JP2015052366A - Pilot type valve device - Google Patents

Pilot type valve device Download PDF

Info

Publication number
JP2015052366A
JP2015052366A JP2013186122A JP2013186122A JP2015052366A JP 2015052366 A JP2015052366 A JP 2015052366A JP 2013186122 A JP2013186122 A JP 2013186122A JP 2013186122 A JP2013186122 A JP 2013186122A JP 2015052366 A JP2015052366 A JP 2015052366A
Authority
JP
Japan
Prior art keywords
main valve
valve body
pilot
main
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013186122A
Other languages
Japanese (ja)
Inventor
吉田 勝
Masaru Yoshida
勝 吉田
野道 薫
Kaoru Nomichi
薫 野道
登 伊藤
Noboru Ito
登 伊藤
二宮 誠
Makoto Ninomiya
誠 二宮
広大 加藤
Kodai Kato
広大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2013186122A priority Critical patent/JP2015052366A/en
Publication of JP2015052366A publication Critical patent/JP2015052366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce resisting force acting against a main valve member when the main valve member moves in the pilot type valve device.SOLUTION: In this invention, a housing 5 of a valve device 1 includes a main flow passage 50, a main valve chamber 53, a pilot flow passage 60 and a pilot valve chamber 56. A pilot valve member 41 for opening or closing the pilot flow passage 60 is arranged in the pilot valve chamber 56. A main valve member 31 for opening or closing the main flow passage 50 is arranged in the main valve chamber 53 so as to separate the main valve chamber 53 into the first area 58 communicated with the first flow passage 51 and the second area 59 communicated with the pilot flow passage 60. There is provided an elastic film 34 arranged between the housing 5 and the main valve member 31 so as to separate the first area 58 from the second area 59. The main valve member 31 is supported by a valve supporting part in the housing 5 under a non-contact with the wall of the main valve chamber 53 and in such a manner as it may be movable in its opening or closing direction.

Description

本発明は、ガス用のパイロット式弁装置に関する。   The present invention relates to a pilot valve device for gas.

従来、電磁力等によってパイロット弁を作動し、主弁体上部圧力と入口圧力との圧力差で主弁を開閉するパイロット式弁装置が知られている。例えば、特許文献1には、一次ポートと二次ポートを繋ぐ流路に設けられて流体の入口圧力と背圧との差圧で開閉する主弁(遮断弁)と、主弁に操作圧力を導き差圧を生じさせるパイロット弁と、主弁の開放時に開度の変化により一次側圧力と二次側圧力との差を一定に保持する差圧弁とを備えたパイロット式弁装置が示されている。   Conventionally, a pilot type valve device that operates a pilot valve by electromagnetic force or the like and opens and closes the main valve by a pressure difference between the main valve body upper pressure and the inlet pressure is known. For example, Patent Document 1 discloses a main valve (shutoff valve) that is provided in a flow path connecting a primary port and a secondary port and opens and closes by a differential pressure between a fluid inlet pressure and a back pressure, and an operation pressure applied to the main valve. A pilot-type valve device having a pilot valve that generates a lead differential pressure and a differential pressure valve that maintains a constant difference between the primary pressure and the secondary pressure by changing the opening when the main valve is opened is shown. Yes.

上記パイロット式弁装置では、主弁体とハウジングとの間にシール部材が設けられることによって、主弁の第1圧力室、第2圧力室、及び背圧室が形成されている。そして、特許文献1の段落0038には、主弁に与える駆動力に、主弁体とハウジングとの間の摺動抵抗力が考慮されること、この摺動抵抗力には主弁体とハウジングとの間のシール部材に起因することが記載されている。   In the pilot type valve device, the first pressure chamber, the second pressure chamber, and the back pressure chamber of the main valve are formed by providing a seal member between the main valve body and the housing. In paragraph 0038 of Patent Document 1, the sliding force between the main valve body and the housing is taken into consideration in the driving force applied to the main valve, and the main valve body and the housing are included in this sliding resistance force. It is described that it originates in the sealing member between.

特開2004−278627号公報JP 2004-278627 A

上記の通り、主弁体とハウジングの間に流体を封止するシール部材が設けられるが、主弁体とシール部材との間の摩擦は、主弁体が移動するときの摺動抵抗力となる。したがって、流体の差圧で開閉動作するパイロット式の弁においては、主弁体を開閉動作させるための差圧が上記摺動抵抗力により増大する。また、静止している主弁体を動かそうとする際に、主弁体とシール部材との間に静止摩擦力が生じる。この静止摩擦力により、主弁体が安定して作動するために必要な圧力差(最低作動差圧)が増大する。最低作動差圧が増大すると、パイロット弁が切り替わってから主弁体に作用する差圧が最低作動差圧に達して弁が動くまでの時間、すなわち、弁の応答時間が長くなり、弁の応答性が低下する。   As described above, the seal member that seals the fluid is provided between the main valve body and the housing, but the friction between the main valve body and the seal member is the sliding resistance force when the main valve body moves. Become. Therefore, in the pilot type valve that opens and closes with the differential pressure of the fluid, the differential pressure for opening and closing the main valve element increases due to the sliding resistance. Further, when trying to move the stationary main valve body, a static frictional force is generated between the main valve body and the seal member. Due to this static frictional force, the pressure difference (minimum operating differential pressure) necessary for stable operation of the main valve element increases. If the minimum operating differential pressure increases, the time from when the pilot valve switches until the differential pressure acting on the main valve body reaches the minimum operating differential pressure and the valve moves, that is, the valve response time becomes longer, and the valve response Sex is reduced.

また、主弁体とハウジングの間に間隙があるので、主弁体がハウジング内で偏心する。主弁体がハウジングを偏心して摺動すると、シール部材の偏摩耗が生じる恐れがある。シール部材の偏摩耗が大きくなると、主弁体とハウジングが直接的に摺動し、主弁体の移動にカジリが生じる。これにより、弁の動作が不安定となる。   Further, since there is a gap between the main valve body and the housing, the main valve body is eccentric in the housing. If the main valve body slides eccentrically with respect to the housing, the seal member may be unevenly worn. When the partial wear of the seal member increases, the main valve body and the housing slide directly, and the movement of the main valve body is galling. Thereby, the operation of the valve becomes unstable.

また、特に、流体がガスの場合には、主弁体がシール部材上を摺動することから、シール部材の摩耗は免れない。シール部材が摩耗すると流体を封止できなくなるため、シール部材の交換を頻繁に行わねばならない。   In particular, when the fluid is gas, the main valve body slides on the seal member, so wear of the seal member is inevitable. Since the fluid cannot be sealed when the seal member wears, the seal member must be frequently replaced.

本発明は以上の事情に鑑みてされたものであり、その目的は、パイロット式弁装置において、主弁体の移動時に主弁体に作用する抵抗力を低減することにより、弁開閉動作の安定化、弁開閉動作の応答性の向上、及び弁の耐久性の向上を図ることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to stabilize the valve opening / closing operation by reducing the resistance force acting on the main valve body during movement of the main valve body in the pilot valve device. The purpose is to improve the responsiveness of the valve opening / closing operation and the durability of the valve.

本発明のパイロット式弁装置は、
一次側流路と二次側流路とで構成されるメイン流路、前記一次側流路と前記二次側流路との間に形成された主弁室、前記二次側流路と前記主弁室とを接続するパイロット流路、及び、前記パイロット流路に形成されたパイロット弁室を有するハウジングと、
前記パイロット弁室に配置されて、前記パイロット流路を開閉するパイロット弁体と、
前記主弁室を前記一次側流路と連通された第1領域と前記パイロット流路と連通された第2領域とに仕切るように前記主弁室に配置されて、前記第1領域と前記第2領域との流体の差圧に応じて前記メイン流路を開閉する主弁体と、
前記ハウジングに設けられて、前記主弁体を前記主弁室の壁と非接触で且つ開閉方向に移動可能に支持する弁体支持部と、
前記主弁体を開閉方向閉止向きに付勢する付勢部材と、
前記ハウジングと前記主弁体との間に設けられて、前記第1領域と前記第2領域とを隔離する弾性膜と、を備えているものである。
The pilot type valve device of the present invention is
A main flow path composed of a primary flow path and a secondary flow path, a main valve chamber formed between the primary flow path and the secondary flow path, the secondary flow path and the A pilot channel connecting the main valve chamber, and a housing having a pilot valve chamber formed in the pilot channel;
A pilot valve body disposed in the pilot valve chamber to open and close the pilot flow path;
The main valve chamber is disposed in the main valve chamber so as to partition the first valve chamber into a first region communicating with the primary flow path and a second region communicating with the pilot flow path, and the first region and the first A main valve body that opens and closes the main flow path in accordance with a differential pressure of fluid with respect to the two regions;
A valve body support provided in the housing and supporting the main valve body in a non-contacting manner with a wall of the main valve chamber and being movable in an opening and closing direction;
An urging member for urging the main valve body in an opening / closing direction closing direction;
An elastic membrane is provided between the housing and the main valve body and separates the first region and the second region.

