JP2015055186A - Seal apparatus, method for manufacturing seal apparatus, and fluid machine - Google Patents

Seal apparatus, method for manufacturing seal apparatus, and fluid machine Download PDF

Info

Publication number
JP2015055186A
JP2015055186A JP2013188846A JP2013188846A JP2015055186A JP 2015055186 A JP2015055186 A JP 2015055186A JP 2013188846 A JP2013188846 A JP 2013188846A JP 2013188846 A JP2013188846 A JP 2013188846A JP 2015055186 A JP2015055186 A JP 2015055186A
Authority
JP
Japan
Prior art keywords
sealing device
abradable layer
base material
solid lubricant
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013188846A
Other languages
Japanese (ja)
Other versions
JP6163059B2 (en
Inventor
隆裕 仁木
Takahiro Niki
隆裕 仁木
上村 健司
Kenji Kamimura
健司 上村
敏幸 峯村
Toshiyuki Minemura
敏幸 峯村
浅井 知
Satoru Asai
知 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013188846A priority Critical patent/JP6163059B2/en
Publication of JP2015055186A publication Critical patent/JP2015055186A/en
Application granted granted Critical
Publication of JP6163059B2 publication Critical patent/JP6163059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seal apparatus, a method for manufacturing the seal apparatus, and a fluid machine, which are capable of improving reliability about fluid leakage sealing.SOLUTION: According to an embodiment, a seal apparatus includes a seal fin 36 disposed in either one of a rotary part and a stationary part 32 with a gap therebetween so as to seal leakage of fluid from the gap. An abradable layer 31 is disposed on a base material 30 of the rotary part or the stationary part facing the seal fin. The abradable layer allows a solid lubricant 33 to be included inside an unmelted base material 34.

Description

本発明の実施形態は、シール装置及びシール装置の製造方法、流体機械に関する。   Embodiments described herein relate generally to a sealing device, a manufacturing method of the sealing device, and a fluid machine.

発電プラントに使用される蒸気タービンやガスタービンの仕事効率は、タービン動翼を回転させて動力(回転トルク)を発生させる流体量に影響している。つまり、タービンの静止部と回転部との隙間から漏出する流体を如何に低減させるかのシール技術がタービン性能を左右する。このため、動力発生に寄与しない流体の漏出を抑制するシール技術は、タービンの性能を向上させる重要な技術として位置付けられている。 The work efficiency of a steam turbine or a gas turbine used in a power plant affects the amount of fluid that generates power (rotational torque) by rotating turbine blades. In other words, the turbine technology affects the performance of the sealing technique for reducing the fluid leaking from the gap between the stationary part and the rotating part of the turbine. For this reason, the sealing technique which suppresses the leakage of the fluid which does not contribute to power generation is positioned as an important technique for improving the performance of the turbine.

このように、仕事効率向上にとって重要な技術として位置付けられているシール技術を組み込んだ蒸気タービンには、例えば図6に示すものがある。 As described above, for example, a steam turbine incorporating a sealing technique positioned as an important technique for improving work efficiency is shown in FIG.

この蒸気タービン100は、タービンロータ101に複数枚のタービン動翼102が周方向に設けられて構成された回転部103と、タービン動翼102へ蒸気を案内するタービンノズル104がダイアフラム内輪105及びダイアフラム外輪106に支持されて構成された静止部107と、を有している。 The steam turbine 100 includes a rotating unit 103 configured by providing a turbine rotor 101 with a plurality of turbine rotor blades 102 in the circumferential direction, and a turbine nozzle 104 that guides steam to the turbine rotor blade 102 with a diaphragm inner ring 105 and a diaphragm. And a stationary part 107 supported by the outer ring 106.

