JP2015055461A - Feed water heating system - Google Patents

Feed water heating system Download PDF

Info

Publication number
JP2015055461A
JP2015055461A JP2013190876A JP2013190876A JP2015055461A JP 2015055461 A JP2015055461 A JP 2015055461A JP 2013190876 A JP2013190876 A JP 2013190876A JP 2013190876 A JP2013190876 A JP 2013190876A JP 2015055461 A JP2015055461 A JP 2015055461A
Authority
JP
Japan
Prior art keywords
water
water supply
temperature
heat
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013190876A
Other languages
Japanese (ja)
Other versions
JP6210204B2 (en
Inventor
和之 大谷
Kazuyuki Otani
和之 大谷
大沢 智也
Tomoya Osawa
智也 大沢
立樹 杉浦
Tatsuki Sugiura
立樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013190876A priority Critical patent/JP6210204B2/en
Publication of JP2015055461A publication Critical patent/JP2015055461A/en
Application granted granted Critical
Publication of JP6210204B2 publication Critical patent/JP6210204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feed water heating system that enables heating of feed water in an optimal condition in accordance with a temperature of a heat source fluid while protecting a compressor.SOLUTION: A heat pump 4 pumps up heat from heat source fluid passing through an evaporator 15, and heats water passing through a condenser 13. Water can be supplied to a feed water tank 3 through a feed water passage 8 via the condenser 13. A waste heat recovery heat exchanger 17 exchanges heat between water in the feed water passage 8 on the upstream side of the condenser 13 and the heat source fluid that has passed through the evaporator 15. At cold start, after supply of the heat source fluid to the evaporator 15 is started, if a temperature of the heat source fluid to the evaporator 15 is lower than a lower limit temperature, the heat pump 4 is stopped. When the temperature of the heat source fluid reaches the lower limit temperature or higher, the heat pump 4 is started.

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(2)の給水タンク(3)への給水を、ヒートポンプ(4)を用いて加温できるシステムが知られている。このシステムでは、給水路(8)を介した給水タンク(3)への給水は、廃熱回収熱交換器(12)、過冷却器(17)および凝縮器(14)を順に通される。廃熱回収熱交換器(12)は、給水路(8)を介した給水タンク(3)への給水と、蒸発器(16)を通過後の熱源流体との間接熱交換器であり、過冷却器(17)は、給水路(8)を介した給水タンク(3)への給水と、凝縮器(14)から膨張弁(15)への冷媒との間接熱交換器である。給水路(8)を介した給水タンク(3)への給水中、ヒートポンプ(4)を運転すると共に、ヒートポンプ(4)の凝縮器(14)の出口側水温を目標温度に維持するように、給水ポンプ(10)をインバータ制御して、給水路(8)を介した給水タンク(3)への給水流量が調整される。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (3) of a boiler (2) using a heat pump (4) is known. In this system, water supplied to the water supply tank (3) via the water supply channel (8) is passed through the waste heat recovery heat exchanger (12), the supercooler (17), and the condenser (14) in this order. The waste heat recovery heat exchanger (12) is an indirect heat exchanger for supplying water to the water supply tank (3) through the water supply channel (8) and the heat source fluid after passing through the evaporator (16). The cooler (17) is an indirect heat exchanger for supplying water to the water supply tank (3) via the water supply channel (8) and refrigerant from the condenser (14) to the expansion valve (15). While supplying water to the water supply tank (3) through the water supply channel (8), operating the heat pump (4), and maintaining the outlet side water temperature of the condenser (14) of the heat pump (4) at the target temperature, The feed water flow rate to the feed water tank (3) through the feed water channel (8) is adjusted by inverter control of the feed water pump (10).

特許第5263421号公報Japanese Patent No. 5263421

しかしながら、特に冷態起動時、ヒートポンプの冷媒は加温されていない上、熱源流体の温度も常温まで下がっている場合がある(特に冬季)。そのような場合、蒸発器における冷媒の凝縮により、ヒートポンプを作動させると、圧縮機を損傷させるおそれがある。   However, especially during cold start, the heat pump refrigerant is not heated, and the temperature of the heat source fluid may be lowered to room temperature (particularly in winter). In such a case, if the heat pump is operated due to the condensation of the refrigerant in the evaporator, the compressor may be damaged.

一方、熱源流体の温度が高いと、熱源流体の温度によっては、廃熱回収熱交換器において給水と熱源流体とを熱交換すれば足り、ヒートポンプを運転する必要がない場合がある。   On the other hand, if the temperature of the heat source fluid is high, depending on the temperature of the heat source fluid, it may be sufficient to exchange heat between the water supply and the heat source fluid in the waste heat recovery heat exchanger, and there is a case where it is not necessary to operate the heat pump.

また、熱源流体の温度が高まった場合、ヒートポンプを停止しなければ、圧縮機を損傷するおそれが出てくる。但し、そのような場合に、常に、給水加温システム全体を停止してしまうと、高温の熱源流体からの熱回収を図れないことになる。   Further, when the temperature of the heat source fluid increases, the compressor may be damaged unless the heat pump is stopped. However, in such a case, if the entire feed water heating system is always stopped, heat recovery from the high-temperature heat source fluid cannot be achieved.

さらに、凝縮器の出口側水温を目標温度に維持するように、給水路を介した給水タンクへの給水流量を調整する場合、ヒートポンプの停止の有無によらず、目標温度を一定に維持すると、ヒートポンプの停止中、給水路を介した給水タンクへの給水流量が減り、熱源流体からの熱回収量も減ることになる。   Furthermore, when adjusting the feed water flow rate to the feed water tank via the feed water path so that the outlet water temperature of the condenser is maintained at the target temperature, regardless of whether the heat pump is stopped or not, While the heat pump is stopped, the water supply flow rate to the water supply tank via the water supply channel is reduced, and the amount of heat recovered from the heat source fluid is also reduced.

そこで、本発明が解決しようとする課題は、圧縮機の保護を図りながら、熱源流体の温度に応じて最適な条件で給水を加温できる給水加温システムを提供することにある。また、好ましくは、給水路を介した給水タンクへの給水流量をある程度以上に確保して、熱源流体からの熱回収を図ることができる給水加温システムを提供することを課題とする。   Therefore, the problem to be solved by the present invention is to provide a feed water heating system capable of heating feed water under optimum conditions according to the temperature of the heat source fluid while protecting the compressor. It is also an object of the present invention to provide a feed water heating system that can secure a feed water flow rate to a feed water tank through a feed water channel to a certain level or more and can recover heat from a heat source fluid.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、前記凝縮器を介して給水路により給水可能な給水タンクと、前記凝縮器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とを備え、冷態起動時、前記蒸発器への熱源流体の供給を開始後、前記蒸発器への熱源流体温度が下限温度未満であれば、前記ヒートポンプを停止しておき、下限温度以上になれば、前記ヒートポンプを起動することを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. A heat pump that draws heat from the heat source fluid that is passed through the condenser and heats the water that is passed through the condenser; a water supply tank that is capable of supplying water through the condenser through a water supply path; and an upstream side of the condenser A waste heat recovery heat exchanger for exchanging heat between the water in the water supply channel and the heat source fluid after passing through the evaporator, and after starting the supply of the heat source fluid to the evaporator at the time of cold start, When the heat source fluid temperature to the evaporator is lower than the lower limit temperature, the heat pump is stopped, and when the temperature becomes equal to or higher than the lower limit temperature, the heat pump is started.

請求項1に記載の発明によれば、冷態起動時、蒸発器への熱源流体温度が下限温度以上になるまで、ヒートポンプを停止しておくことで、圧縮機の保護を図ることができる。   According to the first aspect of the present invention, the compressor can be protected by stopping the heat pump until the temperature of the heat source fluid to the evaporator becomes equal to or higher than the lower limit temperature at the time of cold start.

請求項2に記載の発明は、前記ヒートポンプを一旦起動後は、前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が下限温度未満になっても、前記ヒートポンプの作動を継続することを特徴とする請求項1に記載の給水加温システムである。   According to a second aspect of the present invention, once the heat pump is started, the heat pump is supplied even when the heat source fluid temperature to the evaporator becomes lower than the lower limit temperature during the water supply to the water supply tank via the water supply channel. The feed water heating system according to claim 1, wherein the operation is continued.

