JP2015053249A - Degradation analysis method of battery and carbon material - Google Patents

Degradation analysis method of battery and carbon material Download PDF

Info

Publication number
JP2015053249A
JP2015053249A JP2013207159A JP2013207159A JP2015053249A JP 2015053249 A JP2015053249 A JP 2015053249A JP 2013207159 A JP2013207159 A JP 2013207159A JP 2013207159 A JP2013207159 A JP 2013207159A JP 2015053249 A JP2015053249 A JP 2015053249A
Authority
JP
Japan
Prior art keywords
battery
active material
activation energy
electrode active
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013207159A
Other languages
Japanese (ja)
Other versions
JP2015053249A5 (en
JP6200755B2 (en
Inventor
利央 利根川
Toshihisa Tonegawa
利央 利根川
大輔 香野
Daisuke Kono
大輔 香野
健博 田村
Takahiro Tamura
健博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013207159A priority Critical patent/JP6200755B2/en
Publication of JP2015053249A publication Critical patent/JP2015053249A/en
Publication of JP2015053249A5 publication Critical patent/JP2015053249A5/ja
Application granted granted Critical
Publication of JP6200755B2 publication Critical patent/JP6200755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a degradation analysis method of battery performing degradation analysis of an electrode active material itself quantitatively.SOLUTION: A degradation analysis method of battery determines whether or not the degradation cause of battery is derived from the electrode active material, by performing differential scanning calorimetry (DSC) of a fully charged electrode, and measuring the activation energy of the electrode active material. Preferably, differential scanning calorimetry (DSC) is performed by changing the rate of temperature rise, and the activation energy is determined from the inclination obtained by measuring the endothermic and exothermic peak temperature T(K) when the rate of temperature rise is a(°C/min), and plotting the ln(a/Tm) on the axis of ordinate and the 1/Ton the axis of abscissa.

Description

本発明は、電池の劣化分析方法に関する。   The present invention relates to a battery deterioration analysis method.

リチウムイオン電池はエネルギー密度が高く、出力特性も比較的良いことから今後自動車や蓄電池として広く普及されると期待されている。   Lithium ion batteries are expected to be widely used as automobiles and storage batteries in the future because of their high energy density and relatively good output characteristics.

電池として充放電を繰り返すことで容量や出力特性が低下するが、その原因を解明し、原因を取り除くことが電池としての特性改善へつながる。   As the battery is repeatedly charged and discharged, the capacity and output characteristics decrease. However, elucidating the cause and removing the cause leads to improvement of the battery characteristics.

従来は、例えば、電気抵抗測定やXRD(X線回折測定)によって電極活物質の結晶構造の変化を解析することで、電池の劣化解析が行われてきた。   Conventionally, battery deterioration analysis has been performed by analyzing changes in the crystal structure of the electrode active material by, for example, electrical resistance measurement or XRD (X-ray diffraction measurement).

特開2003−317810号公報JP 2003-317810 A 特開2007−134049公報JP 2007-134049 A

Journal of The Electrochemical Society, 152(1) (2005) A73−79Journal of The Electrochemical Society, 152 (1) (2005) A73-79.

しかし、電気抵抗を測るだけでは、電池の劣化が電極活物質由来なのか電極層と集電体との剥離による影響かまでは判断ができない。また、XRDでは電極活物質の結晶構造の変化を見ることができるが、電極活物質がどの程度劣化しているのかを定量的に分析することができない。
本発明は上記事情に鑑みてなされたものであって、電池の劣化が電極活物質由来か否かを定量的に判断する電池の劣化分析方法を提供することを目的とする。
However, it is not possible to determine whether the deterioration of the battery is derived from the electrode active material or the influence of the peeling between the electrode layer and the current collector only by measuring the electric resistance. In addition, in XRD, changes in the crystal structure of the electrode active material can be seen, but it is impossible to quantitatively analyze how much the electrode active material has deteriorated.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the deterioration analysis method of the battery which determines quantitatively whether deterioration of a battery originates in an electrode active material.

上記課題を解決するために、以下の構成を採用した。
(1) 満充電の電極の示差走査熱量測定(DSC)を行うことにより、電極活物質の活性化エネルギーを測定し、電池の劣化原因が電極活物質に由来するか否かを判断する電池の劣化分析方法。
(2) 昇温速度を変えて示差走査熱量測定(DSC)を行い、昇温速度a(℃/min)としたときの吸発熱ピーク温度T(K)を測定し、縦軸にln(a/T )、横軸に1/Tをプロットした時に得られる傾きを活性化エネルギーとする(1)に記載の電池の劣化分析方法。
(3) 電池劣化試験開始時の満充電時の電極活物質の活性化エネルギーEと電池劣化試験後の満充電時の電極活物質の活性化エネルギーEを用いて電極活物質劣化度をE/Eで定義する(1)または(2)に記載の電池の劣化分析方法。
(4) E/Eが1.10以上なら、電池の劣化原因が電極活物質に由来すると判断する(3)に記載の電池の劣化分析方法。
(5) エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)が2:3の体積比で混合された溶媒と、1mol/LのLiPFを電解質として含む電解液と、満充電状態の炭素材料とを、質量比で0.6:1〜1:1になるように調整し、全質量が7mg〜14mgの状態で27μLのクロムスチールニッケルの密閉容器に密封して、昇温速度1℃/min.,2℃/min.,5℃/min.の3水準でDSC測定を行った時に、250℃〜300℃の間に観測される吸熱ピークの活性化エネルギーが130kJ/mol以上である炭素材料。
In order to solve the above problems, the following configuration is adopted.
(1) By performing differential scanning calorimetry (DSC) of a fully charged electrode, the activation energy of the electrode active material is measured, and it is determined whether or not the cause of battery deterioration is derived from the electrode active material Degradation analysis method.
(2) Differential scanning calorimetry (DSC) is performed by changing the heating rate, and the endothermic peak temperature T m (K) is measured when the heating rate is a (° C./min). a / T m 2 ), and the slope obtained by plotting 1 / T m on the horizontal axis is defined as the activation energy, and the battery deterioration analysis method according to (1).
(3) via the use of an activation energy E a electrode active material deterioration degree of the activation energy E 0 and full charge when the electrode active material after the battery deterioration test of the electrode active material during fully charged when the battery deterioration test start The battery degradation analysis method according to (1) or (2), defined by E a / E 0 .
(4) The battery deterioration analysis method according to (3), wherein if E a / E 0 is 1.10 or more, it is determined that the cause of battery deterioration is derived from the electrode active material.
(5) A solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 2: 3, an electrolytic solution containing 1 mol / L LiPF 6 as an electrolyte, a fully charged carbon material, Was adjusted to a mass ratio of 0.6: 1 to 1: 1, sealed in a 27 μL chrome steel nickel sealed container with a total mass of 7 mg to 14 mg, and a heating rate of 1 ° C./min. . , 2 ° C./min. , 5 ° C./min. The carbon material whose activation energy of the endothermic peak observed between 250 ° C. and 300 ° C. is 130 kJ / mol or more when DSC measurement is performed at these three levels.