上記パイロット式弁装置において、前記主弁体が前記開閉方向に延びる軸形状部を有し、前記弁体支持部が前記主弁体の前記軸形状部が挿入される開口部を有してよい。或いは、前記弁体支持部が前記開閉方向に延びる軸形状部を有し、前記主弁体が前記弁体支持部の前記軸形状部が挿入される開口部を有してよい。或いは、前記弁体支持部が前記主弁室の内周に設けられてよい。   In the pilot-type valve device, the main valve body may have a shaft-shaped portion extending in the opening / closing direction, and the valve body support portion may have an opening into which the shaft-shaped portion of the main valve body is inserted. . Or the said valve body support part may have an axial shape part extended in the said opening-and-closing direction, and the said main valve body may have an opening part in which the said axial shape part of the said valve body support part is inserted. Or the said valve body support part may be provided in the inner periphery of the said main valve chamber.

また、上記パイロット式弁装置において、前記弾性膜は、環形状を有し、前記主弁体と結合された内周縁部と、前記主弁室の壁に結合された外周縁部と、前記内周縁部と前記外周縁部との間において前記第2領域側へ撓んだ弾性変形部とを有していてよい。   Further, in the pilot valve device, the elastic membrane has an annular shape, an inner peripheral edge portion coupled to the main valve body, an outer peripheral edge portion coupled to the wall of the main valve chamber, and the inner peripheral portion. You may have the elastic deformation part bent to the said 2nd area | region side between the peripheral part and the said outer peripheral part.

上記構成のパイロット式弁装置によれば、第1領域と第2領域とが弾性膜で隔離されており、この弾性膜は主弁体の移動に追従して弾性変形することができる。したがって、第1領域と第2領域とを隔離する手段によって主弁体の動きが妨げられない。よって、従来に倣って第1領域と第2領域とを主弁体とハウジングで挟まれたシール部材で隔離する場合と比較して、主弁体の移動時に主弁体に作用する抵抗力を低減することができる。さらに、主弁体とハウジングとの間に摩耗するシール部材が介在しないので、弁の耐久性を向上させることができる。   According to the pilot type valve device having the above-described configuration, the first region and the second region are separated by the elastic film, and this elastic film can be elastically deformed following the movement of the main valve body. Therefore, the movement of the main valve body is not hindered by the means for separating the first region and the second region. Therefore, compared to the conventional case where the first region and the second region are separated by a seal member sandwiched between the main valve body and the housing, the resistance force acting on the main valve body when the main valve body moves is reduced. Can be reduced. Furthermore, since a worn seal member is not interposed between the main valve body and the housing, the durability of the valve can be improved.

上記パイロット式弁装置が、前記主弁体と前記弁体支持部との間に設けられた直動型軸受を更に備えていることが望ましい。前記直動型軸受は、転がり軸受であってよい。或いは、前記直動型軸受は、滑り軸受であってよい。   It is desirable that the pilot valve device further includes a direct acting bearing provided between the main valve body and the valve body support portion. The linear motion bearing may be a rolling bearing. Alternatively, the linear motion bearing may be a sliding bearing.

上記構成のパイロット式弁装置によれば、ハウジングと主弁体とが直接接触せず、しかも、主弁体が直動型軸受を介してハウジングに支持されているので、主弁体とハウジングとの間の運動摩擦及び静止摩擦は概ねゼロ又は直動型軸受が無い場合と比較して十分に小さい。したがって、主弁体とハウジングとの間の摺動抵抗は概ねゼロ又は直動型軸受が無い場合と比較して十分に小さいので、主弁体の移動時に、主弁体に作用する抵抗力を低減することができる。   According to the pilot type valve device having the above configuration, the housing and the main valve body are not in direct contact with each other, and the main valve body is supported by the housing via the direct acting bearing. The kinetic friction and static friction between the two are generally zero or sufficiently small compared to the case without the linear motion bearing. Therefore, the sliding resistance between the main valve body and the housing is substantially zero or sufficiently smaller than the case where there is no direct acting bearing, so that the resistance force acting on the main valve body when the main valve body moves is reduced. Can be reduced.

上記パイロット式弁装置が、前記弾性膜の前記第2領域側と接触し、前記主弁体に伴って移動する裏当部材を、更に備えていることが望ましい。前記裏当部材は、環形状を有し、前記弾性膜と接触する部分の半径方向断面が前記第2領域側へ凸の曲線形状を有しているものであってよい。また、この裏当部材に、前記付勢部材を保持する座が一体的に形成されていてもよい。   It is desirable that the pilot valve device further includes a backing member that contacts the second region side of the elastic membrane and moves with the main valve body. The backing member may have a ring shape and a curved shape in which a radial cross section of a portion in contact with the elastic film is convex toward the second region. In addition, a seat for holding the biasing member may be integrally formed with the backing member.

上記構成のパイロット式弁装置によれば、主弁体の移動時に、主弁体に結合されている弾性膜が裏当部材と接触しながら変形することによって、弾性膜の破損が防止される。これにより、弾性膜の耐圧性及び耐久性の向上が図られている。   According to the pilot type valve device configured as described above, the elastic membrane coupled to the main valve body is deformed while being in contact with the backing member when the main valve body is moved, thereby preventing the elastic membrane from being damaged. Thereby, the pressure resistance and durability of the elastic membrane are improved.

上記パイロット式弁装置が、前記直動型軸受を前記開閉方向から挟むように配置された一対の封止部材と、前記一対の封止部材間に充填された潤滑剤とを、更に備えていることが望ましい。   The pilot valve device further includes a pair of sealing members disposed so as to sandwich the linear motion bearing from the opening / closing direction, and a lubricant filled between the pair of sealing members. It is desirable.

上記構成のパイロット式弁装置によれば、直動型軸受が潤滑されるので、直動型軸受の耐久性が向上するとともに、直動型軸受の動作が滑らかとなって、主弁体の移動時に主弁体に作用する抵抗力を更に低減することができる。   According to the pilot type valve device having the above configuration, the direct acting bearing is lubricated, so that the durability of the direct acting bearing is improved and the operation of the direct acting bearing is smoothed, and the main valve body is moved. Sometimes the resistance force acting on the main valve body can be further reduced.

本発明によれば、主弁体の移動時に主弁体に作用する抵抗力を低減することができる。これにより、弁の開放時に必要な差圧の増大を回避することができ、弁開閉動作の安定化と応答性の向上に寄与することができる。さらに、主弁体とハウジングとの間に摩耗する部材(例えば、シール部材)が介在しないので、弁の耐久性が向上する。   According to the present invention, it is possible to reduce the resistance force acting on the main valve body when the main valve body moves. As a result, an increase in the differential pressure required when the valve is opened can be avoided, contributing to stabilization of the valve opening / closing operation and improvement of responsiveness. Further, since a member (for example, a seal member) that wears between the main valve body and the housing is not interposed, the durability of the valve is improved.

本発明の一実施形態に係るパイロット式弁装置を示す断面図である。It is sectional drawing which shows the pilot type valve apparatus which concerns on one Embodiment of this invention. 閉止時の主弁を示す断面図である。It is sectional drawing which shows the main valve at the time of closure. 開放時の主弁を示す断面図である。It is sectional drawing which shows the main valve at the time of opening. 本発明の実施形態の変形例1−1に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modified example 1-1 of embodiment of this invention. 本発明の実施形態の変形例1−2に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 1-2 of embodiment of this invention. 本発明の実施形態の変形例2に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 2 of embodiment of this invention. 本発明の実施形態の変形例3−1に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 3-1 of embodiment of this invention. 本発明の実施形態の変形例3−2に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 3-2 of embodiment of this invention. 本発明の実施形態の変形例3−3に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 3-3 of embodiment of this invention. 本発明の実施形態の変形例4−1に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 4-1 of embodiment of this invention. 本発明の実施形態の変形例4−2に係る主弁を示す断面図である。It is sectional drawing which shows the main valve which concerns on the modification 4-2 of embodiment of this invention.

以下、本発明の実施形態について、図面を参照しながら説明する。図1は本発明の一実施形態に係るパイロット式弁装置(以下、単に「弁装置1」という)を示す断面図、図2は閉止時の主弁3を示す断面図、図3は開放時の主弁3を示す断面図である。図1では断面を示すハッチングが省略されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a cross-sectional view showing a pilot type valve device (hereinafter simply referred to as “valve device 1”) according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a main valve 3 when closed, and FIG. It is sectional drawing which shows the main valve 3. In FIG. 1, hatching indicating a cross section is omitted.

図1〜3に示されるように、本実施形態に係る弁装置1は、流体の流路が形成されたハウジング5と、ハウジング5に設けられた主弁3及びパイロット弁4とを備えている。この弁装置1は、例えば、一次側から二次側に圧縮性ガスが流れる流路中に設けられて、この流路を開閉するために用いられる。   As shown in FIGS. 1 to 3, the valve device 1 according to the present embodiment includes a housing 5 in which a fluid flow path is formed, and a main valve 3 and a pilot valve 4 provided in the housing 5. . The valve device 1 is provided, for example, in a flow path through which a compressible gas flows from the primary side to the secondary side, and is used to open and close the flow path.

弁装置1のハウジング5には、一次側流路51と二次側流路52により構成されたメイン流路50と、一次側流路51と二次側流路52の間に形成された主弁室53と、第1パイロット流路54と第2パイロット流路55から構成されたパイロット流路60と、パイロット流路60に形成されたパイロット弁室56とが、設けられている。   In the housing 5 of the valve device 1, a main channel 50 constituted by a primary side channel 51 and a secondary side channel 52, and a main channel formed between the primary side channel 51 and the secondary side channel 52 are formed. A valve chamber 53, a pilot channel 60 composed of a first pilot channel 54 and a second pilot channel 55, and a pilot valve chamber 56 formed in the pilot channel 60 are provided.

メイン流路50には、メイン流路50を開閉する主弁3が設けられている。主弁3は、主弁室53に配置された主弁体31を備えている。主弁体31は、一次側流路51と連通された第1領域58とパイロット流路60と連通された第2領域59とに、主弁室53を仕切っている。主弁室53の第2領域59は、パイロット流路60により二次側流路52と接続されている。パイロット流路60には、パイロット流路60を開閉するパイロット弁4が設けられている。パイロット弁4は、パイロット弁室56に配置されたパイロット弁体41を備えている。以下、主弁3及びパイロット弁4について、それぞれ詳細に説明する。   The main flow path 50 is provided with a main valve 3 that opens and closes the main flow path 50. The main valve 3 includes a main valve element 31 disposed in the main valve chamber 53. The main valve body 31 partitions the main valve chamber 53 into a first region 58 communicated with the primary side flow path 51 and a second region 59 communicated with the pilot flow path 60. The second region 59 of the main valve chamber 53 is connected to the secondary channel 52 by the pilot channel 60. The pilot flow path 60 is provided with a pilot valve 4 that opens and closes the pilot flow path 60. The pilot valve 4 includes a pilot valve body 41 disposed in the pilot valve chamber 56. Hereinafter, the main valve 3 and the pilot valve 4 will be described in detail.

まず、主弁3について説明する。主弁3の主弁体31は、主弁室53に遊挿されている。すなわち、主弁室53の内周と主弁体31の外周との間に間隙があり、主弁体31は主弁室53の壁と直接的に接触していない。主弁体31の一端(以下、「先端」という)には、主弁部31aが設けられている。主弁部31aは、ハウジング5の主弁室53と二次側流路52との間に設けられた主弁座部47に着座可能である。主弁体31は、主弁部31aが主弁座部47に近づく向き(以下、「閉向き(閉止向き)」という)と、主弁部31aが主弁座部47から離れる向き(以下、「開向き」という)とから成る、開閉方向へ移動することができる。   First, the main valve 3 will be described. The main valve body 31 of the main valve 3 is loosely inserted into the main valve chamber 53. That is, there is a gap between the inner periphery of the main valve chamber 53 and the outer periphery of the main valve body 31, and the main valve body 31 is not in direct contact with the wall of the main valve chamber 53. A main valve portion 31 a is provided at one end (hereinafter referred to as “tip”) of the main valve body 31. The main valve portion 31 a can be seated on a main valve seat portion 47 provided between the main valve chamber 53 of the housing 5 and the secondary side flow path 52. The main valve body 31 has a direction in which the main valve portion 31a approaches the main valve seat portion 47 (hereinafter referred to as “closed direction (closed direction)”), and a direction in which the main valve portion 31a moves away from the main valve seat portion 47 (hereinafter, referred to as “closed direction”). It is possible to move in the opening and closing direction.

主弁体31は、先端が閉じられ、先端と開閉方向の反対側の端部(以下、「後端」という)が開放された筒形状を有している。換言すれば、主弁体31の後端には、後述する支持体35の弁体支持部35aが挿入される開口部31cが設けられている。主弁体31には、筒の内周側と外周側とを連通する流路31bが形成されており、この流路31bには絞り32が設けられている。   The main valve body 31 has a cylindrical shape in which the tip is closed and the end opposite to the tip and the opening / closing direction (hereinafter referred to as “rear end”) is opened. In other words, the rear end of the main valve body 31 is provided with an opening 31c into which a valve body support portion 35a of a support body 35 described later is inserted. The main valve body 31 is formed with a flow path 31b that communicates the inner peripheral side and the outer peripheral side of the cylinder, and a throttle 32 is provided in the flow path 31b.

主弁室53には、主弁体31の後端と対向するように、支持体35が挿入されている。支持体35の外周には、支持体35の外周と主弁室53の内周とを封止するシール部材36が設けられている。支持体35は、主弁室53を封止するために主弁室53にねじ込まれた蓋81によって、閉向きに押圧されている。このように、支持体35はハウジング5に対して不動となるように主弁室53に嵌め込まれている。   A support 35 is inserted into the main valve chamber 53 so as to face the rear end of the main valve body 31. A seal member 36 that seals the outer periphery of the support 35 and the inner periphery of the main valve chamber 53 is provided on the outer periphery of the support 35. The support 35 is pressed in the closing direction by a lid 81 screwed into the main valve chamber 53 in order to seal the main valve chamber 53. Thus, the support 35 is fitted in the main valve chamber 53 so as not to move with respect to the housing 5.

支持体35は、主弁体31と間隔をあけた対峙面に設けられた第1バネ座35bと、その対峙面から主弁体31へ向けて開閉方向に突出する軸形状の弁体支持部35aとを有している。支持体35の弁体支持部35aは、ハウジング5の一部分として主弁体31を支持する機能を備えている。弁体支持部35aは、主弁体31の後端から主弁体31の開口部31cへ挿入されている。   The support body 35 includes a first spring seat 35b provided on the facing surface spaced from the main valve body 31, and an axial valve body support portion projecting in the opening and closing direction from the facing surface toward the main valve body 31. 35a. The valve body support portion 35 a of the support body 35 has a function of supporting the main valve body 31 as a part of the housing 5. The valve body support portion 35 a is inserted from the rear end of the main valve body 31 into the opening 31 c of the main valve body 31.

弁体支持部35aと主弁体31の開口部31cとの間には、直動型軸受38が設けられている。直動型軸受38は、弁体支持部35aに対して主弁体31を開閉方向へ滑動させるとともに、この主弁体31の滑動を案内する。この直動型軸受38により、主弁体31とハウジング5(詳細には、ハウジング5に固定された支持体35の弁体支持部35a)の間の運動摩擦及び静止摩擦が無い又は低減された態様で、主弁体31がハウジング5に支持されている。なお、直動型軸受38には、例えば、図2に示されるような、ボールベアリングやローラーベアリングなどの転がり軸受を用いることができる。ここでは、直動型軸受38は主弁体31の開口部31cの内周に取り付けられ、直動型軸受38が具備するボール又はローラーが弁体支持部35aの表面上を転動する。   A direct acting bearing 38 is provided between the valve body support 35 a and the opening 31 c of the main valve body 31. The direct acting bearing 38 slides the main valve body 31 in the opening / closing direction with respect to the valve body support portion 35a and guides the sliding of the main valve body 31. By this direct acting bearing 38, there is no or reduced motion friction and static friction between the main valve body 31 and the housing 5 (specifically, the valve body support portion 35a of the support body 35 fixed to the housing 5). In the aspect, the main valve body 31 is supported by the housing 5. As the linear motion bearing 38, for example, a rolling bearing such as a ball bearing or a roller bearing as shown in FIG. 2 can be used. Here, the direct acting bearing 38 is attached to the inner periphery of the opening 31c of the main valve body 31, and a ball or a roller included in the direct acting bearing 38 rolls on the surface of the valve body supporting portion 35a.

開閉方向に離間している主弁体31と支持体35の第1バネ座35bとの間に、バネ63が配置されている。詳細には、主弁体31の後端側に配置された裏当部材62の第2バネ座62bと、支持体35の第1バネ座35bとの間に、バネ63が介装されている。バネ63は、主弁体31を閉向きに付勢する付勢部材である。本実施形態においてバネ63には圧縮コイルばねが採用されているが、バネ63として皿バネなどの他の形態のバネや、弾性体などが用いられてもよい。   A spring 63 is disposed between the main valve body 31 and the first spring seat 35b of the support body 35 that are separated in the opening / closing direction. Specifically, the spring 63 is interposed between the second spring seat 62 b of the backing member 62 disposed on the rear end side of the main valve body 31 and the first spring seat 35 b of the support body 35. . The spring 63 is a biasing member that biases the main valve body 31 in the closing direction. In the present embodiment, a compression coil spring is used as the spring 63, but a spring of another form such as a disc spring or an elastic body may be used as the spring 63.

主弁体31と裏当部材62の間には、弾性膜34(ダイヤフラム)と、内側押え部材61とが設けられている。本実施形態において、裏当部材62と内側押え部材61は別体であるが、これらが一体的に構成されていてもよい。内側押え部材61の外側には、外側押え部材64が設けられている。   An elastic film 34 (diaphragm) and an inner pressing member 61 are provided between the main valve body 31 and the backing member 62. In the present embodiment, the backing member 62 and the inner pressing member 61 are separate bodies, but they may be configured integrally. An outer pressing member 64 is provided on the outer side of the inner pressing member 61.

弾性膜34は、主弁体31の後端と主弁室53の壁との間を封止する部材である。弾性膜34により、主弁室53の第1領域58と第2領域59とが隔離されている。弾性膜34は、弾性変形可能な可とう性の金属製、樹脂製又はゴム製の薄膜であって、環形状を有している。弾性膜34は、主弁体31の後端と結合された内周縁部と、主弁室53の壁と結合された外周縁部と、内周縁部と外周縁部との間において第2領域59側へ撓んだ弾性変形部とを、一体的に有している。   The elastic membrane 34 is a member that seals between the rear end of the main valve body 31 and the wall of the main valve chamber 53. The elastic film 34 isolates the first area 58 and the second area 59 of the main valve chamber 53. The elastic film 34 is an elastically deformable flexible metal, resin, or rubber thin film, and has an annular shape. The elastic membrane 34 is a second region between the inner peripheral edge portion connected to the rear end of the main valve body 31, the outer peripheral edge portion connected to the wall of the main valve chamber 53, and the inner peripheral edge portion and the outer peripheral edge portion. It integrally has an elastically deforming portion bent toward the 59 side.

弾性膜34の内周縁部は、主弁体31と内側押え部材61とにより開閉方向両側から挟み込まれている。内側押え部材61はバネ63により開閉方向閉向きに付勢されている。このようにして、弾性膜34の内周縁は、主弁体31と内側押え部材61の間で押圧され保持されている。一方、弾性膜34の外周縁部は、主弁室53の壁に設けられた段差面53aと外側押え部材64とにより開閉方向両側から挟み込まれている。外側押え部材64は、支持体35及び蓋81により、開閉方向閉向きに押圧されている。このようにして、弾性膜34の外周縁は、段差面53aと外側押え部材64との間で押圧され保持されている。なお、主弁室53の内径は、弾性膜34との結合部で拡径しており、ここに段差面53aが形成されている。   The inner peripheral edge of the elastic membrane 34 is sandwiched between the main valve body 31 and the inner pressing member 61 from both sides in the opening / closing direction. The inner pressing member 61 is biased by the spring 63 in the opening / closing direction closing direction. In this manner, the inner peripheral edge of the elastic film 34 is pressed and held between the main valve body 31 and the inner pressing member 61. On the other hand, the outer peripheral edge of the elastic membrane 34 is sandwiched from both sides in the opening and closing direction by a step surface 53 a provided on the wall of the main valve chamber 53 and the outer pressing member 64. The outer pressing member 64 is pressed in the closing direction by the support body 35 and the lid 81. In this way, the outer peripheral edge of the elastic film 34 is pressed and held between the step surface 53a and the outer pressing member 64. Note that the inner diameter of the main valve chamber 53 is increased at the joint with the elastic membrane 34, and a step surface 53a is formed here.

裏当部材62には、弾性膜34の弾性変形部(第2領域59側へ撓んだ部分)と接触する裏当部62aが形成されている。裏当部材62は、円環形状を有しており、内周側に第2バネ座62bと押圧面62cとが形成されており、外周側に裏当部62aと第2ストッパ面62dとが形成されている。裏当部62aの半径方向断面は、弾性膜34の弾性変形部の撓み形状に沿うように、第2領域59側へ凸の曲線形状を有している。   The backing member 62 is formed with a backing portion 62a that comes into contact with the elastic deformation portion (the portion bent toward the second region 59) of the elastic film 34. The backing member 62 has an annular shape, a second spring seat 62b and a pressing surface 62c are formed on the inner peripheral side, and a backing portion 62a and a second stopper surface 62d are formed on the outer peripheral side. Is formed. The radial cross section of the backing portion 62a has a curved shape that protrudes toward the second region 59 so as to follow the bending shape of the elastically deforming portion of the elastic film 34.

外側押え部材64は、支持体35の第1バネ座35bが設けられた面と主弁室53の壁の段差面53aとの間で開閉方向に延びる筒形状を有している。外側押え部材64の内周側には、第1ストッパ面64bが形成されている。第1ストッパ面64bと裏当部材62の第2ストッパ面62dとは、主弁体31の定格変位量だけ開閉方向に離れて対向している。そして、外側押え部材64の第1ストッパ面64bと裏当部材62の第2ストッパ面62dとが当接することにより、主弁体31のそれ以上の開向きの移動が規制される(図3、参照)。また、外側押え部材64には、筒の内外を連通する流路64aが設けられている。この流路64aの外周側の開口の近傍において、主弁室53の壁に第1パイロット流路54が開口している。なお、本実施形態において、外側押え部材64と支持体35は別体であるが、外側押え部材64と支持体35とが一体的に構成されていてもよい。   The outer pressing member 64 has a cylindrical shape extending in the opening / closing direction between the surface of the support 35 where the first spring seat 35 b is provided and the step surface 53 a of the wall of the main valve chamber 53. A first stopper surface 64 b is formed on the inner peripheral side of the outer pressing member 64. The first stopper surface 64b and the second stopper surface 62d of the backing member 62 are opposed to each other in the opening / closing direction by the rated displacement amount of the main valve body 31. Further, when the first stopper surface 64b of the outer pressing member 64 and the second stopper surface 62d of the backing member 62 abut, further movement of the main valve body 31 in the opening direction is restricted (FIG. 3, reference). The outer pressing member 64 is provided with a flow path 64a that communicates the inside and outside of the cylinder. A first pilot channel 54 is opened in the wall of the main valve chamber 53 in the vicinity of the opening on the outer peripheral side of the channel 64a. In the present embodiment, the outer pressing member 64 and the support 35 are separate bodies, but the outer pressing member 64 and the support 35 may be integrally configured.

上記構成の主弁3において、主弁室53の第1領域58には、主弁体31の外周、主弁室53の内周、及び弾性膜34により区画された空間が含まれている。また、主弁室53の第2領域59には、主弁体31の内周側の空間、外側押え部材64の内周側の空間、及びこれらを連通する支持体35の弁体支持部35aに形成された連流路35cが含まれている。第1領域58と第2領域59は、主弁体31の内外を連通する流路31bにより連通されており、この流路31bに絞り32が設けられている。   In the main valve 3 configured as described above, the first region 58 of the main valve chamber 53 includes an outer periphery of the main valve body 31, an inner periphery of the main valve chamber 53, and a space defined by the elastic film 34. Further, in the second region 59 of the main valve chamber 53, a space on the inner peripheral side of the main valve body 31, a space on the inner peripheral side of the outer pressing member 64, and a valve body support portion 35a of the support body 35 communicating these. The communication flow path 35c formed in is included. The first region 58 and the second region 59 are communicated with each other by a flow channel 31b communicating between the inside and the outside of the main valve body 31, and a throttle 32 is provided in the flow channel 31b.

続いて、パイロット弁4について説明する。パイロット弁4は、パイロット弁室56に開閉方向に移動可能に挿入されたパイロット弁体41(プランジャ)を備えている。パイロット弁体41は、開閉方向一端(以下、「先端」という)にパイロット弁部41aを有している。このパイロット弁部41aは、第2パイロット流路55とパイロット弁室56の間に設けられたパイロット弁座部46に着座可能である。パイロット弁体41は、パイロット弁部41aがパイロット弁座部46へ近づく向き(以下、「閉向き」という)と、パイロット弁部41aがパイロット弁座部46から離れる向き(以下、「開向き」という)とに移動可能である。   Next, the pilot valve 4 will be described. The pilot valve 4 includes a pilot valve body 41 (plunger) inserted into the pilot valve chamber 56 so as to be movable in the opening / closing direction. The pilot valve body 41 has a pilot valve portion 41 a at one end in the opening and closing direction (hereinafter referred to as “tip”). The pilot valve portion 41 a can be seated on a pilot valve seat portion 46 provided between the second pilot flow path 55 and the pilot valve chamber 56. The pilot valve body 41 has a direction in which the pilot valve portion 41a approaches the pilot valve seat portion 46 (hereinafter referred to as “closed direction”) and a direction in which the pilot valve portion 41a moves away from the pilot valve seat portion 46 (hereinafter referred to as “open direction”). And can be moved.

パイロット弁4は、パイロット弁体41を閉向きに付勢する付勢部材であるバネ42と、バネ42の付勢力に抗してパイロット弁体41を開向きに移動させる駆動ユニット43とを更に備えている。駆動ユニット43は、パイロット弁体41の少なくとも後端部に設けられた鉄心(図示せず)と、パイロット弁体41の後端部を外から覆うように設けられたソレノイドコイル45と、ソレノイドコイル45へ駆動電流を供給する電流供給手段(図示せず)とで構成されている。バネ42は、ソレノイドコイル45を覆うようにハウジング5に取り付けられたキャップ44とパイロット弁体41との間に設けられている。   The pilot valve 4 further includes a spring 42 that is a biasing member that biases the pilot valve body 41 in the closing direction, and a drive unit 43 that moves the pilot valve body 41 in the opening direction against the biasing force of the spring 42. I have. The drive unit 43 includes an iron core (not shown) provided at least at the rear end of the pilot valve body 41, a solenoid coil 45 provided so as to cover the rear end of the pilot valve body 41 from the outside, and a solenoid coil. And current supply means (not shown) for supplying a drive current to 45. The spring 42 is provided between the cap 44 attached to the housing 5 and the pilot valve body 41 so as to cover the solenoid coil 45.

上記構成のパイロット弁4において、ソレノイドコイル45へ駆動電流が供給されると、パイロット弁体41が開向きに移動してパイロット弁4が開放され、ソレノイドコイル45へ駆動電流の供給が絶たれると、パイロット弁体41がバネ42の付勢により閉向きに移動してパイロット弁4が閉止される。   In the pilot valve 4 configured as described above, when a drive current is supplied to the solenoid coil 45, the pilot valve body 41 moves in the opening direction, the pilot valve 4 is opened, and the supply of drive current to the solenoid coil 45 is cut off. The pilot valve body 41 is moved in the closing direction by the bias of the spring 42, and the pilot valve 4 is closed.