請求項2に記載の発明によれば、ヒートポンプを一旦起動後は、蒸発器への熱源流体温度が下限温度未満になっても、ヒートポンプの作動を継続することで、システムを安定的に稼働させて、温水を得ることができる。なお、ヒートポンプを一旦起動後は、ヒートポンプの冷媒は冷態起動時よりも加温されているから、ヒートポンプの作動を継続しても、圧縮機を損傷するおそれはない。   According to the second aspect of the present invention, once the heat pump is started, the system can be operated stably by continuing the operation of the heat pump even if the heat source fluid temperature to the evaporator becomes lower than the lower limit temperature. Hot water can be obtained. Note that once the heat pump is started, the refrigerant of the heat pump is warmed more than when the heat pump is started, so there is no risk of damaging the compressor even if the operation of the heat pump is continued.

請求項3に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が前記下限温度よりも高い温度である設定温度未満であれば、前記ヒートポンプを作動させた状態で、前記凝縮器の出口側水温を第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整し、前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が設定温度以上になると、前記ヒートポンプを停止させた状態で、前記凝縮器の出口側水温を前記第一目標温度よりも低い第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整することを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, if the heat source fluid temperature to the evaporator is lower than a set temperature that is higher than the lower limit temperature during water supply to the water supply tank via the water supply channel, the heat pump The water supply flow rate to the water supply tank via the water supply path is adjusted so that the outlet side water temperature of the condenser is maintained at the first target temperature in a state where the water supply is operated, and the water supply via the water supply path is adjusted. When the temperature of the heat source fluid to the evaporator becomes equal to or higher than a set temperature during the water supply to the tank, the outlet water temperature of the condenser is lower than the first target temperature with the heat pump stopped. The feed water warming system according to claim 1 or 2, wherein a feed water flow rate to the feed water tank via the feed water channel is adjusted so as to be maintained at the same time.

請求項3に記載の発明によれば、蒸発器への熱源流体温度が設定温度未満であれば、ヒートポンプを作動させた状態で、凝縮器の出口側水温を第一目標温度に維持するように、給水路を介した給水タンクへの給水流量を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。一方、蒸発器への熱源流体温度が設定温度以上になると、ヒートポンプを停止させるので、圧縮機の保護を図ることができる。但し、その場合でも、廃熱回収熱交換器において、給水と熱源流体とを熱交換して、熱源流体からの熱回収を図ることができる。しかも、凝縮器の出口側水温の制御目標温度を、第一目標温度よりも低い第二目標温度に切り替えることで、給水路を介した給水タンクへの給水流量をある程度以上に確保して、熱源流体からの熱回収を有効に図ることができる。   According to the third aspect of the present invention, when the heat source fluid temperature to the evaporator is lower than the set temperature, the outlet water temperature of the condenser is maintained at the first target temperature while the heat pump is operated. Regardless of the water temperature of the water supply source or the temperature of the heat source fluid, hot water having a desired temperature can be obtained by adjusting the flow rate of the water supply to the water supply tank via the water supply channel. On the other hand, when the heat source fluid temperature to the evaporator is equal to or higher than the set temperature, the heat pump is stopped, so that the compressor can be protected. However, even in that case, heat recovery from the heat source fluid can be achieved by exchanging heat between the water supply and the heat source fluid in the waste heat recovery heat exchanger. In addition, by switching the control target temperature of the outlet water temperature of the condenser to the second target temperature lower than the first target temperature, the water supply flow rate to the water supply tank via the water supply channel is ensured to some extent, and the heat source Heat recovery from the fluid can be effectively achieved.

請求項4に記載の発明は、前記凝縮器の出口側水温を前記第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整中、前記蒸発器への熱源流体温度が設定温度未満を設定時間継続した場合には、前記ヒートポンプを作動させて、前記凝縮器の出口側水温を前記第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整する制御に切り替えることを特徴とする請求項3に記載の給水加温システムである。   According to a fourth aspect of the present invention, during adjustment of the feed water flow rate to the feed water tank via the feed water channel so as to maintain the outlet side water temperature of the condenser at the second target temperature, When the heat source fluid temperature is less than the set temperature for a set time, the water supply via the water supply path is operated so as to maintain the outlet side water temperature of the condenser at the first target temperature by operating the heat pump. 4. The feed water heating system according to claim 3, wherein the feed water heating system is switched to control for adjusting a feed water flow rate to the tank.

請求項4に記載の発明によれば、蒸発器への熱源流体温度が所定に下がると、ヒートポンプを停止させた出湯温度一定制御から、ヒートポンプを稼働させた出湯温度一定制御へ戻すことができる。   According to the fourth aspect of the present invention, when the heat source fluid temperature to the evaporator is lowered to a predetermined level, it is possible to return from the hot water temperature constant control in which the heat pump is stopped to the hot water temperature constant control in which the heat pump is operated.

請求項5に記載の発明は、前記凝縮器の出口側水温を前記第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整中、前記蒸発器への熱源流体温度が設定温度よりも低い所定温度未満になった場合には、前記ヒートポンプを作動させて、前記凝縮器の出口側水温を前記第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整する制御に切り替えることを特徴とする請求項3に記載の給水加温システムである。   According to a fifth aspect of the present invention, while adjusting the feed water flow rate to the feed water tank via the feed water channel so as to maintain the outlet side water temperature of the condenser at the second target temperature, When the heat source fluid temperature becomes lower than a predetermined temperature lower than a set temperature, the heat pump is operated to pass the water supply path so as to maintain the outlet side water temperature of the condenser at the first target temperature. The feed water heating system according to claim 3, wherein the control is switched to control for adjusting a feed water flow rate to the feed water tank.

請求項5に記載の発明によれば、蒸発器への熱源流体温度が所定に下がると、ヒートポンプを停止させた出湯温度一定制御から、ヒートポンプを稼働させた出湯温度一定制御へ戻すことができる。   According to the fifth aspect of the present invention, when the heat source fluid temperature to the evaporator is lowered to a predetermined level, it is possible to return from the hot water temperature constant control in which the heat pump is stopped to the hot water temperature constant control in which the heat pump is operated.

請求項6に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が前記設定温度よりも高い上限温度以上になると、前記ヒートポンプを停止すると共に、前記蒸発器への熱源流体の供給も停止することを特徴とする請求項3〜5のいずれか1項に記載の給水加温システムである。   According to a sixth aspect of the present invention, when the heat source fluid temperature to the evaporator becomes equal to or higher than the upper limit temperature higher than the set temperature during water supply to the water supply tank via the water supply channel, the heat pump is stopped. The supply water heating system according to any one of claims 3 to 5, wherein the supply of the heat source fluid to the evaporator is also stopped.

請求項6に記載の発明によれば、蒸発器への熱源流体温度が上限温度以上になると、ヒートポンプを停止すると共に、蒸発器への熱源流体の供給も停止することで、給水加温システムの保護を図ることができる。   According to the sixth aspect of the present invention, when the heat source fluid temperature to the evaporator becomes equal to or higher than the upper limit temperature, the heat pump is stopped and the supply of the heat source fluid to the evaporator is also stopped. Protection can be achieved.

さらに、請求項7に記載の発明は、前記給水路を介した前記給水タンクへの給水の有無は、前記給水タンクの水位に基づき切り替えられることを特徴とする請求項1〜6のいずれか1項に記載の給水加温システムである。   Furthermore, in the invention described in claim 7, the presence or absence of water supply to the water supply tank via the water supply path is switched based on the water level of the water supply tank. It is a water supply heating system as described in an item.

請求項7に記載の発明によれば、給水タンクの水位に基づき、給水路を介した給水タンクへの給水を制御することで、給水タンク内の水位を所望に維持することができる。   According to invention of Claim 7, the water level in a water supply tank can be maintained as desired by controlling the water supply to a water supply tank via a water supply path based on the water level of a water supply tank.