タービン動翼102とタービンノズル104とは対をなしてタービン段落を構成し、このタービン段落がタービンロータ101の軸方向に複数段に亘って配列されている。尚、ダイアフラム外輪106はタービンケーシング108に係合されている。 The turbine rotor blade 102 and the turbine nozzle 104 form a pair of turbine stages, and the turbine stages are arranged in a plurality of stages in the axial direction of the turbine rotor 101. The diaphragm outer ring 106 is engaged with the turbine casing 108.

上述の回転部103と静止部107とは隙間109を設けて配置され、この隙間109からの蒸気の漏出が、シールフィン111を備えたシール装置110によって封止される。つまり、タービン動翼102のシュラウド112に設けられたシールフィン111が、タービン動翼102のシュラウド112とダイアフラム外輪106との隙間109からの蒸気の漏出を封止している。また、ダイアフラム内輪105に設けられたシールフィン111が、ダイアフラム内輪105とタービンロータ101との隙間109からの蒸気の漏出を封止している。 The rotating part 103 and the stationary part 107 described above are arranged with a gap 109, and the leakage of steam from the gap 109 is sealed by a sealing device 110 provided with seal fins 111. That is, the seal fin 111 provided on the shroud 112 of the turbine blade 102 seals the leakage of steam from the gap 109 between the shroud 112 of the turbine blade 102 and the diaphragm outer ring 106. Further, seal fins 111 provided on the diaphragm inner ring 105 seal steam leakage from the gap 109 between the diaphragm inner ring 105 and the turbine rotor 101.

尚、静止部107と回転部103との隙間109にシール装置110を設けた技術については、数多くの発明が開示されている。 In addition, many inventions are disclosed about the technique which provided the sealing apparatus 110 in the clearance gap 109 of the stationary part 107 and the rotation part 103. FIG.

図6に示すシール装置110は、蒸気タービンやガスタービン等の流体機械に従来から数多く使用されてきたが、運転中に発生する振動等によって、静止部107としてのタービンノズル104、及びこのタービンノズル104を支持するダイアフラム内外輪105、106と、回転部103としてのタービンロータ101、タービン動翼102及びシュラウド112とが接触し、シールフィン111の一部が折損もしくは減耗し、蒸気等の漏出を確実に封止することに限界があった。 The sealing device 110 shown in FIG. 6 has been conventionally used in many fluid machines such as steam turbines and gas turbines. However, the turbine nozzle 104 as the stationary portion 107 and the turbine nozzle due to vibrations generated during operation are used. Diaphragm inner and outer rings 105 and 106 that support 104, and the turbine rotor 101, turbine rotor blade 102, and shroud 112 as the rotating unit 103 come into contact with each other, and part of the seal fin 111 breaks or wears out, thereby leaking steam and the like. There was a limit to sealing reliably.

このような状況の下、最近のシール装置110では、回転部103または静止部107のうち、シールフィン111に対峙するいずれか一方の基材に、被削性に富むアブレイダブル層(不図示)を被覆させた技術が提案されている。 Under such circumstances, in the recent sealing device 110, an abradable layer (not shown) rich in machinability is formed on any one of the rotating unit 103 and the stationary unit 107 facing the seal fin 111. ) Has been proposed.

特開2001−123803号公報JP 2001-123803 A 特開2005−220879号公報Japanese Patent Laying-Open No. 2005-220879 特開2007−170302号公報JP 2007-170302 A

ところで、前記アブレイダブル層は、コーティング材中にプラスチックやグラファイトなどの強度の低い物質を分散させてあたかもスポンジのような層になっているものや、BN(ベントナイト)のような固体潤滑剤を分散させたものがあり、いずれも被削性を確保している。 By the way, the abradable layer is formed by dispersing a low-strength material such as plastic or graphite in a coating material as if it is a layer like a sponge, or a solid lubricant such as BN (bentonite). There are dispersed ones, all of which ensure machinability.