本発明によれば、電極活物質自体の劣化解析を定量的に行うことにより、電池の劣化が電極活物質由来なのかどうかを判断し、電池の劣化分析を行うことが可能になる。   According to the present invention, by quantitatively analyzing the deterioration of the electrode active material itself, it is possible to determine whether the deterioration of the battery is derived from the electrode active material and to perform the deterioration analysis of the battery.

本発明の一実施形態にかかる電池の劣化分析方法が適用されるための正極極板および負極極板を含んだラミネート型リチウムイオン二次電池の概略構成を示す外観図および断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view and a cross-sectional view illustrating a schematic configuration of a laminated lithium ion secondary battery including a positive electrode plate and a negative electrode plate to which a battery deterioration analysis method according to an embodiment of the present invention is applied. DSCの測定結果の一例である。It is an example of the measurement result of DSC.

以下、本発明の実施形態である電池の劣化分析方法について図面を参照して説明する。   Hereinafter, a battery deterioration analysis method according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態の好ましい実施態様における電池の劣化分析方法では、電池は正極、負極、電解液から構成される。電池の形態は、コイン、円筒、ラミネート型など、いずれでもよい。電池を満充電にしたのち、O,HOの濃度が低い雰囲気下で電池を解体し、電解質および電解液を洗浄し、乾燥させてDSC測定用の電極を得る。DSC測定用の電極は、耐圧・耐食性を有する密閉容器中に入れられる。この密閉容器を用いてDSC測定を行う。DSC測定は少なくとも3水準の昇温速度で実施する。昇温速度を変えた時に得られるそれぞれの吸発熱ピーク温度T(K)とその時の昇温速度a(℃/min)について、縦軸にln(a/T )、横軸に1/Tをプロットし、得られる傾きを活性化エネルギーとする。DSCから求められる劣化試験開始時の満充電時の活物質の活性化エネルギーEと劣化試験後の活物質の活性化エネルギーEを用いて活物質劣化度をE/Eとして定義する。 In the battery degradation analysis method according to a preferred embodiment of the present embodiment, the battery is composed of a positive electrode, a negative electrode, and an electrolytic solution. The form of the battery may be any of coin, cylinder, laminate type and the like. After the battery is fully charged, the battery is disassembled in an atmosphere having a low concentration of O 2 and H 2 O, and the electrolyte and the electrolytic solution are washed and dried to obtain an electrode for DSC measurement. The electrode for DSC measurement is placed in a sealed container having pressure resistance and corrosion resistance. DSC measurement is performed using this sealed container. The DSC measurement is performed at a temperature increase rate of at least three levels. With respect to each endothermic exothermic peak temperature T m (K) obtained when the temperature rising rate is changed and the temperature rising rate a (° C./min) at that time, the vertical axis is ln (a / T m 2 ), and the horizontal axis is 1 / Tm is plotted, and the slope obtained is the activation energy. The degree of active material degradation is defined as E a / E 0 using the activation energy E 0 of the active material at the time of full charge at the start of the degradation test, which is obtained from DSC, and the activation energy E a of the active material after the degradation test. .

DSC測定時に、密閉容器内に電解液を入れてもよい。この場合には、各昇温速度での活性化エネルギーを求めるときの活物質/電解質(質量比)は一定とすることが必要である。   You may put electrolyte solution in an airtight container at the time of DSC measurement. In this case, it is necessary to keep the active material / electrolyte (mass ratio) constant when determining the activation energy at each temperature increase rate.

本願発明においては、活物質の熱的構造変化に由来する吸発熱ピークを使用して活物質の活性化エネルギーを測定することで、電池の劣化解析を定量的に行うことが可能となる。   In the present invention, it is possible to quantitatively analyze the deterioration of the battery by measuring the activation energy of the active material using the endothermic peak derived from the thermal structure change of the active material.

(活性化エネルギーの測定)
エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)が2:3の体積比で混合された溶媒と、1mol/LのLiPFを電解質として含む電解液と、満充電状態の炭素材料とを、質量比で0.6:1〜1:1になるように調整し、全質量が7mg〜14mgの状態で27μLのクロムスチールニッケルの密閉容器に密封して昇温速度1℃/min.,2℃/min.,5℃/min.の3水準で、50−400℃の温度範囲でDSC測定を行う。
250℃〜300℃の間に観測される吸熱ピークの活性化エネルギーが130kJ/mol以上である黒鉛材料が好ましく、より好ましくは132kJ/mol以上、さらに好ましくは135kJ/mol以上であり140kJ/mol以下である。活性化エネルギーが130kJ/mol以上である炭素材料は、黒鉛層間の剥離が起こりづらく、電池として活性が失われづらい
(Measurement of activation energy)
A solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 2: 3, an electrolytic solution containing 1 mol / L LiPF 6 as an electrolyte, and a fully charged carbon material, The ratio was adjusted to 0.6: 1 to 1: 1, and the mixture was sealed in a 27 μL chromium steel nickel sealed container with a total mass of 7 mg to 14 mg, and the heating rate was 1 ° C./min. , 2 ° C./min. , 5 ° C./min. DSC measurement is performed at a temperature range of 50 to 400 ° C.
A graphite material having an activation energy of an endothermic peak observed between 250 ° C. and 300 ° C. is preferably 130 kJ / mol or more, more preferably 132 kJ / mol or more, further preferably 135 kJ / mol or more and 140 kJ / mol or less. It is. Carbon materials with an activation energy of 130 kJ / mol or more are unlikely to delaminate between graphite layers, making it difficult to lose activity as a battery.

以下、リチウムイオン電池を使用した場合の電池の劣化分析方法の詳細について説明する。   The details of the battery deterioration analysis method when a lithium ion battery is used will be described below.

(正極)
Liを含み、充電することによりそのLiを放出することができる物質を電極活物質として使用することが可能である。例えば、リン酸金属リチウム、リチウム含有金属酸化物を用いることができる。
(Positive electrode)
A substance containing Li and capable of releasing Li by charging can be used as the electrode active material. For example, lithium metal phosphate or lithium-containing metal oxide can be used.

(負極)
充電することによりLiを蓄えることができる物質を電極活物質として使用することが可能である。人造黒鉛、天然黒鉛などの炭素材料を単独で用いても良いし、Si、Sn、Ge、Al、Inなどの単体または該元素のうちの少なくとも1つを含む化合物、混合体、共融体または固溶体を含む粒子と炭素材料とを複合したものであってもよい。
(Negative electrode)
A substance capable of storing Li by charging can be used as the electrode active material. A carbon material such as artificial graphite or natural graphite may be used alone, or a simple substance such as Si, Sn, Ge, Al, In or a compound, a mixture, a eutectic or the like containing at least one of the elements. A composite of particles containing a solid solution and a carbon material may be used.

電極活物質(単に活物質ということもある。)は導電助材と結着剤などを混合して合剤とし、該合剤を集電体に塗布してシート状の電極とすることができる。   An electrode active material (sometimes referred to simply as an active material) can be made into a mixture by mixing a conductive additive and a binder, and the mixture can be applied to a current collector to form a sheet-like electrode. .