本発明によれば、圧縮機の保護を図りながら、熱源流体の温度に応じて最適な条件で給水を加温できる給水加温システムを実現することができる。また、給水路を介した給水タンクへの給水流量をある程度以上に確保して、熱源流体からの熱回収を図ることも可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the feed water heating system which can heat feed water on optimal conditions according to the temperature of a heat source fluid is achieved, protecting a compressor. In addition, it is possible to secure a water supply flow rate to the water supply tank via the water supply channel to a certain level or more to recover heat from the heat source fluid.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路またはボイラ2の内部に設けたポンプ7が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。あるいは、蒸気使用設備からのドレンは、熱源水タンク6へ供給してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 7 provided in the inside of the water supply path from the water supply tank 3 to the boiler 2, or the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3. Alternatively, drain from the steam using facility may be supplied to the heat source water tank 6.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply channel 8 and the makeup water pump 11 provided in the makeup water channel 9, makeup water is supplied via one or both of the water supply channel 8 and the makeup water channel 9. Water can be supplied from the tank 5 to the water supply tank 3.

給水ポンプ10は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御される。   In the present embodiment, the feed water pump 10 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 10, the water supply flow rate to the water supply tank 3 through the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機12、凝縮器13、膨張弁14および蒸発器15が順次環状に接続されて構成される。そして、圧縮機12は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器13は、圧縮機12からのガス冷媒を凝縮液化する。さらに、膨張弁14は、凝縮器13からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器15は、膨張弁14からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and includes a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15 that are sequentially connected in an annular shape. The compressor 12 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 13 condenses and liquefies the gas refrigerant from the compressor 12. Furthermore, the expansion valve 14 allows the liquid refrigerant from the condenser 13 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 15 evaporates the refrigerant from the expansion valve 14.

従って、ヒートポンプ4は、蒸発器15において、冷媒が外部から熱を奪って気化する一方、凝縮器13において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器15において、熱源水から熱をくみ上げ、凝縮器13において、給水路8の水を加温する。   Therefore, in the heat pump 4, the refrigerant takes heat from the outside and vaporizes in the evaporator 15, while the refrigerant dissipates heat to the outside and condenses in the condenser 13. In this embodiment, the heat pump 4 draws heat from the heat source water in the evaporator 15 and heats the water in the water supply channel 8 in the condenser 13.

ヒートポンプ4は、さらに、凝縮器13と膨張弁14との間に、過冷却器16を備えるのが好ましい。過冷却器16は、凝縮器13より上流側の給水路8の水と、凝縮器13から膨張弁14への冷媒との間接熱交換器である。過冷却器16により、凝縮器13への給水で、凝縮器13から膨張弁14への冷媒を過冷却することができると共に、凝縮器13から膨張弁14への冷媒で、凝縮器13への給水を加温することができる。ヒートポンプ4の冷媒は、好適には、凝縮器13において潜熱を放出し、過冷却器16において顕熱を放出する。   It is preferable that the heat pump 4 further includes a supercooler 16 between the condenser 13 and the expansion valve 14. The supercooler 16 is an indirect heat exchanger between the water in the water supply channel 8 upstream from the condenser 13 and the refrigerant from the condenser 13 to the expansion valve 14. The subcooler 16 can supercool the refrigerant from the condenser 13 to the expansion valve 14 by supplying water to the condenser 13, and can supply the refrigerant to the condenser 13 by the refrigerant from the condenser 13 to the expansion valve 14. The water supply can be heated. The refrigerant of the heat pump 4 preferably releases latent heat in the condenser 13 and releases sensible heat in the subcooler 16.

つまり、凝縮器13において、ガス冷媒は凝縮して液冷媒となり、その液冷媒が過冷却器16に供給されて、過冷却器16において、液冷媒はさらに冷却(過冷却)される。冷媒の凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、熱交換器を簡易な構造で小型化でき、コスト削減を図ることができる。また、汎用の熱交換器の利用も可能となる。   That is, in the condenser 13, the gas refrigerant is condensed into a liquid refrigerant, and the liquid refrigerant is supplied to the subcooler 16, and the liquid refrigerant is further cooled (supercooled) in the subcooler 16. By separating heat exchangers for refrigerant condensation and supercooling, the heat exchanger can be easily designed, the heat exchanger can be reduced in size with a simple structure, and costs can be reduced. In addition, a general-purpose heat exchanger can be used.

その他、ヒートポンプ4には、圧縮機12の入口側にアキュムレータを設置したり、圧縮機12の出口側に油分離器を設置したり、凝縮器13の出口側(凝縮器13と過冷却器16との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 12, an oil separator is installed on the outlet side of the compressor 12, or the outlet side of the condenser 13 (the condenser 13 and the subcooler 16 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力を変更可能とされてもよい。たとえば、圧縮機12のモータの電源周波数ひいては回転数をインバータで変更することで、ヒートポンプ4の出力を変更することができる。但し、以下においては、ヒートポンプ4は、圧縮機12のモータの電源周波数が一定に維持され、一定出力で運転される例について説明する。   By the way, the heat pump 4 may be capable of changing its output. For example, the output of the heat pump 4 can be changed by changing the power supply frequency of the motor of the compressor 12 and thus the rotational speed by an inverter. However, in the following, an example in which the heat pump 4 is operated at a constant output while the power frequency of the motor of the compressor 12 is maintained constant will be described.

本実施例の給水加温システム1は、さらに廃熱回収熱交換器17を備える。この廃熱回収熱交換器17は、過冷却器16より上流側の給水路8の水と、蒸発器15を通過後の熱源水との間接熱交換器である。従って、給水路8の水は、廃熱回収熱交換器17、過冷却器16および凝縮器13へと順に通されることになる。一方、熱源水タンク6の熱源水は、熱源供給路18を介して、蒸発器15を通された後、廃熱回収熱交換器17に通される。   The feed water heating system 1 of the present embodiment further includes a waste heat recovery heat exchanger 17. This waste heat recovery heat exchanger 17 is an indirect heat exchanger between the water in the water supply channel 8 upstream of the subcooler 16 and the heat source water after passing through the evaporator 15. Therefore, the water in the water supply channel 8 is passed through the waste heat recovery heat exchanger 17, the subcooler 16, and the condenser 13 in order. On the other hand, the heat source water in the heat source water tank 6 is passed through the evaporator 15 via the heat source supply path 18 and then passed to the waste heat recovery heat exchanger 17.

熱源水タンク6は、ヒートポンプ4の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路19が設けられると共に、所定以上の水をあふれさせるオーバーフロー路20が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump 4. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 19 and an overflow path 20 for overflowing a predetermined amount or more of water.

熱源水タンク6の熱源水は、熱源供給路18を介して、ヒートポンプ4の蒸発器15に通された後、廃熱回収熱交換器17に通される。熱源供給路18には、蒸発器15より上流側に熱源供給ポンプ21が設けられており、この熱源供給ポンプ21を作動させることで、熱源水タンク6からの熱源水を、蒸発器15と廃熱回収熱交換器17とに順に通すことができる。   The heat source water in the heat source water tank 6 is passed through the evaporator 15 of the heat pump 4 through the heat source supply path 18 and then passed to the waste heat recovery heat exchanger 17. The heat source supply path 18 is provided with a heat source supply pump 21 on the upstream side of the evaporator 15. By operating the heat source supply pump 21, the heat source water from the heat source water tank 6 is discarded with the evaporator 15. The heat recovery heat exchanger 17 can be sequentially passed.

蒸発器15を先に通した後に廃熱回収熱交換器17に熱源水を通すことで、廃熱回収熱交換器17を先に通した後に蒸発器15に熱源水を通す場合と比較して、蒸発器15における冷媒の蒸発温度(つまり蒸発圧力)を高めることができ、圧縮機12の圧力比を小さくすることができ、省エネルギーを図ることができる。   By passing the heat source water through the waste heat recovery heat exchanger 17 after passing the evaporator 15 first, compared with the case where the heat source water is passed through the evaporator 15 after passing the waste heat recovery heat exchanger 17 first. In addition, the evaporation temperature (that is, the evaporation pressure) of the refrigerant in the evaporator 15 can be increased, the pressure ratio of the compressor 12 can be reduced, and energy can be saved.