このため、アブレイダブル層は、蒸気タービン100の運転中に、振動等によってシールフィン111と静止部107または回転部108とが接触しても、シールフィン111の折損を防止できるものの、蒸気中に含まれる酸化スケール等の異物で侵食・減肉する挙動が発生する恐れがある。 For this reason, the abradable layer can prevent breakage of the seal fin 111 even if the seal fin 111 and the stationary part 107 or the rotating part 108 come into contact with each other due to vibration or the like during operation of the steam turbine 100. There is a risk that erosion / thinning behavior may occur due to foreign matter such as oxide scale contained in.

本発明が解決しようとする課題は、流体の漏出封止に関する信頼性を向上できるシール装置及びシール装置の製造方法、流体機械を提供することである。 The problem to be solved by the present invention is to provide a sealing device, a manufacturing method of the sealing device, and a fluid machine that can improve the reliability related to fluid leakage sealing.

本実施形態に係るシール装置は、隙間を設けて配置された回転部と静止部のうち、いずれか一方にシールフィンを備えて、前記隙間からの流体の漏出を封止するシール装置において、前記シールフィンに対峙する前記回転部または前記静止部の基材にアブレイダブル層が設けられ、このアブレイダブル層は、未溶融母材の内部に固体潤滑剤を内包させて構成されたものである。 The sealing device according to the present embodiment includes a sealing fin provided in any one of a rotating unit and a stationary unit arranged with a gap, and seals leakage of fluid from the gap. An abradable layer is provided on the base of the rotating part or the stationary part facing the seal fin, and this abradable layer is configured by enclosing a solid lubricant inside an unmelted base material. is there.

本実施形態のシール装置を示す図。The figure which shows the sealing device of this embodiment. 本実施形態のシール装置を静止部に適用した具体例を示す図。The figure which shows the specific example which applied the sealing device of this embodiment to the stationary part. 本実施形態のシール装置を回転部に適用した具体例を示す図。The figure which shows the specific example which applied the sealing device of this embodiment to the rotation part. 本実施形態のシール装置をシュラウドおよびシールフィンに適用した具体例を示す図。The figure which shows the specific example which applied the sealing apparatus of this embodiment to the shroud and the seal fin. 従来の蒸気タービンにおけるシール装置を、タービン動翼及びタービンノズル等と共に示す部分断面図。The fragmentary sectional view which shows the sealing device in the conventional steam turbine with a turbine rotor blade, a turbine nozzle, etc. FIG.

以下、実施形態のシール装置及びシール装置の製造方法、流体機械を図面を参照して説明する。   Hereinafter, a sealing device, a manufacturing method of the sealing device, and a fluid machine according to an embodiment will be described with reference to the drawings.

(実施形態)
図1は第1の実施形態のシール装置を示す図である。シール装置は、図示しないシールフィンに対峙する回転部と静止部のうち、いずれか一方の基材30にアブレイダブル層31が設けられている。アブレイダブル層31は、未溶融母材34の内部に固体潤滑剤33を内包させる構成である。未溶融母材34は、固体潤滑剤33よりも強度の高い金属材料であればよく、例えば、リン青銅などの銅系合金、アルミやCuAlなどのアルミ系合金、ホワイトメタルなどのすず系合金などの軟質な金属であってもよいし、(ニッケル基合金、コバルト基合金、高クロム系合金)などの硬質な金属であってもよい。
(Embodiment)
FIG. 1 is a diagram illustrating a sealing device according to a first embodiment. In the sealing device, an abradable layer 31 is provided on any one of the base material 30 among a rotating part and a stationary part facing a seal fin (not shown). The abradable layer 31 has a configuration in which a solid lubricant 33 is included in an unmelted base material 34. The unmelted base material 34 may be a metal material having a higher strength than the solid lubricant 33, such as a copper alloy such as phosphor bronze, an aluminum alloy such as aluminum or CuAl, a tin alloy such as white metal, or the like. Or a hard metal such as (nickel base alloy, cobalt base alloy, high chromium alloy).

