JP2015052558A - Method of carrying out and management of melted nuclear fuel material - Google Patents

Method of carrying out and management of melted nuclear fuel material Download PDF

Info

Publication number
JP2015052558A
JP2015052558A JP2013186325A JP2013186325A JP2015052558A JP 2015052558 A JP2015052558 A JP 2015052558A JP 2013186325 A JP2013186325 A JP 2013186325A JP 2013186325 A JP2013186325 A JP 2013186325A JP 2015052558 A JP2015052558 A JP 2015052558A
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel material
molten nuclear
uranium
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013186325A
Other languages
Japanese (ja)
Inventor
川野 昌平
Shohei Kawano
昌平 川野
林 大和
Yamato Hayashi
大和 林
敦史 森
Atsushi Mori
敦史 森
鈴木 淳
Atsushi Suzuki
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013186325A priority Critical patent/JP2015052558A/en
Publication of JP2015052558A publication Critical patent/JP2015052558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily analyzing content rate of uranium 235 contained in the melted nuclear fuel material during a carrying out step of the melted nuclear fuel material to evaluate and manage the recriticality.SOLUTION: In step 1, a melted nuclear fuel material is picked using a pick-up tool attached to the tip of a lifter. In steps 2 and 3, underwater weight W1 and weight in the air W2 of the picked up melted nuclear fuel material are measured. In step 4, the content rate of uranium 235 contained in the picked up melted nuclear fuel material is calculated by using the density D0 and the content rate U0 of uranium 235 of the nuclear fuel material installed in a reactor core and the measured underwater weight W1 and weight in the air W2 of the picked up melted nuclear fuel material. In step 5, the recriticality of the melted nuclear fuel material is evaluated by using the calculated content rate of uranium 235.

Description

本発明は原子力発電プラントの事故時に溶融した核燃料物質の搬出管理方法に関する。   The present invention relates to a method for carrying out nuclear fuel material melted at the time of an accident in a nuclear power plant.

原子力発電プラントは、原子炉で加熱された循環水が蒸気発生器、高圧タービン、低圧タービン、復水器、給水ポンプ、給水加熱器を順次経て、再び原子炉へ戻る循環サイクルで構成されており、蒸気発生器で発生した蒸気によって高圧タービンおよび低圧タービンを駆動して発電機を作動させ、発電を行っている。原子力発電プラントのうち沸騰水型原子炉(BWR)では原子炉で循環水を沸騰させており、原子炉が蒸気発生器を兼ねている。   A nuclear power plant consists of a circulation cycle in which circulating water heated in a nuclear reactor passes through a steam generator, a high-pressure turbine, a low-pressure turbine, a condenser, a feed water pump, and a feed water heater, and then returns to the reactor again. The high-pressure turbine and the low-pressure turbine are driven by the steam generated by the steam generator to operate the generator to generate power. In a nuclear power plant, in a boiling water reactor (BWR), circulating water is boiled in a nuclear reactor, and the nuclear reactor also serves as a steam generator.

一方、大災害等により原子力発電プラントに供給する電源が失われると、原子炉への給水が停止し、原子炉に装荷した核燃料物質が溶融する可能性がある。こうした過酷事故が発生した場合、原子炉を冷温停止させた後、溶融核燃料物質を炉心や格納容器から安全に取り出す必要がある。   On the other hand, if the power supplied to the nuclear power plant is lost due to a major disaster or the like, the water supply to the nuclear reactor may stop and the nuclear fuel material loaded in the nuclear reactor may melt. When such a severe accident occurs, it is necessary to safely remove the molten nuclear fuel material from the reactor core and containment vessel after the nuclear reactor has been cooled down.

このような溶融核燃料物質の搬出手段として、原子炉や格納容器の下部に堆積した溶融核燃料物質を切削具により切削し、搬送装置により炉外へ搬出する手段が提案されている(特許文献1)。   As a means for carrying out such molten nuclear fuel material, a means has been proposed in which molten nuclear fuel material deposited in the lower part of a nuclear reactor or a containment vessel is cut by a cutting tool and carried out of the furnace by a transfer device (Patent Document 1). .