給水タンク3には、水位検出器22が設けられる。この水位検出器22は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、給水タンク3には、長さの異なる複数の電極棒23〜26が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。本実施例では、給水ポンプ10制御用の給水開始電極棒23と給水停止電極棒24の他、補給水ポンプ11制御用の補給水開始電極棒25と補給水停止電極棒26が、給水タンク3に挿入されている。この際、詳細は後述するが、給水停止電極棒24、補給水停止電極棒26、給水開始電極棒23、補給水開始電極棒25の順に、下端部の高さ位置を低くして、給水タンク3に挿入されている。   The water supply tank 3 is provided with a water level detector 22. The configuration of the water level detector 22 is not particularly limited, but is an electrode type water level detector in the present embodiment. In this case, a plurality of electrode rods 23 to 26 having different lengths are inserted and held in the water supply tank 3 with their lower end portions having different height positions. In this embodiment, in addition to the water supply start electrode rod 23 and the water supply stop electrode rod 24 for controlling the water supply pump 10, the makeup water start electrode rod 25 and the makeup water stop electrode rod 26 for controlling the makeup water pump 11 are provided in the water supply tank 3. Has been inserted. At this time, although the details will be described later, the water supply tank is made by lowering the height position of the lower end portion in the order of the water supply stop electrode rod 24, the makeup water stop electrode rod 26, the water supply start electrode rod 23, and the makeup water start electrode rod 25. 3 is inserted.

各電極棒23〜26は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。以下において、給水開始電極棒23が検出する水位を給水開始水位H1、給水停止電極棒24が検出する水位を給水停止水位H2、補給水開始電極棒25が検出する水位を補給水開始水位H3、補給水停止電極棒26が検出する水位を補給水停止水位H4という。   Each electrode rod 23-26 detects the presence or absence of the water level in a lower end part by whether the lower end part is immersed in water. In the following, the water level detected by the water supply start electrode rod 23 is the water supply start water level H1, the water level detected by the water supply stop electrode rod 24 is the water supply stop water level H2, the water level detected by the makeup water start electrode rod 25 is the makeup water start water level H3, The water level detected by the makeup water stop electrode rod 26 is referred to as a makeup water stop water level H4.

熱源水タンク6には、熱源水の有無を確認するために、水位検出器27が設けられる。この水位検出器27は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、熱源水タンク6には、低水位検出電極棒28が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。   The heat source water tank 6 is provided with a water level detector 27 for confirming the presence or absence of the heat source water. The configuration of the water level detector 27 is not particularly limited. In the present embodiment, the water level detector 27 is an electrode type water level detector. In this case, the low water level detection electrode rod 28 is inserted into the heat source water tank 6 to monitor whether the water level of the heat source water is lower than the setting.

給水路8には、凝縮器13の出口側に、出湯温度センサ29が設けられる。出湯温度センサ29は、凝縮器13を通過後の水温を検出する。出湯温度センサ29の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、出湯温度センサ29の検出温度を目標温度に維持するようにインバータ制御される。これにより、給水路8を介した給水タンク3への給水は、出湯温度センサ29の検出温度を目標温度に維持するように、流量が調整される。   In the water supply path 8, a hot water temperature sensor 29 is provided on the outlet side of the condenser 13. The hot water temperature sensor 29 detects the water temperature after passing through the condenser 13. Based on the temperature detected by the hot water temperature sensor 29, the feed water pump 10 is controlled. Here, the feed water pump 10 is inverter-controlled so that the temperature detected by the tapping temperature sensor 29 is maintained at the target temperature. Thereby, the flow rate of water supplied to the water supply tank 3 via the water supply path 8 is adjusted so that the temperature detected by the tapping temperature sensor 29 is maintained at the target temperature.

熱源供給路18には、蒸発器15の入口側に、熱源温度センサ30が設けられる。熱源温度センサ30は、蒸発器15へ供給される熱源水の温度を検出する。但し、熱源温度センサ30は、場合により、熱源水タンク6に設けられてもよい。詳細は後述するが、熱源温度センサ30の検出温度に基づき、ヒートポンプ4(より具体的には圧縮機12)の発停と、前記目標温度の変更が可能とされる。   A heat source temperature sensor 30 is provided in the heat source supply path 18 on the inlet side of the evaporator 15. The heat source temperature sensor 30 detects the temperature of the heat source water supplied to the evaporator 15. However, the heat source temperature sensor 30 may be provided in the heat source water tank 6 according to circumstances. Although details will be described later, based on the temperature detected by the heat source temperature sensor 30, the heat pump 4 (more specifically, the compressor 12) can be started and stopped and the target temperature can be changed.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

給水タンク3への給水は、給水タンク3に設けた水位検出器22の検出信号に基づき、給水ポンプ10と補給水ポンプ11とを制御することでなされる。つまり、給水路8を介した給水タンク3への給水は、給水タンク3内の水位が給水開始水位H1を下回ると開始し、この給水開始水位H1よりも高い給水停止水位H2を上回ると停止する。また、補給水路9を介した給水タンク3への給水は、給水タンク3内の水位が補給水開始水位H3を下回ると開始し、この補給水開始水位H3よりも高い補給水停止水位H4を上回ると停止する。ここで、補給水開始水位H3は、給水開始水位H1よりも低く設定され、補給水停止水位H4は、給水開始水位H1よりも高いが給水停止水位H2よりも低く設定される。   Water supply to the water supply tank 3 is performed by controlling the water supply pump 10 and the makeup water pump 11 based on the detection signal of the water level detector 22 provided in the water supply tank 3. That is, the water supply to the water supply tank 3 through the water supply path 8 starts when the water level in the water supply tank 3 falls below the water supply start water level H1, and stops when the water level exceeds the water supply stop water level H2 higher than the water supply start water level H1. . Further, the water supply to the water supply tank 3 via the makeup water channel 9 starts when the water level in the water supply tank 3 falls below the makeup water start water level H3, and exceeds the makeup water stop water level H4 higher than the makeup water start water level H3. And stop. Here, the makeup water start water level H3 is set lower than the feed water start water level H1, and the makeup water stop water level H4 is set higher than the feed water start water level H1 but lower than the feed water stop water level H2.

このような構成であるから、いま、給水停止電極棒24が水位を検知しているとすると、給水タンク3の水位が十分にあるとして、給水ポンプ10を停止すると共に、補給水ポンプ11も停止している。給水タンク3からボイラ2への給水により、給水タンク3の水位が下がり、給水開始電極棒23が水位を検知しなくなると、給水ポンプ10を作動させる。これにより、給水路8を介して給水タンク3に給水されるが、給水停止電極棒24が水位を検知すると、給水ポンプ10を停止する。一方、給水ポンプ10を作動させても、給水タンク3の水位を回復できず、給水タンク3の水位がさらに下がり、補給水開始電極棒25が水位を検知しなくなると、補給水ポンプ11も作動させる。これにより、補給水路9を介しても給水タンク3に給水されるが、給水タンク3の水位が回復して、補給水停止電極棒26が水位を検知すると、補給水ポンプ11を停止し、さらに水位が回復して、給水停止電極棒24が水位を検知すると、給水ポンプ10を停止する。なお、給水ポンプ10を作動させて、給水路8を介した給水タンク3への給水中、熱源供給ポンプ21も作動させる。   With this configuration, if the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped and the makeup water pump 11 is also stopped, assuming that the water level in the water supply tank 3 is sufficient. doing. When the water level in the water supply tank 3 drops due to the water supply from the water supply tank 3 to the boiler 2 and the water supply start electrode rod 23 no longer detects the water level, the water supply pump 10 is operated. Thus, water is supplied to the water supply tank 3 through the water supply path 8, but when the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped. On the other hand, when the water supply pump 10 is operated, the water level of the water supply tank 3 cannot be recovered, the water level of the water supply tank 3 is further lowered, and the makeup water start electrode rod 25 no longer detects the water level, the makeup water pump 11 is also activated. Let As a result, water is supplied to the water supply tank 3 also through the supply water channel 9, but when the water level in the water supply tank 3 recovers and the supply water stop electrode rod 26 detects the water level, the supply water pump 11 is stopped, When the water level recovers and the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped. In addition, the water supply pump 10 is operated and the water supply to the water supply tank 3 through the water supply path 8 and the heat source supply pump 21 are also operated.