結着剤としては任意に選択できるが、ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、ポリテトラフルオロエチレン、ポリ(メタ)アクリレート、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエピクロルヒドリン、ポリファスファゼン、ポリアクリロニトリル、等を例示できる。   The binder can be selected arbitrarily, but polyethylene, polypropylene, ethylene propylene copolymer, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, polytetrafluoroethylene, poly (meth) acrylate, polyvinylidene fluoride, polyethylene oxide , Polypropylene oxide, polyepichlorohydrin, polyphasphazene, polyacrylonitrile, and the like.

導電助材としては任意に選択できるが、銀粉などの導電性金属粉;ファーネスブラック、ケッチェンブラック、アセチレンブラックなどの導電性カーボン粉;カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維などが挙げられる。導電性助剤としては気相法炭素繊維が好ましい。気相法炭素繊維は、その繊維径が5nm以上0.2μm以下であることが好ましい。繊維長さ/繊維径の比が5〜1000であることが好ましい。気相法炭素繊維の含有量は電極活物質に対して0.1〜10質量%であることが好ましい。   The conductive aid can be arbitrarily selected, but conductive metal powder such as silver powder; conductive carbon powder such as furnace black, ketjen black, and acetylene black; carbon nanotube, carbon nanofiber, vapor grown carbon fiber, etc. It is done. As the conductive aid, vapor grown carbon fiber is preferable. The vapor grown carbon fiber preferably has a fiber diameter of 5 nm to 0.2 μm. The fiber length / fiber diameter ratio is preferably 5 to 1000. The content of the vapor grown carbon fiber is preferably 0.1 to 10% by mass with respect to the electrode active material.

(電解液)
非プロトン性溶媒にリチウム塩が溶解されてなる非水電解質を例示できる。
(Electrolyte)
A non-aqueous electrolyte in which a lithium salt is dissolved in an aprotic solvent can be exemplified.

非プロトン性溶媒は任意に選択されるが、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種または2種以上の混合溶媒が好ましい。
また、リチウム塩には、LiClO、LiPF、LiAsF、LiBF、LiSOCF、CHSOLi、CFSOLi等が挙げられる。
The aprotic solvent is arbitrarily selected, but at least one or two selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and vinylene carbonate The above mixed solvent is preferable.
Examples of the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, and CF 3 SO 3 Li.

また非水電解質として、いわゆる固体電解質またはゲル電解質を用いることもできる。固体電解質またはゲル電解質としては、スルホン化スチレン−オレフィン共重合体などの高分子電解質、ポリエチレンオキシドとMgClOを用いた高分子電解質、トリメチレンオキシド構造を有する高分子電解質などが挙げられる。高分子電解質に用いられる非水系溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種が好ましい。 A so-called solid electrolyte or gel electrolyte can also be used as the nonaqueous electrolyte. Examples of the solid electrolyte or the gel electrolyte include a polymer electrolyte such as a sulfonated styrene-olefin copolymer, a polymer electrolyte using polyethylene oxide and MgClO 4 , and a polymer electrolyte having a trimethylene oxide structure. The non-aqueous solvent used for the polymer electrolyte is preferably at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and vinylene carbonate.

更に、本実施形態の好ましい実施態様におけるリチウム二次電池は、正極、負極、非水電解質のみに限られず、必要に応じて他の部材等を備えていても良い。例えば正極と負極を隔離するセパレータを具備しても良い。セパレータは、非水電解質がポリマー電解質でない場合には必須である。例えば、不織布、織布、微細孔質フィルムなどや、それらを組み合わせたものなどが挙げられる。より具体的には、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等を適宜使用できる。   Furthermore, the lithium secondary battery in a preferred embodiment of the present embodiment is not limited to the positive electrode, the negative electrode, and the non-aqueous electrolyte, and may include other members as necessary. For example, a separator that separates the positive electrode and the negative electrode may be provided. The separator is essential when the non-aqueous electrolyte is not a polymer electrolyte. For example, a nonwoven fabric, a woven fabric, a microporous film, a combination thereof, and the like can be given. More specifically, a porous polypropylene film, a porous polyethylene film, or the like can be used as appropriate.

正極集電体としては任意に選択できるが、導電性金属の箔、導電性金属の網、導電性金属のパンチングメタルなどが挙げられる。導電性金属としては、アルミニウムまたはアルミニウム合金が好ましい。正極集電体には、正極合材との導電性を向上させるために炭素膜を形成しておいてもよい。また、負極集電体としては、導電性金属の箔、導電性金属の網、導電性金属のパンチングメタルなどが挙げられる。導電性金属としては銅または銅の合金が好ましい。   The positive electrode current collector can be arbitrarily selected, and examples thereof include a conductive metal foil, a conductive metal net, and a conductive metal punching metal. As the conductive metal, aluminum or an aluminum alloy is preferable. A carbon film may be formed on the positive electrode current collector to improve conductivity with the positive electrode mixture. Examples of the negative electrode current collector include a conductive metal foil, a conductive metal net, and a conductive metal punching metal. As the conductive metal, copper or a copper alloy is preferable.

(電池形態)
電池の形態はコイン型、円筒型、ラミネート型など任意の形態を用いることができる。
(Battery form)
As the form of the battery, any form such as a coin type, a cylindrical type, and a laminate type can be used.

(満充電の定義)
電池を充電する際、電解液の分解電位以内において充電を行い、電流値が0.01Cに到達した時を満充電とする。例えば、充電はレストポテンシャルから0.2Cの電流でCC(コンスタントカレント:定電流)充電を行い、次いで2mVでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が0.01Cに低下した時点で充電を停止させる。
(Definition of full charge)
When charging the battery, the battery is charged within the decomposition potential of the electrolytic solution, and when the current value reaches 0.01 C, the battery is fully charged. For example, charging is performed by CC (constant current: constant current) charging at a current of 0.2 C from the rest potential, then switching to CV (constant voltage: constant voltage) charging at 2 mV, and when the current value drops to 0.01 C To stop charging.

(電池解体)
ショートさせないよう解体するとともに、O,HOに非曝露の状態で行うことが望ましい。具体的には、Oは500ppm以下、HOは露点が−50℃以下で行うことが望ましい。
(Battery disassembly)
It is desirable to disassemble so as not to cause a short circuit, and to carry out in a state not exposed to O 2 and H 2 O. Specifically, it is desirable that O 2 is 500 ppm or less and H 2 O is dew point of −50 ° C. or less.

(電極の洗浄液)
電極の洗浄は、揮発性が高く、電解質および電解液を除去可能な洗浄液を用いる。例えば、電解液がエチレンカーボネートを含んでいる場合、エチルメチルカーボネートが望ましい。
(Electrode cleaning solution)
For cleaning the electrode, a cleaning liquid that is highly volatile and capable of removing the electrolyte and the electrolytic solution is used. For example, when the electrolytic solution contains ethylene carbonate, ethyl methyl carbonate is desirable.

(電極の洗浄)
,HOに非暴露の状態で、電極を容器に入れ電極が浸る状態まで洗浄液を入れる。少なくとも10秒以上浸漬することが望ましい。その後、電解液を取り出し、新たな洗浄液で同様な操作を行う。洗浄は3回〜5回が望ましい。
(Electrode cleaning)
In a state where the electrode is not exposed to O 2 and H 2 O, the electrode is placed in a container and a cleaning solution is added until the electrode is immersed. It is desirable to immerse for at least 10 seconds or more. Thereafter, the electrolytic solution is taken out and the same operation is performed with a new cleaning solution. The washing is preferably performed 3 to 5 times.

(電極の乾燥)
真空条件下で5分以上行うことが望ましい。
(Dry electrode)
It is desirable to carry out for 5 minutes or more under vacuum conditions.

(密閉容器への封入)
,HOに非暴露の状態で、電極を洗浄・乾燥した後、活物質だけを削りだして質量を測定し、耐圧、耐食性を有する密閉容器に活物質を詰めて蓋をする。容器の素材としてはSUSを用いることができる。また、この時電解液を入れることもできる。
(Enclosed in a sealed container)
After washing and drying the electrode in a state not exposed to O 2 and H 2 O, only the active material is scraped off and the mass is measured, and the active material is packed into a sealed container having pressure resistance and corrosion resistance and the lid is covered. SUS can be used as the material of the container. At this time, an electrolytic solution can also be added.

(DSC測定)
温度範囲は任意の範囲で行うことができる。好ましくは50〜400℃である。同様の条件で準備された密閉容器を複数用意し、各密閉容器について、各々別の昇温速度でDSC測定を行う。各昇温速度は2倍以上離れていることが望ましい。また、昇温速度の種類は3水準以上であることが望ましい。
(DSC measurement)
A temperature range can be performed in arbitrary ranges. Preferably it is 50-400 degreeC. A plurality of sealed containers prepared under the same conditions are prepared, and DSC measurement is performed for each sealed container at a different heating rate. It is desirable that each heating rate be separated by 2 times or more. Moreover, it is desirable that the kind of temperature increase rate is 3 levels or more.

(活性化エネルギーの算出)
昇温速度を変えた時に得られるそれぞれの吸発熱ピーク温度T(K)とその時の昇温速度a(℃/min)について、縦軸にln(a/Tm)、横軸に1/Tをプロットした時に得られる傾きを活性化エネルギー(kJ/mol)とする。
(Calculation of activation energy)
With respect to each endothermic exothermic peak temperature T m (K) obtained when the temperature rising rate is changed and the temperature rising rate a (° C./min) at that time, the vertical axis is ln (a / Tm 2 ), and the horizontal axis is 1 / The slope obtained when Tm is plotted is defined as the activation energy (kJ / mol).

(活物質劣化度の算出)
DSCから求められる試験開始時の満充電時の活物質の活性化エネルギーE0、電池試験後の活物質の活性化エネルギーEを用いて、電極活物質劣化度をE/Eと定義する。ただし、活物質の熱的構造変化に基づく吸発熱ピークを使用して、電極活物質劣化度を算出する。E/Eが1.10以上なら、電池の劣化原因が電極活物質に由来すると判断することが可能である。
(Calculation of active material degradation)
The active material activation energy E 0 at the time of full charge at the start of the test obtained from DSC and the activation energy E a of the active material after the battery test are defined as E a / E 0. To do. However, the degree of electrode active material deterioration is calculated using the endothermic peak based on the thermal structure change of the active material. If E a / E 0 is 1.10 or more, it can be determined that the cause of battery deterioration is derived from the electrode active material.

以上説明したように、本願発明における電池の劣化解析方法によれば、電池の劣化が活物質に由来するのか否かを定量的に判断することができる。   As described above, according to the battery deterioration analysis method of the present invention, it can be quantitatively determined whether or not the battery deterioration is derived from the active material.

以下に実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. Note that these are merely illustrative examples, and the present invention is not limited by these.

(実施例1)
1.ラミネート型電池の構成
図1は、本発明の一実施形態にかかる電池の劣化分析方法が適用されるための正極極板1および負極極板2を含んだラミネート型リチウムイオン二次電池の概略構成を示す図である。正極極板1および負極極板2はセパレータ3を介して積層体を形成し、リチウム塩を含んだ非水溶媒電解液とともにラミネートフィルム4からなる外装材に収納されている。正極端子5は正極集電体7と、また負極端子6は負極集電体9とそれぞれラミネートフィルム4の内部で電気的に接続されている。
Example 1
1. 1 is a schematic diagram of a laminated lithium ion secondary battery including a positive electrode plate 1 and a negative electrode plate 2 to which a battery deterioration analysis method according to an embodiment of the present invention is applied. FIG. The positive electrode plate 1 and the negative electrode plate 2 form a laminate via a separator 3 and are housed in an exterior material made of a laminate film 4 together with a non-aqueous solvent electrolyte containing a lithium salt. The positive electrode terminal 5 is electrically connected to the positive electrode current collector 7, and the negative electrode terminal 6 is electrically connected to the negative electrode current collector 9 inside the laminate film 4.

作製したラミネート型電池の具体的な条件は以下のとおりである。
・電池容量(未使用時):30mAh
・正極活物質:リン酸鉄リチウム(90質量%)
・正極導電助剤:カーボンブラック(3質量%)、気相成長炭素繊維(2質量%)
・正極バインダ:ポリフッ化ビニリデン(5質量%)
・負極活物質:黒鉛A(中国製天然黒鉛)(97質量%)
・負極バインダ:スチレンブタジエンゴム(1.5質量%)、カルボキシメチルセルロース(1.5質量%)
・セパレータ:ポリプロピレン製
・電解質:六フッ化リン酸リチウム(1mol/L)
・電解液:エチレンカーボネート、ジエチルカーボネートおよびエチルメチルカーボネートの混合液
Specific conditions of the manufactured laminate battery are as follows.
・ Battery capacity (when not used): 30 mAh
・ Positive electrode active material: lithium iron phosphate (90% by mass)
-Positive electrode conductive assistant: carbon black (3 mass%), vapor grown carbon fiber (2 mass%)
・ Positive electrode binder: Polyvinylidene fluoride (5% by mass)
・ Negative electrode active material: Graphite A (natural graphite made in China) (97% by mass)
Negative electrode binder: styrene butadiene rubber (1.5% by mass), carboxymethyl cellulose (1.5% by mass)
-Separator: made of polypropylene-Electrolyte: lithium hexafluorophosphate (1 mol / L)
・ Electrolyte: Mixed liquid of ethylene carbonate, diethyl carbonate and ethyl methyl carbonate

2.充電工程
未使用の電池を充放電機ACD−01(アスカ電子製)を用いてSOC(State of Charge)100%にした。この時の終始電位は3.7V、電流値は0.03mAとした。
2. Charging Step An unused battery was made 100% SOC (State of Charge) using a charging / discharging machine ACD-01 (manufactured by Asuka Electronics). The initial potential at this time was 3.7 V, and the current value was 0.03 mA.

3.解体洗浄工程
満充電状態の電池を、Oが0.3ppm、露点が−70℃での条件下で解体し、取り出した負極を、エチルメチルカーボネート(EMC)に10秒浸漬した後にとりだし、新たなEMCで同様に浸すことを3度繰り返したのち、真空下で5分間乾燥させて測定用電極を得た。
3. Disassembly cleaning process The fully charged battery was disassembled under the conditions of O 2 0.3 ppm and dew point of −70 ° C., and the taken-out negative electrode was taken out after being immersed in ethyl methyl carbonate (EMC) for 10 seconds. In the same manner, the immersion was repeated three times with a fresh EMC, and then dried under vacuum for 5 minutes to obtain a measurement electrode.

4.密閉容器へのサンプル封入
洗浄乾燥させた測定用電極から、スパチュラを使用して活物質だけを削り取り、削り取った活物質5.0mgを27μLのクロムスチールニッケルの密閉容器(ネッチ製)に入れた。その後、6.0mgの電解液(1M LiPF6, EC/EMC=2/3(v/v))を加え、素早く蓋をした。同様にしてDSC測定用のサンプルを合計3つ用意した。
4). Sample Encapsulation in Sealed Container From the washed and dried measurement electrode, only the active material was scraped using a spatula, and 5.0 mg of the scraped active material was placed in a 27 μL chromium steel nickel sealed container (made by Netch). Thereafter, 6.0 mg of electrolyte solution (1M LiPF6, EC / EMC = 2/3 (v / v)) was added, and the cap was quickly capped. Similarly, a total of three samples for DSC measurement were prepared.

5.DSC測定
DSC3200SA(ネッチ製)を用いて行った。参照側には、空の密閉容器を用いた。昇温速度は1℃/min.,2℃/min.,5℃/min.の3水準でおこなった。測定は50℃〜400℃の温度範囲で行った。昇温速度5℃/min.で測定した結果を図2に示す。
5. DSC measurement DSC3200SA (made by Netch) was used. An empty sealed container was used on the reference side. The heating rate is 1 ° C./min. , 2 ° C./min. , 5 ° C./min. This was done at three levels. The measurement was performed in a temperature range of 50 ° C to 400 ° C. Temperature rising rate 5 ° C./min. FIG. 2 shows the result of measurement performed in FIG.

6.活性化エネルギーの算出
DSC測定において大きなピークが2つの間に1つの吸熱ピークが観測された。この吸熱ピークは黒鉛層間の剥離エネルギーに由来するといわれているため、活性化エネルギーEを算出した。劣化により構造の乱れがある場合、活性化エネルギーは大きくなると考えられる。
6). Calculation of activation energy One endothermic peak was observed between two large peaks in DSC measurement. The endothermic peak because it is said to be derived from the peeling energy graphite layers was calculated activation energy E 1. When there is structural disturbance due to deterioration, the activation energy is considered to increase.

(実施例2)
500サイクルの充放電を行った後の電池の電極を用いたこと以外は実施例1と同じ条件でDSC測定を行い、容量維持率CおよびEを得た。
(Example 2)
DSC measurement was performed under the same conditions as in Example 1 except that the battery electrode after 500 cycles of charge / discharge was used, and capacity retention rates C 2 and E 2 were obtained.

(実施例3)
満充電状態で、60℃、4週間放置した電池の電極を用いたこと以外は実施例1と同じ条件でDSC測定を行い、容量維持率CおよびEを得た。
(Example 3)
DSC measurement was performed under the same conditions as in Example 1 except that the electrode of a battery that was left at 60 ° C. for 4 weeks in a fully charged state was used to obtain capacity retention ratios C 3 and E 3 .

(実施例4)
負極に黒鉛B(日本製人造黒鉛)を用いたこと以外は実施例1と同じ条件でDSC測定を行い、Eを得た。
Example 4
Except for using graphite B (manufactured by Nippon artificial graphite) in the negative electrode subjected to DSC measurement under the same conditions as in Example 1 to obtain E 4.

(実施例5)
500サイクルの充放電を行った後の電池の電極を用いたこと以外は実施例4と同じ条件でDSC測定を行い、容量維持率CおよびEを得た。
(Example 5)
Except for using 500 cycles cell electrodes after the charging and discharging of the carried out DSC measurement under the same conditions as in Example 4, to obtain the capacity retention ratio C 5 and E 5.

(実施例6)
満充電状態で60℃、4週間放置した電池の電極を用いたこと以外は実施例4と同じ条件でDSC測定を行い、容量維持率CおよびEを得た。
(Example 6)
DSC measurement was performed under the same conditions as in Example 4 except that the electrode of a battery left at 60 ° C. for 4 weeks in a fully charged state was used, and capacity retention ratios C 6 and E 6 were obtained.

表1に示すように、黒鉛A、Bともに500サイクル充放電後と保存試験後の劣化度がそれぞれ異なっていることが分かった。これは、充放電サイクルを重ねることで黒鉛層間の変化由来の劣化が起こるが、保存試験ではそれ以外の要因が電池の劣化の原因になっていることを示している。また、黒鉛AとBを比べると500サイクル後の劣化度が異なっている。これは、黒鉛Bの方が電極活物質としての充放電サイクル特性が黒鉛Aよりも優れていることを示している。   As shown in Table 1, it was found that both graphite A and B had different degrees of deterioration after 500 cycles of charge / discharge and after a storage test. This indicates that deterioration due to changes between the graphite layers occurs due to repeated charge and discharge cycles, but in the storage test, other factors cause deterioration of the battery. Further, when graphite A and B are compared, the degree of deterioration after 500 cycles is different. This indicates that graphite B has better charge / discharge cycle characteristics as an electrode active material than graphite A.

(実施例7)
以下の手順で作製した黒鉛を用いたこと以外は実施例1と同じ条件でDSC測定を行い、劣化度の算出および2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーEを求めた。また、作製した電池を2000サイクルの充放電を行った際の容量維持率Cを求めた。その後、実施例1と同じ条件でDSC測定を行い、劣化度の算出を行った。
(Example 7)
Performs DSC measurement under the same conditions as in Example 1 except for using was prepared by the following steps graphite was determined the activation energy E 7 of an endothermic peak between calculated and two large exothermic peak deterioration degree. Further, the capacity retention ratio was obtained C 7 when the battery produced was subjected to a charge and discharge of 2000 cycles. Thereafter, DSC measurement was performed under the same conditions as in Example 1, and the degree of deterioration was calculated.