ここで、上記構成の弁装置1の動作を説明する。一次側流路51及びこれと連通している主弁室53の第1領域58の流体の圧力を一次側圧力P1、第1パイロット流路54及びこれと連通している主弁室53の第2領域59の流体の圧力を操作圧力P3、二次側流路52及びこれと連通している第2パイロット流路55の流体の圧力を二次側圧力P2ということとする。   Here, the operation of the valve device 1 configured as described above will be described. The pressure of the fluid in the first region 58 of the primary side flow passage 51 and the main valve chamber 53 communicating with the primary side flow passage 51 is set to the primary pressure P1, the first pilot flow passage 54 and the first pressure of the main valve chamber 53 communicating therewith. The fluid pressure in the second region 59 is referred to as the operating pressure P3, and the fluid pressure in the secondary side flow path 52 and the second pilot flow path 55 communicating therewith is referred to as the secondary side pressure P2.

図1,2に示されるように、パイロット弁4が閉止され且つ主弁3が閉止されているときには、弁装置1の流体の圧力はバランスしている。このとき、メイン流路50に流体が流れていないので、一次側圧力P1と操作圧力P3は等しく(P1=P3)、バネ63の付勢力により主弁3が閉止されている。また、主弁3の閉止時の二次側圧力P2は、一次側圧力P1と比較して十分に小さく、主弁体31の駆動への影響を無視できる程度に十分に小さい。   As shown in FIGS. 1 and 2, when the pilot valve 4 is closed and the main valve 3 is closed, the pressure of the fluid in the valve device 1 is balanced. At this time, since no fluid flows in the main flow path 50, the primary pressure P1 and the operation pressure P3 are equal (P1 = P3), and the main valve 3 is closed by the biasing force of the spring 63. Further, the secondary side pressure P2 when the main valve 3 is closed is sufficiently smaller than the primary side pressure P1, and is sufficiently small so that the influence on the driving of the main valve body 31 can be ignored.

駆動ユニット43への通電によりパイロット弁4が開放されると、パイロット流路60から二次側流路52へ流体が流れる。これにより主弁室53の第1領域58から第2領域59への流体の流れが生じ、第1領域58と第2領域59の間に設けられた絞り32によって一次側圧力P1と操作圧力P3との間に差圧ΔPが発生する。この差圧ΔPが最低作動差圧ΔPminより大きくなると、図3に示されるように、主弁体31がバネ63の付勢力に打ち勝って開向きに移動し、主弁3が開放される。このように、パイロット弁4の開弁時には、「一次側圧力P1>操作圧力P3>二次側圧力P2」の関係が成立し、メイン流路50を流体が流下する。   When the pilot valve 4 is opened by energizing the drive unit 43, the fluid flows from the pilot channel 60 to the secondary channel 52. As a result, fluid flows from the first region 58 to the second region 59 of the main valve chamber 53, and the primary side pressure P1 and the operating pressure P3 are caused by the throttle 32 provided between the first region 58 and the second region 59. A differential pressure ΔP is generated. When this differential pressure ΔP becomes larger than the minimum operating differential pressure ΔPmin, as shown in FIG. 3, the main valve body 31 overcomes the biasing force of the spring 63 and moves in the opening direction, and the main valve 3 is opened. Thus, when the pilot valve 4 is opened, the relationship of “primary side pressure P1> operation pressure P3> secondary side pressure P2” is established, and the fluid flows down through the main flow path 50.

再びパイロット弁4が閉止されると、一次側圧力P1と操作圧力P3との差圧ΔPが減少して最低作動差圧ΔPminより小さくなり、バネ63の付勢力により主弁体31が閉向きに移動し、主弁3が閉止される。   When the pilot valve 4 is closed again, the differential pressure ΔP between the primary pressure P1 and the operating pressure P3 decreases to become smaller than the minimum operating differential pressure ΔPmin, and the main valve body 31 is closed by the biasing force of the spring 63. The main valve 3 is closed.

上述のように、主弁3の開閉時に主弁体31は開閉方向へ開向き及び閉向きに移動し、この主弁体31の移動は直動型軸受38により案内される。したがって、主弁体31は主弁室53と直接的に接触しないフローティングシール構造であり、主弁体31は偏心せずに開閉方向へ移動することができる。主弁体31と主弁室53の壁が直接に接触しないので、これらの間に運動摩擦及び静止摩擦が生じず、主弁体31の移動時に主弁室53との間で摺動抵抗が生じない。更に、主弁体31とこれを案内及び支持する弁体支持部35aとの間の運動摩擦及び静止摩擦は概ねゼロ又は直動型軸受38が無い場合と比較して十分に小さく、主弁体31の移動時に弁体支持部35aとの間の摺動抵抗は概ねゼロ又は直動型軸受38が無い場合と比較して十分に小さい。   As described above, when the main valve 3 is opened and closed, the main valve element 31 moves in the opening and closing directions, and the movement of the main valve element 31 is guided by the direct acting bearing 38. Therefore, the main valve body 31 has a floating seal structure that does not directly contact the main valve chamber 53, and the main valve body 31 can move in the opening / closing direction without being eccentric. Since the main valve body 31 and the wall of the main valve chamber 53 are not in direct contact with each other, there is no kinetic friction and static friction between them, and there is a sliding resistance between the main valve body 31 and the main valve chamber 53 when moving. Does not occur. Further, the kinetic friction and static friction between the main valve body 31 and the valve body support portion 35a for guiding and supporting the main valve body 31 are substantially zero or sufficiently smaller than the case where there is no direct acting bearing 38, and the main valve body is small. The sliding resistance with respect to the valve body support portion 35a during the movement of 31 is substantially zero or sufficiently small as compared with the case where the direct acting bearing 38 is not provided.

主弁体31が開向きに移動すると、弾性膜34は主弁体31の動きに追従して弾性変形し、弾性膜34の内周縁部が開向きに移動する(図3、参照)。この際に、弾性膜34の弾性変形部が裏当部材62に形成された裏当部62aと接触しながら変形することによって、弾性膜34の破損が防止されている。このようにして、弾性膜34の耐圧性及び耐久性の向上が図られている。   When the main valve body 31 moves in the opening direction, the elastic film 34 is elastically deformed following the movement of the main valve body 31, and the inner peripheral edge of the elastic film 34 moves in the opening direction (see FIG. 3). At this time, the elastic deformation portion of the elastic film 34 is deformed while being in contact with the backing portion 62 a formed on the backing member 62, thereby preventing the elastic membrane 34 from being damaged. In this way, the pressure resistance and durability of the elastic film 34 are improved.

上記のように、主弁体31とハウジング5との間の運動摩擦及び静止摩擦は概ねゼロ又は直動型軸受38が無い場合と比較して十分に小さく、主弁体31の移動時にハウジング5との間の摺動抵抗は概ねゼロ又は直動型軸受38が無い場合と比較して十分に小さい。加えて、弾性膜34は主弁体31の動きに追従するので、主弁体31の動きを妨げない。よって、主弁体31の移動時に主弁体31に作用する抵抗力が概ねゼロ又は従来の弁と比較して十分に小さいので、主弁3の開弁動作及び閉弁動作の応答性が向上する。   As described above, the kinetic friction and static friction between the main valve body 31 and the housing 5 are substantially zero or sufficiently small as compared with the case without the direct acting bearing 38, and the housing 5 is moved when the main valve body 31 moves. Is substantially zero or sufficiently smaller than the case where there is no linear motion bearing 38. In addition, since the elastic film 34 follows the movement of the main valve body 31, the movement of the main valve body 31 is not hindered. Therefore, since the resistance force acting on the main valve body 31 when the main valve body 31 moves is substantially zero or sufficiently smaller than that of the conventional valve, the responsiveness of the valve opening operation and the valve closing operation of the main valve 3 is improved. To do.

さらに、主弁3の開弁動作に必要な最低作動差圧ΔPminには、主弁体31とハウジング5との間の摺動抵抗力が考慮されなくてよい。よって、最低作動差圧ΔPminは、バネ63の付勢力に打ち勝つことのできる値であればよく、従来と比較して小さな値とすることができる。このように最低作動差圧ΔPminが小さくなることによって、主弁3の開弁動作及び閉弁動作の応答性を向上させることができる。また、最低作動差圧ΔPminが小さくなることによって、主弁体31の圧力損失を小さくすることができる。更に、従来のように主弁室53と主弁体31との間を封止するシール部材の劣化等が無いので、実質的な最低作動差圧ΔPminが変化せず、安定した主弁3の開閉動作が継続される。   Furthermore, the sliding resistance force between the main valve body 31 and the housing 5 does not have to be taken into consideration for the minimum operating differential pressure ΔPmin required for the valve opening operation of the main valve 3. Therefore, the minimum operating differential pressure ΔPmin only needs to be a value that can overcome the urging force of the spring 63, and can be set to a smaller value than in the conventional case. Thus, the minimum operating differential pressure ΔPmin is reduced, so that the responsiveness of the valve opening operation and the valve closing operation of the main valve 3 can be improved. Moreover, the pressure loss of the main valve body 31 can be reduced by reducing the minimum operating differential pressure ΔPmin. Further, since there is no deterioration of the seal member for sealing between the main valve chamber 53 and the main valve body 31 as in the prior art, the substantial minimum operating differential pressure ΔPmin does not change, and the stable main valve 3 The opening / closing operation is continued.

また、主弁3の開閉動作において、主弁体31と主弁室53とが直接的に接触せず、且つ、主弁体31は支持体35の弁体支持部35aに対し滑動するので、主弁体31とハウジング5との間の摺動部分(即ち、直動型軸受38と弁体支持部35a)の摩耗は極めて小さい。よって、従来のように劣化したシール部材を交換する必要がないので、主弁3の耐久性を向上させることができる。   Further, in the opening / closing operation of the main valve 3, the main valve body 31 and the main valve chamber 53 are not in direct contact, and the main valve body 31 slides relative to the valve body support portion 35a of the support body 35. The wear of the sliding portion between the main valve body 31 and the housing 5 (that is, the direct acting bearing 38 and the valve body support portion 35a) is extremely small. Therefore, since it is not necessary to replace the deteriorated seal member as in the conventional case, the durability of the main valve 3 can be improved.

以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。なお、以下に示す本実施形態の変形例の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する。   The preferred embodiment of the present invention has been described above, but the above configuration can be modified as follows, for example. In the following description of the modification of the present embodiment, the same or similar members as those of the above-described embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

(変形例1)
上記実施形態の主弁3において、主弁体31とハウジング5との摺動部分(直動型軸受38)に、グリスなどの潤滑剤と、潤滑剤を下流側へ流出させないための機構を備えてもよい。例えば、図4に示される変形例1−1に係る主弁3では、主弁体31の開口部31cと支持体35の弁体支持部35aとの間に直動型軸受38が設けられ、この直動型軸受38を開閉方向の両側から挟むように配置された一対のパッキン71,71(封止部材)が設けられている。図4中、72はパッキン押えである。そして、これら一対のパッキン71,71で挟まれた空間に、グリス等の潤滑剤が充填されている。
(Modification 1)
In the main valve 3 of the above embodiment, the sliding portion (the direct acting bearing 38) between the main valve body 31 and the housing 5 is provided with a lubricant such as grease and a mechanism for preventing the lubricant from flowing out downstream. May be. For example, in the main valve 3 according to the modified example 1-1 shown in FIG. 4, a direct acting bearing 38 is provided between the opening 31 c of the main valve body 31 and the valve body support 35 a of the support 35. A pair of packings 71 and 71 (sealing members) are provided so as to sandwich the direct acting bearing 38 from both sides in the opening and closing direction. In FIG. 4, 72 is a packing presser. A space between the pair of packings 71 and 71 is filled with a lubricant such as grease.

また、例えば、図5に示される変形例1−2に係る主弁3では、主弁体31の外周と主弁室53の壁に設けられた弁体支持部53dとの間に直動型軸受38が設けられ、この直動型軸受38の開閉方向の一方側の空間が弾性膜34で封止され、開閉方向の他方側の空間がパッキン71で封止されている。そして、弾性膜34とパッキン71で挟まれた空間に、グリス等の潤滑剤が充填されている。   For example, in the main valve 3 according to the modified example 1-2 shown in FIG. 5, the direct acting type is provided between the outer periphery of the main valve body 31 and the valve body support portion 53 d provided on the wall of the main valve chamber 53. A bearing 38 is provided, a space on one side in the opening / closing direction of the linear motion type bearing 38 is sealed with an elastic film 34, and a space on the other side in the opening / closing direction is sealed with a packing 71. The space between the elastic film 34 and the packing 71 is filled with a lubricant such as grease.

上記変形例1−1及び1−2に係る主弁3では、直動型軸受38が潤滑剤により潤滑され、直動型軸受38の動きがより滑らかなものとなり、主弁体31の移動時に主弁体31に作用する抗力を更に低減することができる。また、直動型軸受38が潤滑されることによって、直動型軸受38の耐久性、ひいては、弁装置1の耐久性を向上させることができる。なお、主弁体31又は弁体支持部35aとパッキン71との間に生じる摩擦力により主弁体31の移動時に摺動抵抗を生じさせないために、パッキン71の緊縛力は、潤滑剤の漏出を防止できる程度の極めて小さいものを採用することが望ましい。   In the main valve 3 according to the modified examples 1-1 and 1-2, the direct acting bearing 38 is lubricated by the lubricant, and the movement of the direct acting bearing 38 becomes smoother. The drag acting on the main valve body 31 can be further reduced. Further, the lubrication of the direct acting bearing 38 can improve the durability of the direct acting bearing 38 and, consequently, the durability of the valve device 1. In addition, in order not to generate sliding resistance when the main valve body 31 is moved due to the friction force generated between the main valve body 31 or the valve body support portion 35a and the packing 71, the binding force of the packing 71 is a leakage of the lubricant. It is desirable to employ a very small one that can prevent the above.

(変形例2)
上記実施形態に係る弁装置1では、主弁3へ1箇所(一次側流路51)から一次側流体が供給されている。但し、主弁3へ2箇所から一次側流体が供給されてもよい。
(Modification 2)
In the valve device 1 according to the above embodiment, the primary fluid is supplied to the main valve 3 from one place (primary channel 51). However, the primary side fluid may be supplied to the main valve 3 from two places.

例えば、図6に示された変形例2に係る弁装置1では、主弁室53に主弁3を封入している蓋81に、第2の一次側流路57が設けられている。第2の一次側流路57は、支持体35に形成された流路35gによって、主弁3の第2領域59と接続されている。流路35gには、絞り32が設けられている。このように、一次側流体を第1パイロット流路54へ流すための流路35g及び絞り32が支持体35に形成されているので、上記実施形態のような主弁体31の流路及び絞りは不要である。主弁体31に孔を加工する必要がないので、主弁体31の材料選択の自由度が高まり、例えば、主弁体31の全体を樹脂製とすることができる。   For example, in the valve device 1 according to the second modification shown in FIG. 6, the second primary flow path 57 is provided in the lid 81 that encloses the main valve 3 in the main valve chamber 53. The second primary channel 57 is connected to the second region 59 of the main valve 3 by a channel 35 g formed in the support 35. A throttle 32 is provided in the flow path 35g. Thus, since the flow path 35g and the throttle 32 for flowing the primary side fluid to the first pilot flow path 54 are formed in the support body 35, the flow path and the throttle of the main valve body 31 as in the above embodiment. Is unnecessary. Since it is not necessary to machine a hole in the main valve body 31, the degree of freedom in selecting the material of the main valve body 31 is increased. For example, the entire main valve body 31 can be made of resin.

上記変形例2に係る弁装置1では、一次側流路51及びこれと連通している主弁3の第1領域58、並びに、第2の一次側流路57の流体の圧力が一次側圧力P1となる。この弁装置1において、パイロット弁4が開放されると、第2の一次側流路57から主弁3の第2領域59への流体の流れが生じ、これらの間に設けられた絞り32によって一次側圧力P1と操作圧力P3との間に差圧ΔPが発生する。この差圧ΔPが最低作動差圧ΔPminより大きくなると、主弁体31がバネ63の付勢力に打ち勝って開向きに移動し、主弁3が開放される。   In the valve device 1 according to the second modified example, the pressure of the fluid in the primary side flow path 51 and the first region 58 of the main valve 3 communicating with the primary side flow path 51 and the second primary side flow path 57 is the primary pressure. P1. In this valve device 1, when the pilot valve 4 is opened, a fluid flow from the second primary-side flow path 57 to the second region 59 of the main valve 3 is generated, and the restriction 32 provided therebetween causes the flow of fluid. A differential pressure ΔP is generated between the primary pressure P1 and the operating pressure P3. When this differential pressure ΔP becomes larger than the minimum operating differential pressure ΔPmin, the main valve body 31 overcomes the biasing force of the spring 63 and moves in the opening direction, and the main valve 3 is opened.

(変形例3)
上記実施形態において、主弁3の直動型軸受38は、支持体35に設けられた軸形状の弁体支持部35aと、この弁体支持部35aが挿入された主弁体31の開口部31cとの間に設けられている。但し、主弁体31はハウジング5に開閉方向に移動可能に支持されていればよいので、ハウジング5による主弁体31の支持形態は実施形態に限定されない。
(Modification 3)
In the embodiment described above, the direct acting bearing 38 of the main valve 3 includes the shaft-shaped valve body support portion 35a provided on the support body 35, and the opening of the main valve body 31 into which the valve body support portion 35a is inserted. 31c. However, since the main valve body 31 only needs to be supported by the housing 5 so as to be movable in the opening and closing direction, the support form of the main valve body 31 by the housing 5 is not limited to the embodiment.

例えば、図7に示される変形例3−1に係る主弁3では、主弁室53の壁に弁体支持部53dが設けられている。そして、弁体支持部53dの内周と主弁体31の外周との間に、主弁室53に対して主弁体31を開閉方向に滑動させる直動型軸受38が設けられている。つまり、主弁体31は、直動型軸受38を介して外周側からハウジング5に支持されている。この変形例1に係る主弁3では、主弁体31の移動は主弁室53に案内されるので、支持体35に弁体支持部35aは不要である。また、変形例3−1に係る主弁3では、直動型軸受38は主弁室53に取り付けられており、主弁体31が軽量化されている。この主弁体31の軽量化により、差圧に対する主弁体31の慣性力の負荷が小さくなるので、主弁3の弁開閉動作の応答性の向上を図ることができる。   For example, in the main valve 3 according to the modified example 3-1 shown in FIG. 7, a valve body support portion 53 d is provided on the wall of the main valve chamber 53. A direct acting bearing 38 for sliding the main valve body 31 in the opening / closing direction with respect to the main valve chamber 53 is provided between the inner periphery of the valve body support portion 53 d and the outer periphery of the main valve body 31. That is, the main valve body 31 is supported by the housing 5 from the outer peripheral side via the direct acting bearing 38. In the main valve 3 according to the first modification, the movement of the main valve body 31 is guided to the main valve chamber 53, so that the support body 35 does not require the valve body support portion 35 a. In the main valve 3 according to the modified example 3-1, the direct acting bearing 38 is attached to the main valve chamber 53, and the main valve body 31 is reduced in weight. By reducing the weight of the main valve body 31, the load of the inertial force of the main valve body 31 with respect to the differential pressure is reduced. Therefore, the responsiveness of the valve opening / closing operation of the main valve 3 can be improved.

また、例えば、図8に示される変形例3−2に係る主弁3では、主弁体31に開向きに延びる軸形状部31dが設けられている。軸形状部31dは、弾性膜34よりも支持体35側へ突出している。一方、支持体35には、弁体支持部35eとして閉向きの開口部が設けられている。そして、支持体35の弁体支持部35eに、主弁体31の軸形状部31dが挿入されており、弁体支持部35eの内周と軸形状部31dの外周との間に直動型軸受38が配置されている。直動型軸受38は、支持体35の弁体支持部35eの内周に取り付けられている。   Further, for example, in the main valve 3 according to the modified example 3-2 shown in FIG. 8, the main valve body 31 is provided with a shaft-shaped portion 31d extending in the opening direction. The shaft-shaped portion 31d protrudes toward the support 35 from the elastic film 34. On the other hand, the support 35 is provided with an opening in the closing direction as the valve support 35e. And the shaft-shaped part 31d of the main valve body 31 is inserted in the valve-body support part 35e of the support body 35, and it is a direct acting type between the inner periphery of the valve-body support part 35e, and the outer periphery of the shaft-shaped part 31d. A bearing 38 is arranged. The direct acting bearing 38 is attached to the inner periphery of the valve body support portion 35 e of the support body 35.

支持体35には、弁体支持部35e内と外周側とを連通する流路35fが設けられている。この流路35fの外周側の開口の近傍において、主弁室53の壁に第1パイロット流路54が開口している。このように、流路35fにより、第1パイロット流路54と支持体35の弁体支持部35e内とが連通されている。さらに、支持体35には、蓋81に形成された第2の一次側流路57(図6、参照)と連通する流路35gが形成されており、この流路35gに絞り32が設けられている。なお、変形例3−2に係る主弁3では、主弁体31の更なる軽量化を図るために、主弁体31が樹脂製とされ、前述の変形例2に係る主弁3と同様に、第2領域59へ一次側流体を供給するための流路と絞りが支持体35に設けられている。   The support 35 is provided with a flow path 35f that communicates the inside of the valve support 35e and the outer peripheral side. A first pilot channel 54 is opened in the wall of the main valve chamber 53 in the vicinity of the opening on the outer peripheral side of the channel 35f. Thus, the first pilot flow path 54 and the inside of the valve body support portion 35e of the support body 35 are communicated with each other by the flow path 35f. Further, the support 35 is formed with a flow path 35g communicating with the second primary flow path 57 (see FIG. 6) formed in the lid 81, and the throttle 32 is provided in the flow path 35g. ing. In the main valve 3 according to the modified example 3-2, in order to further reduce the weight of the main valve body 31, the main valve body 31 is made of resin, and is the same as the main valve 3 according to the above-described modified example 2. In addition, the support 35 is provided with a flow path and a throttle for supplying the primary side fluid to the second region 59.

上記変形例3−2に係る主弁3では、支持体35の弁体支持部35eの内部と、支持体35の流路35fと、支持体35の外周と主弁室53の内周との間の空間とにより、第2領域59が構成されている。そして、この第2領域59は、支持体35の流路35fを通じて、第2の一次側流路57と連通されている。   In the main valve 3 according to the modified example 3-2, the inside of the valve body support portion 35e of the support body 35, the flow path 35f of the support body 35, the outer periphery of the support body 35, and the inner periphery of the main valve chamber 53. A second region 59 is constituted by the space between them. The second region 59 is communicated with the second primary channel 57 through the channel 35 f of the support 35.

また、この変形例3−2に係る主弁3では、外側押え部材64が、その開閉方向の一端が弾性膜34と接触し、同じく開閉方向の他端が支持体35と接触するように設けられている。但し、図9に示される変形例3−3に係る主弁3のように、外側押え部材64は、支持体35と接触せず、支持体35からの押圧力が加わらない形状のものであってもよい。この場合、外側押え部材64は、主弁室53の内周と裏当部材62の外周との間に圧入される。そして、開閉方向に離間している外側押え部材64と支持体35との間の空間が第2領域59の一部として利用されている。   Further, in the main valve 3 according to the modified example 3-2, the outer pressing member 64 is provided such that one end in the opening / closing direction is in contact with the elastic film 34 and the other end in the opening / closing direction is also in contact with the support body 35. It has been. However, like the main valve 3 according to the modified example 3-3 shown in FIG. 9, the outer pressing member 64 does not come into contact with the support 35 and does not have a pressing force from the support 35. May be. In this case, the outer pressing member 64 is press-fitted between the inner periphery of the main valve chamber 53 and the outer periphery of the backing member 62. A space between the outer pressing member 64 and the support 35 that is separated in the opening / closing direction is used as a part of the second region 59.

(変形例4)
上記実施形態において、主弁3の主弁体31とハウジング5との間に設けられる直動型軸受38は、玉軸受(ボールベアリング)やローラーベアリングなどの転がり軸受である。ただし、直動型軸受38は転がり軸受けに限定されず、滑り軸受であってもよい。直動型軸受38が滑り軸受の場合は、転がり軸受と比較して構成が単純であるため、低コスト化且つ軽量化することができる。
(Modification 4)
In the above embodiment, the direct acting bearing 38 provided between the main valve body 31 of the main valve 3 and the housing 5 is a rolling bearing such as a ball bearing (ball bearing) or a roller bearing. However, the direct acting bearing 38 is not limited to a rolling bearing, and may be a sliding bearing. In the case where the linear motion bearing 38 is a sliding bearing, the configuration is simpler than that of a rolling bearing, so that the cost and weight can be reduced.

例えば、図10に示された変形例4−1に係る主弁3では、支持体35の弁体支持部35eの内周に滑り軸受としてのブッシュ74が嵌め込まれている。ブッシュ74の内周面が、滑り軸受の滑り面である。ブッシュ74のうち少なくとも滑り面は、主弁体31の軸形状部31dとの摩擦を軽減するための表面処理(例えば、給脂、潤滑など)が施されているか、摩擦が軽減される材料で構成されている。そして、このブッシュ74の内周に主弁体31の軸形状部31dが挿入されている。上記構成において、主弁体31が弁の開閉時に開閉方向へ移動すると、主弁体31の軸形状部31dはブッシュ74の内周面(滑り面)上を滑り運動する。   For example, in the main valve 3 according to the modified example 4-1 shown in FIG. 10, a bush 74 as a sliding bearing is fitted on the inner periphery of the valve body support portion 35e of the support body 35. The inner peripheral surface of the bush 74 is a sliding surface of the sliding bearing. At least the sliding surface of the bush 74 is made of a material that has been subjected to surface treatment (for example, lubrication, lubrication, etc.) to reduce friction with the shaft-shaped portion 31d of the main valve body 31 or that reduces friction. It is configured. The shaft-shaped portion 31 d of the main valve body 31 is inserted into the inner periphery of the bush 74. In the above configuration, when the main valve body 31 moves in the opening / closing direction when the valve is opened / closed, the shaft-shaped portion 31d of the main valve body 31 slides on the inner peripheral surface (sliding surface) of the bush 74.

また、例えば、図11に示された変形例4−2に係る主弁3では、支持体35の弁体支持部35eの内周面が滑り面となっており、弁体支持部35eそのものが滑り軸受として機能している。このため、支持体35の弁体支持部35eの内周面は、凹凸の無い滑らかな面に形成されている。さらに、支持体35の弁体支持部35eの内周面には、開閉方向に離れた一対のパッキン受け76が形成されており、ここにパッキン77がそれぞれ配設されている。一対のパッキン77の間であって、主弁体31の軸形状部31dの外周と支持体35の弁体支持部35eの内周との間には、グリスなどの潤滑剤が充填されている。この潤滑剤により、軸形状部31dの外周面と弁体支持部35eの内周面が潤滑され、軸形状部31dと弁体支持部35eとの間の摩擦が軽減されている。上記構成において、主弁体31が弁の開閉時に開閉方向へ移動すると、主弁体31の軸形状部31dは支持体35の弁体支持部35eの内周面(滑り面)上を滑り運動する。   Further, for example, in the main valve 3 according to the modification 4-2 shown in FIG. 11, the inner peripheral surface of the valve body support portion 35e of the support body 35 is a sliding surface, and the valve body support portion 35e itself is It functions as a sliding bearing. For this reason, the internal peripheral surface of the valve body support part 35e of the support body 35 is formed in the smooth surface without an unevenness | corrugation. Further, a pair of packing receivers 76 that are separated from each other in the opening / closing direction are formed on the inner peripheral surface of the valve body support portion 35e of the support body 35, and packings 77 are disposed therein. Between the pair of packings 77 and between the outer periphery of the shaft-shaped portion 31d of the main valve body 31 and the inner periphery of the valve body support portion 35e of the support body 35, a lubricant such as grease is filled. . With this lubricant, the outer peripheral surface of the shaft-shaped portion 31d and the inner peripheral surface of the valve body support portion 35e are lubricated, and the friction between the shaft-shaped portion 31d and the valve body support portion 35e is reduced. In the above configuration, when the main valve body 31 moves in the opening and closing direction when the valve is opened and closed, the shaft-shaped portion 31d of the main valve body 31 slides on the inner peripheral surface (sliding surface) of the valve body support portion 35e of the support body 35. To do.

1 パイロット式弁装置
3 主弁
4 パイロット弁
5 ハウジング
31 主弁体
31a 主弁部
31b 流路
31c 開口部
32 絞り
34 ダイヤフラム(弾性膜)
35 支持体
35a 弁体支持部
35b 第1バネ座
35e 弁体支持部
41 パイロット弁体
50 メイン流路
51 一次側流路
52 二次側流路
53 主弁室
54 第1パイロット流路
55 第2パイロット流路
56 パイロット弁室
60 パイロット流路
61 内側押え部材
62 裏当部材
62a 裏当部
62b 第2バネ座
63 バネ
64 外側押え部材
DESCRIPTION OF SYMBOLS 1 Pilot type valve apparatus 3 Main valve 4 Pilot valve 5 Housing 31 Main valve body 31a Main valve part 31b Flow path 31c Opening part 32 Restriction 34 Diaphragm (elastic film)
35 support body 35a valve body support section 35b first spring seat 35e valve body support section 41 pilot valve body 50 main flow path 51 primary side flow path 52 secondary side flow path 53 main valve chamber 54 first pilot flow path 55 second Pilot flow path 56 Pilot valve chamber 60 Pilot flow path 61 Inner pressing member 62 Backing member 62a Backing portion 62b Second spring seat 63 Spring 64 Outer pressing member

Claims (12)

一次側流路と二次側流路とで構成されるメイン流路、前記一次側流路と前記二次側流路との間に形成された主弁室、前記二次側流路と前記主弁室とを接続するパイロット流路、及び、前記パイロット流路に形成されたパイロット弁室を有するハウジングと、
前記パイロット弁室に配置されて、前記パイロット流路を開閉するパイロット弁体と、
前記主弁室を前記一次側流路と連通された第1領域と前記パイロット流路と連通された第2領域とに仕切るように前記主弁室に配置されて、前記第1領域と前記第2領域との流体の差圧に応じて前記メイン流路を開閉する主弁体と、
前記ハウジングに設けられて、前記主弁体を前記主弁室の壁と非接触で且つ開閉方向に移動可能に支持する弁体支持部と、
前記主弁体を開閉方向閉止向きに付勢する付勢部材と、
前記ハウジングと前記主弁体との間に設けられて、前記第1領域と前記第2領域とを隔離する弾性膜と、
を備えているパイロット式弁装置。
A main flow path composed of a primary flow path and a secondary flow path, a main valve chamber formed between the primary flow path and the secondary flow path, the secondary flow path and the A pilot channel connecting the main valve chamber, and a housing having a pilot valve chamber formed in the pilot channel;
A pilot valve body disposed in the pilot valve chamber to open and close the pilot flow path;
The main valve chamber is disposed in the main valve chamber so as to partition the first valve chamber into a first region communicating with the primary flow path and a second region communicating with the pilot flow path, and the first region and the first A main valve body that opens and closes the main flow path in accordance with a differential pressure of fluid with respect to the two regions;
A valve body support provided in the housing and supporting the main valve body in a non-contacting manner with a wall of the main valve chamber and being movable in an opening and closing direction;
An urging member for urging the main valve body in an opening / closing direction closing direction;
An elastic membrane provided between the housing and the main valve body and separating the first region and the second region;
A pilot-type valve device comprising:
前記主弁体と前記弁体支持部との間に設けられた直動型軸受を更に備えている、請求項1に記載のパイロット式弁装置。   The pilot type valve device according to claim 1, further comprising a direct acting bearing provided between the main valve body and the valve body support portion. 前記弾性膜は、環形状を有し、前記主弁体と結合された内周縁部と、前記主弁室の壁に結合された外周縁部と、前記内周縁部と前記外周縁部との間において前記第2領域側へ撓んだ弾性変形部とを有している、請求項1又は2に記載のパイロット式弁装置。   The elastic membrane has an annular shape, and includes an inner peripheral edge portion connected to the main valve body, an outer peripheral edge portion connected to a wall of the main valve chamber, and the inner peripheral edge portion and the outer peripheral edge portion. The pilot type valve device according to claim 1, further comprising an elastically deforming portion that is bent toward the second region. 前記弾性膜の前記第2領域側と接触し、前記主弁体に伴って移動する裏当部材を、更に備えている、請求項1〜3のいずれか一項に記載のパイロット式弁装置。   The pilot-type valve apparatus as described in any one of Claims 1-3 further provided with the backing member which contacts the said 2nd area | region side of the said elastic film, and moves with the said main valve body. 前記裏当部材は、環形状を有し、前記弾性膜と接触する部分の半径方向断面が前記第2領域側へ凸の曲線形状を有している、請求項4に記載のパイロット式弁装置。   5. The pilot valve device according to claim 4, wherein the backing member has a ring shape, and a radial cross section of a portion in contact with the elastic film has a curved shape that protrudes toward the second region. . 前記裏当部材に、前記付勢部材を保持する座が一体的に形成されている、請求項4又は5に記載のパイロット式弁装置。   The pilot type valve device according to claim 4 or 5, wherein a seat for holding the biasing member is formed integrally with the backing member. 前記直動型軸受を前記開閉方向から挟むように配置された一対の封止部材と、
前記一対の封止部材間に充填された潤滑剤とを、更に備えている、請求項2〜6のいずれか一項に記載のパイロット式弁装置。
A pair of sealing members disposed so as to sandwich the linear motion bearing from the opening and closing direction;
The pilot type valve device according to any one of claims 2 to 6, further comprising a lubricant filled between the pair of sealing members.
前記主弁体は前記開閉方向に延びる軸形状部を有し、
前記弁体支持部は前記主弁体の前記軸形状部が挿入される開口部を有している、請求項1〜7のいずれか一項に記載のパイロット式弁装置。
The main valve body has a shaft-shaped portion extending in the opening and closing direction,
The pilot valve device according to any one of claims 1 to 7, wherein the valve body support portion has an opening into which the shaft-shaped portion of the main valve body is inserted.
前記弁体支持部は前記開閉方向に延びる軸形状部を有し、
前記主弁体は前記弁体支持部の前記軸形状部が挿入される開口部を有している、請求項1〜7のいずれか一項に記載のパイロット式弁装置。
The valve body support portion has an axial shape portion extending in the opening and closing direction,
The pilot valve device according to any one of claims 1 to 7, wherein the main valve body has an opening into which the shaft-shaped portion of the valve body support portion is inserted.
前記弁体支持部が前記主弁室の内周に設けられている、請求項2〜7のいずれか一項に記載のパイロット式弁装置。   The pilot type valve device according to any one of claims 2 to 7, wherein the valve body support portion is provided on an inner periphery of the main valve chamber. 前記直動型軸受が転がり軸受である、請求項2〜10のいずれか一項に記載のパイロット式弁装置。   The pilot type valve device according to any one of claims 2 to 10, wherein the direct acting bearing is a rolling bearing. 前記直動型軸受が滑り軸受である、請求項2〜10のいずれか一項に記載のパイロット式弁装置。   The pilot type valve device according to any one of claims 2 to 10, wherein the direct acting bearing is a sliding bearing.
JP2013186122A 2013-09-09 2013-09-09 Pilot type valve device Pending JP2015052366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186122A JP2015052366A (en) 2013-09-09 2013-09-09 Pilot type valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186122A JP2015052366A (en) 2013-09-09 2013-09-09 Pilot type valve device

Publications (1)

Publication Number Publication Date
JP2015052366A true JP2015052366A (en) 2015-03-19

Family

ID=52701527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186122A Pending JP2015052366A (en) 2013-09-09 2013-09-09 Pilot type valve device

Country Status (1)

Country Link
JP (1) JP2015052366A (en)

Similar Documents

Publication Publication Date Title
JP5202117B2 (en) Pressure reducing valve
JP4888912B2 (en) Seal structure and control valve using the seal structure
JP5462764B2 (en) Pressure reducing valve
US10877495B2 (en) Pressure loaded regulator with dual diaphragm and redundant seal
JP6518064B2 (en) Sliding seal structure
US11988265B2 (en) Shock absorber
CN110410574B (en) Actuator bushing with integral seal
US10989317B2 (en) Two-way valve
KR101694641B1 (en) Sealing assembly and hydraulic actuator cylinder assembly of turbine valve having the same
JP2015052366A (en) Pilot type valve device
JP2016528460A (en) High cycle high speed valve
JP2009264449A (en) Valve stem seal
JP5483376B2 (en) Contamination seal device
JP2005273555A (en) Regulator for high-pressure fluid
JP2012202521A (en) Differential pressure valve and air spring type suspension
JP5767124B2 (en) Control valve
JP6654060B2 (en) Diaphragm valve
WO2015052863A1 (en) Pressure reducing valve
JP2014009754A (en) Shock absorber
JP2006029380A (en) Seal structure of piston and pressure governor
JP2013079692A (en) Flow rate control valve
JP2011122603A (en) Ball valve
JP4081045B2 (en) solenoid valve
EP3449087B1 (en) Device for controlling fluid flow
JP2017161022A (en) Bonded piston seal