本実施例では、補給水停止水位H4は、給水開始水位H1よりも高いが給水停止水位H2よりも低く設定される。その結果、給水開始水位H1と給水停止水位H2との間の水位域と、補給水開始水位H3と補給水停止水位H4との間の水位域とは、一部が重複することになる。そのため、給水開始水位H1と給水停止水位H2との水位差や、補給水開始水位H3と補給水停止水位H4との水位差を、それぞれ確保し易い。これに伴い、給水ポンプ10や補給水ポンプ11の発停回数を従来技術に比べて少なくすることができる。さらに、従来技術と比べて補給水停止水位H4が比較的高いので、給水タンク3への給水速度を速めることができると共に、給水タンク3には比較的多めの水を貯留できる。よって、給水タンク3内の貯水量が不足するおそれはなく、最も重要なボイラ2やその蒸気使用設備の稼働を優先することができる。また、給水タンク3を空の状態から満水にするまでの時間を短縮することができる。   In this embodiment, the makeup water stop water level H4 is set higher than the feed water start water level H1 but lower than the feed water stop water level H2. As a result, the water level region between the water supply start water level H1 and the water supply stop water level H2 and the water level region between the makeup water start water level H3 and the makeup water stop water level H4 partially overlap each other. Therefore, it is easy to ensure the water level difference between the water supply start water level H1 and the water supply stop water level H2, and the water level difference between the makeup water start water level H3 and the makeup water stop water level H4. In connection with this, the frequency | count of start / stop of the feed water pump 10 and the makeup water pump 11 can be decreased compared with a prior art. Furthermore, since the makeup water stop water level H4 is relatively high as compared with the prior art, the water supply speed to the water supply tank 3 can be increased, and a relatively large amount of water can be stored in the water supply tank 3. Therefore, there is no fear that the amount of water stored in the water supply tank 3 will be insufficient, and priority can be given to the operation of the most important boiler 2 and its steam using equipment. Moreover, the time until the water supply tank 3 is filled with water from an empty state can be shortened.

ところで、給水開始水位H1と補給水開始水位H3との水位差は、給水開始水位H1と給水停止水位H2との水位差よりも小さく設定するのが好ましい。給水開始水位H1と補給水開始水位H3とを近づけることで、給水路8を介した給水と補給水路9を介した給水との双方を実行させ易くすることができる。これにより、給水タンク3への給水速度を速めることができる。   By the way, it is preferable to set the water level difference between the water supply start water level H1 and the makeup water start water level H3 smaller than the water level difference between the water supply start water level H1 and the water supply stop water level H2. By bringing the water supply start water level H1 and the makeup water start water level H3 close to each other, both the water supply through the water supply channel 8 and the water supply through the makeup water channel 9 can be easily performed. Thereby, the water supply speed to the water supply tank 3 can be increased.

ヒートポンプ4は、後述するように、所定の場合に作動する。ヒートポンプ4は、その圧縮機12の作動の有無により、運転と停止が切り替えられる。ヒートポンプ4の運転中、圧縮機12は、モータの電源周波数が一定に維持され、一定出力を維持される。   As will be described later, the heat pump 4 operates in a predetermined case. The heat pump 4 is switched between operation and stop depending on whether or not the compressor 12 is activated. During the operation of the heat pump 4, the compressor 12 is maintained at a constant power output frequency and a constant power output.

給水ポンプ10は、作動中、出湯温度センサ29の検出温度を目標温度に維持するように、回転数をインバータ制御される。後述するように、状況に応じて、目標温度は変更される。   During operation, the feed water pump 10 is inverter-controlled for rotation speed so as to maintain the temperature detected by the tapping temperature sensor 29 at the target temperature. As will be described later, the target temperature is changed according to the situation.

前述したように、本実施例の給水加温システム1では、給水タンク3内の水位に基づき、給水路8を介した給水タンク3への給水が制御されるが、給水路8を介した給水タンク3への給水中、熱源温度センサ30により蒸発器15への熱源流体温度を監視し、その温度が設定温度以上になると、ヒートポンプ4を停止させるのがよい。その場合でも、給水タンク3内の水位に基づく給水条件が満たされる限りは、給水路8を介して給水タンク3へ給水する。   As described above, in the feed water warming system 1 of the present embodiment, water supply to the water supply tank 3 through the water supply path 8 is controlled based on the water level in the water supply tank 3. During the water supply to the tank 3, the heat source fluid temperature to the evaporator 15 is monitored by the heat source temperature sensor 30, and when the temperature becomes equal to or higher than the set temperature, the heat pump 4 is preferably stopped. Even in that case, as long as the water supply condition based on the water level in the water supply tank 3 is satisfied, water is supplied to the water supply tank 3 through the water supply path 8.

より詳細には、本実施例では、次のように制御される。すなわち、給水路8を介した給水タンク3への給水中、熱源温度センサ30の検出温度が設定温度(たとえば60℃)未満であれば、ヒートポンプ4を作動させた状態で、出湯温度センサ29の検出温度を第一目標温度(たとえば75℃)に維持するように、給水ポンプ10をインバータ制御して、給水路8を介した給水タンク3への給水流量を調整する(第一制御)。なお、ここでは、第一目標温度は、前記設定温度よりも高い温度とされる。   More specifically, in the present embodiment, control is performed as follows. That is, if the temperature detected by the heat source temperature sensor 30 is lower than a set temperature (for example, 60 ° C.) during water supply to the water supply tank 3 via the water supply path 8, The feedwater pump 10 is inverter-controlled to maintain the detected temperature at the first target temperature (for example, 75 ° C.), and the feedwater flow rate to the feedwater tank 3 through the feedwater channel 8 is adjusted (first control). Here, the first target temperature is higher than the set temperature.

このような第一制御中、熱源温度センサ30の検出温度が設定温度(たとえば60℃)以上になると、第二制御に切り替える。第二制御では、ヒートポンプ4を停止させる。その場合でも、給水タンク3内の水位に基づく給水条件が満たされる限りは、給水路8を介して給水タンク3へ給水するが、凝縮器13の出口側水温の制御目標温度を下げるのが好ましい。つまり、出湯温度センサ29の検出温度を第一目標温度よりも低い第二目標温度(たとえば60℃)に維持するように、給水ポンプ10をインバータ制御して、給水路8を介した給水タンク3への給水流量を調整する。なお、ここでは、第二目標温度は、前記設定温度と同一温度とされるが、場合により、前記設定温度よりも低い温度とされてもよい。   During the first control, when the detected temperature of the heat source temperature sensor 30 becomes a set temperature (for example, 60 ° C.) or higher, the control is switched to the second control. In the second control, the heat pump 4 is stopped. Even in such a case, as long as the water supply condition based on the water level in the water supply tank 3 is satisfied, the water is supplied to the water supply tank 3 through the water supply path 8, but it is preferable to lower the control target temperature of the outlet side water temperature of the condenser 13. . That is, the feed water pump 3 is controlled by the inverter so that the temperature detected by the tapping temperature sensor 29 is maintained at a second target temperature (for example, 60 ° C.) lower than the first target temperature. Adjust the water supply flow rate to. Here, the second target temperature is the same temperature as the set temperature, but may be a temperature lower than the set temperature in some cases.