特開2013−19875号公報JP 2013-19875 A

ところで、溶融核燃料物質にはウラン235が含まれているため、搬出作業中に不用意に取り扱えば、まれに核分裂の連鎖反応が起こり、再臨界に達する可能性がある。例えば炉心等から搬出された溶融核燃料物質を貯蔵容器等に収容する場合や溶融核燃料物質の搬出工程において、ウラン235を含有する溶融核燃料物質が大量に一箇所に集積されると、再臨界が起きる可能性がある。   By the way, since the molten nuclear fuel material contains uranium 235, if it is handled carelessly during the carrying-out operation, there is a possibility that a fission chain reaction occurs rarely and the criticality is reached. For example, when the molten nuclear fuel material transported from the core or the like is stored in a storage container or the like, or when the molten nuclear fuel material containing uranium 235 is accumulated in one place in the process of transporting the molten nuclear fuel material, recriticality occurs. there is a possibility.

このような再臨界を防止する手段の一つとして、炉心等から搬出された溶融核燃料物質のウラン235の含有率(濃縮度)を解析する必要がある。しかしながら、高放射能の溶融核燃料物質のウラン235含有率を測定するためには、炉心等から取り出した溶融核燃料物質を一旦輸送容器に収納した上、放射線核種管理施設へ輸送し、専用の測定装置を用いてウラン235の含有率を解析する必要があり、解析のために大型の設備や厳重な安全管理が必要となるとともに、解析時間が長期化するという課題があった。   As one means for preventing such recriticality, it is necessary to analyze the content (concentration) of uranium 235 of the molten nuclear fuel material carried out from the core or the like. However, in order to measure the uranium 235 content of high-activity molten nuclear fuel material, the molten nuclear fuel material taken out from the reactor core, etc. is temporarily stored in a transport container and then transported to a radionuclide management facility. It is necessary to analyze the content of uranium 235 by using a large amount of equipment, strict safety management is required for the analysis, and the analysis time is prolonged.

本発明は、上記課題を解決するためになされたもので、溶融核燃料物質の搬出工程で溶融核燃料物質に含まれるウラン235の含有率を簡便に算出することで、溶融核燃料物質を安全に搬出することができる溶融核燃料物質の搬出管理方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and by safely calculating the content of uranium 235 contained in the molten nuclear fuel material in the molten nuclear fuel material unloading step, the molten nuclear fuel material can be safely unloaded. It is an object of the present invention to provide a method for managing the delivery of molten nuclear fuel material.

上記課題を解決するために、本発明に係る溶融核燃料物質の搬出管理方法は、溶融核燃料物質を昇降装置の端部に取り付けられた採取工具により採取する工程と、採取した溶融核燃料物質の水中重量及び気中重量を測定する工程と、炉心に装荷された核燃料物質の密度及びウラン235含有率と前記測定された水中重量及び気中重量とから前記採取した溶融核燃料物質中のウラン235含有率を算出する工程と、前記算出されたウラン235含有率から前記溶融核燃料物質の再臨界を評価する工程とを、有することを特徴とする。   In order to solve the above-described problems, the molten nuclear fuel material carry-out management method according to the present invention includes a step of collecting the molten nuclear fuel material by a sampling tool attached to an end of the lifting device, and a weight of the collected molten nuclear fuel material in water. And the step of measuring the weight in the air, and the density and uranium 235 content of the nuclear fuel material loaded in the core and the measured underwater weight and air weight, the uranium 235 content in the sampled molten nuclear fuel material is determined. And a step of calculating a recriticality of the molten nuclear fuel material from the calculated uranium 235 content.

また、本発明に係る溶融核燃料物質の搬出管理方法は、溶融核燃料物質を昇降装置の端部に取り付けられた採取工具により採取する工程と、採取した溶融核燃料物質の容積と、水中重量又は気中重量を測定する工程と、炉心に装荷された核燃料物質のウラン235含有率と前記測定された容積と水中重量又は気中重量とから前記溶融核燃料物質中のウラン235含有率を算出する工程と、前記算出されたウラン235含有率から前記溶融核燃料物質の再臨界を評価する工程とを、有することを特徴とする。   Further, the method for carrying out the molten nuclear fuel material according to the present invention includes a step of collecting the molten nuclear fuel material by a sampling tool attached to an end of the lifting device, a volume of the collected molten nuclear fuel material, a weight in water or an air Measuring the weight; calculating the uranium 235 content in the molten nuclear fuel material from the uranium 235 content of the nuclear fuel material loaded in the core and the measured volume and weight in water or in air; And a step of evaluating the recriticality of the molten nuclear fuel material from the calculated uranium 235 content.

本発明によれば、溶融核燃料物質の搬出工程で溶融核燃料物質に含まれるウラン235の含有率を算出することにより、再臨界の発生を防止することができる。   According to the present invention, the occurrence of recriticality can be prevented by calculating the content of uranium 235 contained in the molten nuclear fuel material in the process of carrying out the molten nuclear fuel material.