被削性と、耐食性の双方に優れたアブレイダブル層31を形成するために、コールドスプレー法と呼ばれる成膜技術を適用する。本手法は空気、窒素またはヘリウム等の圧縮気体により、数10μmオーダーの金属微粒子を亜音速から超音速レベルにまで加速し、固相状態のまま基材に衝突させることにより皮膜を形成させる技術である。本手法は、粒子を溶融させることなく固相状態のまま成膜する点で、従来のガス炎・プラズマ溶射と決定的に異なる。 In order to form the abradable layer 31 excellent in both machinability and corrosion resistance, a film forming technique called a cold spray method is applied. This method is a technology that forms a film by accelerating metal particles of the order of several tens of μm from subsonic to supersonic level with a compressed gas such as air, nitrogen or helium, and colliding with the substrate in the solid state. is there. This method is decisively different from conventional gas flame / plasma spraying in that the film is formed in a solid phase without melting particles.

コールドスプレー法で施工することにより、アブレイダブル層31は、未溶融母材34の内部に固体潤滑剤33を内包させる構成となる。 By applying the cold spray method, the abradable layer 31 has a configuration in which the solid lubricant 33 is included in the unmelted base material 34.

図2は第1の実施形態のシール装置を静止部32に適用した具体例を示す図である。回転部35を、タービン動翼の先端に設置されたシュラウド37とし、このシュラウド37に設けられたシールフィン36に対峙する静止部32をダイアフラム外輪とし、このダイアフラム外輪の基材30にアブレイダブル層31が設けられている。 FIG. 2 is a view showing a specific example in which the sealing device of the first embodiment is applied to the stationary part 32. The rotating portion 35 is a shroud 37 installed at the tip of the turbine rotor blade, the stationary portion 32 facing the seal fin 36 provided on the shroud 37 is a diaphragm outer ring, and an abradable is attached to the base material 30 of the diaphragm outer ring. A layer 31 is provided.

図3は本実施形態のシール装置を回転部35に適用した具体例を示す図である。静止部32をタービンノズルを支持するダイアフラム内輪とし、このダイアフラム内輪に設けられたシールフィン36に対峙する回転部35をタービンロータまたは低圧タービンロータとし、このタービンロータまたは低圧タービンロータの基材30にアブレイダブル層31が設けられている。 FIG. 3 is a view showing a specific example in which the sealing device of the present embodiment is applied to the rotating unit 35. The stationary part 32 is a diaphragm inner ring that supports the turbine nozzle, and the rotating part 35 that faces the seal fin 36 provided on the diaphragm inner ring is a turbine rotor or a low-pressure turbine rotor. An abradable layer 31 is provided.

図4は本実施形態のシール装置をシュラウド37およびシールフィン36に適用した具体例を示す図である。回転部35であるタービン動翼のシュラウド37をアブレイダブル層で形成し、このシュラウド37に設けたシールフィン36に対峙する静止部32をダイアフラム外輪としている。 FIG. 4 is a view showing a specific example in which the sealing device of the present embodiment is applied to the shroud 37 and the seal fin 36. A turbine blade shroud 37 that is a rotating portion 35 is formed of an abradable layer, and a stationary portion 32 that faces a seal fin 36 provided on the shroud 37 is a diaphragm outer ring.

ここで、静止部32又は回転部35の基材30は、マルテンサイトまたはベイナイト組成の鉄基合金である。 Here, the base material 30 of the stationary part 32 or the rotating part 35 is an iron-based alloy having a martensite or bainite composition.

また、アブレイダブル層31の固体潤滑剤33は、未溶融母材より高度が低い材料が選択され、被削性に優れる。例えば、NiCrAl合金及びBNからなる組成物、またはNiCrFeAl合金及びBNからなる組成物である。 Further, as the solid lubricant 33 of the abradable layer 31, a material having a lower altitude than the unmelted base material is selected, and the machinability is excellent. For example, a composition made of NiCrAl alloy and BN, or a composition made of NiCrFeAl alloy and BN.