このように、蒸発器15への熱源流体温度が設定温度未満であれば、ヒートポンプ4を作動させた状態で、凝縮器13の出口側水温を第一目標温度に維持するように、給水路8を介した給水タンク3への給水流量を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。一方、蒸発器15への熱源流体温度が設定温度以上になると、ヒートポンプ4を停止させるので、圧縮機12の保護を図ることができる。但し、その場合でも、廃熱回収熱交換器17において、給水と熱源流体とを熱交換して、熱源流体からの熱回収を図ることができる。しかも、凝縮器13の出口側水温の制御目標温度を、第一目標温度よりも低い第二目標温度に切り替えることで、給水路8を介した給水タンク3への給水流量をある程度以上に確保して、熱源流体からの熱回収を有効に図ることができる。   Thus, if the heat source fluid temperature to the evaporator 15 is lower than the set temperature, the water supply path 8 is maintained so that the outlet side water temperature of the condenser 13 is maintained at the first target temperature while the heat pump 4 is operated. Regardless of the water temperature of the water supply source or the temperature of the heat source fluid, hot water having a desired temperature can be obtained by adjusting the flow rate of the water supply to the water supply tank 3 via the. On the other hand, when the heat source fluid temperature to the evaporator 15 becomes equal to or higher than the set temperature, the heat pump 4 is stopped, so that the compressor 12 can be protected. However, even in that case, the waste heat recovery heat exchanger 17 can exchange heat between the water supply and the heat source fluid to recover the heat from the heat source fluid. In addition, by switching the control target temperature of the outlet side water temperature of the condenser 13 to the second target temperature lower than the first target temperature, the water supply flow rate to the water supply tank 3 via the water supply path 8 is ensured to some extent. Thus, heat recovery from the heat source fluid can be effectively achieved.

第二制御から第一制御への切替えは、次のように行われる。すなわち、ヒートポンプ4を停止した状態で、出湯温度センサ29の検出温度を第二目標温度に維持するように、給水路8を介した給水タンク3への給水流量を調整中(つまり第二制御中)、熱源温度センサ30の検出温度が設定温度未満を設定時間(たとえば60秒)継続した場合には、第一制御に戻される。つまり、ヒートポンプ4を再起動して、出湯温度センサ29の検出温度を第一目標温度に維持するように、給水路8を介した給水タンク3への給水流量を調整する制御に切り替えればよい。   Switching from the second control to the first control is performed as follows. That is, while the heat pump 4 is stopped, the feed water flow rate to the feed water tank 3 via the feed water channel 8 is being adjusted so that the temperature detected by the hot water temperature sensor 29 is maintained at the second target temperature (that is, during the second control). ), When the detected temperature of the heat source temperature sensor 30 continues below the set temperature for a set time (for example, 60 seconds), the process returns to the first control. In other words, the heat pump 4 may be restarted to switch to control for adjusting the feed water flow rate to the feed water tank 3 via the feed water path 8 so that the temperature detected by the hot water temperature sensor 29 is maintained at the first target temperature.

但し、第二制御から第一制御への切替えは、次のように行ってもよい。すなわち、ヒートポンプ4を停止した状態で、出湯温度センサ29の検出温度を第二目標温度に維持するように、給水路8を介した給水タンク3への給水流量を調整中(つまり第二制御中)、熱源温度センサ30の検出温度が設定温度よりも低い所定温度(たとえば58℃)未満になった場合には、第一制御に戻される。つまり、ヒートポンプ4を再起動して、出湯温度センサ29の検出温度を第一目標温度に維持するように、給水路8を介した給水タンク3への給水流量を調整する制御に切り替えればよい。   However, switching from the second control to the first control may be performed as follows. That is, while the heat pump 4 is stopped, the feed water flow rate to the feed water tank 3 via the feed water channel 8 is being adjusted so that the temperature detected by the hot water temperature sensor 29 is maintained at the second target temperature (that is, during the second control). ) When the temperature detected by the heat source temperature sensor 30 is lower than a predetermined temperature (for example, 58 ° C.) lower than the set temperature, the first control is returned to. In other words, the heat pump 4 may be restarted to switch to control for adjusting the feed water flow rate to the feed water tank 3 via the feed water path 8 so that the temperature detected by the hot water temperature sensor 29 is maintained at the first target temperature.

いずれにしても、蒸発器15への熱源流体温度が所定に下がると、ヒートポンプ4を停止させた第二制御から、ヒートポンプ4を稼働させた第一制御に戻すことができる。このようにして、蒸発器15への熱源流体温度に応じて、第一制御と第二制御との切り替えが行われる。   In any case, when the heat source fluid temperature to the evaporator 15 is lowered to a predetermined level, the second control in which the heat pump 4 is stopped can be returned to the first control in which the heat pump 4 is operated. In this way, switching between the first control and the second control is performed according to the heat source fluid temperature to the evaporator 15.

但し、給水路8を介した給水タンク3への給水中、熱源温度センサ30の検出温度が前記設定温度よりも高い上限温度(たとえば65℃)以上になると、給水加温システム1の稼働を停止するのがよい。具体的には、ヒートポンプ4を停止すると共に、熱源供給ポンプ21を停止して蒸発器15への熱源流体の供給も停止する。さらに、給水ポンプ10も停止するのがよい。このようにして、蒸発器15への熱源流体温度が過度に上昇した場合には、給水加温システム1の稼働を停止することで、給水加温システム1の保護を図ることができる。なお、ここでは、上限温度は、前記設定温度よりも高いが、前記第一目標温度よりも低い温度とされる。   However, when the temperature detected by the heat source temperature sensor 30 becomes higher than the upper limit temperature (for example, 65 ° C.) higher than the set temperature during water supply to the water supply tank 3 through the water supply path 8, the operation of the water supply heating system 1 is stopped. It is good to do. Specifically, the heat pump 4 is stopped, the heat source supply pump 21 is stopped, and the supply of the heat source fluid to the evaporator 15 is also stopped. Furthermore, the water supply pump 10 is also preferably stopped. Thus, when the heat source fluid temperature to the evaporator 15 rises excessively, the operation of the feed water warming system 1 is stopped, so that the feed water warming system 1 can be protected. Here, the upper limit temperature is higher than the set temperature but lower than the first target temperature.

その他、ヒートポンプ4の運転中、熱源水タンク6の水位が下がり、低水位検出電極棒28が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器15への熱源水の供給を停止するのがよい。これにより、ヒートポンプ4を無駄に運転するのが防止される。また、同様に、給水路8を介した給水タンク3への給水中、万一、給水路8を通る給水の量が設定を下回ると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器15への熱源水の供給を停止するのがよい。   In addition, when the water level of the heat source water tank 6 falls during the operation of the heat pump 4 and the low water level detection electrode rod 28 does not detect the water level, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is stopped and the evaporator The supply of heat source water to 15 may be stopped. This prevents the heat pump 4 from being wasted. Similarly, when the amount of water supplied to the water supply tank 3 via the water supply path 8 is below the setting, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is turned on. It is preferable to stop the supply of heat source water to the evaporator 15.

ところで、給水加温システム1の冷態起動時(たとえば給水加温システム1の休止時間が所定よりも長い場合や、熱源水タンク6内の熱源水が常温程度まで冷えた場合など)は、給水タンク3内の水位に基づき、給水路8を介した給水が開始されると共に、熱源供給ポンプ21の作動により蒸発器15への熱源流体の供給が開始される際、次のように制御するのが好ましい。つまり、熱源温度センサ30の検出温度が下限温度(たとえば35℃)未満であれば、ヒートポンプ4を停止しておき、下限温度以上になれば、ヒートポンプ4を起動して、前記第一制御を実行する。冷態起動時、蒸発器15への熱源流体温度が下限温度以上になるまで、ヒートポンプ4を停止しておくことで、圧縮機12の保護を図ることができる。なお、下限温度は、前記設定温度や前記各目標温度よりも低い温度とされる。   By the way, when the feed water warming system 1 is cold-started (for example, when the pause time of the feed water warming system 1 is longer than a predetermined time or when the heat source water in the heat source water tank 6 is cooled to about room temperature) When water supply via the water supply path 8 is started based on the water level in the tank 3 and supply of the heat source fluid to the evaporator 15 is started by the operation of the heat source supply pump 21, the following control is performed. Is preferred. That is, if the temperature detected by the heat source temperature sensor 30 is lower than the lower limit temperature (for example, 35 ° C.), the heat pump 4 is stopped, and if the temperature is equal to or higher than the lower limit temperature, the heat pump 4 is started and the first control is executed. To do. At the time of cold start, the compressor 12 can be protected by stopping the heat pump 4 until the heat source fluid temperature to the evaporator 15 becomes equal to or higher than the lower limit temperature. The lower limit temperature is set to a temperature lower than the set temperature or each target temperature.