(原料コークスおよび黒鉛の作製)
100g中のコークスにおいて200℃〜800℃で加熱した際に出てくる揮発分を液体窒素でトラップし、その揮発成分をGS−MSで測定した時に、ベンゼン環が4個結合した構造を持つ芳香族炭化水素(ピレン、テトラセン、トリフェニレン、クリセン、テトラフェンを骨格とする)の割合が、ベンゼン環が1〜5個が結合した構造を持つ芳香族炭化水素の割合を1としたときに、0.4以上〜0.5未満になるコークスを原料に用いた。これをホソカワミクロン製バンタムミルで粉砕する。次に、日清エンジニアリング製ターボクラシファイアーTC−15Nで気流分級し、粒径が0.5μm以下の粒子を実質的に含まないD50=13.5μmの炭素材料を得る。この粉砕された炭素材料と10質量%のMn(高純度化学研究所製:約10μm)を不活性雰囲気(N)で混合し、黒鉛ルツボに充填し、黒鉛化炉(SCC−U−30/300 倉田技研製)にて3100℃で加熱処理して、黒鉛材料を得た。
(Production of raw coke and graphite)
A fragrance having a structure in which four benzene rings are bonded to each other when volatile components that come out when heated at 200 ° C. to 800 ° C. in 100 g of coke are trapped with liquid nitrogen and the volatile components are measured by GS-MS. The ratio of aromatic hydrocarbons (pyrene, tetracene, triphenylene, chrysene, tetraphen as a skeleton) is 0 when the ratio of aromatic hydrocarbons having a structure in which 1 to 5 benzene rings are bonded is 1. The coke which becomes 4 or more and less than 0.5 was used as a raw material. This is pulverized with a bantam mill manufactured by Hosokawa Micron. Next, air classification is performed with a turbo classifier TC-15N manufactured by Nissin Engineering, and a carbon material having a D50 = 13.5 μm substantially free of particles having a particle size of 0.5 μm or less is obtained. This pulverized carbon material and 10% by mass of Mn (manufactured by High Purity Chemical Laboratory: about 10 μm) are mixed in an inert atmosphere (N 2 ), filled in a graphite crucible, and graphitized furnace (SCC-U-30). / 300 (manufactured by Kurata Giken) at 3100 ° C. to obtain a graphite material.

(実施例8)
黒鉛化時のMnの添加量を5質量%にしたこと以外は実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーEを求めた。また、2000サイクルの充放電を行った際の容量維持率Cを求めた。さらに劣化度の算出を行った。
(Example 8)
Graphite was produced under the same conditions as in Example 7 except that the amount of Mn added during graphitization was 5% by mass. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 8 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 8 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(実施例9)
黒鉛化時のMnの添加量を15質量%にしたこと以外は実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーEを求めた。また、2000サイクルの充放電を行った際の容量維持率Cを求めた。さらに劣化度の算出を行った。
Example 9
Graphite was produced under the same conditions as in Example 7 except that the amount of Mn added during graphitization was 15% by mass. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 9 endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 9 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例1)
炭素材料とMnの混合を空気中で行ったこと以外は実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE10を求めた。また、2000サイクルの充放電を行った際の容量維持率C10を求めた。さらに劣化度の算出を行った。
(Comparative Example 1)
Graphite was produced under the same conditions as in Example 7 except that the carbon material and Mn were mixed in air. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined endothermic peak activation energy E 10 of between two major exothermic peak. Further, the capacity retention ratio was obtained C 10 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例2)
Mnを黒鉛化時に用いていないこと以外は、実施例7と同じ原料を用いて黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE11を求めた。また、2000サイクルの充放電を行った際の容量維持率C11を求めた。さらに劣化度の算出を行った。
(Comparative Example 2)
Except that Mn was not used during graphitization, graphite was prepared using the same raw material as in Example 7. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 11 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 11 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例3)
100g中のコークスにおいて200℃〜800℃で加熱した際に出てくる揮発分を液体窒素でトラップし、その揮発成分をGS−MSで測定した時に、ベンゼン環が4個結合した構造を持つ芳香族炭化水素(ピレン、テトラセン、トリフェニレン、クリセン、テトラフェンを骨格とする)の割合が、ベンゼン環が1〜5個が結合した構造を持つ芳香族炭化水素の割合を1としたときに、0.2以上〜0.3未満になるコークスを原料に用いたこと以外は、実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE12を求めた。また、2000サイクルの充放電を行った際の容量維持率C12を求めた。さらに劣化度の算出を行った。
(Comparative Example 3)
A fragrance having a structure in which four benzene rings are bonded to each other when volatile components that come out when heated at 200 ° C. to 800 ° C. in 100 g of coke are trapped with liquid nitrogen and the volatile components are measured by GS-MS. The ratio of aromatic hydrocarbons (pyrene, tetracene, triphenylene, chrysene, tetraphen as a skeleton) is 0 when the ratio of aromatic hydrocarbons having a structure in which 1 to 5 benzene rings are bonded is 1. The graphite was produced under the same conditions as in Example 7 except that coke having a value of 2 or more and less than 0.3 was used as a raw material. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 12 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 12 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例4)
Mnを黒鉛化時に用いていないこと以外は、比較例3と同じ原料を用いて黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE13を求めた。また、2000サイクルの充放電を行った際の容量維持率C13を求めた。さらに劣化度の算出を行った。
(Comparative Example 4)
Except that Mn was not used during graphitization, graphite was prepared using the same raw material as in Comparative Example 3. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 13 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 13 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例5)
100g中のコークスにおいて200℃〜800℃で加熱した際に出てくる揮発分を液体窒素でトラップし、その揮発成分をGS−MSで測定した時に、ベンゼン環が4個結合した構造を持つ芳香族炭化水素(ピレン、テトラセン、トリフェニレン、クリセン、テトラフェンを骨格とする)の割合が、ベンゼン環が1〜5個が結合した構造を持つ芳香族炭化水素の割合を1としたときに、0.1以上〜0.2未満になるコークスを原料に用いたこと以外は、実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE14を求めた。また、2000サイクルの充放電を行った際の容量維持率C14を求めた。さらに劣化度の算出を行った。
(Comparative Example 5)
A fragrance having a structure in which four benzene rings are bonded to each other when volatile components that come out when heated at 200 ° C. to 800 ° C. in 100 g of coke are trapped with liquid nitrogen and the volatile components are measured by GS-MS. The ratio of aromatic hydrocarbons (pyrene, tetracene, triphenylene, chrysene, tetraphen as a skeleton) is 0 when the ratio of aromatic hydrocarbons having a structure in which 1 to 5 benzene rings are bonded is 1. The graphite was produced under the same conditions as in Example 7 except that coke having a value of 1 to less than 0.2 was used as a raw material. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 14 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 14 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例6)
Mnを黒鉛化時に用いないこと以外は、比較例5と同じ原料を用いて黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE15を求めた。また、2000サイクルの充放電を行った際の容量維持率C15を求めた。さらに劣化度の算出を行った。
(Comparative Example 6)
Except not using Mn at the time of graphitization, graphite was produced using the same raw material as Comparative Example 5. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined endothermic peak activation energy E 15 of between two major exothermic peak. Further, the capacity retention ratio was obtained C 15 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例7)
100g中のコークスにおいて200℃〜800℃で加熱した際に出てくる揮発分を液体窒素でトラップし、その揮発成分をGS−MSで測定した時に、ベンゼン環が4個結合した構造を持つ芳香族炭化水素(ピレン、テトラセン、トリフェニレン、クリセン、テトラフェンを骨格とする)の割合が、ベンゼン環が1〜5個が結合した構造を持つ芳香族炭化水素の割合を1としたときに、0.5以上〜0.6未満になるコークスを原料に用いたこと以外は、実施例7と同じ条件で黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE16を求めた。また、2000サイクルの充放電を行った際の容量維持率C16を求めた。さらに劣化度の算出を行った。
(Comparative Example 7)
A fragrance having a structure in which four benzene rings are bonded to each other when volatile components that come out when heated at 200 ° C. to 800 ° C. in 100 g of coke are trapped with liquid nitrogen and the volatile components are measured by GS-MS. The ratio of aromatic hydrocarbons (pyrene, tetracene, triphenylene, chrysene, tetraphen as a skeleton) is 0 when the ratio of aromatic hydrocarbons having a structure in which 1 to 5 benzene rings are bonded is 1. A graphite was produced under the same conditions as in Example 7 except that coke having a value of 5 or more and less than 0.6 was used as a raw material. Using the prepared graphite subjected to DSC measurement under the same conditions as in Example 1 to obtain the activation energy E 16 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 16 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