アブレイダブル層31の固体潤滑剤33の割合を任意に調整し、アブレイダブル層31中の固体潤滑剤33の分散率を調整することにより、アブレイダブル層31の強度を特徴付ける未溶融母材34同士の結合率を変化させ、被削性を調整することができる。 The ratio of the solid lubricant 33 in the abradable layer 31 is arbitrarily adjusted, and the dispersion ratio of the solid lubricant 33 in the abradable layer 31 is adjusted to thereby adjust the strength of the abradable layer 31. The machinability can be adjusted by changing the bonding rate between the materials 34.

本実施形態によれば、コールドスプレー法で施工するアブレイダブル層31は未溶融なため、バルク金属の特性を反映したアブレイダブル層を形成でき、ニッケル基合金に代表される高温特性や酸化特性に優れた層を形成することができる。 According to this embodiment, since the abradable layer 31 to be applied by the cold spray method is not melted, an abradable layer reflecting the characteristics of the bulk metal can be formed. A layer having excellent characteristics can be formed.

また、材料が溶融した後に形成されるアブレイダブル層は、材料および固体潤滑剤の高温溶融時の挙動が被削性に大きな影響を与え、被削性の調整が困難であったが、本実施形態のアブレイダブル層では、未溶融なアブレイダブル材で構成されているため、固体潤滑剤の配合割合を調整することで、容易な被削性を調整することができる。 In addition, the abradable layer formed after the material was melted had a large effect on the machinability due to the high temperature melting behavior of the material and solid lubricant, and it was difficult to adjust the machinability. Since the abradable layer of the embodiment is made of an unmelted abradable material, easy machinability can be adjusted by adjusting the blending ratio of the solid lubricant.

従来のアブレイダブルシール装置では、蒸気中に含まれる酸化スケール等の異物により、アブレイダブル層が侵食されることがあり、適用困難な部位があった。しかし、本実施形態のシール装置は、(被削性を容易に調整できるため、適用の範囲が広く、タービンの更なる効率向上が見込める。 In the conventional abradable seal device, the abradable layer may be eroded by foreign matters such as oxide scales contained in the vapor, and there are parts that are difficult to apply. However, the sealing device of the present embodiment is (the machinability can be easily adjusted, so the range of application is wide and further efficiency improvement of the turbine can be expected.

以上述べた実施形態によれば、流体の漏出封止に関する信頼性を向上できる。 According to the embodiment described above, it is possible to improve the reliability related to fluid leakage sealing.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

30 基材
31 アブレイダブル層
32 静止部
33 固体潤滑剤
34 未溶融母材
35 回転部
36 シールフィン
37 シュラウド
30 Base material 31 Abradable layer 32 Stationary part 33 Solid lubricant 34 Unmelted base material 35 Rotating part 36 Seal fin 37 Shroud

Claims (7)

隙間を設けて配置された回転部と静止部のうち、いずれか一方にシールフィンを備えて、前記隙間からの流体の漏出を封止するシール装置において、
前記シールフィンに対峙する前記回転部または前記静止部の基材にアブレイダブル層が設けられ、このアブレイダブル層は、未溶融母材の内部に固体潤滑剤を内包させて構成されたシール装置。
In a sealing device that includes a seal fin on one of the rotating part and the stationary part arranged with a gap and seals leakage of fluid from the gap,
An abradable layer is provided on the base of the rotating part or the stationary part facing the seal fin, and this abradable layer is a seal formed by enclosing a solid lubricant inside an unmelted base material. apparatus.
前記未溶融母材は、固体潤滑剤よりも強度の高い金属材料である請求項1に記載のシール装置。 The sealing device according to claim 1, wherein the unmelted base material is a metal material having higher strength than a solid lubricant. 前記未溶融母材は、銅系合金、アルミ系合金、すず系合金のいずれかである請求項1に記載のシール装置。 The sealing device according to claim 1, wherein the unmelted base material is any one of a copper alloy, an aluminum alloy, and a tin alloy. 前記アブレイダブル層は、コールドスプレー法を用いて形成させた請求項1乃至3のいずれか1項に記載のシール装置。 The sealing device according to claim 1, wherein the abradable layer is formed using a cold spray method. 隙間を設けて配置された回転部と静止部のうち、いずれか一方にシールフィンを備えて、前記隙間からの流体の漏出を封止するシール装置の製造方法において、
前記シールフィンに対峙する前記回転部または前記静止部の基材にコールドスプレー法を用いてアブレイダブル層を設けることにより、未溶融母材の内部に固体潤滑剤を内包させるシール装置の製造方法。
In the manufacturing method of the sealing device, which includes a seal fin in one of the rotating part and the stationary part arranged with a gap, and seals leakage of fluid from the gap,
A manufacturing method of a sealing device in which a solid lubricant is included in an unmelted base material by providing an abradable layer on a base material of the rotating part or the stationary part facing the seal fin using a cold spray method .
前記アブレイダブル層は、固体潤滑剤の割合を調整して、アブレイダブル層中の固体潤滑剤の分散率を調整する請求項5に記載のシール装置の製造方法。 The method for manufacturing a sealing device according to claim 5, wherein the abradable layer adjusts a dispersion ratio of the solid lubricant in the abradable layer by adjusting a ratio of the solid lubricant. タービンロータに複数枚のタービン動翼が周方向に設けられて構成された回転部と、前記タービン動翼へ作動流体を案内するタービンノズルがダイアフラム内輪及びダイアフラム外輪に支持されて構成された静止部と、を有する流体機械おいて、
請求項1乃至4のいずれか1項に記載のシール装置を備えた流体機械。
A rotating part configured by providing a plurality of turbine rotor blades in the circumferential direction on a turbine rotor, and a stationary part configured by supporting a turbine nozzle for guiding a working fluid to the turbine rotor blades on a diaphragm inner ring and a diaphragm outer ring And a fluid machine having
A fluid machine comprising the sealing device according to claim 1.
JP2013188846A 2013-09-11 2013-09-11 SEALING DEVICE, SEALING DEVICE MANUFACTURING METHOD, AND FLUID MACHINE Active JP6163059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188846A JP6163059B2 (en) 2013-09-11 2013-09-11 SEALING DEVICE, SEALING DEVICE MANUFACTURING METHOD, AND FLUID MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188846A JP6163059B2 (en) 2013-09-11 2013-09-11 SEALING DEVICE, SEALING DEVICE MANUFACTURING METHOD, AND FLUID MACHINE

Publications (2)

Publication Number Publication Date
JP2015055186A true JP2015055186A (en) 2015-03-23
JP6163059B2 JP6163059B2 (en) 2017-07-12

Family

ID=52819766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188846A Active JP6163059B2 (en) 2013-09-11 2013-09-11 SEALING DEVICE, SEALING DEVICE MANUFACTURING METHOD, AND FLUID MACHINE

Country Status (1)

Country Link
JP (1) JP6163059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217132A (en) * 2015-05-14 2016-12-22 株式会社東芝 Steam turbine
US10711628B2 (en) 2016-10-24 2020-07-14 MTU Aero Engines AG Sealing fin having an axially asymmetric tip portion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256972A (en) * 1986-04-30 1987-11-09 Mazda Motor Corp Sliding contact member having excellent initial fitting characteristic and wear resistance
JPH05255896A (en) * 1992-03-12 1993-10-05 Mazda Motor Corp Sliding-contact member excellent in wear resistance and producing device therefor
JP2000192173A (en) * 1998-12-23 2000-07-11 United Technol Corp <Utc> Wearing material and metallic part having wearing coating
JP2001507774A (en) * 1996-12-10 2001-06-12 クロウマロイ ガス タービン コーポレイション Abrasive seal
JP2004131838A (en) * 2002-06-14 2004-04-30 Snecma Moteurs Metallic material that can be worn away by abrasion, part, casting, and process for producing the same material
JP2007170302A (en) * 2005-12-22 2007-07-05 Toshiba Corp Seal device
JP2008111191A (en) * 2006-10-27 2008-05-15 United Technol Corp <Utc> Method for depositing abradable material onto seal backing material surface
JP2013064365A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Member having abradable coating, and gas turbine
JP2013122227A (en) * 2011-12-12 2013-06-20 Toshiba Corp Sealing device and steam turbine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256972A (en) * 1986-04-30 1987-11-09 Mazda Motor Corp Sliding contact member having excellent initial fitting characteristic and wear resistance
JPH05255896A (en) * 1992-03-12 1993-10-05 Mazda Motor Corp Sliding-contact member excellent in wear resistance and producing device therefor
JP2001507774A (en) * 1996-12-10 2001-06-12 クロウマロイ ガス タービン コーポレイション Abrasive seal
JP2000192173A (en) * 1998-12-23 2000-07-11 United Technol Corp <Utc> Wearing material and metallic part having wearing coating
JP2004131838A (en) * 2002-06-14 2004-04-30 Snecma Moteurs Metallic material that can be worn away by abrasion, part, casting, and process for producing the same material
JP2007170302A (en) * 2005-12-22 2007-07-05 Toshiba Corp Seal device
JP2008111191A (en) * 2006-10-27 2008-05-15 United Technol Corp <Utc> Method for depositing abradable material onto seal backing material surface
JP2013064365A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Member having abradable coating, and gas turbine
JP2013122227A (en) * 2011-12-12 2013-06-20 Toshiba Corp Sealing device and steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217132A (en) * 2015-05-14 2016-12-22 株式会社東芝 Steam turbine
US10711628B2 (en) 2016-10-24 2020-07-14 MTU Aero Engines AG Sealing fin having an axially asymmetric tip portion

Also Published As

Publication number Publication date
JP6163059B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP4718991B2 (en) Sealing device
JP5600542B2 (en) Rotating machinery shaft seal device
EP2401491B1 (en) Improved air riding seal
US10316679B2 (en) Seal structure and rotating machine
JP5174241B2 (en) Shaft seal and rotating machine equipped with the same
US20090160135A1 (en) Labyrinth seal with reduced leakage flow by grooves and teeth synergistic action
JP2001123803A (en) Sealing device, steam turbine having the device, and power generating plant
JP2008223660A (en) Shaft sealing device and turbomachinery
JP2013151936A (en) Retrofittable interstage angled seal
US9828872B2 (en) Cooling structure for turbomachine
CN102667269B (en) Labyrinth seal device and method for producing a labyrinth seal device
JP2002013647A (en) Shaft sealing mechanism and gas turbine
CN102953771A (en) Labyrinth damping sealing device with low leakage and high damping performance
JP2005171999A (en) Use of thermal spray film giving uneven seal clearance to turbomachinery
JP6163059B2 (en) SEALING DEVICE, SEALING DEVICE MANUFACTURING METHOD, AND FLUID MACHINE
JP2011137491A (en) Tilting-pad journal bearing device
US20200191200A1 (en) Hermetic squeeze film damper having an elliptical damper orifice
JP2013181577A (en) Sealing device and rotary machine including the same
JP5930413B2 (en) Low flexure bimetal rotor sealant
JP5568365B2 (en) Fluid machinery
US20150354406A1 (en) Blade outer air seal and method of manufacture
JP2013122227A (en) Sealing device and steam turbine
JP2014152696A (en) Labyrinth seal device, and turbomachine using the same
JP2017160827A (en) Seal device of rotary machine, and rotary machine
JP2010174795A (en) Turbine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R151 Written notification of patent or utility model registration

Ref document number: 6163059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151