なお、ヒートポンプ4を一旦起動後は、給水路8を介した給水タンク3への給水中、熱源温度センサ30の検出温度が下限温度未満になっても、給水路8を介した給水タンク3への給水が継続する限り、ヒートポンプ4の作動を継続するのが好ましい。ヒートポンプ4を一旦起動後は、ヒートポンプ4の冷媒は冷態起動時よりも加温されているから、ヒートポンプ4の作動を継続しても、圧縮機12を損傷するおそれはない。なお、制御器は、熱源温度センサ30の検出温度が下限温度未満になった旨を表示手段などに出力して、ユーザにお知らせするのが好ましい。   Once the heat pump 4 is activated, even when the temperature detected by the heat source temperature sensor 30 is lower than the lower limit temperature during water supply to the water supply tank 3 via the water supply path 8, the water pump 3 is supplied to the water supply tank 3 via the water supply path 8. As long as the water supply continues, the operation of the heat pump 4 is preferably continued. Once the heat pump 4 is started, the refrigerant of the heat pump 4 is warmed more than at the time of cold start, so there is no possibility of damaging the compressor 12 even if the operation of the heat pump 4 is continued. Note that the controller preferably notifies the user by outputting to the display means or the like that the detected temperature of the heat source temperature sensor 30 has become lower than the lower limit temperature.

本発明の給水加温システムは、前記実施例の構成に限らず、適宜変更可能である。特に、ヒートポンプ4と、給水タンク3と、廃熱回収熱交換器17とを備えた給水加温システム1において、冷態起動時、蒸発器15への熱源流体の供給を開始後、蒸発器15への熱源流体温度が下限温度未満であれば、ヒートポンプ4を停止しておき、下限温度以上になれば、ヒートポンプ4を起動するのであれば、その他の構成および制御は適宜に変更可能である。たとえば、前記実施例において、過冷却器16の設置を省略してもよい。また、補給水ポンプ11を備えた補給水路9は、場合により省略可能である。   The feed water heating system of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, in the feed water heating system 1 including the heat pump 4, the feed water tank 3, and the waste heat recovery heat exchanger 17, after starting the supply of the heat source fluid to the evaporator 15 during the cold start, the evaporator 15 If the heat source fluid temperature is less than the lower limit temperature, the heat pump 4 is stopped. If the heat source fluid temperature is equal to or higher than the lower limit temperature, the other configuration and control can be appropriately changed. For example, in the embodiment, the installation of the supercooler 16 may be omitted. Moreover, the supplementary water channel 9 provided with the supplementary water pump 11 is omissible depending on the case.

また、実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けた弁の開度を調整してもよい。つまり、出湯温度センサ29の検出温度などに基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Further, in the embodiment, the water supply pump 10 is inverter-controlled in order to adjust the water supply flow rate to the water supply tank 3 via the water supply path 8, but a valve provided in the water supply path 8 while controlling the water supply pump 10 on and off. The degree of opening may be adjusted. That is, as long as the flow rate of the water supply through the water supply path 8 can be adjusted based on the temperature detected by the hot water temperature sensor 29, the flow rate adjustment method can be changed as appropriate.

また、前記実施例の場合、給水タンク3に、凝縮器13を介して給水路8により給水可能であると共に、凝縮器13を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および/または補給水路9に設けた弁の開度を調整することで、給水路8や補給水路9を通る流量を調整してもよい。   In the case of the above embodiment, if the water supply tank 3 can be supplied with water by the water supply path 8 through the condenser 13 and can be supplied by the replenishment water path 9 without through the condenser 13, the water supply path 8 or The specific configuration of the replenishment water channel 9 is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branch part, and the valves provided in the water supply path 8 and / or the supplementary water path 9 downstream of the branch part are opened. By adjusting the degree, the flow rate through the water supply channel 8 and the replenishment channel 9 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて軟水器に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 and / or the makeup water channel 9, these water supply may be performed directly from a water softener. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10 by connecting the base ends of the water supply channel 8 and the makeup water channel 9 together to the water softener, the opening of an electric valve (motor valve) provided in the water supply channel 8 Instead of adjusting the degree and omitting the installation of the makeup water pump 11, the opening and closing of the electromagnetic valve provided in the makeup water channel 9 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。   Moreover, although the said Example demonstrated the system which can heat the water supply to the feed water tank 3 of the boiler 2 with the heat pump 4, the utilization place of the stored water of the feed water tank 3 is not restricted to the boiler 2, and can be changed suitably. is there.

また、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Moreover, although the said Example demonstrated the example using heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used.

また、前記実施例では、ヒートポンプ4を運転する際、圧縮機12のモータの電源周波数を一定に維持したが、場合により、圧縮機12の吐出圧を所定に維持するように制御してもよい。あるいは、給水タンク3内の水位または蒸発器15への熱源流体温度に基づき、圧縮機12の出力を調整してもよい。   Moreover, in the said Example, when operating the heat pump 4, although the power supply frequency of the motor of the compressor 12 was maintained constant, you may control so that the discharge pressure of the compressor 12 may be maintained predetermined depending on the case. . Alternatively, the output of the compressor 12 may be adjusted based on the water level in the water supply tank 3 or the heat source fluid temperature to the evaporator 15.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、低段ヒートポンプの圧縮機からの冷媒と高段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が低段ヒートポンプの凝縮器であると共に高段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプには、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the low stage heat pump and the refrigerant from the expansion valve of the high stage heat pump and exchanges heat by directly contacting both refrigerants is provided. It is a low-stage heat pump condenser and a high-stage heat pump evaporator. As described above, the multi-stage (multi-stage) heat pump includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination thereof.

さらに、前記実施例では、ヒートポンプ4の圧縮機12は、電気モータにより駆動されたが、圧縮機12の駆動源は特に問わない。たとえば、圧縮機12は、電気モータに代えてまたはそれに加えて、蒸気を用いて動力を起こすスチームモータ(蒸気エンジン)に駆動されたり、ガスエンジンにより駆動されたりしてもよい。   Furthermore, in the said Example, although the compressor 12 of the heat pump 4 was driven by the electric motor, the drive source of the compressor 12 is not ask | required in particular. For example, the compressor 12 may be driven by a steam motor (steam engine) that generates power using steam instead of or in addition to the electric motor, or may be driven by a gas engine.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
7 ポンプ
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 圧縮機
13 凝縮器
14 膨張弁
15 蒸発器
16 過冷却器
17 廃熱回収熱交換器
18 熱源供給路
19 熱源水の供給路
20 オーバーフロー路
21 熱源供給ポンプ
22 水位検出器
23 給水開始電極棒
24 給水停止電極棒
25 補給水開始電極棒
26 補給水停止電極棒
27 水位検出器
28 低水位検出電極棒
29 出湯温度センサ
30 熱源温度センサ
H1 給水開始水位
H2 給水停止水位
H3 補給水開始水位
H4 補給水停止水位
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 7 Pump 8 Supply water path 9 Supply water path 10 Supply water pump 11 Supply water pump 12 Compressor 13 Condenser 14 Expansion valve 15 Evaporator 16 Supercooling Equipment 17 Waste heat recovery heat exchanger 18 Heat source supply path 19 Heat source water supply path 20 Overflow path 21 Heat source supply pump 22 Water level detector 23 Water supply start electrode rod 24 Water supply stop electrode rod 25 Supply water start electrode rod 26 Supply water stop electrode Rod 27 Water level detector 28 Low water level detection electrode rod 29 Hot water temperature sensor 30 Heat source temperature sensor H1 Water supply start water level H2 Water supply stop water level H3 Supply water start water level H4 Supply water stop water level

