JP2015058713A - Direct current feeding system - Google Patents

Direct current feeding system Download PDF

Info

Publication number
JP2015058713A
JP2015058713A JP2013191295A JP2013191295A JP2015058713A JP 2015058713 A JP2015058713 A JP 2015058713A JP 2013191295 A JP2013191295 A JP 2013191295A JP 2013191295 A JP2013191295 A JP 2013191295A JP 2015058713 A JP2015058713 A JP 2015058713A
Authority
JP
Japan
Prior art keywords
voltage
substation
output voltage
variable
feeding system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013191295A
Other languages
Japanese (ja)
Inventor
秀一 長門
Shuichi Nagato
秀一 長門
藤井 俊行
Toshiyuki Fujii
俊行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013191295A priority Critical patent/JP2015058713A/en
Publication of JP2015058713A publication Critical patent/JP2015058713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a direct current feeding system which can effectively utilize a regenerative electric power without disturbing an operation of a train.SOLUTION: A direct current feeding system includes: a voltage value collection part 5 which collects voltages measured at plural measurement points Mp provided in a feeding zone Z which connects the neighboring transformer stations 2, 3 of a variable transformer station 1 in feeding lines 4; and a direct current output voltage control part which controls a direct current output voltage V1 of the variable transformer station 1 on the basis of the result of comparison between a first threshold which is determined according to a regeneration throttle start voltage Vs for a train 200 and a maximum value Vmax of the voltages at the plural measurement points Mp, and the result of comparison between a second threshold determined according to an operation lower limit voltage Vm of a motor and a minimum value Vmin of the voltages at the plural measurement points Mp.

Description

本発明は、直流き電システムにおいて、とくに、列車の回生電力を有効活用するための構成に関する。   The present invention relates to a configuration for effectively utilizing regenerative power of a train, particularly in a DC feeding system.

直流き電システムにおいて、回生電力を効率よく回収することが求められている。そのためには、き電線の電圧状態に応じて変電所の動作を適切に制御する必要があるが、き電線の電圧状態は、列車の運行状況によって刻々と変化するため、一律な制御で効率よく回線電力を回収することは困難である。   In DC feeding systems, it is required to efficiently recover regenerative power. To that end, it is necessary to appropriately control the operation of the substation according to the voltage state of the feeder line, but the voltage state of the feeder line changes every moment according to the train operation status, so it is efficient with uniform control. It is difficult to recover the line power.

そこで、各変電所における所定期間内の電力回収量に基づき、変電所間の負荷バランスが平準化するように、変電所ごとの電力吸収装置の回生基準電圧の設定値を変更する技術(例えば、特許文献1参照。)、き電区間の列車の運転状態(力行・回生・惰行・停止)と位置情報から算出したパンタ点電圧に基づいて、変電所の出力電圧を変更する制御装置(例えば、特許文献2参照。)、あるいは、き電線に沿って複数の電圧検出器を配置し、その最大値に基づいて回生動作電圧を制御する方法(例えば、特許文献3参照。)等が提案されている。   Therefore, based on the power recovery amount within a predetermined period at each substation, a technique for changing the set value of the regenerative reference voltage of the power absorption device for each substation (for example, so that the load balance between the substations is leveled) Patent Document 1), a control device that changes the output voltage of the substation based on the operating state of the train in the feeding section (power running / regeneration / coasting / stop) and the punter point voltage calculated from the position information (for example, Patent Document 2), or a method of arranging a plurality of voltage detectors along the feeder and controlling the regenerative operation voltage based on the maximum value (for example, refer to Patent Document 3). Yes.

特開平9−84203号公報(段落0024〜0031、図1〜図4)JP-A-9-84203 (paragraphs 0024 to 0031, FIGS. 1 to 4) 特開平11−91414号公報(段落0014〜0030、図1〜図11)JP-A-11-91414 (paragraphs 0014 to 0030, FIGS. 1 to 11) 特開2008−74183号公報(段落0023〜0038、図1〜図4)JP 2008-74183 A (paragraphs 0023 to 0038, FIGS. 1 to 4)

しかしながら、特許文献1のように変電所間の負荷の平準化は、必ずしも各変電所における回収効率の向上にはつながらない。また、特許文献2のように、列車の運転状態と変電所からの位置に基づいてパンタ点電圧を算出する場合には、運転状態が異なる複数の列車が存在する場合に対応できない。さらに、特許文献3においては、回生失効に関する状況のみを考慮しており、モータが動作する最低のき電電圧を評価していないため、とくに力行車のスムーズな運行を担保できないという課題がある。   However, leveling of loads between substations as in Patent Document 1 does not necessarily lead to an improvement in recovery efficiency at each substation. In addition, as in Patent Document 2, when the punter point voltage is calculated based on the operation state of the train and the position from the substation, it cannot cope with the case where there are a plurality of trains having different operation states. Furthermore, in patent document 3, only the situation regarding regeneration invalidation is considered, and since the minimum feeding voltage at which the motor operates is not evaluated, there is a problem that smooth operation of a power running vehicle cannot be particularly secured.

本発明は、上記のような課題を解決するためになされたもので、列車の運行を妨げることなく、回生電力を有効活用できる直流き電システムを得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a DC feeding system that can effectively use regenerative power without interfering with train operation.

本発明の直流き電システムは、直流出力電圧を変更可能な可変変電所、例えば、PWM電力変換装置を用いた変電所を含む複数の変電所が、列車に電力を供給する直流き電線に沿って配置された直流き電システムであって、前記き電線のうち、前記可変変電所の両隣の変電所を結ぶき電区間内のき電線に設置された複数の測定点で測定した電圧値を収集する電圧値収集部と、前記列車に対する回生絞込み開始電圧に応じて定めた第一閾値と、前記電圧値収集部が収集した複数の測定点の電圧値の最大値との比較結果、および前記列車のモータの動作下限電圧に応じて定めた第二閾値と前記複数の測定点の電圧値の最低値との比較結果に基づいて、前記可変変電所の直流出力電圧を制御する直流出力電圧制御部と、を備えたことを特徴とする。   The DC feeder system of the present invention is a variable substation capable of changing a DC output voltage, for example, a plurality of substations including a substation using a PWM power converter, along a DC feeder that supplies power to a train. DC voltage feeding system arranged in the above-described manner, and among the feeders, voltage values measured at a plurality of measurement points installed on feeders in a feeder section connecting the substations on both sides of the variable substation. Comparison result between the voltage value collecting unit to collect, the first threshold value determined according to the regeneration narrowing start voltage for the train, the maximum value of the voltage values of the plurality of measurement points collected by the voltage value collecting unit, and DC output voltage control for controlling the DC output voltage of the variable substation based on the comparison result between the second threshold value determined according to the operation motor lower limit voltage of the train and the minimum value of the voltage values of the plurality of measurement points And a section.

本発明の直流き電システムによれば、可変変電所が接続されたき電線に設置した複数の計測点で測定した電圧値の最大値と回生絞込み開始電圧との関係、および最低値とモータ下限電圧との関係に基づいて、直流出力電圧を制御するようにしたので、回生絞込みや回生失効で損失していた回生電力を他の加速する列車が利用することができ、き電変電所が供給する電力を削減できる。   According to the DC feeding system of the present invention, the relationship between the maximum value of the voltage value measured at a plurality of measurement points installed on the feeder line connected to the variable substation and the regeneration narrowing start voltage, and the minimum value and the motor lower limit voltage The DC output voltage is controlled on the basis of the relationship between and the regenerative power lost due to regenerative narrowing and regenerative invalidation can be used by other accelerating trains and supplied by feeder substations. Electric power can be reduced.

本発明の実施の形態1にかかる直流き電システムの構成を示す図である。It is a figure which shows the structure of the DC feeding system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる直流き電システムを構成するPWM電力変換装置のI−V特性を示す図である。It is a figure which shows the IV characteristic of the PWM power converter device which comprises the direct current feeding system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる直流き電システムの制御動作を説明するためのフローチャートである。It is a flowchart for demonstrating control operation | movement of the DC feeding system concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる直流き電システムの制御動作を説明するためのフローチャートである。It is a flowchart for demonstrating control operation | movement of the DC feeding system concerning Embodiment 2 of this invention.

実施の形態1.
本発明の実施の形態1にかかる直流き電システムについて図を用いて説明する。図1〜図3は本実施の形態1にかかる直流き電システムについて説明するためのもので、図1は直流き電システムのうち、隣接する3つの変電所間の構成を示す図、図2は直流き電システムを構成するPWM変換装置のI−V特性と制御に必要な設定値との関係を示す図、図3は直流き電システムの制御動作のうち、PWM変換装置の直流出力電圧の設定に関する部分を説明するためのフローチャートである。
Embodiment 1 FIG.
A direct current feeding system according to a first embodiment of the present invention will be described with reference to the drawings. 1 to 3 are diagrams for explaining the DC feeding system according to the first embodiment, and FIG. 1 is a diagram showing a configuration between three adjacent substations in the DC feeding system. FIG. 3 is a diagram showing the relationship between the IV characteristics of the PWM converter constituting the DC feeding system and the set value necessary for control, and FIG. 3 shows the DC output voltage of the PWM converter in the control operation of the DC feeding system. It is a flowchart for demonstrating the part regarding the setting of this.

図1に示すように、本発明の実施の形態1にかかる直流き電システム100では、き電線4に沿ったある部分に、整流装置としてI−V特性(電流・電圧特性)を変更可能なPWM(Pulse Width Modulation)変換装置1cを用いた変電所(可変変電所1と称する。)と、その両隣に、それぞれI−V特性を変更できない整流装置2c、3cを用いた変電所(固定変電所2、3と称する。)が設置されており、さらに、き電線4の電圧分布に応じてPWM変換装置1cのI−V特性を制御するPWM制御装置8を設けたものである。   As shown in FIG. 1, in the DC feeder system 100 according to the first exemplary embodiment of the present invention, an IV characteristic (current / voltage characteristic) can be changed as a rectifier in a certain part along the feeder 4. A substation (referred to as variable substation 1) using a PWM (Pulse Width Modulation) converter 1c, and a substation (fixed substation) using rectifiers 2c and 3c that cannot change the IV characteristics respectively on both sides thereof. Further, a PWM control device 8 for controlling the IV characteristic of the PWM converter 1c according to the voltage distribution of the feeder 4 is provided.

PWM制御装置8は、き電線4の後述する複数の所定位置で計測した電圧値を収集する電圧値収集部5と、電圧値収集部5が収集した電圧値を評価する電圧評価部6と、電圧評価部の評価結果に基づいて、PWM変換装置1cのI−V特性を制御するI−V特性制御部7とを備えている。   The PWM control device 8 includes a voltage value collection unit 5 that collects voltage values measured at a plurality of predetermined positions (described later) of the feeder 4, a voltage evaluation unit 6 that evaluates voltage values collected by the voltage value collection unit 5, and An IV characteristic control unit 7 that controls the IV characteristic of the PWM converter 1c based on the evaluation result of the voltage evaluation unit is provided.

PWM変換装置1cのI−V特性は、図2に示すように、供給電流(I)の変化に関わらず、き電電圧(V)が変化しない水平領域Rhがあり、水平領域Rhの電圧値(直流出力電圧V1)を含むI−V特性が変更可能であるという特性を有している。そこで、I−V特性制御部7は、可変変電所1の直流出力電圧V1の操作として、き電線4上に設定された複数の測定点Mpでの電圧値と、予め設定した条件とに基づいて、PWM変換装置1cのI−V特性を制御する。なお、制御条件の詳細については、後ほど説明する。   As shown in FIG. 2, the IV characteristic of the PWM converter 1c has a horizontal region Rh in which the feeding voltage (V) does not change regardless of the change in the supply current (I), and the voltage value of the horizontal region Rh. The IV characteristic including (DC output voltage V1) can be changed. Therefore, the IV characteristic control unit 7 operates as the operation of the DC output voltage V1 of the variable substation 1 based on voltage values at a plurality of measurement points Mp set on the feeder 4 and preset conditions. Thus, the IV characteristic of the PWM converter 1c is controlled. Details of the control conditions will be described later.

また、電圧値の計測対象は以下のように設定する。
まず、各変電所の電圧として、可変変電所1および隣接する固定変電所2、3の計3か所を設定する。そして、変電所間の区間(図中、第1区間Z1と第2区間Z2)ごとに設定される(運行時にその区間に入りうる)列車本数に基づいて、その区間の両端の変電所部分を除いた中間領域のき電線4上の測定点Mpの数を算出する。そして、算出した数の測定点が区間内で等間隔になるように配置する。
The voltage value measurement target is set as follows.
First, as a voltage of each substation, a total of three locations, that is, the variable substation 1 and the adjacent fixed substations 2 and 3 are set. Then, based on the number of trains set for each section between the substations (in the figure, the first section Z1 and the second section Z2) (can enter that section during operation), the substation portions at both ends of the section are The number of measurement points Mp on the removed intermediate region feeder 4 is calculated. And it arrange | positions so that the calculated number of measurement points may become equal intervals within an area.

具体的には、ある区間における列車本数と同じ数を分割数(=測定点数+1)として設定し、その区間のき電線4を設定した分割数で等分した位置に測定点Mpを設定する。例えば、列車本数が2の場合は、分割数は2(測定点数は1)となり、その区間を2等分した位置(区間の中央)にひとつ測定点Mpを配置する。そして、図1に示すように、固定変電所2と可変変電所1間の第1区間Z1の列車本数が(m+1)本の場合は、測定点Mpの数はm箇所となり、第1区間Z1を(m+1)等分した位置に各測定点Mp(計測部5a−1〜5a−m)を配置する。同様に、可変変電所1と固定変電所3と間の第2区間Z2の列車本数が(n+1)本の場合は、測定点Mpの数はn箇所となり、第2区間Z2を(n+1)等分した位置に各測定点Mp(計測部5b−1〜5b−n)を配置する。 Specifically, the same number as the number of trains in a certain section is set as the number of divisions (= number of measurement points + 1), and the measurement point Mp is set at a position equally divided by the set number of divisions. For example, when the number of trains is 2, the number of divisions is 2 (the number of measurement points is 1), and one measurement point Mp is arranged at a position (the center of the section) obtained by dividing the section into two equal parts. As shown in FIG. 1, when the number of trains in the first section Z1 between the fixed substation 2 and the variable substation 1 is (m + 1), the number of measurement points Mp is m, and the first section Z1 The measurement points Mp (measurement units 5 a-1 to 5 a-m ) are arranged at positions obtained by equally dividing (m + 1). Similarly, when the number of trains in the second section Z2 between the variable substation 1 and the fixed substation 3 is (n + 1), the number of measurement points Mp is n, and the second section Z2 is (n + 1) or the like. the partial position to place the measuring points Mp (measurement section 5 b-1 ~5 b-n ).

列車は、基本的にはその列車の前後に設定された閉塞区間内に、他の列車が入らないように、所定間隔を維持して運行するように設定されている。そのため、上述した点数の測定点を等間隔配置することで、変電所での測定点を加えると、運行する列車と列車の間部分に位置するき電線4には必ず電圧を計測する点が存在し、適切な時間間隔の電圧値データが収集可能となる。なお、事故等により、徐行や線路上での停車が発生したときには、設定された本数より多くの列車が区間内に存在することもある。しかし、その場合は、各列車は、大きな電力を伴う回生運転や力行運転はしないので、列車間のき電線4の中に測定点Mpが存在しない場合があっても影響はほとんどない。   The train is basically set to operate at a predetermined interval so that other trains do not enter the closed section set before and after the train. Therefore, when the measurement points at the substation are added by arranging the measurement points of the above-mentioned points at equal intervals, there is always a point to measure the voltage on the feeder 4 located between the train to be operated. Thus, voltage value data at appropriate time intervals can be collected. When a slowdown or a stop on a track occurs due to an accident or the like, there may be more trains in the section than the set number. However, in that case, since each train does not perform regenerative operation or power running operation with large electric power, there is almost no influence even if the measurement point Mp does not exist in the feeder 4 between trains.

つぎに、PWM制御装置8の基本的な制御条件、およびPWM制御装置8を構成する各部の具体的な機能について説明する。
図2は、PWM変換装置1cの出力特性(供給電流Iと、き電電圧Vの関係:I−V特性)と回生絞込み開始電圧Vs、およびモータ動作下限電圧Vmとの関係を示したものである。さらに、回生絞込み開始電圧Vsに基づいて設定した、き電区間Z(き電線4のうちの第1区間Z1および第2区間Z2)内で許容する最大許容電圧Vasと、モータ動作下限電圧Vmに基づいて設定した、き電区間Z内で許容する最低許容電圧Vamとの関係を示したものである。最大許容電圧Vasは、回生絞込み開始電圧Vsより、ある設定した電圧(例えば10V)だけ低い電圧に設定し、最低許容電圧Vamは、モータ動作下限電圧Vmより、ある設定した電圧(例えば10V)だけ高い電圧に設定している。
Next, basic control conditions of the PWM control device 8 and specific functions of each part constituting the PWM control device 8 will be described.
FIG. 2 shows the relationship between the output characteristics of PWM converter 1c (relationship between supply current I and feeding voltage V: IV characteristics), regeneration narrowing start voltage Vs, and motor operation lower limit voltage Vm. is there. Furthermore, the maximum allowable voltage Vas allowed in the feeder section Z (the first section Z1 and the second section Z2 of the feeder 4) and the motor operation lower limit voltage Vm set based on the regeneration narrowing start voltage Vs. It shows the relationship with the lowest allowable voltage Vam allowed within the feeding section Z set based on the above. The maximum allowable voltage Vas is set to a voltage that is lower by a certain set voltage (for example, 10V) than the regeneration narrowing start voltage Vs, and the minimum allowable voltage Vam is only a certain set voltage (for example, 10V) from the motor operation lower limit voltage Vm. High voltage is set.

そして、上述した測定点から収集した計測値から算出した最大値(最大計測電圧Vmax)が、最大許容電圧Vasを上回った(Vmax>Vas)ときは、直流出力電圧V1を下げ、最低値(最低計測電圧Vmin)が、最低許容電圧Vamより低い(Vmin<Vam)ときは、直流出力電圧V1を上げるように処理を行うことがPWM制御装置8の基本的な制御動作となる。   When the maximum value (maximum measurement voltage Vmax) calculated from the measurement values collected from the measurement points described above exceeds the maximum allowable voltage Vas (Vmax> Vas), the DC output voltage V1 is lowered and the minimum value (minimum) When the measurement voltage Vmin) is lower than the lowest allowable voltage Vam (Vmin <Vam), the basic control operation of the PWM controller 8 is to perform the process so as to increase the DC output voltage V1.

電圧値収集部5は、ある指定した時間間隔Δt(例えば1秒)で、各測定点Mpの計測値(電圧値データ)を収集する。ここで、電圧値収集部5と、き電区間Zの各測定点Mpの電圧を計測する計測部5a−1〜5a−m、5b−1〜5b−nおよび可変変電所1、固定変電所2、3とは、有線もしくは無線で接続され、必要な指令情報やデータを送受信できるのとする。 The voltage value collection unit 5 collects measurement values (voltage value data) at each measurement point Mp at a specified time interval Δt (for example, 1 second). Here, the voltage value and the collecting unit 5, feeding circuit section measuring unit 5 a-1 ~5 a-m , 5 b-1 ~5 b-n and variable substations for measuring the voltage of each measuring point Mp of Z 1 The fixed substations 2 and 3 are connected to each other by wire or wirelessly and can transmit / receive necessary command information and data.

電圧評価部6は、電圧値収集部5が収集した電圧データの中から、最大値(最大計測電圧Vmax)と最低値(最低計測電圧Vmin)を算出する。そして、式(1)に示すように最大許容電圧Vasと最大計測電圧Vmaxの差分である高圧側余裕電圧差ΔVsを算出し、
ΔVs=Vas−Vmax ・・・式(1)
式(2)に示すように最低許容電圧Vamと最低計測電圧Vminの差分である低圧側余裕電圧差ΔVmを算出する
ΔVm=Vmin−Vam ・・・式(2)
The voltage evaluation unit 6 calculates a maximum value (maximum measurement voltage Vmax) and a minimum value (minimum measurement voltage Vmin) from the voltage data collected by the voltage value collection unit 5. Then, as shown in the equation (1), a high-side margin voltage difference ΔVs that is a difference between the maximum allowable voltage Vas and the maximum measured voltage Vmax is calculated,
ΔVs = Vas−Vmax (1)
As shown in the equation (2), the low voltage side marginal voltage difference ΔVm that is the difference between the minimum allowable voltage Vam and the minimum measured voltage Vmin is calculated. ΔVm = Vmin−Vam (Equation (2))

I−V特性制御部7は、電圧評価部6が算出した高圧側余裕電圧差ΔVsと低圧側余裕電圧差ΔVmの符号に応じて、PWM電力変換装置1cの直流出力電圧V1を上下させるように制御を行う。   The IV characteristic control unit 7 raises and lowers the DC output voltage V1 of the PWM power converter 1c according to the signs of the high-side marginal voltage difference ΔVs and the low-side marginal voltage difference ΔVm calculated by the voltage evaluation unit 6. Take control.

上述した制御条件をふまえ、図3のフローチャートを用いて、PWM制御装置8の具体的な制御動作について説明する。
はじめに、I−V特性制御部7は、PWM電力変換装置1cのI−V特性における、水平領域Rhの電圧値(直流出力電圧V1)をPWM電力変換装置1cの基準電圧V0に設定する(ステップS10)。
Based on the control conditions described above, a specific control operation of the PWM control device 8 will be described using the flowchart of FIG.
First, the IV characteristic control unit 7 sets the voltage value (DC output voltage V1) of the horizontal region Rh in the IV characteristic of the PWM power converter 1c to the reference voltage V0 of the PWM power converter 1c (step) S10).

つぎに、電圧値収集部5は、時間計測(ステップS20)を行い、計測した時間が設定された時間になった(経過した)か否かの判定を行う(ステップS30)。判定がNoの時は、何もしないでステップS20に戻る。判定がYesの時は、各計測部5a−1〜5a−m、5b−1〜5b−nおよび可変変電所1、固定変電所2、3に、対処となる測定点Mpの電圧を測定するように電圧測定指令を出す(ステップS40)。なお、このステップS20〜S40の動作は、ある時間間隔(例えば1秒)で電圧測定指令を出すことと同じである。電圧測定指令に基づき、各計測部5a−1〜5a−m、5b−1〜5b−nおよび可変変電所1、固定変電所2、3は、き電電圧を計測し(ステップS50)、計測した電圧データが電圧値収集部5により収集される(ステップS60)。なお、電圧は常時計測し、決まった間隔でデータの収集を行うようにしてもよい。 Next, the voltage value collection unit 5 performs time measurement (step S20), and determines whether or not the measured time has reached the set time (elapsed) (step S30). If the determination is No, do nothing and return to step S20. When the determination is Yes, the measurement section 5 a-1 ~5 a-m , 5 b-1 ~5 b-n and variable substation 1, the fixed substations 2, 3 measurement points Mp to be addressed A voltage measurement command is issued so as to measure the voltage (step S40). The operations in steps S20 to S40 are the same as issuing a voltage measurement command at a certain time interval (for example, 1 second). Based on the voltage measurement command, the measurement section 5 a-1 ~5 a-m , 5 b-1 ~5 b-n and variable substation 1, fixed substation 2 and 3, the feeding circuit voltage measured (step S50), the measured voltage data is collected by the voltage value collection unit 5 (step S60). Note that the voltage may be constantly measured and data may be collected at fixed intervals.

電圧評価部6は、電圧値収集部5が収集した電圧データから、最大計測電圧Vmax、および最低計測電圧Vminを算出する(ステップS70)。次に上述した式(1)と式(2)により、高圧側余裕電圧差ΔVsと低圧側余裕電圧差ΔVmを算出する(ステップS80)。そして、算出した低圧側余裕電圧差ΔVmが0より大きいか否かの判定を行う(ステップS100)。ステップS100でYesならば、高圧側余裕電圧差ΔVsが0より大きいか否かの判定を行う(ステップS110)。   The voltage evaluation unit 6 calculates the maximum measurement voltage Vmax and the minimum measurement voltage Vmin from the voltage data collected by the voltage value collection unit 5 (step S70). Next, the high-voltage side marginal voltage difference ΔVs and the low-voltage side marginal voltage difference ΔVm are calculated by the above-described equations (1) and (2) (step S80). Then, it is determined whether or not the calculated low voltage side marginal voltage difference ΔVm is greater than 0 (step S100). If Yes in step S100, it is determined whether the high-voltage side marginal voltage difference ΔVs is greater than 0 (step S110).

ステップS110でYesならば、直流出力電圧の(暫定)補正量dV=ΔVsとおく(ステップS200)。ステップS110でNoならば、直流出力電圧の(暫定)補正量dV=−Min(−ΔVs,ΔVm)とおく(ステップS300)。ステップS100でNoならば、直流出力電圧の(暫定)補正量dV=−ΔVmとおく(ステップS400)。   If Yes in step S110, the (provisional) correction amount dV = ΔVs of the DC output voltage is set (step S200). If No in step S110, the (provisional) correction amount dV = −Min (−ΔVs, ΔVm) of the DC output voltage is set (step S300). If No in step S100, the DC output voltage (provisional) correction amount dV = −ΔVm is set (step S400).

ステップS100〜S400により、(暫定)補正量dVが求められたなら、求めた(暫定)補正量dVにあらかじめ設定した補正係数α(例えば0.9)を乗じ、(決定)補正量dV=α×dVを求める(ステップS500)。I−V特性制御部7は、(決定)補正量dVを用いて、PWM電力変換装置1cのI−V特性における、直流出力電圧V1をV1+dVに補正する(ステップS510)。   When the (provisional) correction amount dV is obtained in steps S100 to S400, the obtained (provisional) correction amount dV is multiplied by a preset correction coefficient α (for example, 0.9), and (determined) correction amount dV = α. XdV is obtained (step S500). The IV characteristic control unit 7 corrects the DC output voltage V1 in the IV characteristic of the PWM power converter 1c to V1 + dV using the (determination) correction amount dV (step S510).

上記ステップS20〜ステップS510までの動作を、PWM電力変換装置1cを停止するまで(ステップS600の停止判定でYesとなるまで)、繰り返す。   The operations from step S20 to step S510 are repeated until the PWM power converter 1c is stopped (until the stop determination in step S600 is Yes).

このようにPWM電力変換装置1cを有する可変変電所1と隣接した固定変電所2、3間で、区間(第1区間Z1、第2区間Z2)ごとに設定された車両本数に応じた測定点からの電圧データの最大値と最低値(Vmax、Vmin)を用い、モータ動作下限電圧Vm以上を満足させながら、き電電圧を回生絞込み開始電圧Vsより低い電圧を維持するように制御する。この制御によって、力行時の加速性能を保ちながら、回生絞込みの回生を減少させ、回生絞込みを起こさない高いき電線電圧を維持するようにして、き電線に流れる電流を少なくして損失電力を軽減することができる。   Thus, the measurement point according to the number of vehicles set for every section (the 1st section Z1 and the 2nd section Z2) between fixed substations 2 and 3 adjacent to variable substation 1 which has PWM power converter 1c. Using the maximum value and the minimum value (Vmax, Vmin) of the voltage data from, the feeding voltage is controlled to maintain a voltage lower than the regeneration narrowing start voltage Vs while satisfying the motor operation lower limit voltage Vm or higher. With this control, while maintaining acceleration performance during power running, the regeneration power is reduced and the high feeder voltage that does not cause regeneration is maintained, so that the current flowing through the feeder is reduced and the power loss is reduced. can do.

以上のように、本発明の実施の形態1にかかる直流き電システム100によれば、直流出力電圧V1を変更可能な可変変電所1を含む複数の変電所が、列車200に電力を供給する直流き電線4に沿って配置された直流き電システム100であって、き電線4のうち、可変変電所1の両隣の変電所2、3を結ぶき電区間Z内に設置された複数の測定点Mpで測定した電圧値を収集する電圧値収集部5と、列車200に対する回生絞込み開始電圧Vsに応じて定めた第一閾値(最大許容電圧Vas)と、電圧値収集部5が収集した複数の測定点Mpの電圧値の最大値Vmaxとの比較結果、および列車200のモータの動作下限電圧Vmに応じて定めた第二閾値(最低許容電圧Vam)と複数の測定点Mpの電圧値の最低値Vminとの比較結果に基づいて、可変変電所1の直流出力電圧V1を制御する直流出力電圧制御部(電圧評価部6、I−V特性制御部7)と、を備えるように構成したので、回生絞込みや回生失効で損失していた回生電力を他の加速する列車が利用することができ、き電変電所が供給する電力を削減できる。   As described above, according to the DC feeding system 100 according to the first exemplary embodiment of the present invention, a plurality of substations including the variable substation 1 capable of changing the DC output voltage V1 supply power to the train 200. A DC feeding system 100 arranged along a DC feeder 4, which includes a plurality of feeders 4 installed in a feeder section Z connecting the substations 2 and 3 adjacent to the variable substation 1. The voltage value collection unit 5 that collects the voltage value measured at the measurement point Mp, the first threshold value (maximum allowable voltage Vas) determined according to the regeneration narrowing start voltage Vs for the train 200, and the voltage value collection unit 5 collected. The comparison result with the maximum value Vmax of the voltage values at the plurality of measurement points Mp, the second threshold value (minimum allowable voltage Vam) determined according to the operation lower limit voltage Vm of the motor of the train 200, and the voltage values at the plurality of measurement points Mp. Comparison with the lowest value Vmin The DC output voltage control unit (voltage evaluation unit 6, IV characteristic control unit 7) that controls the DC output voltage V1 of the variable substation 1 is configured based on the The regenerative power lost in this way can be used by other accelerating trains, and the power supplied by the feeder substation can be reduced.

具体的には、最低値Vminが第二閾値(最低許容電圧Vam)以下の場合は、直流出力電圧V1を上昇させるようにすることで、加速する電車(力行車)のモータに確実に電力を供給できる、最低値Vminが第二閾値(最低許容電圧Vam)より高く、かつ最大値Vmaxが第一閾値(最大許容電圧Vas)より高い場合は、直流出力電圧V1を下げるように制御するので、回生絞りこみや回生失効での損失を抑制することができる。   Specifically, when the minimum value Vmin is less than or equal to the second threshold value (minimum allowable voltage Vam), the DC output voltage V1 is increased so that electric power is reliably supplied to the motor of the accelerating train (powered vehicle). When the minimum value Vmin that can be supplied is higher than the second threshold value (minimum allowable voltage Vam) and the maximum value Vmax is higher than the first threshold value (maximum allowable voltage Vas), control is performed to decrease the DC output voltage V1. Loss due to regenerative squeezing and regeneration invalidation can be suppressed.

とくに、可変変電所1は、電力変換装置として、PWM変換装置1cを用いているので、水平領域Rhのレベルを変動させることで、供給電流値Iに依存しない領域で直流出力電圧V1を制御できる。   In particular, since the variable substation 1 uses the PWM converter 1c as the power converter, the DC output voltage V1 can be controlled in a region that does not depend on the supply current value I by changing the level of the horizontal region Rh. .

また、複数の測定点Mpは、き電区間Zを可変変電所1で分割した区間(第1区間Z1、第2区間Z2)ごとに、当該き電区間に設定される同時に走行可能な列車200の本数で、当該区間のき電線4を等分割した位置、および、両隣の変電所2、3のそれぞれと可変変電所1の位置に設置されるように構成したので、運行する列車と列車の間部分に位置するき電線4の電圧が必ず計測されるようになるので、き電線4上の電圧分布に応じた制御が可能となる。   In addition, a plurality of measurement points Mp are set for the power feeding section 200 for each section (the first section Z1 and the second section Z2) obtained by dividing the power feeding section Z by the variable substation 1. The number of the feeders 4 in the section is equally divided, and each of the adjacent substations 2 and 3 and the variable substation 1 are installed at the positions of Since the voltage of the feeder 4 located in the intermediate portion is always measured, control according to the voltage distribution on the feeder 4 is possible.

実施の形態2.
本実施の形態2にかかる直流き電システムは、実施の形態1にかかる直流き電システムに対して、補正量dVの算出方法を変更したものである。その他の構成については実施の形態1と同様であるので、図1と図2を援用し、別途記載した動作を示すフローチャートを用いて説明する。図4は、本実施の形態2にかかる直流き電システムの制御動作のうち、PWM変換装置の直流出力電圧の設定に関する部分を説明するためのフローチャートである。図中、実施の形態1で用いた図3と同様の動作部分には同様の符号を付している。
Embodiment 2. FIG.
The direct current feeding system according to the second embodiment is obtained by changing the calculation method of the correction amount dV with respect to the direct current feeding system according to the first embodiment. Since the other configuration is the same as that of the first embodiment, it will be described with reference to a flowchart showing an operation described separately with reference to FIGS. FIG. 4 is a flowchart for explaining a part related to setting of the DC output voltage of the PWM converter in the control operation of the DC feeding system according to the second embodiment. In the figure, the same reference numerals are given to the same operation parts as in FIG. 3 used in the first embodiment.

はじめに、I−V特性制御部7は、PWM電力変換装置1cのI−V特性における、水平領域Rhの電圧値(直流出力電圧V1)をPWM電力変換装置1cの基準電圧V0に設定する(ステップS10)。   First, the IV characteristic control unit 7 sets the voltage value (DC output voltage V1) of the horizontal region Rh in the IV characteristic of the PWM power converter 1c to the reference voltage V0 of the PWM power converter 1c (step) S10).

つぎに、電圧値収集部5は、時間計測(ステップS20)を行い、計測した時間が設定された時間になった(経過した)か否かの判定を行う(ステップS30)。判定がNoの時は、何もしないでステップS20に戻る。判定がYesの時は、各計測部5a−1〜5a−m、5b−1〜5b−nおよび可変変電所1、固定変電所2、3に、対処となる測定点Mpの電圧を測定するように電圧測定指令を出す(ステップS40)。なお、このステップS20〜S40の動作は、ある時間間隔(例えば1秒)で電圧測定指令を出すことと同じである。電圧測定指令に基づき、各計測部5a−1〜5a−m、5b−1〜5b−nおよび可変変電所1、固定変電所2、3は、き電電圧を計測し(ステップS50)、計測した電圧データが電圧値収集部5により収集される(ステップS60)。なお、電圧は常時計測し、決まった間隔でデータの収集を行うようにしてもよい。 Next, the voltage value collection unit 5 performs time measurement (step S20), and determines whether or not the measured time has reached the set time (elapsed) (step S30). If the determination is No, do nothing and return to step S20. When the determination is Yes, the measurement section 5 a-1 ~5 a-m , 5 b-1 ~5 b-n and variable substation 1, the fixed substations 2, 3 measurement points Mp to be addressed A voltage measurement command is issued so as to measure the voltage (step S40). The operations in steps S20 to S40 are the same as issuing a voltage measurement command at a certain time interval (for example, 1 second). Based on the voltage measurement command, the measurement section 5 a-1 ~5 a-m , 5 b-1 ~5 b-n and variable substation 1, fixed substation 2 and 3, the feeding circuit voltage measured (step S50), the measured voltage data is collected by the voltage value collection unit 5 (step S60). Note that the voltage may be constantly measured and data may be collected at fixed intervals.

電圧評価部6は、電圧値収集部5が収集した電圧データから、最大計測電圧Vmax、および最低計測電圧Vminを算出する(ステップS70)。次に上述した式(1)と式(2)により、高圧側余裕電圧差ΔVsと低圧側余裕電圧差ΔVmを算出する(ステップS80)。そして、算出した低圧側余裕電圧差ΔVmが0より大きいか否かの判定を行う(ステップS100)。ステップS100でYesならば、高圧側余裕電圧差ΔVsが0より大きいか否かの判定を行う(ステップS110)。   The voltage evaluation unit 6 calculates the maximum measurement voltage Vmax and the minimum measurement voltage Vmin from the voltage data collected by the voltage value collection unit 5 (step S70). Next, the high-voltage side marginal voltage difference ΔVs and the low-voltage side marginal voltage difference ΔVm are calculated by the above-described equations (1) and (2) (step S80). Then, it is determined whether or not the calculated low voltage side marginal voltage difference ΔVm is greater than 0 (step S100). If Yes in step S100, it is determined whether the high-voltage side marginal voltage difference ΔVs is greater than 0 (step S110).

ステップS110でYesならば、直流出力電圧の(暫定)補正量dV=Min(ΔVs,ΔVm)とおく(ステップS210)。さらに、現在設定されている直流出力電圧V1と基準電圧V0との差dV0を算出し(ステップS220)、(暫定)補正量dVがdV0の絶対値より大きいか否かの判定を行う(ステップS230)。ステップS230の判定でYes(dV>|dV0|)ならば、(暫定)補正量dV=−dV0とする(ステップS240)。ステップS230の判定でNo(dV≦|dV0|)ならば、(暫定)補正量dV=−dV0/|dV0|×dVとおく(ステップS250)。 If Yes in step S110, the (provisional) correction amount dV = Min (ΔVs, ΔVm) of the DC output voltage is set (step S210). Further, the difference dV0 between the currently set DC output voltage V1 and the reference voltage V0 is calculated (step S220), and it is determined whether or not the (provisional) correction amount dV is larger than the absolute value of dV0 (step S230). ). If Yes (dV> | dV0 |) in the determination in step S230, the (provisional) correction amount dV = −dV0 is set (step S240). If No (dV ≦ | dV0 |) in the determination in step S230, the (provisional) correction amount dV = −dV0 / | dV0 | × dV is set (step S250).

一方、ステップS110でNoならば、直流出力電圧の(暫定)補正量dV=−Min(−ΔVs,ΔVm)とおき(ステップS300)、ステップS100でNoならば、直流出力電圧の(暫定)補正量dV=−ΔVmとおく(ステップS400)。つまり、ステップS110でYesのときの動作(ステップS210〜ステップS250)以外は、実施の形態1と同様の動作を行う。   On the other hand, if NO in step S110, the (provisional) correction amount of DC output voltage dV = −Min (−ΔVs, ΔVm) is set (step S300). If NO in step S100, (provisional) correction of the DC output voltage. The quantity dV = −ΔVm is set (step S400). That is, the same operation as that of the first embodiment is performed except for the operation at the time of Yes in step S110 (step S210 to step S250).

ステップS100〜S400により、(暫定)補正量dVが求められたなら、求めた(暫定)補正量dVにあらかじめ設定した補正係数α(例えば0.9)を乗じ、(決定)補正量dV=α×dVを求める(ステップS500)。I−V特性制御部7は、(決定)補正量dVを用いて、PWM電力変換装置1cのI−V特性における、直流出力電圧V1をV1+dVに補正する(ステップS510)。   When the (provisional) correction amount dV is obtained in steps S100 to S400, the obtained (provisional) correction amount dV is multiplied by a preset correction coefficient α (for example, 0.9), and (determined) correction amount dV = α. XdV is obtained (step S500). The IV characteristic control unit 7 corrects the DC output voltage V1 in the IV characteristic of the PWM power converter 1c to V1 + dV using the (determination) correction amount dV (step S510).

上記ステップS20〜ステップS510までの動作を、PWM電力変換装置1cを停止するまで(ステップS600の停止判定でYesとなるまで)、繰り返す。   The operations from step S20 to step S510 are repeated until the PWM power converter 1c is stopped (until the stop determination in step S600 is Yes).

このようにPWM電力変換装置1cを有する可変変電所1と隣接した固定変電所2、3間で、区間(第1区間Z1、第2区間Z2)ごとに設定された車両本数に応じた測定点からの電圧データの最大値と最低値(Vmax、Vmin)を用い、モータ動作下限電圧Vm以上を満足させ、かつ、き電電圧が回生絞込み開始電圧Vsを超えないようにしながら、PWM電力変換装置1cの直流出力電圧V1を基準電圧V0に近い値を維持するように制御を行う。可能限り基準電圧V0に近い値を維持するように制御することで、急で大きな電圧変動に対しても、力行時の加速性能を保ちながら、回生絞込みの回生を減少させることができ、従来よりも回生電力を有効活用することができる。   Thus, the measurement point according to the number of vehicles set for every section (the 1st section Z1 and the 2nd section Z2) between fixed substations 2 and 3 adjacent to variable substation 1 which has PWM power converter 1c. PWM power converter using the maximum value and the minimum value (Vmax, Vmin) of the voltage data from, while satisfying the motor operation lower limit voltage Vm or more and preventing the feeding voltage from exceeding the regeneration narrowing start voltage Vs Control is performed so that the DC output voltage V1 of 1c is maintained at a value close to the reference voltage V0. By controlling so as to maintain the value as close to the reference voltage V0 as possible, it is possible to reduce regeneration regeneration narrowing while maintaining acceleration performance during powering even for sudden and large voltage fluctuations. Can also make effective use of regenerative power.

以上のように、本発明の実施の形態2にかかる直流き電システム100によれば、直流出力電圧制御部(電圧評価部6、I−V特性制御部7)は、最低値Vminが第二閾値(最低許容電圧Vam)より高く、かつ最大値Vmaxが第一閾値(最大許容電圧Vas以下の場合は、直流出力電圧V1が可変変電所1を構成する電力変換装置(PWM変換装置1c)の基準電圧V0を維持するように制御するので、急で大きな電圧変動に対しても、力行時の加速性能を保ちながら、回生絞込みの回生を減少させることができ、従来よりも回生電力を有効活用することができる。   As described above, according to the DC power feeding system 100 according to the second exemplary embodiment of the present invention, the DC output voltage control unit (voltage evaluation unit 6, IV characteristic control unit 7) has the lowest value Vmin as the second value. When the maximum value Vmax is higher than the threshold value (minimum allowable voltage Vam) and the maximum value Vmax is equal to or less than the first threshold value (maximum allowable voltage Vas), the DC output voltage V1 of the power converter (PWM converter 1c) constituting the variable substation 1 Control is performed so as to maintain the reference voltage V0, so that the regeneration performance can be reduced while maintaining acceleration performance during powering even for sudden and large voltage fluctuations. Regenerative power can be used more effectively than before. can do.

1:可変変電所、 1c:PWM変換装置、 2,3:固定変電所、 2c,3c: 整流器、 4:き電線、 5:電圧値収集部、 6:電圧評価部(直流出力電圧制御部)、 7:I−V特性制御部(直流出力電圧制御部)、 8:PWM制御装置、 100:直流き電システム、
Mp:測定点、 Rh:水平領域、 V0:基準電圧、 V1:直流出力電圧、 Vas:最大許容電圧(第一閾値)、 Vam:最低許容電圧(第二閾値)、 Vm:モータ動作下限電圧、 Vmin:最低計測電圧、 Vmax:最大計測電圧、 Vs:回生絞込み開始電圧、 Z:き電区間、 Z1:第1区間、 Z2:第2区間。
1: variable substation, 1c: PWM converter, 2, 3: fixed substation, 2c, 3c: rectifier, 4: feeder, 5: voltage value collection unit, 6: voltage evaluation unit (DC output voltage control unit) 7: IV characteristic control unit (DC output voltage control unit), 8: PWM control device, 100: DC feeding system,
Mp: measurement point, Rh: horizontal region, V0: reference voltage, V1: DC output voltage, Vas: maximum allowable voltage (first threshold), Vam: minimum allowable voltage (second threshold), Vm: motor operating lower limit voltage, Vmin: minimum measurement voltage, Vmax: maximum measurement voltage, Vs: regeneration narrowing start voltage, Z: feeding section, Z1: first section, Z2: second section.

Claims (5)

直流出力電圧を変更可能な可変変電所を含む複数の変電所が、列車に電力を供給する直流き電線に沿って配置された直流き電システムであって、
前記き電線のうち、前記可変変電所の両隣の変電所を結ぶき電区間内のき電線に設置された複数の測定点で測定した電圧値を収集する電圧値収集部と、
前記列車に対する回生絞込み開始電圧に応じて定めた第一閾値と前記電圧値収集部が収集した複数の測定点の電圧値の最大値との比較結果、および前記列車のモータの動作下限電圧に応じて定めた第二閾値と前記複数の測定点の電圧値の最低値との比較結果に基づいて、前記可変変電所の直流出力電圧を制御する直流出力電圧制御部と、
を備えたことを特徴とする直流き電システム。
A plurality of substations including a variable substation capable of changing a DC output voltage are a DC feeder system arranged along a DC feeder supplying power to a train,
Among the feeders, a voltage value collection unit that collects voltage values measured at a plurality of measurement points installed on feeders in a feeder section connecting the substations on both sides of the variable substation, and
According to the comparison result between the first threshold value determined according to the regeneration narrowing start voltage for the train and the maximum value of the voltage values of the plurality of measurement points collected by the voltage value collection unit, and the operation lower limit voltage of the motor of the train A DC output voltage control unit for controlling the DC output voltage of the variable substation, based on a comparison result between the second threshold value determined in advance and the minimum value of the voltage values of the plurality of measurement points;
A DC feeding system characterized by comprising:
前記直流出力電圧制御部は、
前記最低値が前記第二閾値以下の場合は、前記直流出力電圧を上昇させるようにし、
前記最低値が前記第二閾値より高く、かつ前記最大値が前記第一閾値より高い場合は、前記直流出力電圧を下げるように制御することを特徴とする請求項1に記載の直流き電システム。
The DC output voltage controller is
If the minimum value is less than or equal to the second threshold, the DC output voltage is increased,
2. The DC feeding system according to claim 1, wherein when the minimum value is higher than the second threshold value and the maximum value is higher than the first threshold value, the DC output voltage is controlled to be lowered. .
前記直流出力電圧制御部は、前記最低値が前記第二閾値より高く、かつ前記最大値が前記第一閾値以下の場合は、前記直流出力電圧が前記可変変電所を構成する電力変換装置の基準電圧を維持するように制御することを特徴とする請求項2に記載の直流き電システム。   The DC output voltage control unit, when the minimum value is higher than the second threshold and the maximum value is equal to or less than the first threshold, the DC output voltage is a reference for a power converter that constitutes the variable substation. 3. The DC feeding system according to claim 2, wherein control is performed so as to maintain the voltage. 前記可変変電所は、電力変換装置としてPWM変換装置を用いていることを特徴とする請求項1ないし3のいずれか1項に記載の直流き電システム。   4. The DC feeding system according to claim 1, wherein the variable substation uses a PWM converter as a power converter. 5. 前記複数の測定点は、
前記き電区間を前記可変変電所で分割した区間ごとに、当該区間に設定される同時に走行可能な列車の本数で当該区間のき電線を等分割した位置、および、前記両隣の変電所のそれぞれと前記可変変電所の位置に設置されていることを特徴とする請求項1ないし4のいずれか1項に記載の直流き電システム。
The plurality of measurement points are:
For each section obtained by dividing the feeder section at the variable substation, the position where the feeder line of the section is equally divided by the number of trains that can be run simultaneously in the section, and each of the adjacent substations The DC feeding system according to any one of claims 1 to 4, wherein the DC feeding system is installed at a position of the variable substation.
JP2013191295A 2013-09-17 2013-09-17 Direct current feeding system Pending JP2015058713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191295A JP2015058713A (en) 2013-09-17 2013-09-17 Direct current feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191295A JP2015058713A (en) 2013-09-17 2013-09-17 Direct current feeding system

Publications (1)

Publication Number Publication Date
JP2015058713A true JP2015058713A (en) 2015-03-30

Family

ID=52816615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191295A Pending JP2015058713A (en) 2013-09-17 2013-09-17 Direct current feeding system

Country Status (1)

Country Link
JP (1) JP2015058713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210048355A (en) * 2019-10-23 2021-05-03 한국철도기술연구원 Direct current rail system and operating method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226339A (en) * 1985-03-30 1986-10-08 Toshiba Corp Dc feeding device
JP2000059991A (en) * 1998-08-17 2000-02-25 West Japan Railway Co Substation interpolation device
JP2006034041A (en) * 2004-07-20 2006-02-02 Toyo Electric Mfg Co Ltd Controller for feeder system power storage system
JP2008074183A (en) * 2006-09-20 2008-04-03 Meidensha Corp Regenerative power absorption system for direct current electric railroad system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226339A (en) * 1985-03-30 1986-10-08 Toshiba Corp Dc feeding device
JP2000059991A (en) * 1998-08-17 2000-02-25 West Japan Railway Co Substation interpolation device
JP2006034041A (en) * 2004-07-20 2006-02-02 Toyo Electric Mfg Co Ltd Controller for feeder system power storage system
JP2008074183A (en) * 2006-09-20 2008-04-03 Meidensha Corp Regenerative power absorption system for direct current electric railroad system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210048355A (en) * 2019-10-23 2021-05-03 한국철도기술연구원 Direct current rail system and operating method thereof
KR102291641B1 (en) * 2019-10-23 2021-08-20 한국철도기술연구원 Direct current rail system and operating method thereof

Similar Documents

Publication Publication Date Title
JP6054122B2 (en) Railway power management equipment
JP5485319B2 (en) Power flow control method and control device for vehicle mounted with secondary battery
WO2014132321A1 (en) Power source device
WO2012111679A1 (en) Battery device and method for installing and operating same
JP6552796B2 (en) Power storage control device
US9573489B2 (en) Control device for railway power conditioner and control system for railway power conditioner
US9180790B2 (en) DC feeder voltage control apparatus and DC feeder voltage control system
KR20110038046A (en) Power adjustment system adapted for powering an electric line for supplying power to vehicles
CN102958747B (en) Overhead wire transportation system and control method therefor
CN113608571A (en) Flexible power tracking control method for photovoltaic power generation unit and application thereof
JP2017158356A (en) Power supply system
JP2015047893A (en) Ground battery control device and control method thereof, and ground battery control system for railway
JP2015058713A (en) Direct current feeding system
JP2016032950A (en) Control device
JP5752615B2 (en) Control system and control method for self-excited rectifier used in feeding substation of DC electric railway.
WO2013115365A1 (en) Electrical charging/discharging controller, charging control method, discharging control method, and program
Avelino et al. Electric go-kart with battery-ultracapacitor hybrid energy storage system
KR102179305B1 (en) Power supply system and method for controlling the system
JP5427803B2 (en) Overhead traffic system analysis apparatus, analysis method and program thereof
JP2015030406A (en) Electric power feeding system and power supply method
JP4856219B2 (en) Mobile control device
JP7059627B2 (en) Railway power storage device
JP5952174B2 (en) Mobile power management system
JP2012016148A (en) Simulator, simulation method and program thereof, and overhead wiring traffic system
JP7120853B2 (en) Power supply system and power supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404