第1の実施形態に係る溶融核燃料物質の搬出作業例を示す図。The figure which shows the example of carrying out the molten nuclear fuel material which concerns on 1st Embodiment. 第1の実施形態に係る溶融核燃料物質の搬出管理工程を示すフロー図。The flowchart which shows the carrying-out management process of the molten nuclear fuel material which concerns on 1st Embodiment. (a)、(b)、(c)は第1の実施形態に係る溶融核燃料物質の採取、搬出作業を示す図。(A), (b), (c) is a figure which shows the extraction | collection of the molten nuclear fuel material which concerns on 1st Embodiment, and a carrying-out work. 第2の実施形態に係る溶融核燃料物質の搬出管理工程を示すフロー図。The flowchart which shows the carrying-out management process of the molten nuclear fuel material which concerns on 2nd Embodiment. (a)、(b)は第2の実施形態に係る溶融核燃料物質の採取、搬出作業を示す図。(A), (b) is a figure which shows the extraction | collection and carrying-out operation | work of the molten nuclear fuel material which concern on 2nd Embodiment.

以下、本発明に係る溶融核燃料物質の搬出管理方法の実施形態について、図面を参照して説明する。
[第1の実施形態]
第1の実施形態に係る溶融核燃料物質の搬出管理方法を図1乃至図3により説明する。
Hereinafter, an embodiment of a method for managing the delivery of molten nuclear fuel material according to the present invention will be described with reference to the drawings.
[First Embodiment]
A method for managing the delivery of molten nuclear fuel material according to the first embodiment will be described with reference to FIGS.

(構成)
沸騰水型原子炉(BWR)では、格納容器3内に圧力容器4が収容され、圧力容器4内には炉心支持板2上に複数の燃料集合体が装荷された炉心1が設けられている。過酷事故時に燃料集合体の核燃料物質が溶融すると、溶融核燃料物質5は、図1に示すように、炉心支持板2、圧力容器4の下部又は格納容器3の下部に堆積する可能性がある。
(Constitution)
In a boiling water reactor (BWR), a pressure vessel 4 is accommodated in a containment vessel 3, and a core 1 loaded with a plurality of fuel assemblies is provided on a core support plate 2 in the pressure vessel 4. . When the nuclear fuel material of the fuel assembly is melted in a severe accident, the molten nuclear fuel material 5 may be deposited on the core support plate 2, the lower portion of the pressure vessel 4, or the lower portion of the containment vessel 3, as shown in FIG.

この溶融核燃料物質5を原子炉から搬出する際は、原子炉を冷温停止させた後、格納容器3内を水没させた状態で、昇降装置7の先端に取り付けられた破砕工具により固化した溶融核燃料物質5を破砕して細分化し(図示せず)、次に、昇降装置7の先端に取り付けられたバケット等からなる採取工具8により、所定量の破砕された溶融核燃料物質5を採取する。次に、昇降装置7を吊り上げ、搬送装置6により格納容器3の外部に配置された貯蔵容器内に収容する(図示せず)。   When carrying out the molten nuclear fuel material 5 from the nuclear reactor, the nuclear nuclear fuel solidified by a crushing tool attached to the tip of the elevating device 7 in a state in which the reactor 3 is cooled down and then submerged in the containment vessel 3. The material 5 is crushed and subdivided (not shown), and then a predetermined amount of the crushed molten nuclear fuel material 5 is collected by a collection tool 8 comprising a bucket or the like attached to the tip of the lifting device 7. Next, the lifting / lowering device 7 is lifted and accommodated in a storage container disposed outside the storage container 3 by the transport device 6 (not shown).

(ウラン235含有率の算出方法)
本実施形態では、破砕された溶融核燃料物質5を採取し、昇降装置7により吊り上げ搬出する際に、採取された溶融核燃料物質5中のウラン235の含有率を算出し、再臨界管理を行うもので、その算出方法及び算出工程について、以下に説明する。なお、炉心に装荷されるウラン核燃料におけるウラン235の量は「濃縮度」(3〜5%程度)として表現されるが、ここでは説明の便宜上、溶融核燃料物質5中に含まれるウラン235の量を含めて「含有率」という用語を用いて説明する。
(Calculation method of uranium 235 content)
In the present embodiment, when the crushed molten nuclear fuel material 5 is collected and lifted and carried out by the lifting device 7, the content of uranium 235 in the collected molten nuclear fuel material 5 is calculated and recriticality management is performed. The calculation method and calculation process will be described below. The amount of uranium 235 in the uranium nuclear fuel loaded in the core is expressed as “enrichment” (about 3 to 5%). Here, for convenience of explanation, the amount of uranium 235 contained in the molten nuclear fuel material 5 It explains using the term "content rate".

バケット等からなる採取工具8により採取された所定量の溶融核燃料物質5は、昇降装置7により格納容器内3内を吊り上げ搬出する過程で水中と気中を通過する。その際の溶融核燃料物質5の水中重量W1と気中重量W2を採取工具8の上端部に取り付けられた重量計10により計測する(図3(a)〜(c)参照)。   A predetermined amount of the molten nuclear fuel material 5 collected by the collection tool 8 such as a bucket passes through the water and the air in the process of being lifted and carried out inside the containment vessel 3 by the lifting device 7. At this time, the underwater weight W1 and the in-air weight W2 of the molten nuclear fuel material 5 are measured by a weighing scale 10 attached to the upper end portion of the sampling tool 8 (see FIGS. 3A to 3C).

測定された水中重量W1と気中重量W2から、溶融核燃料物質5の密度Dを式(1)により求める。
溶融核燃料物質5の密度D=W2/(W2−W1) (1)
From the measured underwater weight W1 and air weight W2, the density D of the molten nuclear fuel material 5 is obtained by the equation (1).
Density of molten nuclear fuel material 5 D = W2 / (W2-W1) (1)

一方、炉心1に装荷された核燃料物質の密度をD0、核燃料物質中のウラン235の含有率(濃縮度)をU0とすると、採取された溶融核燃料物質5中のウラン235の含有率は式(2)により算出される。
溶融核燃料物質5中のウラン235含有率=U0×(D0/D) (2)
On the other hand, when the density of nuclear fuel material loaded in the core 1 is D0 and the content (concentration) of uranium 235 in the nuclear fuel material is U0, the content of uranium 235 in the collected molten nuclear fuel material 5 is expressed by the formula ( 2).
Uranium 235 content in molten nuclear fuel material 5 = U0 × (D0 / D) (2)

式(2)で求められる溶融核燃料物質5中のウラン235含有率は、あくまでも概算値である。しかしながら、溶融核燃料物質5には炉内構造物(ステンレス鋼、低合金鋼、ニッケル基合金等)や被覆管(ジルカロイ)等の低重量の溶融物が少なからず含まれること、及び溶融前の核燃料物質である二酸化ウランは焼結により緻密に固化された物質であるところ、その物質が溶融固化すると空隙率が増加し密度が低下することを考慮すると、式(2)はウラン235含有率を安全サイドに評価したもので、この式を用いて再臨界管理を行うことにより再臨界事故を確実に防止することができる。   The content of uranium 235 in the molten nuclear fuel material 5 obtained by the equation (2) is only an approximate value. However, the molten nuclear fuel material 5 contains not only a small amount of low-weight melt such as in-furnace structures (stainless steel, low alloy steel, nickel base alloy, etc.) and cladding tubes (Zircaloy), and nuclear fuel before melting. Uranium dioxide, which is a substance, is a substance that is densely solidified by sintering, and considering that the porosity increases and the density decreases when the substance is melted and solidified, Equation (2) shows that the content of uranium 235 is safe. It is evaluated on the side, and recriticality accidents can be reliably prevented by performing recriticality management using this equation.

(算出工程)
上記算出方法を用いた溶融核燃料物質5中のウラン235含有率の算出工程を図2及び図3(a)〜(c)を用いて説明する。
(Calculation process)
The process of calculating the uranium 235 content in the molten nuclear fuel material 5 using the above calculation method will be described with reference to FIGS. 2 and 3A to 3C.

ステップ1;破砕された溶融核燃料物質5を昇降装置7の端部に取り付けられた採取工具8により採取する(図3(a))。
ステップ2; 破砕工具8を昇降装置7により吊り上げ、採取した溶融核燃料物質5の水中重量W1を破砕工具8の上端部に取り付けられた重量計10により測定する(図3(b))。
Step 1: The crushed molten nuclear fuel material 5 is sampled by the sampling tool 8 attached to the end of the lifting device 7 (FIG. 3A).
Step 2: The crushing tool 8 is lifted by the elevating device 7, and the underwater weight W1 of the collected molten nuclear fuel material 5 is measured by the weigh scale 10 attached to the upper end of the crushing tool 8 (FIG. 3 (b)).

ステップ3; 破砕工具8を昇降装置7によりさらに吊り上げ、破砕工具8が気中に露出したところで、溶融核燃料物質5の気中重量W2を重量計10により測定する(図3(c))。   Step 3: The crushing tool 8 is further lifted by the lifting device 7, and when the crushing tool 8 is exposed to the air, the air weight W2 of the molten nuclear fuel material 5 is measured by the weigh scale 10 (FIG. 3 (c)).

ステップ4; 式(1)、(2)より溶融核燃料物質5中のウラン235含有率を算出する。
ステップ5; ウラン235含有率に基づき、溶融核燃料物質5の再臨界評価を行う。
Step 4: Calculate the uranium 235 content in the molten nuclear fuel material 5 from the equations (1) and (2).
Step 5: Based on the uranium 235 content, the criticality evaluation of the molten nuclear fuel material 5 is performed.

ステップ6; 再臨界評価に基づき、溶融核燃料物質5が再臨界に達しない範囲で、貯蔵容器へ搬送し貯蔵する。
上記ステップ6では、溶融核燃料物質5が再臨界に達しない範囲で、複数回採取した溶融核燃料物質5を一つの貯蔵容器に収容することができる。
Step 6: Based on the recriticality evaluation, the molten nuclear fuel material 5 is transported to and stored in a storage container as long as the recriticality is not reached.
In step 6 described above, the molten nuclear fuel material 5 collected a plurality of times can be accommodated in one storage container as long as the molten nuclear fuel material 5 does not reach recriticality.

また、上記実施形態では、溶融核燃料物質の採取工具8として、2分割可能ないわゆるグラブバケットを用いているが、これに限定されず、ショベル等の採取工具を用いてもよい。   Moreover, in the said embodiment, what is called a grab bucket which can be divided into 2 is used as the extraction tool 8 of molten nuclear fuel material, However, It is not limited to this, You may use extraction tools, such as a shovel.

(効果)
本実施形態によれば、溶融核燃料物質を搬出する過程で溶融核燃料物質の水中重量及び気中重量を測定することにより、再臨界評価を簡便に行うことができるため、溶融核燃料物質の搬出作業を安全かつ効率的に行うことができる。
(effect)
According to the present embodiment, since the recriticality evaluation can be easily performed by measuring the weight in water and the weight in the air of the molten nuclear fuel material in the process of unloading the molten nuclear fuel material, the unloading operation of the molten nuclear fuel material is performed. It can be done safely and efficiently.

[第2の実施形態]
第2の実施形態に係る溶融核燃料物質の搬出管理方法を図4及び図5により説明する。
第1の実施形態では、溶融核燃料物質の水中重量及び気中重量を測定することによりウラン235の含有率を算出しているが、本実施形態では、溶融核燃料物質の容積Vと、水中重量W1又は気中重量W2に基づいてウラン235の含有率を算出する。
[Second Embodiment]
A method for managing the delivery of molten nuclear fuel material according to the second embodiment will be described with reference to FIGS.
In the first embodiment, the content of uranium 235 is calculated by measuring the weight in water and the weight in the air of the molten nuclear fuel material. In this embodiment, the volume V of the molten nuclear fuel material and the weight in water W1 are calculated. Alternatively, the content of uranium 235 is calculated based on the air weight W2.

具体的には、図5(a)に示すように、採取工具8の上端部に重量計10を設置するとともに、採取工具8に採取された溶融核燃料物質5の表面高さを計測する距離計11を設置する。採取工具8の内部形状は、グラブバケットの場合、例えば2分割された逆角錐形状であり、その内部形状が既知のため、距離計11により採取工具8内の溶融核燃料物質5の表面との距離を求め、その距離から溶融核燃料物質5の採取工具8の底部からの表面高さを求めれば、簡単な計算により溶融核燃料物質5の容積Vを求めることができる。   Specifically, as shown in FIG. 5A, a weight meter 10 is installed at the upper end of the sampling tool 8 and a distance meter for measuring the surface height of the molten nuclear fuel material 5 sampled by the sampling tool 8. 11 is installed. In the case of a grab bucket, the internal shape of the sampling tool 8 is, for example, an inverted pyramid shape that is divided into two parts, and since the internal shape is known, the distance from the surface of the molten nuclear fuel material 5 in the sampling tool 8 by the distance meter 11 If the surface height from the bottom of the sampling tool 8 for the molten nuclear fuel material 5 is determined from the distance, the volume V of the molten nuclear fuel material 5 can be determined by simple calculation.

例えば、容積がVとし、容積Vに対応する水の重さをW3とすると、溶融核燃料物質5の密度は、気中重量W1又は水中重量W2を用いて、式(3)又は式(4)で求めることができる。   For example, when the volume is V and the weight of water corresponding to the volume V is W3, the density of the molten nuclear fuel material 5 is expressed by the equation (3) or (4) using the air weight W1 or the underwater weight W2. Can be obtained.

溶融核燃料物質5の密度D= W2/V (3)
溶融核燃料物質5の密度D=(W1+W3)/V (4)
この第2の実施形態に基づく算出工程は以下のとおりとなる(図4)。
Density of molten nuclear fuel material D = W2 / V (3)
Density of molten nuclear fuel material 5 D = (W1 + W3) / V (4)
The calculation process based on the second embodiment is as follows (FIG. 4).

ステップ1;破砕された溶融核燃料物質5を昇降装置7の端部に取り付けられた採取工具8により採取する(図5(a))。
ステップ2a; 採取工具8を昇降装置7により吊り上げ、溶融核燃料物質5の容積Vをバケット4の上端部に取り付けられた距離計11により測定する(図5(b))。
Step 1: The crushed molten nuclear fuel material 5 is sampled by a sampling tool 8 attached to the end of the lifting device 7 (FIG. 5A).
Step 2a; The sampling tool 8 is lifted by the lifting device 7, and the volume V of the molten nuclear fuel material 5 is measured by the distance meter 11 attached to the upper end of the bucket 4 (FIG. 5B).

ステップ3a; 採取工具8を昇降装置7により吊り上げる過程で、溶融核燃料物質5の水中重量W1又は気中重量W2を重量計10により測定する(図5(b))。
ステップ4a; 式(3)又は式(4)、及び式(2)より溶融核燃料物質5中のウラン235含有率を算出する。
Step 3a; In the process of lifting the sampling tool 8 by the lifting device 7, the underwater weight W1 or the in-air weight W2 of the molten nuclear fuel material 5 is measured by the weigh scale 10 (FIG. 5B).
Step 4a: The content of uranium 235 in the molten nuclear fuel material 5 is calculated from the formula (3) or the formula (4) and the formula (2).

ステップ5; ウラン235含有率に基づき、溶融核燃料物質5の再臨界評価を行う。
ステップ6; 再臨界評価に基づき、溶融核燃料物質5が再臨界に達しない範囲で、貯蔵容器へ搬送し貯蔵する。
Step 5: Based on the uranium 235 content, the criticality evaluation of the molten nuclear fuel material 5 is performed.
Step 6: Based on the recriticality evaluation, the molten nuclear fuel material 5 is transported to and stored in a storage container as long as the recriticality is not reached.

本実施形態によれば、溶融核燃料物質5の重量を水中又は気中のいずれかで測定すればよく、より簡便に溶融核燃料物質5中のウラン235含有率を算出することができる。   According to the present embodiment, the weight of the molten nuclear fuel material 5 may be measured either in water or in air, and the uranium 235 content in the molten nuclear fuel material 5 can be calculated more easily.

[第3の実施形態]
上記実施形態では、溶融核燃料物質の水中重量W1及び/又は気中重量W2を測定することによりウラン235の含有率を算出しているが、本実施形態では炉心1に装荷された核燃料物質のウラン235の含有率(濃縮度)と原子炉の運転時間から溶融核燃料物質5中のウラン235含有率を算出する。
[Third Embodiment]
In the above embodiment, the content of uranium 235 is calculated by measuring the underwater weight W1 and / or the air weight W2 of the molten nuclear fuel material. In this embodiment, the uranium of the nuclear fuel material loaded in the core 1 is calculated. The uranium 235 content in the molten nuclear fuel material 5 is calculated from the content (concentration) of 235 and the operating time of the reactor.

具体的には、過酷事故が発生した時点での原子炉の運転時間を求め、核燃料燃焼度解析コード等による演算解析処理により過酷事故発生時の炉心1中のウラン235含有率を求める。   Specifically, the operation time of the reactor at the time of occurrence of a severe accident is obtained, and the content of uranium 235 in the core 1 at the occurrence of the severe accident is obtained by calculation analysis processing using a nuclear fuel burnup analysis code or the like.

この方法は、溶融直前の核燃料物質のウラン235含有率をより正確に求めることができるが、その反面、核燃料燃焼度解析のために大型の演算装置を必要とし、また、演算時間も長時間要する。
したがって、この算出方法は、上記の第1及び第2の実施形態で説明した算出方法の検証用として用いることが好ましい。
This method can more accurately determine the content of uranium 235 in the nuclear fuel material immediately before melting, but on the other hand, it requires a large arithmetic device for nuclear fuel burnup analysis and also requires a long calculation time. .
Therefore, this calculation method is preferably used for verification of the calculation methods described in the first and second embodiments.

以上説明したように、上記第1乃至第3の実施形態によれば、炉心、圧力容器又は格納容器内に堆積した溶融核燃料物質中のウラン235含有率を、簡単なプロセスで評価することが可能となるため、溶融核燃料物質の臨界管理や保管管理を効率的に行うことができるとともに、搬送、貯蔵工程での不測の事故を未然に防止することができる。   As described above, according to the first to third embodiments, it is possible to evaluate the uranium 235 content in the molten nuclear fuel material deposited in the core, the pressure vessel, or the containment vessel by a simple process. Therefore, criticality management and storage management of the molten nuclear fuel material can be efficiently performed, and unexpected accidents in the transportation and storage processes can be prevented in advance.

また、上記第1乃至第3の実施形態で説明した溶融核燃料物質の搬出管理方法は、BWRプラントのみならず、加圧水型原子力プラント(PWRプラント)や高速増殖炉にも適用することができる。   Moreover, the molten nuclear fuel material carry-out management method described in the first to third embodiments can be applied not only to a BWR plant but also to a pressurized water nuclear plant (PWR plant) and a fast breeder reactor.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. The novel embodiment can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…炉心、2…炉心支持板、3…格納容器、4…圧力容器、5…溶融核燃料物質、6…搬送装置、7…昇降装置、8…採取工具、10…重量計、11…距離計。   DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Core support plate, 3 ... Containment vessel, 4 ... Pressure vessel, 5 ... Molten nuclear fuel material, 6 ... Conveying device, 7 ... Lifting device, 8 ... Sampling tool, 10 ... Weigh scale, 11 ... Distance meter .

Claims (5)

溶融核燃料物質を昇降装置の端部に取り付けられた採取工具により採取する工程と、採取した溶融核燃料物質の水中重量及び気中重量を測定する工程と、炉心に装荷された核燃料物質の密度及びウラン235含有率と前記測定された水中重量及び気中重量とから前記採取した溶融核燃料物質中のウラン235含有率を算出する工程と、前記算出されたウラン235含有率から前記溶融核燃料物質の再臨界を評価する工程とを、有することを特徴とする溶融核燃料物質の搬出管理方法。   A step of collecting molten nuclear fuel material with a sampling tool attached to the end of the lifting device, a step of measuring the weight of the collected molten nuclear fuel material in water and air, the density of nuclear fuel material loaded in the core and uranium Calculating the uranium 235 content in the collected molten nuclear fuel material from the measured 235 content and the measured weight in water and air, and recriticality of the molten nuclear fuel material from the calculated uranium 235 content A method for managing the delivery of molten nuclear fuel material, comprising the step of: 溶融核燃料物質を昇降装置の端部に取り付けられた採取工具により採取する工程と、採取した溶融核燃料物質の容積と、水中重量又は気中重量を測定する工程と、炉心に装荷された核燃料物質のウラン235含有率と前記測定された容積と水中重量又は気中重量とから前記溶融核燃料物質中のウラン235含有率を算出する工程と、前記算出されたウラン235含有率から前記溶融核燃料物質の再臨界を評価する工程とを、有することを特徴とする溶融核燃料物質の搬出管理方法。   A step of collecting the molten nuclear fuel material with a sampling tool attached to the end of the lifting device, a step of measuring the volume of the collected molten nuclear fuel material, the weight in water or in the air, and the nuclear fuel material loaded in the core The step of calculating the uranium 235 content in the molten nuclear fuel material from the uranium 235 content, the measured volume and the weight in water or in the air, and reconstitution of the molten nuclear fuel material from the calculated uranium 235 content. And a step of evaluating the criticality. A method for managing the delivery of molten nuclear fuel material. 前記採取工具の上端部に重量計及び/又は距離計が設置されていることを特徴とする請求項1又は2に記載の溶融核燃料物質の搬出管理方法。   3. The method for managing the delivery of molten nuclear fuel material according to claim 1 or 2, wherein a weight meter and / or a distance meter is installed at an upper end portion of the sampling tool. 前記採取工具により採取した溶融核燃料物質を前記昇降装置により前記格納容器内を吊り上げ搬出する過程で、前記水中重量及び/又は気中重量を測定することを特徴とする請求項1乃至3のいずれか1項に記載の溶融核燃料物質の搬出管理方法。   4. The weight in water and / or the weight in the air is measured in the process in which the molten nuclear fuel material sampled by the sampling tool is lifted and carried out of the containment vessel by the lifting device. The method for managing the delivery of molten nuclear fuel material according to item 1. 前記炉心に装荷された核燃料物質のウラン235含有率と原子炉の運転時間から溶融核燃料物質中のウラン235含有率をさらに算出することを特徴とする請求項1乃至4のいずれか1項に記載の溶融核燃料物質の搬出管理方法。   5. The uranium 235 content in the molten nuclear fuel material is further calculated from the uranium 235 content in the nuclear fuel material loaded in the core and the operating time of the nuclear reactor. 6. Management method of molten nuclear fuel material.
JP2013186325A 2013-09-09 2013-09-09 Method of carrying out and management of melted nuclear fuel material Pending JP2015052558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186325A JP2015052558A (en) 2013-09-09 2013-09-09 Method of carrying out and management of melted nuclear fuel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186325A JP2015052558A (en) 2013-09-09 2013-09-09 Method of carrying out and management of melted nuclear fuel material

Publications (1)

Publication Number Publication Date
JP2015052558A true JP2015052558A (en) 2015-03-19

Family

ID=52701683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186325A Pending JP2015052558A (en) 2013-09-09 2013-09-09 Method of carrying out and management of melted nuclear fuel material

Country Status (1)

Country Link
JP (1) JP2015052558A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506103A (en) * 2004-07-08 2008-02-28 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー How to treat and minimize waste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506103A (en) * 2004-07-08 2008-02-28 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー How to treat and minimize waste

Similar Documents

Publication Publication Date Title
Latge et al. MEGAPIE: the world’s first high-power liquid metal spallation neutron source
CN109100772B (en) Online analysis monitoring method and device for spent fuel dissolving process
Petti A summary of the results from the DOE advanced gas reactor (AGR) fuel development and qualification program
Perillo-Marcone et al. Design and operation of the air-cooled beam dump for the extraction line of CERN’s proton synchrotron booster
JP2016024154A (en) Estimation method of subcritical state and subcritical state estimation system
JP2015052558A (en) Method of carrying out and management of melted nuclear fuel material
Loukusa et al. Feasibility of KBS-3 spent fuel disposal concept for Norwegian spent fuel
JP2015001451A (en) Device and method for storing nuclear fuel material
Atz et al. A Framework to Assess Advanced Reactor Spent Fuel Management Facility Deployment
Blokhin et al. Evaluation of the possibility of recycling metal radwastes in the nuclear industry
JP6155048B2 (en) New fuel storage facility
Moore et al. NASNF Processing and Packaging Technical Study
Rechard Probability and Consequences of Nuclear Criticality at a Geologic Repository—II: Potential Repository in Volcanic Tuff as an Example
Rosseel et al. Report on the Harvesting and Acquisition of Zion Unit 1 Reactor Pressure Vessel Segments
Winston Management of the Three Mile Island Unit 2 Accident Corium and Severely Damaged Fuel Debris Rev. 2
Bailey et al. Arrival condition of spent fuel after storage, handling, and transportation
Spykman Cladding Integrity during Dry Storage: Verification for an Exclusion of a Systematic Cladding Failure during a Forty Year Dry Storage Period and Beyond
Marschman et al. Test and Chemistry Plan for MEDE Treatment of Fermi-1 Blanket Materials
Slonszki et al. Activity release from the damaged spent VVER-fuel during long-term wet storage
Lee et al. Thermal Evaluations for Hypothetically Drain-Down Spent Fuel Storage Facility at SRS
Saltzstein et al. US DOE Spent Nuclear Fuel Storage and Transportation R&D Activities.
Rosseel et al. Zion Unit 1 Reactor Pressure Vessel Sample Acquistion: Phase 2 and Phase 3 Status Report
CN116612911A (en) Method for processing retired control rod assembly of pressurized water reactor
Adams et al. Disposability assessment: aluminum-based spent nuclear fuel forms
Nasta et al. Spent fuel transport using cask loaded outside pool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606