Claims (7)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、
前記凝縮器を介して給水路により給水可能な給水タンクと、
前記凝縮器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とを備え、
冷態起動時、前記蒸発器への熱源流体の供給を開始後、前記蒸発器への熱源流体温度が下限温度未満であれば、前記ヒートポンプを停止しておき、下限温度以上になれば、前記ヒートポンプを起動する
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant, draw up heat from a heat source fluid that passes through the evaporator, and heat water that passes through the condenser When,
A water supply tank capable of supplying water by a water supply channel via the condenser;
A waste heat recovery heat exchanger for exchanging heat between the water in the water supply channel upstream of the condenser and the heat source fluid after passing through the evaporator;
At the time of cold start, after starting the supply of the heat source fluid to the evaporator, if the heat source fluid temperature to the evaporator is less than the lower limit temperature, the heat pump is stopped, A feed water heating system characterized by starting a heat pump.
前記ヒートポンプを一旦起動後は、前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が下限温度未満になっても、前記ヒートポンプの作動を継続する
ことを特徴とする請求項1に記載の給水加温システム。
Once the heat pump is started, the operation of the heat pump is continued even when the temperature of the heat source fluid to the evaporator becomes lower than the lower limit temperature during the water supply to the water supply tank via the water supply channel. The feed water heating system according to claim 1.
前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が前記下限温度よりも高い温度である設定温度未満であれば、前記ヒートポンプを作動させた状態で、前記凝縮器の出口側水温を第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整し、
前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が設定温度以上になると、前記ヒートポンプを停止させた状態で、前記凝縮器の出口側水温を前記第一目標温度よりも低い第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
If the heat source fluid temperature to the evaporator is lower than a set temperature that is higher than the lower limit temperature during water supply to the water supply tank via the water supply channel, the condensation is performed while the heat pump is operated. Adjusting the water supply flow rate to the water supply tank via the water supply path so as to maintain the outlet water temperature of the vessel at the first target temperature,
When the heat source fluid temperature to the evaporator is equal to or higher than a set temperature during water supply to the water supply tank via the water supply channel, the water temperature on the outlet side of the condenser is set to the first target with the heat pump stopped. The feed water heating system according to claim 1 or 2, wherein a feed water flow rate to the feed water tank via the feed water channel is adjusted so as to maintain a second target temperature lower than a temperature.
前記凝縮器の出口側水温を前記第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整中、前記蒸発器への熱源流体温度が設定温度未満を設定時間継続した場合には、前記ヒートポンプを作動させて、前記凝縮器の出口側水温を前記第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整する制御に切り替える
ことを特徴とする請求項3に記載の給水加温システム。
While adjusting the feed water flow rate to the feed water tank via the feed water channel so that the outlet water temperature of the condenser is maintained at the second target temperature, the heat source fluid temperature to the evaporator is set to be lower than a set temperature. Control that adjusts the feed water flow rate to the feed water tank via the feed water path so that the heat pump is operated and the outlet side water temperature of the condenser is maintained at the first target temperature when the time continues. The feed water warming system according to claim 3, wherein the feed water warming system is switched to.
前記凝縮器の出口側水温を前記第二目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整中、前記蒸発器への熱源流体温度が設定温度よりも低い所定温度未満になった場合には、前記ヒートポンプを作動させて、前記凝縮器の出口側水温を前記第一目標温度に維持するように、前記給水路を介した前記給水タンクへの給水流量を調整する制御に切り替える
ことを特徴とする請求項3に記載の給水加温システム。
While adjusting the feed water flow rate to the feed water tank via the feed water channel so that the outlet water temperature of the condenser is maintained at the second target temperature, the heat source fluid temperature to the evaporator is lower than the set temperature When the temperature is lower than a predetermined temperature, the heat pump is operated, and the water supply flow rate to the water supply tank via the water supply path is adjusted so that the outlet water temperature of the condenser is maintained at the first target temperature. It switches to the control to adjust. The feed water heating system of Claim 3 characterized by the above-mentioned.
前記給水路を介した前記給水タンクへの給水中、前記蒸発器への熱源流体温度が前記設定温度よりも高い上限温度以上になると、前記ヒートポンプを停止すると共に、前記蒸発器への熱源流体の供給も停止する
ことを特徴とする請求項3〜5のいずれか1項に記載の給水加温システム。
When the heat source fluid temperature to the evaporator becomes equal to or higher than the upper limit temperature higher than the set temperature during water supply to the water supply tank via the water supply channel, the heat pump is stopped and the heat source fluid to the evaporator Supply also stops. The feed water heating system of any one of Claims 3-5 characterized by the above-mentioned.
前記給水路を介した前記給水タンクへの給水の有無は、前記給水タンクの水位に基づき切り替えられる
ことを特徴とする請求項1〜6のいずれか1項に記載の給水加温システム。
The water supply / warming system according to any one of claims 1 to 6, wherein the presence or absence of water supply to the water supply tank via the water supply path is switched based on a water level of the water supply tank.
JP2013190876A 2013-09-13 2013-09-13 Water heating system Expired - Fee Related JP6210204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190876A JP6210204B2 (en) 2013-09-13 2013-09-13 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190876A JP6210204B2 (en) 2013-09-13 2013-09-13 Water heating system

Publications (2)

Publication Number Publication Date
JP2015055461A true JP2015055461A (en) 2015-03-23
JP6210204B2 JP6210204B2 (en) 2017-10-11

Family

ID=52819973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190876A Expired - Fee Related JP6210204B2 (en) 2013-09-13 2013-09-13 Water heating system

Country Status (1)

Country Link
JP (1) JP6210204B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055460A (en) * 2013-09-13 2015-03-23 三浦工業株式会社 Feed water heating system
CN110274301A (en) * 2018-03-14 2019-09-24 东莞市三临机电有限公司 A kind of energy-saving and environment-friendly hot-water supply device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312379A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Controller for air conditioner
JP2009058147A (en) * 2007-08-30 2009-03-19 Hitachi Ltd Heat pump system and its operation method
JP2009168348A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Cogeneration apparatus and its control method
JP2012097941A (en) * 2010-11-01 2012-05-24 Miura Co Ltd Water supply heating system
JP2012247167A (en) * 2011-05-31 2012-12-13 Miura Co Ltd Exhaust-gas-heat recovery device
JP5263421B1 (en) * 2012-03-30 2013-08-14 三浦工業株式会社 Water heating system
JP2015078827A (en) * 2013-09-13 2015-04-23 三浦工業株式会社 Feed-water heating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312379A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Controller for air conditioner
JP2009058147A (en) * 2007-08-30 2009-03-19 Hitachi Ltd Heat pump system and its operation method
JP2009168348A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Cogeneration apparatus and its control method
JP2012097941A (en) * 2010-11-01 2012-05-24 Miura Co Ltd Water supply heating system
JP2012247167A (en) * 2011-05-31 2012-12-13 Miura Co Ltd Exhaust-gas-heat recovery device
JP5263421B1 (en) * 2012-03-30 2013-08-14 三浦工業株式会社 Water heating system
JP2015078827A (en) * 2013-09-13 2015-04-23 三浦工業株式会社 Feed-water heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055460A (en) * 2013-09-13 2015-03-23 三浦工業株式会社 Feed water heating system
CN110274301A (en) * 2018-03-14 2019-09-24 东莞市三临机电有限公司 A kind of energy-saving and environment-friendly hot-water supply device
CN110274301B (en) * 2018-03-14 2021-08-06 东莞市三临机电有限公司 Energy-saving and environment-friendly hot water supply device

Also Published As

Publication number Publication date
JP6210204B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP6132188B2 (en) Water heating system
JP2014194315A (en) Water supply and heating system
JP6065213B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP6210204B2 (en) Water heating system
JP6066071B2 (en) Water heating system
JP6341465B2 (en) Water heating system
JP2017146032A (en) Feedwater heating system
JP6187813B2 (en) Water heating system
JP6065212B2 (en) Water heating system
JP6249282B2 (en) Water heating system
JP5962971B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP2017146034A (en) Feedwater heating system
JP2015132445A (en) Feedwater heating system
JP2013238336A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system
JP2013238335A (en) Water supply heating system
JP2017096569A (en) Feedwater heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6210204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees