of tangents at the inflection point of the DSC curve was defined as the glass transition temperature.
For the CFRP plate, the viscoelasticity was measured in a three-point bending mode while increasing the temperature in nitrogen at a frequency of 10 Hz and 10 ° C./min using a solid viscoelasticity analyzer RSAIII manufactured by TA Instruments Japan. . A tangent line was drawn at the inflection point of the graph in which the storage elastic modulus was plotted against the temperature, and the temperature at the intersection was taken as the glass transition temperature. Further, Tg obtained from the temperature at the peak top of tan δ was defined as Tg (tan δ).
(3) Tensile strength, tensile modulus, elongation at break A universal testing machine (model number 5582) manufactured by Instron was used for measurement. The test piece was made of a resin film with a standard IEC-540 punching blade. The pulling speed is 2 mm / min. The test was performed at room temperature.

(4)層間せん断強度(SBS)
CFRP板について、ASTM D2344に従い測定した。測定にはインストロン社製の万能試験機(型番5582)を用いた。
(5)炭素繊維含有率(Vf)及び空隙率(Vv)測定
CFRP板について、ASTM D3171に従い硫酸分解法により、炭素繊維含有率(Vf)及び空隙率(Vv)を測定した。
(4) Interlaminar shear strength (SBS)
The CFRP plate was measured according to ASTM D2344. A universal testing machine (model number 5582) manufactured by Instron was used for the measurement.
(5) Measurement of carbon fiber content (Vf) and porosity (Vv) With respect to the CFRP plate, the carbon fiber content (Vf) and the porosity (Vv) were measured by the sulfuric acid decomposition method according to ASTM D3171.

また、以下に記載する実施例において、各モノマー成分は下記の表示により示した。
a−BPDA:2,3,3’,4’−ビフェニルテトラカルボン酸二無水物
s−BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PPD:1,4−ジアミノベンゼン(パラフェニレンジアミン)
MPD:1,3−ジアミノベンゼン(メタフェニレンジアミン)
PEPA:4−(フェニルエチニル)無水フタル酸
TPE−R:1,3−ビス(4−アミノフェノキシ)ベンゼン
2−Mz:2−メチルイミダゾール
Moreover, in the Example described below, each monomer component was shown by the following display.
a-BPDA: 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: 1,4-diaminobenzene (Paraphenylenediamine)
MPD: 1,3-diaminobenzene (metaphenylenediamine)
PEPA: 4- (phenylethynyl) phthalic anhydride TPE-R: 1,3-bis (4-aminophenoxy) benzene 2-Mz: 2-methylimidazole

[比較例1]
セパラブルフラスコに、酸成分であるa−BPDA47.08g(0.16モル)とPEPA9.93g(0.04モル)、そして溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を入れて攪拌し、均一な加熱硬化性溶液組成物を得た。この溶液をポリイミドフィルムで作った容器に入れて、80℃に保ったオーブンに入れた。オーブンを2℃/分で260℃まで昇温して3時間保持し、得られた固形分を粉砕して加熱硬化性粉末組成物を得た。この加熱硬化性粉末組成物を260℃に加熱したプレス機でプレスし、その後370℃まで約20分で昇温し、370℃で60分加熱処理して、厚みが約0.15mmの樹脂フィルムを得た。フィルムの特性を表1に示す。
[Comparative Example 1]
A separable flask was charged with 47.08 g (0.16 mol) of a-BPDA as an acid component, 9.93 g (0.04 mol) of PEPA and 63.50 g of methanol as a solvent, and 2-Mz. 1529 g was added and stirred under reflux conditions to dissolve uniformly. After cooling the solution to room temperature, 13.63 g (0.126 mol) of PPD, which is a diamine component, and 5.84 g (0.054 mol) of MPD were added and stirred to obtain a uniform thermosetting solution composition. This solution was placed in a container made of polyimide film and placed in an oven maintained at 80 ° C. The oven was heated to 260 ° C. at 2 ° C./min and held for 3 hours, and the resulting solid content was pulverized to obtain a heat curable powder composition. This thermosetting powder composition is pressed with a press machine heated to 260 ° C., then heated up to 370 ° C. in about 20 minutes, heat-treated at 370 ° C. for 60 minutes, and a resin film having a thickness of about 0.15 mm Got. The properties of the film are shown in Table 1.

[比較例2]
酸成分としてa−BPDA47.08g(0.16モル)とPEPA9.93g(0.04モル)、そして溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD9.73g(0.09モル)とMPD9.73g(0.09モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[Comparative Example 2]
As an acid component, 47.08 g (0.16 mol) of a-BPDA, 9.93 g (0.04 mol) of PEPA, and 63.50 g of methanol as a solvent were added, and 0.1529 g of 2-Mz as a catalyst was added to reflux conditions. The mixture was stirred and dissolved uniformly. After the solution was cooled to room temperature, the thermosetting solution composition and the resin were the same as in Example 1 except that 9.73 g (0.09 mol) of PPD and 9.73 g (0.09 mol) of MPD were used as diamine components. A film was obtained. The properties of the film are shown in Table 2.

[比較例3]
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を、溶媒としてメタノール73.44gを、触媒として2−Mz0.1728gを、ジアミン成分としてPPD13.63g(0.126モル)とTPE−R15.79g(0.054モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。
[Comparative Example 3]
28.25 g (0.096 mol) of s-BPDA, 18.83 g (0.064 mol) of a-BPDA and 9.93 g (0.04 mol) of PEPA as the acid component, 73.44 g of methanol as the solvent, and 2- A thermosetting solution composition and a resin film were prepared in the same manner as in Example 1 except that 0.172 g of Mz was used and 13.63 g (0.126 mol) of PPD and 15.79 g (0.054 mol) of TPE-R were used as diamine components. Got.

Figure 2015059147
Figure 2015059147

[実施例1]PPD/MPD(50/50)
セパラブルフラスコに、酸成分であるs−BPDA14.12g(0.048モル)とa−BPDA32.95g(0.112モル)とPEPA9.93g(0.04モル)、溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD9.73g(0.09モル)とMPD9.73g(0.09モル)を入れて攪拌し、均一な加熱硬化性溶液組成物を得た。この溶液をポリイミドフィルムで作った容器に入れて、80℃に保ったオーブンに入れた。オーブンを2℃/分で260℃まで昇温して3時間保持し、得られた固形分を粉砕して加熱硬化性粉末組成物を得た。この加熱硬化性粉末組成物を260℃に加熱したプレス機でプレスし、その後370℃まで約20分で昇温し、370℃で60分加熱処理して、厚みが約0.15mmの樹脂フィルムを得た。フィルムの特性を表2に示す。
[Example 1] PPD / MPD (50/50)
In a separable flask, 14.12 g (0.048 mol) of s-BPDA as an acid component, 32.95 g (0.112 mol) of a-BPDA, 9.93 g (0.04 mol) of PEPA, and 63.50 g of methanol as a solvent. Was added, and 0.152 g of 2-Mz as a catalyst was added and stirred under reflux conditions to be uniformly dissolved. After cooling the solution to room temperature, 9.73 g (0.09 mol) of PPD as a diamine component and 9.73 g (0.09 mol) of MPD were added and stirred to obtain a uniform thermosetting solution composition. This solution was placed in a container made of polyimide film and placed in an oven maintained at 80 ° C. The oven was heated to 260 ° C. at 2 ° C./min and held for 3 hours, and the resulting solid content was pulverized to obtain a heat curable powder composition. This thermosetting powder composition is pressed with a press machine heated to 260 ° C., then heated up to 370 ° C. in about 20 minutes, heat-treated at 370 ° C. for 60 minutes, and a resin film having a thickness of about 0.15 mm Got. The properties of the film are shown in Table 2.

[実施例2]
酸成分としてs−BPDA18.83g(0.064モル)とa−BPDA28.25g(0.096モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[Example 2]
Heat curing as in Example 1 except that 18.83 g (0.064 mol) of s-BPDA, 28.25 g (0.096 mol) of a-BPDA and 9.93 g (0.04 mol) of PEPA were used as the acid component. Solution composition and resin film were obtained. The properties of the film are shown in Table 2.

[実施例3]
酸成分としてs−BPDA23.54g(0.08モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[Example 3]
Heat curing as in Example 1 except that 23.54 g (0.08 mol) of s-BPDA, 23.54 g of a-BPDA (0.08 mol) and 9.93 g of PEPA (0.04 mol) were used as the acid component. Solution composition and resin film were obtained. The properties of the film are shown in Table 2.

[実施例4]
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[Example 4]
Heat curing as in Example 1 except that 28.25 g (0.096 mol) of s-BPDA, 18.83 g (0.064 mol) of a-BPDA and 9.93 g (0.04 mol) of PEPA were used as the acid component. Solution composition and resin film were obtained. The properties of the film are shown in Table 2.

[実施例5]
酸成分としてs−BPDA32.95g(0.112モル)とa−BPDA14.12g(0.048モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[Example 5]
Heat curing as in Example 1 except that 32.95 g (0.112 mol) of s-BPDA, 14.12 g (0.048 mol) of a-BPDA and 9.93 g of PEPA (0.04 mol) were used as the acid component. Solution composition and resin film were obtained. The properties of the film are shown in Table 2.

Figure 2015059147
Figure 2015059147

[実施例6]s-BPDA/a-BPDA(60/40)
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を、ジアミン成分としてPPD3.89g(0.036モル)とMPD15.57g(0.144モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
[Example 6] s-BPDA / a-BPDA (60/40)
28.25 g (0.096 mol) of s-BPDA as an acid component, 18.83 g (0.064 mol) of a-BPDA and 9.93 g (0.04 mol) of PEPA, and 3.89 g (0.036 mol) of PPD as a diamine component A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 15.57 g (0.144 mol) of MPD was used. The properties of the film are shown in Table 3.

[実施例7]
ジアミン成分としてPPD11.68g(0.108モル)とMPD7.79g(0.072モル)を用いた以外は実施例6と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
[Example 7]
A thermosetting solution composition and a resin film were obtained in the same manner as in Example 6 except that 11.68 g (0.108 mol) of PPD and 7.79 g (0.072 mol) of MPD were used as the diamine component. The properties of the film are shown in Table 3.

[実施例8]
ジアミン成分としてPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を用いた以外は実施例6と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
[Example 8]
A thermosetting solution composition and a resin film were obtained in the same manner as in Example 6 except that 13.63 g (0.126 mol) of PPD and 5.84 g (0.054 mol) of MPD were used as the diamine component. The properties of the film are shown in Table 3.

Figure 2015059147
Figure 2015059147

[実施例9]s-BPDA/a-BPDA(50/50)
酸成分としてs−BPDA23.54g(0.08モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を、ジアミン成分としてPPD11.68g(0.108モル)とMPD7.79g(0.072モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表4に示す。
[Example 9] s-BPDA / a-BPDA (50/50)
23.54 g (0.08 mol) of s-BPDA, 23.54 g (0.08 mol) of a-BPDA and 9.93 g (0.04 mol) of PEPA as acid components, and 11.68 g (0.108 mol) of PPD as diamine components And 7.79 g (0.072 mol) of MPD were used in the same manner as in Example 1 to obtain a thermosetting solution composition and a resin film. Table 4 shows the characteristics of the film.

[実施例10]
ジアミン成分としてPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を用いた以外は実施例9と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表4に示す。
[Example 10]
A thermosetting solution composition and a resin film were obtained in the same manner as in Example 9 except that 13.63 g (0.126 mol) of PPD and 5.84 g (0.054 mol) of MPD were used as the diamine component. Table 4 shows the characteristics of the film.

Figure 2015059147
Figure 2015059147

[実施例11]s-BPDA/a-BPDA(60/40)、PPD/MPD(50/50)
酸成分としてs−BPDA28.42g(0.0966モル)とa−BPDA18.95g(0.0644モル)とPEPA11.42g(0.046モル)を、溶媒としてメタノール65.42gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD9.95g(0.092モル)とMPD9.95g(0.092モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
[Example 11] s-BPDA / a-BPDA (60/40), PPD / MPD (50/50)
As the acid component, 28.42 g (0.0966 mol) of s-BPDA, 18.95 g (0.0644 mol) of a-BPDA and 11.42 g (0.046 mol) of PEPA, 65.42 g of methanol as a solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1574 g of Mz was used and 9.95 g (0.092 mol) of PPD and 9.95 g (0.092 mol) of MPD were used as the diamine component. It was. Table 5 shows the characteristics of the film.

[実施例12]
酸成分としてs−BPDA30.19g(0.1026モル)とa−BPDA20.12g(0.0684モル)とPEPA9.43g(0.038モル)を、溶媒としてメタノール66.60gを、触媒として2−Mz0.1606gを、ジアミン成分としてPPD10.27g(0.095モル)とMPD10.27g(0.095モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
[Example 12]
30.19 g (0.1026 mol) of s-BPDA, 20.12 g (0.0684 mol) of a-BPDA and 9.43 g (0.038 mol) of PEPA as the acid component, 66.60 g of methanol as the solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1606 g of Mz was used and 10.27 g (0.095 mol) of PPD and 10.27 g (0.095 mol) of MPD were used as diamine components. It was. Table 5 shows the characteristics of the film.

[実施例13]
酸成分としてs−BPDA35.31g(0.12モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を、溶媒としてメタノール76.71gを、触媒として2−Mz0.1851gを、ジアミン成分としてPPD11.90g(0.11モル)とMPD11.90g(0.11モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
[Example 13]
As an acid component, 35.31 g (0.12 mol) of s-BPDA, 23.54 g (0.08 mol) of a-BPDA, 9.93 g (0.04 mol) of PEPA, 76.71 g of methanol as a solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1851 g of Mz was used and 11.90 g (0.11 mol) of PPD and 11.90 g (0.11 mol) of MPD were used as diamine components. It was. Table 5 shows the characteristics of the film.

Figure 2015059147
Figure 2015059147

[実施例14]s-BPDA/a-BPDA(50/50)、PPD/MPD(50/50)
酸成分としてs−BPDA25.01g(0.085モル)とa−BPDA25.01g(0.085モル)とPEPA8.44g(0.034モル)を、溶媒としてメタノール65.20gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD10.11g(0.0935モル)とMPD10.11g(0.0935モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表6に示す。
[Example 14] s-BPDA / a-BPDA (50/50), PPD / MPD (50/50)
25.01 g (0.085 mol) of s-BPDA, 25.01 g (0.085 mol) of a-BPDA and 8.44 g (0.034 mol) of PEPA as an acid component, 65.20 g of methanol as a solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1574 g of Mz was used, and 10.11 g (0.0935 mol) of PPD and 10.11 g (0.0935 mol) of MPD were used as diamine components. It was. Table 6 shows the characteristics of the film.

[実施例15]
酸成分としてs−BPDA26.48g(0.09モル)とa−BPDA26.48g(0.09モル)とPEPA7.45g(0.03モル)を、溶媒としてメタノール67.44gを、触媒として2−Mz0.1630gを、ジアミン成分としてPPD10.54g(0.0975モル)とMPD10.54g(0.0975モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表6に示す。
[Example 15]
26.48 g (0.09 mol) of s-BPDA, 26.48 g (0.09 mol) of a-BPDA and 7.45 g (0.03 mol) of PEPA as the acid component, 67.44 g of methanol as the solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1630 g of Mz was used and 10.54 g (0.0975 mol) of PPD and 10.54 g (0.0975 mol) of MPD were used as diamine components. It was. Table 6 shows the characteristics of the film.

Figure 2015059147
Figure 2015059147

[実施例16]s-BPDA/a-BPDA(50/50)、PPD/MPD(60/40)
酸成分としてs−BPDA25.01g(0.085モル)とa−BPDA25.01g(0.085モル)とPEPA8.44g(0.034モル)を、溶媒としてメタノール65.20gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD12.13g(0.1122モル)とMPD8.09g(0.0748モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表7に示す。
[Example 16] s-BPDA / a-BPDA (50/50), PPD / MPD (60/40)
25.01 g (0.085 mol) of s-BPDA, 25.01 g (0.085 mol) of a-BPDA and 8.44 g (0.034 mol) of PEPA as an acid component, 65.20 g of methanol as a solvent, and 2- A thermosetting solution composition and a resin film were obtained in the same manner as in Example 1 except that 0.1574 g of Mz was used and 12.13 g (0.1122 mol) of PPD and 8.09 g (0.0748 mol) of MPD were used as the diamine component. It was. Table 7 shows the characteristics of the film.

Figure 2015059147
Figure 2015059147

[実施例17]
表7に示した組成で実施例1と同様な方法で固形分濃度40〜60重量%の加熱硬化性溶液組成物を調製した。この加熱硬化性溶液組成物を、東邦テナックス社製の炭素繊維織物(HTS40 3K 8繻子織、目付重量378g/m2)に含浸させ、80〜100℃のオーブンで10〜30分乾燥してプリプレグを得た。乾燥条件は乾燥後の揮発分が約15重量%となるように調整した。なお、揮発分は、250℃、1時間加熱後の重量減少から算出した。得られたプリプレグを100×140mmにカットして12枚重ね、オートクレーブ成形機に入れて1.38MPaの加圧下、370℃で1時間加熱処理して厚さ4.3mmの炭素繊維強化プラスチック(CFRP)板を得た。得られたCFRP板は、超音波探傷試験および実体顕微鏡による断面観察から、ほとんどボイドが見られない良品であることがわかった。得られたCFRP板の特性を表8に示す。
[Example 17]
A thermosetting solution composition having a solid content concentration of 40 to 60% by weight was prepared in the same manner as in Example 1 with the composition shown in Table 7. This heat curable solution composition was impregnated in a carbon fiber fabric (HTS40 3K 8 satin weave, weight per unit weight 378 g / m 2 ) manufactured by Toho Tenax Co., Ltd. and dried in an oven at 80 to 100 ° C. for 10 to 30 minutes. Got. The drying conditions were adjusted so that the volatile content after drying was about 15% by weight. The volatile content was calculated from the weight loss after heating at 250 ° C. for 1 hour. The obtained prepreg was cut into 100 × 140 mm, stacked in 12 pieces, placed in an autoclave molding machine, heated at 370 ° C. for 1 hour under a pressure of 1.38 MPa, and a 4.3 mm thick carbon fiber reinforced plastic (CFRP ) Obtained a board. The obtained CFRP plate was found to be a non-defective product from which almost no voids were observed from an ultrasonic flaw detection test and cross-sectional observation with a stereomicroscope. Table 8 shows the properties of the obtained CFRP plate.

[実施例18]
表8に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例17と同様にしてCFRP板を得た。得られたCFRP板の特性を表8に示す。
[Example 18]
A CFRP plate was obtained in the same manner as in Example 17 except that a thermosetting solution composition was prepared with the composition shown in Table 8. Table 8 shows the properties of the obtained CFRP plate.

[比較例4]
表8に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例19と同様にしてCFRP板を得た。得られたCFRP板の特性を表8に示す。
[Comparative Example 4]
A CFRP plate was obtained in the same manner as in Example 19 except that a thermosetting solution composition was prepared with the composition shown in Table 8. Table 8 shows the properties of the obtained CFRP plate.

Figure 2015059147
Figure 2015059147

[実施例19]
表8に示した組成で実施例1と同様な方法で固形分濃度40〜60重量%の加熱硬化性溶液組成物を調製した。この加熱硬化性溶液組成物を、Cytec社製の炭素繊維織物(T650/35 3K 8繻子織、目付重量375g/m2)に含浸させ、80〜100℃のオーブンで10〜30分乾燥してプリプレグを得た。乾燥条件は乾燥後の揮発分が約15重量%となるように調整した。なお、揮発分は、250℃、1時間加熱後の重量減少から算出した。得られたプリプレグを100×140mmにカットして6枚重ね、オートクレーブ成形機に入れて1.38MPaの加圧下、370℃で1時間加熱処理して厚さ2.4mmの炭素繊維強化プラスチック(CFRP)板を得た。得られたCFRP板は、超音波探傷試験および実体顕微鏡による断面観察から、ほとんどボイドが見られない良品であることがわかった。得られたCFRP板の特性を表9に示す。
[Example 19]
A thermosetting solution composition having a solid content concentration of 40 to 60% by weight was prepared in the same manner as in Example 1 with the composition shown in Table 8. This heat curable solution composition is impregnated into a carbon fiber fabric (T650 / 35 3K 8 satin weave, weight per unit weight 375 g / m 2 ) manufactured by Cytec, and dried in an oven at 80 to 100 ° C. for 10 to 30 minutes. A prepreg was obtained. The drying conditions were adjusted so that the volatile content after drying was about 15% by weight. The volatile content was calculated from the weight loss after heating at 250 ° C. for 1 hour. The obtained prepreg was cut into 100 × 140 mm and stacked in 6 sheets, placed in an autoclave molding machine, heated at 370 ° C. for 1 hour under a pressure of 1.38 MPa, and a 2.4 mm thick carbon fiber reinforced plastic (CFRP ) Obtained a board. The obtained CFRP plate was found to be a non-defective product from which almost no voids were observed from an ultrasonic flaw detection test and cross-sectional observation with a stereomicroscope. Table 9 shows the properties of the obtained CFRP plate.

[実施例20]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[Example 20]
A CFRP plate was obtained in the same manner as in Example 21 except that a thermosetting solution composition was prepared with the composition shown in Table 9. Table 9 shows the properties of the obtained CFRP plate.

[実施例21]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[Example 21]
A CFRP plate was obtained in the same manner as in Example 21 except that a thermosetting solution composition was prepared with the composition shown in Table 9. Table 9 shows the properties of the obtained CFRP plate.

[実施例22]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[Example 22]
A CFRP plate was obtained in the same manner as in Example 21 except that a thermosetting solution composition was prepared with the composition shown in Table 9. Table 9 shows the properties of the obtained CFRP plate.

[比較例5]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[Comparative Example 5]
A CFRP plate was obtained in the same manner as in Example 21 except that a thermosetting solution composition was prepared with the composition shown in Table 9. Table 9 shows the properties of the obtained CFRP plate.

Figure 2015059147
Figure 2015059147

Claims (7)

(A)2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、(B)アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分、及び(C)フェニルエチニル基を有する末端封止剤を混合して得られたことを特徴とする加熱硬化性溶液組成物。   (A) Aromatic tetracarboxylic acid component containing 20 mol% or more of 2,3,3 ′, 4′-biphenyltetracarboxylic acid compound and 3,3 ′, 4,4′-biphenyltetracarboxylic acid compound, respectively (B) the two carbon-nitrogen bond axes derived from the amino group are located on the same straight line, the aromatic diamine having no oxygen atom in the molecule, and the two carbon-nitrogen bond axes derived from the amino group An aromatic diamine component not having an oxygen atom in the molecule, and (C) a phenylethynyl group, each containing 20 mol% or more of an aromatic diamine that is not located on the same straight line and does not have an oxygen atom in the molecule; A heat-curable solution composition obtained by mixing an end-capping agent having the composition. 前記(B)のアミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンが、1,4−ジアミノベンゼンであり、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンが、1,3−ジアミノベンゼンであることを特徴とする請求項1記載の加熱硬化性溶液組成物。   An aromatic diamine in which two carbon-nitrogen bond axes derived from the amino group in (B) are located on the same straight line and has no oxygen atom in the molecule is 1,4-diaminobenzene, 2. The heating according to claim 1, wherein the two derived carbon-nitrogen bond axes are not collinear and the aromatic diamine having no oxygen atom in the molecule is 1,3-diaminobenzene. Curable solution composition. 前記(C)のフェニルエチニル基を有する末端封止剤が、4−(2−フェニルエチニル)フタル酸化合物であることを特徴とする請求項1または2に記載の加熱硬化性溶液組成物。   The thermosetting solution composition according to claim 1 or 2, wherein the end-capping agent having a phenylethynyl group (C) is a 4- (2-phenylethynyl) phthalic acid compound. 芳香族ジアミン成分と芳香族テトラカルボン酸成分のモル比(芳香族ジアミン成分のモル数/芳香族テトラカルボン酸成分のモル数)が、1.067〜1.167であることを特徴とする請求項1〜4いずれか記載の加熱硬化性溶液組成物   The molar ratio of the aromatic diamine component to the aromatic tetracarboxylic acid component (number of moles of aromatic diamine component / number of moles of aromatic tetracarboxylic acid component) is 1.067 to 1.167, Item 5. The thermosetting solution composition according to any one of items 1 to 4. 請求項1〜4いずれか記載の加熱硬化性溶液組成物を加熱硬化して得られたことを特徴とする硬化物。   A cured product obtained by heat-curing the thermosetting solution composition according to claim 1. 請求項1〜4いずれか記載の加熱硬化性溶液組成物を繊維状補強材に含浸させたことを特徴とするプリプレグ。   A prepreg comprising a fibrous reinforcing material impregnated with the thermosetting solution composition according to any one of claims 1 to 4. 請求項6記載のプリプレグを加熱硬化して得られたことを特徴とする繊維強化複合材料。   A fiber-reinforced composite material obtained by heat-curing the prepreg according to claim 6.
JP2013192656A 2013-09-18 2013-09-18 Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material Pending JP2015059147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192656A JP2015059147A (en) 2013-09-18 2013-09-18 Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192656A JP2015059147A (en) 2013-09-18 2013-09-18 Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2015059147A true JP2015059147A (en) 2015-03-30

Family

ID=52816941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192656A Pending JP2015059147A (en) 2013-09-18 2013-09-18 Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2015059147A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253585A (en) * 1994-06-23 1996-10-01 Trw Inc Concentrated prepolymer composition useful for producing polyimide article
JP2007308519A (en) * 2005-05-31 2007-11-29 Ube Ind Ltd Heat-curable solution composition and uncured resin composite
WO2009123042A1 (en) * 2008-03-31 2009-10-08 宇部興産株式会社 Friction material and resin composition for friction material
JP2011184492A (en) * 2010-03-05 2011-09-22 Ube Industries Ltd Soluble terminally modified imide oligomer and varnish, and cured product thereof
JP5987898B2 (en) * 2012-03-19 2016-09-07 宇部興産株式会社 Heat curable solution composition, cured product using the same, prepreg and fiber reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253585A (en) * 1994-06-23 1996-10-01 Trw Inc Concentrated prepolymer composition useful for producing polyimide article
JP2007308519A (en) * 2005-05-31 2007-11-29 Ube Ind Ltd Heat-curable solution composition and uncured resin composite
WO2009123042A1 (en) * 2008-03-31 2009-10-08 宇部興産株式会社 Friction material and resin composition for friction material
JP2011184492A (en) * 2010-03-05 2011-09-22 Ube Industries Ltd Soluble terminally modified imide oligomer and varnish, and cured product thereof
JP5987898B2 (en) * 2012-03-19 2016-09-07 宇部興産株式会社 Heat curable solution composition, cured product using the same, prepreg and fiber reinforced composite material

Similar Documents

Publication Publication Date Title
JP5522479B2 (en) Soluble terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether, varnish, cured product thereof, imide prepreg thereof, and fiber-reinforced laminate having excellent heat resistance
JP6604588B2 (en) Varnishes using 2-phenyl-4,4′-diaminodiphenyl ethers, imide resin compositions excellent in moldability and cured resin molded articles having excellent elongation at break, and prepregs, imide prepregs and heat resistance using them, and Fiber reinforced material with excellent mechanical strength
JP7016082B2 (en) Semi-pregs, prepregs, resin composites and their manufacturing methods
JP5987898B2 (en) Heat curable solution composition, cured product using the same, prepreg and fiber reinforced composite material
JP5041271B2 (en) Heat curable solution composition and uncured resin composite
US10526450B2 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP6202554B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
US9051430B2 (en) Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4′diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
JP4042861B2 (en) Imido prepreg and laminate
US20210221113A1 (en) Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material
JP2014201740A (en) Imide oligomer and polyimide resin obtained by thermal hardening of the same
JP2015059147A (en) Heat-curable solution composition, cured product using the same, prepreg, and fiber-reinforced composite material
JP2022502535A (en) Method for producing a novel amic acid oligomer for molding a polyimide composite material
JP5610335B2 (en) Method for producing fiber-reinforced polyimide material with improved mechanical strength
JP7418737B2 (en) Imide oligomers, varnishes, cured products thereof, prepregs and fiber reinforced composites using them
JPH0264157A (en) Terminal-modified imide oligomer composition
JP2597186B2 (en) Imide resin matrix composite
JP2022109065A (en) Amic acid oligomer-containing varnish, and imide oligomer, cured product, prepreg and semipreg
JPH01247430A (en) Production of fiber-reinforced polyimide composite material
JP2022021887A (en) Imide oligomer, varnish, cured product of these, and prepreg and fiber-reinforced composite material using these
JP2007138082A (en) Method for producing prepreg using terminal-modified amic acid oligomer solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410