(比較例8)
Mnを黒鉛化時に用いていないこと以外は、比較例6と同じ原料を用いて黒鉛の作製を行った。作製した黒鉛を用い実施例1と同じ条件でDSC測定を行い、2つの大きな発熱ピークの間の吸熱ピークの活性化エネルギーE17を求めた。また、2000サイクルの充放電を行った際の容量維持率C17を求めた。さらに劣化度の算出を行った。
(Comparative Example 8)
Except that Mn was not used during graphitization, graphite was prepared using the same raw material as in Comparative Example 6. Carried out DSC measurement under the same conditions as in Example 1 using the prepared graphite was determined the activation energy E 17 of the endothermic peak between two major exothermic peak. Further, the capacity retention ratio was obtained C 17 when performing the charging and discharging of 2000 cycles. Further, the deterioration degree was calculated.

表2に示すように実施例7では劣化度が1に近く、負極自体は電池としての活性を失っておらず、容量低下は電極の剥離などの影響によるものといえる。一方で、比較例1〜7では容量維持率は実施例7と近いものもあるが劣化度が1.10よりも大きくなっている。つまり、電極自体が電池としての活性を失っている。これらは活性化エネルギーEと関連がある。活性化エネルギーEはDSC測定時の黒鉛層間の剥離エネルギーに基づくので、この値が大きいほど黒鉛層間の剥離が起こりづらく、電池として活性が失われづらいといえる。比較例1ではMnが酸化し、黒鉛化時の触媒効果が少なくなくなったため、実施例7と活性化エネルギーが異なると考えられる。実施例7および比較例2から、Mnによる黒鉛化時の触媒効果により活性化エネルギーの変化が起こるといえ、より均一な黒鉛組織が形成されていると考えられる。比較例3および8より原料コークスの選定も重要であることが言える。これは黒鉛組織が大きすぎると膨張収縮が大きく黒鉛層間の変化が起きやすいことも一因である。また、黒鉛組織が小さすぎると均一な組織になりづらく、アモルファスと黒鉛組織の混合状態になることで、黒鉛層間の変化が起きやすくなることも一因である。   As shown in Table 2, in Example 7, the degree of deterioration was close to 1, the negative electrode itself did not lose its activity as a battery, and it can be said that the decrease in capacity was due to the influence of electrode peeling and the like. On the other hand, in Comparative Examples 1 to 7, the capacity retention rate is close to that of Example 7, but the degree of deterioration is larger than 1.10. That is, the electrode itself has lost its activity as a battery. These are related to the activation energy E. Since the activation energy E is based on the delamination energy between the graphite layers at the time of DSC measurement, it can be said that the larger this value, the less the delamination between the graphite layers occurs, and the less the activity of the battery is lost. In Comparative Example 1, Mn was oxidized, and the catalytic effect at the time of graphitization became small. Therefore, the activation energy is considered to be different from Example 7. From Example 7 and Comparative Example 2, it can be said that the activation energy changes due to the catalytic effect during graphitization with Mn, and it is considered that a more uniform graphite structure is formed. From Comparative Examples 3 and 8, it can be said that selection of raw material coke is also important. This is also due to the fact that if the graphite structure is too large, the expansion and contraction is large, and changes between the graphite layers are likely to occur. In addition, if the graphite structure is too small, it is difficult to form a uniform structure, and a change between the graphite layers is likely to occur due to the mixed state of the amorphous and graphite structures.

本発明における電池の劣化分析方法により、電池の劣化が電極活物質由来か否かを定量的に判断することが可能になる。本発明における電池の劣化分析方法は、種々な分野で使用される電池の劣化分析において用いることができる。例えば、パーソナルコンピュータ、タブレット型コンピュータ、ノート型コンピュータ、携帯電話、無線機、電子手帳、電子辞書、PDA(Personal Digital Assistant)、電子メータ、電子キー、電子タグ、電力貯蔵装置、電動工具、玩具、デジタルカメラ、デジタルビデオ、AV機器、掃除機などの電気・電子機器;電気自動車、ハイブリッド自動車、電動バイク、ハイブリッドバイク、電動自転車、電動アシスト自転車、鉄道機関、航空機、船舶などの交通機関;太陽光発電システム、風力発電システム、潮力発電システム、地熱発電システム、熱差発電システム、振動発電システムなどの発電システムなどで使用される電池について採用可能である。   The battery deterioration analysis method according to the present invention makes it possible to quantitatively determine whether or not the battery deterioration is derived from the electrode active material. The battery deterioration analysis method of the present invention can be used in battery deterioration analysis used in various fields. For example, personal computers, tablet computers, notebook computers, mobile phones, wireless devices, electronic notebooks, electronic dictionaries, PDAs (Personal Digital Assistants), electronic meters, electronic keys, electronic tags, power storage devices, electric tools, toys, Electric and electronic devices such as digital cameras, digital video, AV equipment and vacuum cleaners; electric vehicles, hybrid vehicles, electric bikes, hybrid bikes, electric bicycles, electric assist bicycles, railway engines, aircraft, ships and other transportation systems; sunlight It can be used for batteries used in power generation systems such as power generation systems, wind power generation systems, tidal power generation systems, geothermal power generation systems, heat difference power generation systems, and vibration power generation systems.


Claims (5)

満充電の電極の示差走査熱量測定(DSC)を行うことにより、電極活物質の活性化エネルギーを測定し、電池の劣化原因が電極活物質に由来するか否かを判断する電池の劣化分析方法。   A battery deterioration analysis method for measuring activation energy of an electrode active material by performing differential scanning calorimetry (DSC) of a fully charged electrode and determining whether or not the cause of battery deterioration is derived from the electrode active material . 昇温速度を変えて示差走査熱量測定(DSC)を行い、昇温速度a(℃/min)としたときの吸発熱ピーク温度T(K)を測定し、縦軸にln(a/T )、横軸に1/Tをプロットした時に得られる傾きを活性化エネルギーとする請求項1に記載の電池の劣化分析方法。 Differential scanning calorimetry (DSC) is performed while changing the temperature rise rate, and the endothermic peak temperature T m (K) is measured when the temperature rise rate is a (° C./min), and the vertical axis is ln (a / T The battery degradation analysis method according to claim 1, wherein an activation energy is a slope obtained when m 2 ) and 1 / T m is plotted on the horizontal axis. 電池劣化試験開始時の満充電時の電極活物質の活性化エネルギーEと電池劣化試験後の満充電時の電極活物質の活性化エネルギーEを用いて電極活物質劣化度をE/Eで定義する請求項1または請求項2に記載の電池の劣化分析方法。 Using the activation energy E 0 of the electrode active material at the time of full charge at the start of the battery deterioration test and the activation energy E a of the electrode active material at the time of full charge after the battery deterioration test, the degree of electrode active material deterioration is expressed as E a / degradation analysis method of a battery according to claim 1 or claim 2, defined by E 0. /Eが1.10以上なら、電池の劣化原因が電極活物質に由来すると判断する請求項3に記載の電池の劣化分析方法。 The battery deterioration analysis method according to claim 3, wherein if E a / E 0 is 1.10 or more, it is determined that the cause of battery deterioration is derived from the electrode active material. エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)が2:3の体積比で混合された溶媒と、1mol/LのLiPFを電解質として含む電解液と、満充電状態の炭素材料とを、質量比で0.6:1〜1:1になるように調整し、全質量が7mg〜14mgの状態で27μLのクロムスチールニッケルの密閉容器に密封して、昇温速度1℃/min.,2℃/min.,5℃/min.の3水準でDSC測定を行った時に、250℃〜300℃の間に観測される吸熱ピークの活性化エネルギーが130kJ/mol以上である炭素材料。

A solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 2: 3, an electrolytic solution containing 1 mol / L LiPF 6 as an electrolyte, and a fully charged carbon material, Ratio was adjusted to 0.6: 1 to 1: 1, and sealed in a sealed container of 27 μL chromium steel nickel with a total mass of 7 mg to 14 mg. , 2 ° C./min. , 5 ° C./min. The carbon material whose activation energy of the endothermic peak observed between 250 ° C. and 300 ° C. is 130 kJ / mol or more when DSC measurement is performed at these three levels.

JP2013207159A 2013-08-07 2013-10-02 Battery degradation analysis method and carbon material Expired - Fee Related JP6200755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207159A JP6200755B2 (en) 2013-08-07 2013-10-02 Battery degradation analysis method and carbon material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013164000 2013-08-07
JP2013164000 2013-08-07
JP2013207159A JP6200755B2 (en) 2013-08-07 2013-10-02 Battery degradation analysis method and carbon material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017162424A Division JP6550104B2 (en) 2013-08-07 2017-08-25 Method of manufacturing graphite material

Publications (3)

Publication Number Publication Date
JP2015053249A true JP2015053249A (en) 2015-03-19
JP2015053249A5 JP2015053249A5 (en) 2016-11-24
JP6200755B2 JP6200755B2 (en) 2017-09-20

Family

ID=52702117

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013207159A Expired - Fee Related JP6200755B2 (en) 2013-08-07 2013-10-02 Battery degradation analysis method and carbon material
JP2017162424A Expired - Fee Related JP6550104B2 (en) 2013-08-07 2017-08-25 Method of manufacturing graphite material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017162424A Expired - Fee Related JP6550104B2 (en) 2013-08-07 2017-08-25 Method of manufacturing graphite material

Country Status (1)

Country Link
JP (2) JP6200755B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309879A4 (en) * 2015-06-12 2018-05-02 LG Chem, Ltd. Positive electrode mixture and secondary battery including same
CN111781253A (en) * 2020-06-19 2020-10-16 国联汽车动力电池研究院有限责任公司 Device and method for measuring desolvation activation energy of lithium ions in electrolyte
JP7345418B2 (en) 2020-03-27 2023-09-15 三井化学株式会社 Lithium ion secondary battery
JP7411475B2 (en) 2020-03-27 2024-01-11 三井化学株式会社 Complex compound and its manufacturing method, additive for lithium ion secondary batteries, non-aqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577275B1 (en) 2017-12-22 2023-09-12 삼성전자주식회사 Module for real time thermal behavior analysis of secondary cell battery and method of operating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178812A (en) * 2001-12-12 2003-06-27 Ngk Insulators Ltd Evaluation method of lithium secondary battery and lithium secondary battery using the same
JP2005149793A (en) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd Calculation method of charging/discharging upper limit temperature of lithium secondary battery, charging/discharging method of lithium secondary battery, and battery system
JP2006156126A (en) * 2004-11-29 2006-06-15 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous secondary battery, and manufacturing method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335217A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
KR100358801B1 (en) * 2000-05-17 2002-10-25 삼성에스디아이 주식회사 Negative active material for lithium secondary battery
JP2003171109A (en) * 2001-12-04 2003-06-17 Toyo Tanso Kk Artificial graphite and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178812A (en) * 2001-12-12 2003-06-27 Ngk Insulators Ltd Evaluation method of lithium secondary battery and lithium secondary battery using the same
JP2005149793A (en) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd Calculation method of charging/discharging upper limit temperature of lithium secondary battery, charging/discharging method of lithium secondary battery, and battery system
JP2006156126A (en) * 2004-11-29 2006-06-15 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous secondary battery, and manufacturing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309879A4 (en) * 2015-06-12 2018-05-02 LG Chem, Ltd. Positive electrode mixture and secondary battery including same
KR101937897B1 (en) 2015-06-12 2019-01-14 주식회사 엘지화학 Positive electrode material and secondary battery comprising the same
US10476081B2 (en) 2015-06-12 2019-11-12 Lg Chem, Ltd. Positive electrode material mixture and secondary battery including the same
JP7345418B2 (en) 2020-03-27 2023-09-15 三井化学株式会社 Lithium ion secondary battery
JP7411475B2 (en) 2020-03-27 2024-01-11 三井化学株式会社 Complex compound and its manufacturing method, additive for lithium ion secondary batteries, non-aqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary batteries
CN111781253A (en) * 2020-06-19 2020-10-16 国联汽车动力电池研究院有限责任公司 Device and method for measuring desolvation activation energy of lithium ions in electrolyte
CN111781253B (en) * 2020-06-19 2023-04-07 国联汽车动力电池研究院有限责任公司 Device and method for measuring desolvation activation energy of lithium ions in electrolyte

Also Published As

Publication number Publication date
JP6200755B2 (en) 2017-09-20
JP6550104B2 (en) 2019-07-24
JP2018022691A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
Zhou et al. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
JP6550104B2 (en) Method of manufacturing graphite material
US8574759B2 (en) Positive electrode forming material, component thereof, method for producing the same and rechargeable lithium-ion battery
JP5462445B2 (en) Lithium ion secondary battery
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
Chen et al. Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode
JP5885984B2 (en) Electrode forming material and electrode manufacturing method using the electrode forming material
Zhu et al. Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries
Chen et al. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage
CN110635116B (en) Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery
BR112020006122A2 (en) method for producing a solid state battery.
CN112310352B (en) Negative electrode active material and secondary battery
JP2008103697A (en) Electrochemical capacitor
Wang et al. Electrochemical performance of lithium iron phosphate by adding graphite nanofiber for lithium ion batteries
WO2016031085A1 (en) Anode material for lithium ion battery
JP7082405B2 (en) How to manufacture lithium-sulfur batteries
Teranishi et al. Silicon anode for rechargeable aqueous lithium–air batteries
KR20230106127A (en) Secondary battery and electric device including the same
EP3312909A1 (en) Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
CN104377350B (en) Electrode composite material and preparation method thereof and the Anode and battery with the electrode composite material
JP2018097935A (en) Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material
CN115917780A (en) Negative pole piece and preparation method thereof, secondary battery, battery module, battery pack and device
JP2009130066A (en) Lithium ion capacitor
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees