JP2015051956A - Pyridoxal aminoguanidine derivatives and their salts and production method thereof - Google Patents

Pyridoxal aminoguanidine derivatives and their salts and production method thereof Download PDF

Info

Publication number
JP2015051956A
JP2015051956A JP2013185970A JP2013185970A JP2015051956A JP 2015051956 A JP2015051956 A JP 2015051956A JP 2013185970 A JP2013185970 A JP 2013185970A JP 2013185970 A JP2013185970 A JP 2013185970A JP 2015051956 A JP2015051956 A JP 2015051956A
Authority
JP
Japan
Prior art keywords
pyridoxal
group
hydroiodide
aminoguanidine
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013185970A
Other languages
Japanese (ja)
Other versions
JP6148127B2 (en
Inventor
一智 三輪
Kazutomo Miwa
一智 三輪
敬一郎 谷川
Keiichiro Tanigawa
敬一郎 谷川
道治 杉浦
Michiharu Sugiura
道治 杉浦
暢也 稲垣
Nobuya Inagaki
暢也 稲垣
新平 藤本
Shinpei Fujimoto
新平 藤本
佐藤 雄一
Yuichi Sato
雄一 佐藤
潔 石井
Kiyoshi Ishii
潔 石井
圭司 大脇
Keiji Owaki
圭司 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Permachem Asia Ltd
Original Assignee
Permachem Asia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permachem Asia Ltd filed Critical Permachem Asia Ltd
Priority to JP2013185970A priority Critical patent/JP6148127B2/en
Publication of JP2015051956A publication Critical patent/JP2015051956A/en
Application granted granted Critical
Publication of JP6148127B2 publication Critical patent/JP6148127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide compounds which are good in absorptivity on oral administration, serve as hypoglycemic agents with high safety and are useful as inhibitors for AGE formation reactions and their production method.SOLUTION: A method of producing pyridoxal/aminoguanidine derivatives and their salts having a structure with the amino group of pyridine derivatives of formula (V) substituted with another group comprises reacting pyridoxal with one of 1-amino-3-propyl guanidine hydroiodide, 4-methyl-S-methylisothiosemicarbazide hydroiodide, 3-methylisosemicarbazide hydrochloride and morpholine-4-carboxyimide hydrazide hydroiodide.

Description

本発明は、経口投与した際の吸収性が良好で、安全性の高い血糖低下剤として有用なピリドキサール・アミノグアニジン誘導体またはそれらの塩、及び、その製造方法に関する。   The present invention relates to a pyridoxal aminoguanidine derivative or a salt thereof, which has good absorbability when administered orally and is useful as a highly safe hypoglycemic agent, and a salt thereof, and a method for producing the same.

現在の糖尿病の薬物療法では、高血糖状態を抑える血糖降下薬の投与が主流である。ところが、このような薬物療法を行っている糖尿病患者が、網膜症、腎症、神経障害などの糖尿病合併症を発症することが少なくない。
このため、合併症の発症を直接防止できる医薬品の開発が望まれている。
In current pharmacotherapy for diabetes, administration of hypoglycemic drugs that suppress hyperglycemia is the mainstream. However, diabetic patients undergoing such pharmacotherapy often develop diabetic complications such as retinopathy, nephropathy, and neuropathy.
For this reason, development of the pharmaceutical which can prevent the onset of complication directly is desired.

糖尿病合併症の原因として、酸化ストレスの亢進や、タンパク質の非酵素的糖化(グリケーション)による終末糖化産物(Advanced Glycation End-products:以下、これを「AGE」と呼ぶことがある)の生成などが深く関与していることが明らかとなっている。
従来、このようなAGEの生成反応を阻害する化合物として、特許文献1,2に記載のピリドキサミン(次式(V)で表される化合物)をはじめ、いくつかのビタミンB6の誘導体が提案されている。
Causes of diabetic complications include increased oxidative stress and production of advanced glycation end-products (hereinafter sometimes referred to as “AGE”) by non-enzymatic glycation of proteins. Is deeply involved.
Conventionally, as a compound that inhibits such AGE formation reaction, several derivatives of vitamin B 6 have been proposed, including pyridoxamine (compound represented by the following formula (V)) described in Patent Documents 1 and 2. ing.

しかし、上記特許文献に記載されたビタミンB6誘導体では、糖尿病の特徴である多飲や多尿が十分に抑えられないなど、AGEの生成反応のインヒビターとしては、改良の余地があった。 However, the vitamin B 6 derivative described in the above-mentioned patent document has room for improvement as an inhibitor of the AGE production reaction, such as the fact that polydipsia and polyuria, which are characteristic of diabetes, cannot be sufficiently suppressed.

他方、日本では医薬品としてまだ承認されていないが、AGEの生成阻害剤としてアミノグアニジン(次式(VI)で表される化合物)も知られている。
このアミノグアニジンは、体内のビタミンB6と結合しやすいので、長期投与するとビタミンB6欠乏症を起こす虞があった。
On the other hand, aminoguanidine (a compound represented by the following formula (VI)) is also known as an AGE production inhibitor although it has not yet been approved as a pharmaceutical in Japan.
Since this aminoguanidine easily binds to vitamin B 6 in the body, there is a possibility that vitamin B 6 deficiency may occur when administered for a long time.

これに対し、ビタミンB6欠乏症の虞が無いものとして、上記アミノグアニジンと、前記ビタミンB6の誘導体の一つであるピリドキサールとの付加物であるPL−AG(次式(VII)で表される化合物)が提案されたものの、非特許文献1に記載するように、ラットでの経口投与実験の結果、腸管からの吸収率が極めて低いことが問題になっている。 On the other hand, there is no risk of vitamin B 6 deficiency, and PL-AG (represented by the following formula (VII)) is an adduct of the aminoguanidine and pyridoxal, which is one of the vitamin B 6 derivatives. However, as described in Non-Patent Document 1, as a result of oral administration experiments in rats, the absorption rate from the intestinal tract is extremely low.

特許第3769003号公報Japanese Patent No. 3769003 特表2008−509169号公報Special table 2008-509169 gazette

Free Radic. Biol. Med. 35:1392-1403, 2003Free Radic. Biol. Med. 35: 1392-1403, 2003

本発明は、上記のような状況に鑑み、経口投与した際の吸収性が良好で、安全性の高い血糖低下剤として有用な化合物の提供を課題とする。   In view of the circumstances as described above, an object of the present invention is to provide a compound that has good absorbability when administered orally and is useful as a highly safe hypoglycemic agent.

本発明者らは、ビタミンB6欠乏症の虞が無いにも拘らず、体内への吸収率が高い化合物について種々検討を行ったところ、4つのピリドキサール・アミノグアニジン誘導体を見出し、それら誘導体や塩に優れた血糖低下作用があることをも見出し、本発明を提案するに至った。 The present inventors have conducted various studies on a compound having a high absorption rate in the body in spite of no fear of vitamin B 6 deficiency. As a result, they found four pyridoxal / aminoguanidine derivatives and identified them as derivatives and salts. It has also been found that it has an excellent blood glucose lowering action and has come to propose the present invention.

すなわち、本発明は、次式(I)〜(IV)のいずれかで表されるピリドキサール・アミノグアニジン誘導体またはそれらの塩を要旨とする。
That is, the gist of the present invention is a pyridoxal aminoguanidine derivative represented by any of the following formulas (I) to (IV) or a salt thereof.

また、本発明は、ピリドキサール塩酸塩に、1−アミノ−3−プロピルグアニジン ヨウ化水素酸塩、4−メチル−S−メチルイソチオセミカルバジド ヨウ化水素酸塩、3−メチルイソセミカルバジド塩酸塩、モルホリン−4−カルボキシイミドヒドラジド ヨウ化水素酸塩のいずれかを加え撹拌した後、
さらに、炭酸水素ナトリウムを加え攪拌し、
析出した固体を、メタノールに加熱溶解し、精製することを特徴とする上式(I)〜(IV)で表されるピリドキサール・アミノグアニジン誘導体の製造方法をも要旨とする。
Further, the present invention relates to pyridoxal hydrochloride, 1-amino-3-propylguanidine hydroiodide, 4-methyl-S-methylisothiosemicarbazide hydroiodide, 3-methylisosemicarbazide hydrochloride, morpholine. After adding and stirring any of -4-carboximidohydrazide hydroiodide,
Add sodium bicarbonate and stir,
The gist of the present invention is also a method for producing a pyridoxal / aminoguanidine derivative represented by the above formulas (I) to (IV), wherein the precipitated solid is heated and dissolved in methanol and purified.

本発明のピリドキサール・アミノグアニジン誘導体(I)〜(IV)およびそれらの塩は、AGEの生成を効果的に阻害する作用を有しながら、体内のビタミンB6とも結合しないので、長期投与してもビタミンB6欠乏症の虞がない。
したがって、血糖低下剤をはじめ、糖尿病合併症の予防および治療薬としても広範囲な用途が期待され、非常に有用な化合物である。特に、式(III)で表される誘導体は、抗酸化作用、抗グリケーション作用、吸収されやすさにおいて、総合的に優れている。
また、本発明の製造方法によれば、これら化合物(I)〜(IV)を簡便な操作により、容易に合成することができる。
The pyridoxal aminoguanidine derivatives (I) to (IV) and salts thereof of the present invention have an action of effectively inhibiting the production of AGE, but do not bind to vitamin B 6 in the body. There is no risk of vitamin B 6 deficiency.
Therefore, it is expected to have a wide range of uses as a drug for preventing and treating diabetic complications, including a hypoglycemic agent, and is a very useful compound. In particular, the derivative represented by the formula (III) is comprehensively excellent in the antioxidant action, the anti-glycation action, and the ease of absorption.
Moreover, according to the production method of the present invention, these compounds (I) to (IV) can be easily synthesized by a simple operation.

実施例1の工程3で得た化合物(I)のNMR分析結果を示す図である。2 is a diagram showing the NMR analysis result of the compound (I) obtained in Step 3 of Example 1. FIG. 実施例2の工程2で得た化合物(II)のNMR分析結果を示す図である。2 is a diagram showing the NMR analysis result of the compound (II) obtained in Step 2 of Example 2. FIG. 実施例3の工程2で得た化合物(III)のNMR分析結果を示す図である。4 is a diagram showing the NMR analysis result of the compound (III) obtained in Step 2 of Example 3. FIG. 実施例4の工程2で得た化合物(IV)のNMR分析結果を示す図である。4 is a diagram showing the NMR analysis result of the compound (IV) obtained in Step 2 of Example 4. FIG. 実施例1の工程3で得た化合物(I)のIR分析結果を示す図である。2 is a graph showing an IR analysis result of Compound (I) obtained in Step 3 of Example 1. FIG. 実施例2の工程2で得た化合物(II)のIR分析結果を示す図である。2 is a diagram showing an IR analysis result of Compound (II) obtained in Step 2 of Example 2. FIG. 実施例3の工程2で得た化合物(III)のIR分析結果を示す図である。4 is a diagram showing an IR analysis result of compound (III) obtained in Step 2 of Example 3. FIG. 実施例4の工程2で得た化合物(IV)のIR分析結果を示す図である。4 is a diagram showing an IR analysis result of compound (IV) obtained in Step 2 of Example 4. FIG. 実施例1〜4の各化合物の経時的な血中濃度変化を示すグラフである。It is a graph which shows the blood concentration change of each compound of Examples 1-4 over time. 比較例1〜7の各化合物の経時的な血中濃度変化を示すグラフである。It is a graph which shows the blood concentration change of each compound of Comparative Examples 1-7 with time. 実施例3、比較例1,2,8の各化合物の3つの反応に対するIC50値を示す表である。Example 3 is a table showing IC 50 values for the three reactions of each compound of Comparative Example 1, 2 and 8. 正常マウス(正常群)と糖尿病マウス(コントロール群、比較例1群、実施例3群)の体重変化を示すグラフである。It is a graph which shows the weight change of a normal mouse (normal group) and a diabetic mouse (control group, the comparative example 1 group, Example 3 group). 上記4群の飲水量変化を示すグラフである。It is a graph which shows the amount of drinking water of the said 4 groups. 上記4群の尿量変化を示すグラフである。It is a graph which shows the urine volume change of the said 4 groups. 上記4群の20週齢時における尿中8-OHdG値を示すグラフである。It is a graph which shows the urinary 8-OHdG value at the age of 20 weeks of the said 4 groups. 上記4群の8〜20週齢時における随時血糖値を示すグラフである。It is a graph which shows the blood glucose level at any time at the age of 8-20 weeks of the said 4 groups. 上記4群の20週齢時における血漿中の総コレステロール値を示すグラフである。It is a graph which shows the total cholesterol value in the plasma at the age of 20 weeks of the said 4 groups. 上記4群の20週齢時における血漿中のトリグリセライド値を示すグラフである。It is a graph which shows the triglyceride value in the plasma at the age of 20 weeks of the said 4 groups. 上記4群の20週齢時における血中HbA1c値を示すグラフである。It is a graph which shows the blood HbA 1c value in the said 4 groups at the age of 20 weeks.

本発明の上式(I)〜(IV)のいずれかで表されるピリドキサール・アミノグアニジン誘導体の塩としては、塩酸塩、硝酸塩、硫酸塩、リン酸塩、シュウ酸塩、マレイン酸塩、コハク酸塩、メタンスルホン酸塩、ヨウ化水素酸塩等の酸付加塩が挙げられ、中でも、水溶性が良好な塩酸塩が好ましく、2塩酸塩が特に好ましい。   Examples of the salt of the pyridoxal aminoguanidine derivative represented by any one of the above formulas (I) to (IV) of the present invention include hydrochloride, nitrate, sulfate, phosphate, oxalate, maleate, and succinate. Acid addition salts such as acid salts, methanesulfonic acid salts, hydroiodic acid salts and the like are mentioned. Among them, hydrochlorides having good water solubility are preferable, and dihydrochlorides are particularly preferable.

本発明のピリドキサール・アミノグアニジン誘導体(I)〜(IV)の物性を、表1に示す。
表1中、clogPとは、水・オクタノール分配係数の予測計算値(Calculated-log P)であり、TPSA(Topological Polar Surface Area)とは、分子表面の極性分布の予測計算値である。
一般的に、clogPが大きいほど脂溶性(疎水性)が強い。また、TPSAが140以上だと生体内への吸収が悪くなると言われている。
Table 1 shows the physical properties of the pyridoxal aminoguanidine derivatives (I) to (IV) of the present invention.
In Table 1, clogP is a predicted calculated value of water / octanol partition coefficient (Calculated-log P), and TPSA (Topological Polar Surface Area) is a predicted calculated value of polar distribution on the molecular surface.
Generally, the larger clogP, the stronger the fat solubility (hydrophobicity). Moreover, when TPSA is 140 or more, it is said that absorption in a living body will worsen.

また、本発明のピリドキサール・アミノグアニジン誘導体(I)〜(IV)は、シッフ塩基というユニークな構造を有する。シッフ塩基は、生体内でも徐々に分解していくので、安全性が高い医薬品となり得るものである。
また、いわゆる活性酸素の一つであるヒドロキシラジカル(・OH)を除去する作用や、強い銅イオン(Cu2+)キレート作用を有するゆえ、抗酸化作用(酸化反応を阻害する作用)に優れている。
The pyridoxal aminoguanidine derivatives (I) to (IV) of the present invention have a unique structure called a Schiff base. Since the Schiff base is gradually degraded even in vivo, it can be a highly safe pharmaceutical product.
In addition, it has excellent antioxidative action (action that inhibits oxidation reaction) because of its action to remove hydroxy radical (.OH), which is one of so-called active oxygen, and strong copper ion (Cu 2+ ) chelate action. Yes.

上記4つのピリドキサール・アミノグアニジン誘導体(I)〜(IV)の中では、抗酸化作用、抗グリケーション作用、および吸収されやすさ等を総合的に判断すると、式(III)で表される誘導体が好ましく、より好ましくは、当該誘導体(III)の2塩酸塩である。   Among the above four pyridoxal aminoguanidine derivatives (I) to (IV), a derivative represented by the formula (III) is obtained by comprehensively judging antioxidant action, anti-glycation action, ease of absorption, etc. Is more preferable, and the dihydrochloride of the derivative (III) is more preferable.

実施例1
本発明に係るピリドキサール・アミノグアニジン誘導体のうち、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(1−アミノ−3−プロピル)グアニジン≪式(I)≫を、以下のようにして合成した。
Example 1
Among the pyridoxal aminoguanidine derivatives according to the present invention, 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (1-amino-3-propyl) guanidine << Formula (I) >> In this way, it was synthesized.

工程1
チオセミカルバジド9.11g(0.1mol)をエタノール180mLに溶解し、ヨウ化メチル6.22mL(0.1mol)を加えて4時間加熱還流した。
反応液を氷冷し、析出した結晶をろ取することにより、S−メチルイソチオセミカルバジドのヨウ化水素酸塩15.6g(無色結晶:収率67%)を得た。
Process 1
9.11 g (0.1 mol) of thiosemicarbazide was dissolved in 180 mL of ethanol, 6.22 mL (0.1 mol) of methyl iodide was added, and the mixture was heated to reflux for 4 hours.
The reaction solution was ice-cooled, and the precipitated crystals were collected by filtration to obtain 15.6 g of S-methylisothiosemicarbazide hydroiodide (colorless crystals: yield 67%).

工程2
上記工程1で得られたS−メチルイソチオセミカルバジドのヨウ化水素酸塩1.0g(4.05mmol)をエタノール4.0mLに溶解し、プロピルアミン1.0mL(12mmol)を加えて4時間加熱還流した。
反応液を減圧下に濃縮し、得られた残さ(褐色オイル:1−アミノ−3−プロピルグアニジンのヨウ化水素酸塩)を精製することなく次の反応(下記工程3)に使用した。
Process 2
Dissolve 1.0 g (4.05 mmol) of the hydroiodide salt of S-methylisothiosemicarbazide obtained in Step 1 above in 4.0 mL of ethanol, add 1.0 mL (12 mmol) of propylamine and heat for 4 hours. Refluxed.
The reaction solution was concentrated under reduced pressure, and the resulting residue (brown oil: 1-amino-3-propylguanidine hydroiodide) was used in the next reaction (step 3 below) without purification.

工程3
ピリドキサール塩酸塩400mg(1.96mmol)を水2mLに溶解し、上記工程2で得られた1−アミノ−3−プロピルグアニジンのヨウ化水素酸塩480mg(1.96mmol)を加えて室温で2時間攪拌した。シリカゲルをアミノ基でコーティングした薄層クロマトグラフィー(抽出溶媒は、メタノール:酢酸エチル=1:5)にて、原料の消失を確認した後、炭酸水素ナトリウム330mg(3.93mmol)と水1mLを加えて、室温で1時間攪拌した。
析出固体をろ取し、少量の水で洗浄した後、減圧下に乾燥した。得られた固体をメタノール30mLに加熱溶解し、フラッシュカラムクロマトグラフィー(富士シリシア化学(株)製 商品名“クロマトレックスNH”。抽出溶媒は、メタノール:酢酸エチル=1:4)で精製した。
目的物を含むフラクションを濃縮し、残さにエーテル−エタノールを加えて結晶化し、ろ取することにより、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(1−アミノ−3−プロピル)グアニジン≪式(I)≫300mgを黄白色粉末として得た(収率58%)。
Process 3
400 mg (1.96 mmol) of pyridoxal hydrochloride was dissolved in 2 mL of water, 480 mg (1.96 mmol) of 1-amino-3-propylguanidine hydroiodide obtained in the above Step 2 was added, and the mixture was stirred at room temperature for 2 hours. Stir. After confirming the disappearance of the raw materials by thin layer chromatography in which silica gel is coated with amino groups (extraction solvent is methanol: ethyl acetate = 1: 5), 330 mg (3.93 mmol) of sodium bicarbonate and 1 mL of water were added. And stirred at room temperature for 1 hour.
The precipitated solid was collected by filtration, washed with a small amount of water, and then dried under reduced pressure. The obtained solid was dissolved by heating in 30 mL of methanol and purified by flash column chromatography (trade name “Chromatolex NH” manufactured by Fuji Silysia Chemical Ltd., extraction solvent: methanol: ethyl acetate = 1: 4).
The fraction containing the desired product was concentrated, and ether-ethanol was added to the residue for crystallization, followed by filtration to give 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (1-amino-3 -Propyl) guanidine << Formula (I) >> 300 mg was obtained as a pale yellow powder (yield 58%).

実施例2
本発明に係るピリドキサール・アミノグアニジン誘導体のうち、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(4−メチル−S−メチル)イソチオセミカルバジド≪式(II)≫を、以下のようにして合成した。
Example 2
Among the pyridoxal aminoguanidine derivatives according to the present invention, 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (4-methyl-S-methyl) isothiosemicarbazide << Formula (II) >> The synthesis was performed as follows.

工程1
4−メチル−3−チオセミカルバジド1.0g(9.5mmol)をエタノール2mLに溶解し、ヨウ化メチル0.59mL(9.5mmol)を加えて3時間加熱還流した。
放冷後、反応液を氷水冷却下に撹拌し、析出した結晶をろ取することにより、4−メチル−S−メチルイソチオセミカルバジドのヨウ化水素酸塩1.96g(無色結晶:収率83%)を得た。
Process 1
1.0 g (9.5 mmol) of 4-methyl-3-thiosemicarbazide was dissolved in 2 mL of ethanol, 0.59 mL (9.5 mmol) of methyl iodide was added, and the mixture was heated to reflux for 3 hours.
After allowing to cool, the reaction mixture was stirred under ice-water cooling, and the precipitated crystals were collected by filtration to give 1.96 g of 4-methyl-S-methylisothiosemicarbazide hydroiodide (colorless crystals: yield 83). %).

工程2
ピリドキサール塩酸塩400mg(1.96mmol)を水2mLに溶解し、上記実施例2の工程1で得られた4−メチル−S−メチルイソチオセミカルバジドのヨウ化水素酸塩490mg(1.96mmol)を加えて室温で2時間攪拌した。実施例1と同様の薄層クロマトグラフィーにて、原料の消失を確認した後、炭酸水素ナトリウム330mg(3.93mmol)と水3mLを加えて、室温で1時間攪拌した。
析出固体をろ取し、少量の水で洗浄した後、減圧下に乾燥した。得られた固体をメタノール50mLに加熱溶解し、実施例1と同様のフラッシュカラムクロマトグラフィーで精製した。
目的物を含むフラクションを濃縮し、残さにエタノールを加えて結晶化し、ろ取することにより、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(4−メチル−S−メチル)イソチオセミカルバジド≪式(II)≫490mgを黄白色粉末として得た(収率93%)。
Process 2
400 mg (1.96 mmol) of pyridoxal hydrochloride was dissolved in 2 mL of water, and 490 mg (1.96 mmol) of 4-methyl-S-methylisothiosemicarbazide hydroiodide obtained in Step 1 of Example 2 was added. In addition, the mixture was stirred at room temperature for 2 hours. After confirming the disappearance of the raw materials by the same thin layer chromatography as in Example 1, 330 mg (3.93 mmol) of sodium bicarbonate and 3 mL of water were added, and the mixture was stirred at room temperature for 1 hour.
The precipitated solid was collected by filtration, washed with a small amount of water, and then dried under reduced pressure. The obtained solid was dissolved by heating in 50 mL of methanol and purified by flash column chromatography as in Example 1.
The fraction containing the desired product was concentrated, ethanol was added to the residue, and the mixture was crystallized and collected by filtration to give 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (4-methyl-S-methyl). ) 490 mg of isothiosemicarbazide << Formula (II) >> was obtained as a pale yellow powder (93% yield).

実施例3
本発明に係るピリドキサール・アミノグアニジン誘導体のうち、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジド≪式(III)≫を、以下のようにして合成した。
Example 3
Among the pyridoxal aminoguanidine derivatives according to the present invention, 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) isosemicarbazide << Formula (III) >> is prepared as follows. Synthesized.

工程1
エタンイミド酸エチル塩酸塩0.5g(4.05mmol)をエタノール40mLに溶解し、ドライアイス−アセトン冷却下に、ヒドラジン1水和物0.20mL(4.05mmol)を含むエタノール溶液10mLを加えて、室温で30分間撹拌した。
反応液を減圧下に濃縮し、析出した結晶に少量のエタノールを加えてろ取し、少量のエタノールおよびエーテルで洗浄し、減圧下に乾燥することにより、3−メチルイソセミカルバジド塩酸塩0.28g(淡紅白色結晶:収率63%)を得た。
Process 1
Ethaneimidate ethyl hydrochloride 0.5 g (4.05 mmol) was dissolved in ethanol 40 mL, and 10 mL of ethanol solution containing 0.20 mL (4.05 mmol) of hydrazine monohydrate was added under dry ice-acetone cooling. Stir at room temperature for 30 minutes.
The reaction solution was concentrated under reduced pressure, a small amount of ethanol was added to the precipitated crystals, and the crystals were collected by filtration, washed with a small amount of ethanol and ether, and dried under reduced pressure to give 0.28 g of 3-methylisosemicarbazide hydrochloride ( Light red white crystals: yield 63%) were obtained.

工程2
ピリドキサール塩酸塩400mg(1.96mmol)を水2mLに溶解し、上記実施例3の工程1で得られた3−メチルイソセミカルバジド塩酸塩0.22g(1.96mmol)を加えて室温で2時間攪拌した。実施例1と同様の薄層クロマトグラフィーにて、原料の消失を確認した後、炭酸水素ナトリウム0.34g(3.93mmol)を加えて、室温で30分間攪拌した。
析出固体をろ取し、減圧下に乾燥した。得られた固体をメタノール60mLに加熱溶解し、不溶物(メタノールに溶けなかったピリドキサール塩酸塩や3−メチルイソセミカルバジド塩酸塩)をろ過し、ろ液を実施例1と同様のフラッシュカラムクロマトグラフィーで精製した。
目的物を含むフラクションを濃縮し、残さにエーテル−エタノールを加えて結晶化し、ろ取することにより、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジド≪式(III)≫210mgを黄白色粉末として得た(収率48%)。
Process 2
400 mg (1.96 mmol) of pyridoxal hydrochloride was dissolved in 2 mL of water, 0.22 g (1.96 mmol) of 3-methylisosemicarbazide hydrochloride obtained in Step 1 of Example 3 was added, and the mixture was stirred at room temperature for 2 hours. did. After confirming the disappearance of the raw materials by the same thin layer chromatography as in Example 1, 0.34 g (3.93 mmol) of sodium hydrogen carbonate was added and stirred at room temperature for 30 minutes.
The precipitated solid was collected by filtration and dried under reduced pressure. The obtained solid was dissolved by heating in 60 mL of methanol, insoluble matters (pyridoxal hydrochloride and 3-methylisosemicarbazide hydrochloride not dissolved in methanol) were filtered, and the filtrate was subjected to flash column chromatography as in Example 1. Purified.
The fraction containing the desired product is concentrated, and ether-ethanol is added to the residue for crystallization, followed by filtration to give 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) iso 210 mg of semicarbazide << Formula (III) >> was obtained as a pale yellow powder (yield 48%).

実施例4
本発明に係るピリドキサール・アミノグアニジン誘導体のうち、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−モルホリノ)セミカルバジド≪式(IV)≫を、以下のようにして合成した。
Example 4
Among the pyridoxal aminoguanidine derivatives according to the present invention, 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-morpholino) semicarbazide << Formula (IV) >> was synthesized as follows. did.

工程1
実施例1の工程1で得られたS−メチルイソチオセミカルバジドのヨウ化水素酸塩2.0g(8.58mmol)をエタノール8mLに溶解し、モルホリン2.1mL(24.1mmol)を加えて4時間加熱還流した。
放冷後、反応液を氷水冷却下に撹拌し、析出した結晶をろ取することにより、モルホリン−4−カルボキシイミドヒドラジドのヨウ化水素酸塩2.31g(橙色結晶:収率98.95%)を得た。
Process 1
2.0 g (8.58 mmol) of S-methylisothiosemicarbazide hydroiodide obtained in Step 1 of Example 1 was dissolved in 8 mL of ethanol, and 2.1 mL (24.1 mmol) of morpholine was added to add 4 Heated to reflux for hours.
After allowing to cool, the reaction solution was stirred under ice-water cooling, and the precipitated crystals were collected by filtration to give 2.31 g of morpholine-4-carboximide hydrazide hydroiodide (orange crystals: yield 98.95%). )

工程2
ピリドキサール塩酸塩142mg(0.70mmol)を水0.7mLに溶解し、上記実施例4の工程1で得られたモルホリン−4−カルボキシイミドヒドラジドのヨウ化水素酸塩190mg(0.70mmol)を加えて室温で1時間攪拌した。シリカゲルをアミノ基でコーティングした薄層クロマトグラフィー(抽出溶媒は、メタノール:ジクロロメタン=1:9)にて、原料の消失を確認した後、炭酸水素ナトリウム117mg(1.39mmol)と水0.7mLを加えて、室温で1時間攪拌した。
析出固体をろ取し、少量の水で洗浄した後、減圧下に乾燥した。得られた固体をメタノール5mLに加熱溶解し、フラッシュカラムクロマトグラフィー(富士シリシア化学(株)製 商品名“クロマトレックスNH”。抽出溶媒は、メタノール:ジクロロメタン=1:9)。
目的物を含むフラクションを濃縮し、残さにエーテル−ヘキサンを加えて結晶化し、ろ取することにより、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−モルホリノ)セミカルバジド≪式(IV)≫187mgを淡黄色粉末として得た(収率91%)。
Process 2
142 mg (0.70 mmol) of pyridoxal hydrochloride was dissolved in 0.7 mL of water, and 190 mg (0.70 mmol) of morpholine-4-carboximidohydrazide hydroiodide obtained in Step 1 of Example 4 was added. And stirred at room temperature for 1 hour. After confirming the disappearance of the raw materials by thin layer chromatography in which silica gel is coated with amino groups (extraction solvent is methanol: dichloromethane = 1: 9), 117 mg (1.39 mmol) of sodium bicarbonate and 0.7 mL of water are added. In addition, the mixture was stirred at room temperature for 1 hour.
The precipitated solid was collected by filtration, washed with a small amount of water, and then dried under reduced pressure. The obtained solid was dissolved by heating in 5 mL of methanol, and flash column chromatography (trade name “Chromatolex NH” manufactured by Fuji Silysia Chemical Ltd., extraction solvent: methanol: dichloromethane = 1: 9).
The fraction containing the desired product is concentrated, and the residue is crystallized by adding ether-hexane and filtered to give 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-morpholino) semicarbazide << Formula (IV) >> 187 mg was obtained as a pale yellow powder (yield 91%).

実施例1〜4で合成した化合物(式(I)〜(IV)で表される化合物)の融点測定、NMR分析、IR分析を行った。結果を下に示す。   The compounds synthesized in Examples 1 to 4 (compounds represented by formulas (I) to (IV)) were subjected to melting point measurement, NMR analysis, and IR analysis. Results are shown below.

〔融点測定〕
融点測定装置(独国BUCHI社製商品名“B545”)を使用して行った。この結果は、下記の通りであった;

・式(I)で表される化合物:161.0℃
・式(II)で表される化合物:222.9℃
・式(III)で表される化合物:225.8℃
・式(IV)で表される化合物:207.3℃
[Melting point measurement]
The melting point was measured using a melting point measuring apparatus (trade name “B545” manufactured by BUCHI, Germany). The results were as follows:

Compound represented by formula (I): 161.0 ° C.
Compound represented by formula (II): 222.9 ° C.
Compound represented by formula (III): 225.8 ° C.
Compound represented by formula (IV): 207.3 ° C.

〔NMR分析〕
日本電子社製 商品名“JNM−A600”を使用して測定を行った。この結果は、図1〜4の通りであった。
[NMR analysis]
Measurement was performed using a product name “JNM-A600” manufactured by JEOL Ltd. The results were as shown in FIGS.

〔IR分析〕
Thermo scientific社製 商品名“Thermo Nicolet is10”)を使用して測定を行った。この結果は、図5〜8の通りであった。
[IR analysis]
Measurement was performed using a product name “Thermo Nicolet is10”) manufactured by Thermo scientific. The results were as shown in FIGS.

実施例5
3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジド≪式(III)≫の2塩酸塩を以下のようにして合成した。
Example 5
A dihydrochloride salt of 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) isosemicarbazide << Formula (III) >> was synthesized as follows.

実施例3の工程1,2を繰り返し、3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジド≪式(III)≫を20g得た。
この3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジド≪式(III)≫16g(72mmol)に、0.25M塩酸576mL(144mmol)を加えた。さらに、水100mLを加えながら70〜90℃の湯浴で温めた後、フリーズドライにかけ、粉末状の3−ヒドロキシ−5−ヒドロキシメチル−2−メチルピリジン−4−イルメチレン−(3−メチル)イソセミカルバジドの2塩酸塩を得た(黄色結晶)。
Steps 1 and 2 of Example 3 were repeated to obtain 20 g of 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) isosemicarbazide << Formula (III) >>.
To 16 g (72 mmol) of this 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) isosemicarbazide << Formula (III) >>, 576 mL (144 mmol) of 0.25M hydrochloric acid was added. Further, after heating in a hot water bath at 70 to 90 ° C. while adding 100 mL of water, it was freeze-dried and powdered 3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-ylmethylene- (3-methyl) iso Semicarbazide dihydrochloride was obtained (yellow crystals).

比較例1,2
ピリドキサミン≪式(V)≫の2塩酸塩(Calbiochem社製)を比較例1、PL−AG≪式(VII)≫を比較例2とした。
Comparative Examples 1 and 2
Pyridoxamine << Formula (V) >> dihydrochloride (Calbiochem) was used as Comparative Example 1, and PL-AG << Formula (VII) >> was used as Comparative Example 2.

比較例3〜7
実施例1〜4とは異なる構造式を有するピリドキサール・アミノグアニジン誘導体を5つ合成し、比較例3〜7とした。
比較例3〜7は、次式(VIII)〜(XII)で表される化合物であり、その物性を、表1と同様に、表2に示す。
Comparative Examples 3-7
Five pyridoxal / aminoguanidine derivatives having structural formulas different from those of Examples 1 to 4 were synthesized as Comparative Examples 3 to 7.
Comparative Examples 3 to 7 are compounds represented by the following formulas (VIII) to (XII), and their physical properties are shown in Table 2 as in Table 1.

比較例8
アミノグアニジン≪式(VI)≫の塩酸塩(Sigma/Aldrich社製)を比較例8とした。
Comparative Example 8
A hydrochloride of aminoguanidine << Formula (VI) >> (Sigma / Aldrich) was used as Comparative Example 8.

<経口投与した化合物の血中濃度変化の測定>
・供試動物
9週齢のWistar系雄性ラット(日本クレア社製)11個体
<Measurement of blood concentration of orally administered compound>
・ Test animals: Eleven Wistar male rats aged 9 weeks (CLEA Japan)

・化合物投与、採血、除タンパク
5%アラビアゴム0.75mLに、実施例1〜4,比較例1〜7の化合物15mgをそれぞれ加え(20mg/mLとする)、乳鉢を用いて混和したものを、5時間絶食させた各ラットに、ゾンデで100mg/kg体重となるように単回経口投与(1.25〜1.5mL)した。
投与0.5、1、2、4、6時間後毎に、エーテル麻酔下、眼窩静脈叢より採血を行い、その50μLにすばやく0.45M過塩素酸100μLを加えよく混合し、5分間遠心した。上清をミリポアフィルター(0.22μm)付チューブに入れ、さらに8000×gで5分間遠心した。ろ液を測定時まで冷凍保存し、表3,4に示す測定条件にてHPLCで各化合物の濃度を測定した。
図9,10に、各化合物の経時的な血中濃度変化の結果を示す。
Compound administration, blood sampling, deproteinization To 0.75 mL of 5% gum arabic, 15 mg of each of the compounds of Examples 1 to 4 and Comparative Examples 1 to 7 was added (20 mg / mL) and mixed using a mortar. Each rat fasted for 5 hours was given a single oral dose (1.25 to 1.5 mL) with a sonde to 100 mg / kg body weight.
Every 0.5, 1, 2, 4, and 6 hours after administration, blood was collected from the orbital venous plexus under ether anesthesia, and then 100 μL of 0.45 M perchloric acid was quickly added to 50 μL and mixed well, and centrifuged for 5 minutes. . The supernatant was put into a tube with a Millipore filter (0.22 μm), and further centrifuged at 8000 × g for 5 minutes. The filtrate was stored frozen until measurement, and the concentration of each compound was measured by HPLC under the measurement conditions shown in Tables 3 and 4.
9 and 10 show the results of changes in blood concentration of each compound over time.

図9,10の各グラフにおいて、横軸は、経過時間(hr)を、縦軸は、血中濃度(μg/mL)を示している(なお、濃度変化の推移をわかりやすく表すため、縦軸の目盛は統一させていない)。各化合物(100mg/kg)が経口投与された時間を、横軸0(ゼロ)とした。
図9から、実施例1〜4の化合物はいずれも最高血中濃度が高く、ラット体内における腸管からの吸収性が著しくよいことがわかった。
中でも、実施例3≪化合物(III)≫が、経口投与後0.5時間で血中濃度がもっとも高くなり(10.0μg/mL)、6時間後においても3.1μg/mLであった。これに対し、比較例2≪化合物(VII)≫の最高血中濃度は、0.36μg/mLと低いものであった。
9 and 10, the horizontal axis represents the elapsed time (hr), and the vertical axis represents the blood concentration (μg / mL). The axis scales are not unified). The time when each compound (100 mg / kg) was orally administered was defined as 0 (zero) on the horizontal axis.
From FIG. 9, it was found that all of the compounds of Examples 1 to 4 had a high maximum blood concentration and remarkably good absorbability from the intestinal tract in the rat body.
Among them, Example 3 << compound (III) >> had the highest blood concentration 0.5 hours after oral administration (10.0 μg / mL), and 3.1 μg / mL after 6 hours. In contrast, the maximum blood concentration of Comparative Example 2 << Compound (VII) >> was as low as 0.36 μg / mL.

<抗酸化作用と抗グリケーション作用の測定>
実施例3,比較例1,2,8の各化合物について、3つの反応:1)安息香酸の水酸化反応、2)デオキシリボースの酸化反応、3)タンパク質のグリケーション反応、のIC50(50%阻害濃度)を求めた。
結果を図11に示す。
図11中の数値の単位はμMであり、“ND”とは、Not Determinedの略である。
図11から、3つの全ての反応において、実施例3が最も強い阻害作用を有することがわかった。
<Measurement of antioxidant and anti-glycation effects>
For each of the compounds of Example 3, Comparative Examples 1, 2, and 8, the IC 50 (50) of three reactions: 1) hydroxylation of benzoic acid, 2) oxidation of deoxyribose, 3) glycation reaction of protein % Inhibitory concentration).
The results are shown in FIG.
The unit of the numerical values in FIG. 11 is μM, and “ND” is an abbreviation for Not Determined.
FIG. 11 shows that Example 3 has the strongest inhibitory action in all three reactions.

<マウスの体重・飲水量・尿量の測定>
・供試動物
7週齢のICR系雄性マウス(日本クレア社製)。
7週齢のKK-Ay/Ta雄性マウス(日本クレア社製)。

KK-Ay/Taマウスは、2型糖尿病モデルマウスとして市販されており、ポリジーン支配によると考えられる軽度糖尿病のKKマウスに肥満遺伝子(Ay)を導入したもので、肥満と顕著な糖尿病を特徴とするマウスである。
<Measurement of mouse body weight, water consumption, and urine volume>
Test animals: 7-week-old ICR male mice (manufactured by CLEA Japan).
7-week old KK-A y / Ta male mice (CLEA Japan).

The KK-A y / Ta mouse is commercially available as a type 2 diabetes model mouse. The KK-A y / Ta mouse is a mildly diabetic KK mouse that is thought to be controlled by polygene, and has an obesity gene (A y ) introduced. It is a characteristic mouse.

・飼育方法
正常群として、上記ICR系マウス(n=11)を標準飼料(日本クレア社製 “CE-2”)にて、また、KK-Ay/Taマウスを3群に分け、標準飼料飼育群(n=11)、比較例1(ピリドキサミン(V)2塩酸塩)含有飼料飼育群(n=10)、実施例3(化合物(III))含有飼料飼育群(n=10)とし、20週齢まで飼育を行った。なお、実験開始時の4群の各個体の体重はほぼ同じ値(35〜37kg)であった。
マウスはそれぞれ1匹ずつケージに入れ、12時間の明暗サイクル(8:00〜20:00を明とした)で、温度25〜27℃に保たれた部屋で飼育した。水はそれぞれ自由に摂取させ、正常群も含めて11週齢から1日6g(約150mg/kg/day)に制限給餌した。
-Breeding method As a normal group, the above ICR mice (n = 11) are divided into three groups of standard feed (“CE-2” manufactured by CLEA Japan), and KK-A y / Ta mice are divided into three groups. Feeding group (n = 11), Comparative Example 1 (pyridoxamine (V) dihydrochloride) containing feed breeding group (n = 10), Example 3 (compound (III)) containing feed breeding group (n = 10), The breeding was carried out until the age of 20 weeks. In addition, the body weight of each of the four groups at the start of the experiment was almost the same value (35 to 37 kg).
Each mouse was placed in a cage and kept in a room maintained at a temperature of 25 to 27 ° C. with a 12 hour light / dark cycle (8:00 to 20:00 lighted). Each of the water was allowed to freely ingest, and was restricted to 6 g (about 150 mg / kg / day) a day from 11 weeks of age including the normal group.

・統計学的処理
実験結果は、平均値±SD(n=10〜11)で示し、有意差検定には多群間比較においてDunnett検定を用いた。検定は正常群(ICR系マウス標準飼料飼育群)、KK-Ay/Taマウスの標準飼料飼育群(以下、「コントロール群」とする)に対してそれぞれ行い、危険率(P)が0.05以下のとき、統計学的に有意とみなした。
-Statistical processing The experimental results are shown as mean ± SD (n = 10 to 11), and Dunnett's test was used for comparison between multiple groups for the significance test. The test was performed on a normal group (ICR mouse standard feed breeding group) and a standard feed breeding group of KK-A y / Ta mice (hereinafter referred to as “control group”), with a risk factor (P) of 0. When it was less than 05, it was considered statistically significant.

上記4群の体重変化の結果を、図12に示す。
図12において、横軸は、週齢を、縦軸は、体重(g)を示し、○:正常群、●:コントロール群、□:比較例1(ピリドキサミン(V)2塩酸塩)含有飼料飼育群(以下、「比較例1群」とする)、■:実施例3(化合物(III))含有飼料飼育群(以下、「実施例3群」とする)である。
図12のように、実験終了の20週齢まで4群は同様の体重増加を示した。
The result of the weight change of the four groups is shown in FIG.
In FIG. 12, the horizontal axis indicates the age of the week, the vertical axis indicates the body weight (g), ○: normal group, ●: control group, □: Comparative Example 1 (pyridoxamine (V) dihydrochloride) -containing feed breeding Group (hereinafter referred to as “Comparative Example 1 group”), ▪: Example 3 (compound (III))-containing feed breeding group (hereinafter referred to as “Example 3 group”).
As shown in FIG. 12, the 4 groups showed similar weight gain until the end of the experiment at 20 weeks of age.

上記4群の飲水量変化の結果を、図13に示す。
図13において、横軸は、週齢を、縦軸は、飲水量(mL/day)を示し、○:正常群、●:コントロール群、□:比較例1群、■:実施例3群である。
図13から、正常群に対し、10週齢以降では、コントロール群の飲水量は約1.5倍と、糖尿病の特徴である多飲の結果をたどったことがわかる。
これに対し、実験期間を通して、実施例3群は、正常群とほぼ同じ飲水量であった。また、比較例1群は、コントロール群よりも多めの飲水量を示し、多飲が抑えられていなかった。
The results of changes in the amount of drinking water for the four groups are shown in FIG.
In FIG. 13, the horizontal axis represents the age of the week, the vertical axis represents the amount of drinking water (mL / day), ○: normal group, ●: control group, □: comparative example 1 group, ■: example 3 group. is there.
From FIG. 13, it can be seen that after 10 weeks of age, the amount of drinking in the control group was about 1.5 times that of the normal group, following the result of multiple drinking, which is a feature of diabetes.
In contrast, throughout the experimental period, the Example 3 group had almost the same amount of drinking water as the normal group. Moreover, the comparative example 1 group showed more water consumption than the control group, and the heavy drinking was not suppressed.

上記4群の尿量変化の結果を、図14に示す。
図14において、横軸は、週齢を、縦軸は、尿量(mL/day)を示し、○:正常群、●:コントロール群、□:比較例1群、■:実施例3群である。
図14から、正常群に対し、コントロール群の尿量は約3〜4倍と、糖尿病の特徴である多尿の結果となった。
これに対し、実験期間を通して、実施例3群は、正常群とほぼ同じで多尿が抑えられていたことがわかった。また、比較例1群では、コントロール群とほぼ同じで尿量であり、多尿は抑制されなかった。
実施例3群の尿量が少なかったのは、後述の随時血糖値(図16参照)の上昇が抑制されていることを反映したものと考えられる。
The results of changes in urine volume in the four groups are shown in FIG.
In FIG. 14, the horizontal axis indicates the age of the week, the vertical axis indicates the urine volume (mL / day), ○: normal group, ●: control group, □: comparative example 1 group, ■: example 3 group. is there.
As shown in FIG. 14, the amount of urine in the control group was about 3 to 4 times that in the normal group, resulting in polyuria, a characteristic of diabetes.
On the other hand, it was found that polyuria was suppressed in the Example 3 group almost the same as the normal group throughout the experiment period. In Comparative Example 1, the urine volume was almost the same as in the control group, and polyuria was not suppressed.
The small amount of urine in Example 3 group is considered to reflect that the increase in blood glucose level (see FIG. 16) described later is suppressed.

<マウスの尿中・血中各種成分の測定>
・供試動物と飼育方法
前述の<マウスの体重・飲水量・尿量の測定>と同様とした。
<Measurement of various components in mouse urine and blood>
-Test animals and breeding methods The same as described above in <Measurement of body weight, drinking water, and urine volume of mice>.

尿中成分は、前記4群の20週齢時に採取した24時間尿について調べた。
また、前記4群の血中成分は、後述の随時血糖値以外は、20週齢時にクロロホルム麻酔下に心臓よりヘパリン採血を行い、血液を1500×gで15分間遠心して得た血漿について調べた。
The urine components were examined for 24-hour urine collected at the age of 20 weeks in the four groups.
The blood components in group 4 were examined for plasma obtained by collecting heparin from the heart under chloroform anesthesia at 20 weeks of age under centrifugal anesthesia and centrifuging the blood at 1500 × g for 15 minutes, except for the occasional blood glucose level described below. .

1)尿中8-hydroxydeoxyguanosine(8-OHdG)値
高感度8-OHdG Check(日本老化制御研究所製)を用いてELISA法により測定した。なお、体内の8-OHdGは、主にミトコンドリアDNAの酸化傷害で生じるといわれていて、酸化ストレスの指標として測定されるものである。
尿中8-OHdG値の結果を、図15に示す。
図15において、縦軸が尿中8-OHdG値(ng/day)である。
図15から、正常群に対し、コントロール群の尿中8-OHdG値は約2倍に増加しており、酸化ストレス状態にあることが推測できた。実施例3群において、尿中8-OHdG値が有意に抑制されているのに対して、比較例1群ではコントロール群と比べて有意に増加していた。
1) Urinary 8-hydroxydeoxyguanosine (8-OHdG) value This was measured by ELISA using a highly sensitive 8-OHdG Check (manufactured by Japan Aging Research Laboratories). It should be noted that 8-OHdG in the body is mainly caused by oxidative damage of mitochondrial DNA, and is measured as an index of oxidative stress.
The results of urinary 8-OHdG values are shown in FIG.
In FIG. 15, the vertical axis represents the urinary 8-OHdG value (ng / day).
From FIG. 15, the urinary 8-OHdG value in the control group increased about 2-fold compared with the normal group, and it was estimated that the urine was in an oxidative stress state. In the Example 3 group, the urinary 8-OHdG value was significantly suppressed, while in the Comparative Example 1 group, it was significantly increased as compared with the control group.

2)随時血糖値
2週間おきに、16〜18時の間に、ジェントレット(三和化学製)を用いて尾静脈に穿刺して出血させ、グルテストネオスーパー(三和化学製)を用いて、血糖を測定した。
血糖値の結果を、図16に示す。
図16において、横軸は、週齢を、縦軸は、随時血糖値(mg/dL)を示し、○:正常群、●:コントロール群、□:比較例1群、■:実施例3群である。
図16から、実施期間(8週齢〜20週齢)を通して100〜110mg/dLの随時血糖値を示していた正常群に対し、コントロール群では8週齢ですでに300mg/dLとなり、以後は400mg/dL前後の高血糖状態を示した。比較例1群も、コントロール群と同様の経過をたどり、血糖上昇の抑制は見られなかったが、実施例3群においては、コントロール群よりも常に低い随時血糖値を維持しており、血糖値の上昇が有意に抑えられていた。
2) Blood glucose level as needed Every 2 weeks, between 16 and 18 o'clock, puncture the tail vein using a gentlet (manufactured by Sanwa Chemical) and bleed, and using glutest neo super (manufactured by Sanwa Chemical), Blood glucose was measured.
The result of blood glucose level is shown in FIG.
In FIG. 16, the horizontal axis represents the age of the week, the vertical axis represents the blood glucose level (mg / dL) at any time, ○: normal group, ●: control group, □: comparative example 1 group, ■: example 3 group It is.
From FIG. 16, the normal group that showed an occasional blood glucose level of 100 to 110 mg / dL throughout the implementation period (8 to 20 weeks old) was already 300 mg / dL at 8 weeks in the control group, and thereafter A hyperglycemic state of around 400 mg / dL was exhibited. The comparative example 1 group also followed the same course as the control group and did not suppress the increase in blood glucose level. However, in the example group 3, the blood glucose level was constantly maintained lower than the control group. The rise of was significantly suppressed.

3)血漿総コレステロール値
コレステロール−Eテストワコー(和光純薬工業)を用いて測定した。
血漿総コレステロール値の結果を、図17に示す。
図17において、縦軸が血漿総コレステロール値(mg/dL)である。
図17から、コントロール群と比較例1群の血漿総コレステロール値は、正常群とほぼ同じ値であったが、実施例3群は、正常群およびコントロール群よりも有意に低かった。
3) Plasma total cholesterol value It measured using cholesterol-E test Wako (Wako Pure Chemical Industries).
The result of the plasma total cholesterol level is shown in FIG.
In FIG. 17, the vertical axis represents the plasma total cholesterol level (mg / dL).
From FIG. 17, the plasma total cholesterol values of the control group and Comparative Example 1 group were almost the same as those of the normal group, but the Example 3 group was significantly lower than the normal group and the control group.

4)血漿トリグリセライド値
トリグリセライド−Eテストワコー(和光純薬工業)を用いて測定した。なお、インスリンの作用不足によって脂肪組織において脂肪分解の促進が起こり、血漿中のトリグリセライド値の上昇をもたらすと言われている。
血漿トリグリセライド値の結果を、図18に示す。
図18において、縦軸が血漿トリグリセライド値(mg/dL)である。
図18から、正常群と比較して、コントロール群の血漿トリグリセライド値は約2倍に増加しているのに対して、実施例3群は、血漿トリグリセライド値の上昇を有意に抑制していたが、比較例1群には、そのような効果は見られなかった。
4) Plasma triglyceride value It measured using the triglyceride-E test Wako (Wako Pure Chemical Industries). It is said that the lack of insulin action promotes lipolysis in adipose tissue, leading to an increase in plasma triglyceride levels.
The results of plasma triglyceride values are shown in FIG.
In FIG. 18, the vertical axis represents the plasma triglyceride value (mg / dL).
FIG. 18 shows that the plasma triglyceride value in the control group increased about 2-fold compared with the normal group, whereas the Example 3 group significantly suppressed the increase in the plasma triglyceride value. Such effects were not observed in Comparative Example 1 group.

5)血中HbA1c(ヘモグロビン・エイワンシー)値
前述のヘパリン採血した血液について、ラピディアオートHbA1c(富士レビオ)を用いて測定した。なお、HbA1cとは、ヘモグロビンA(HbA)にグルコース(血糖)が結合したものであり、正常な人の場合、血中HbA1cの正常値は6.2%以下であり、6.5%以上は糖尿病とされている。
血中HbA1c値の結果を、図19に示す。
図19において、縦軸が血中HbA1c値(%)である。
図19から、正常群に対し、コントロール群と比較例1群の血中HbA1c値は約2倍に増加しており、図16に示した随時血糖値の増加を裏付ける結果となった。実施例3群は、血中HbA1c値の上昇を有意に抑制し、コントロール群より随時血糖値が低かったこととよく符号していた。
5) Blood HbA 1c (hemoglobin A1 sea) value The blood collected from the above-mentioned heparin was measured using Rapidia Auto HbA 1c (Fujirebio). HbA 1c is a combination of hemoglobin A (HbA) and glucose (blood glucose), and in the case of a normal person, the normal value of blood HbA 1c is 6.2% or less, 6.5% The above is considered to be diabetes.
The result of blood HbA 1c value is shown in FIG.
In FIG. 19, the vertical axis represents the blood HbA 1c value (%).
From FIG. 19, the blood HbA 1c values in the control group and Comparative Example 1 group increased about twice as compared to the normal group, which confirmed the increase in blood glucose level at any time shown in FIG. 16. The group of Example 3 significantly suppressed the increase in blood HbA 1c level, and was well-signed that the blood glucose level was lower as needed than the control group.

本発明のピリドキサール・アミノグアニジン誘導体は、経口投与における吸収性が良好なので、糖尿病合併症の発症・進行を抑える医薬品になる可能性が高いものである。
また、本発明のピリドキサール・アミノグアニジン誘導体はシッフ塩基であるゆえ、生体内で徐々に分解していくと考えられ、安全性が高い医薬品になり得るものである。
Since the pyridoxal aminoguanidine derivative of the present invention has good absorbability after oral administration, it is highly likely to be a pharmaceutical product that suppresses the onset and progression of diabetic complications.
In addition, since the pyridoxal aminoguanidine derivative of the present invention is a Schiff base, it is considered that it gradually degrades in vivo and can be a highly safe pharmaceutical product.

Claims (2)

次式(I)〜(IV)のいずれかで表されるピリドキサール・アミノグアニジン誘導体またはそれらの塩。
A pyridoxal aminoguanidine derivative represented by any of the following formulas (I) to (IV) or a salt thereof:
ピリドキサール塩酸塩に、1−アミノ−3−プロピルグアニジン ヨウ化水素酸塩、4−メチル−S−メチルイソチオセミカルバジド ヨウ化水素酸塩、3−メチルイソセミカルバジド塩酸塩、モルホリン−4−カルボキシイミドヒドラジド ヨウ化水素酸塩のいずれかを加え撹拌した後、
さらに、炭酸水素ナトリウムを加え攪拌し、
析出した固体を、メタノールに加熱溶解し、精製することを特徴とする請求項1に記載のピリドキサール・アミノグアニジン誘導体(I)〜(IV)の製造方法。
To pyridoxal hydrochloride, 1-amino-3-propylguanidine hydroiodide, 4-methyl-S-methylisothiosemicarbazide hydroiodide, 3-methylisosemicarbazide hydrochloride, morpholine-4-carboximide hydrazide After adding any of the hydroiodide and stirring,
Add sodium bicarbonate and stir,
The method for producing a pyridoxal aminoguanidine derivative (I) to (IV) according to claim 1, wherein the precipitated solid is dissolved by heating in methanol and purified.
JP2013185970A 2013-09-09 2013-09-09 Pyridoxal / aminoguanidine derivatives or salts thereof, and production method thereof Active JP6148127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185970A JP6148127B2 (en) 2013-09-09 2013-09-09 Pyridoxal / aminoguanidine derivatives or salts thereof, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185970A JP6148127B2 (en) 2013-09-09 2013-09-09 Pyridoxal / aminoguanidine derivatives or salts thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JP2015051956A true JP2015051956A (en) 2015-03-19
JP6148127B2 JP6148127B2 (en) 2017-06-14

Family

ID=52701261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185970A Active JP6148127B2 (en) 2013-09-09 2013-09-09 Pyridoxal / aminoguanidine derivatives or salts thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP6148127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143024A1 (en) * 2015-03-09 2016-09-15 株式会社パーマケム・アジア Pyridoxal-aminoguanidine derivative or salt thereof, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242053A (en) * 1988-04-26 1990-02-13 Ono Pharmaceut Co Ltd Aminoguanidine derivative and inhibitor of maillard reaction containing said derivative as active ingredient
JPH10324629A (en) * 1997-03-28 1998-12-08 Otsuka Pharmaceut Co Ltd Age formation-inhibitory composition
JP2002527471A (en) * 1998-10-22 2002-08-27 ユニヴァースティ オブ サウス カロライナ How to inhibit diabetic complications
JP2005170935A (en) * 1995-09-12 2005-06-30 Univ Of Kansas Medical Center Advanced glycation end-product intermediate and inhibition of post-amadori transfer
JP2008509169A (en) * 2004-08-10 2008-03-27 メディキュア・インターナショナル・インコーポレーテッド Combination therapy using vitamin B6-related compounds and ACE inhibitors and use thereof for the treatment of diabetic diseases
WO2009071101A1 (en) * 2007-12-07 2009-06-11 Action Pharma A/S N-modified aminoguanidine derivatives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242053A (en) * 1988-04-26 1990-02-13 Ono Pharmaceut Co Ltd Aminoguanidine derivative and inhibitor of maillard reaction containing said derivative as active ingredient
JP2005170935A (en) * 1995-09-12 2005-06-30 Univ Of Kansas Medical Center Advanced glycation end-product intermediate and inhibition of post-amadori transfer
JPH10324629A (en) * 1997-03-28 1998-12-08 Otsuka Pharmaceut Co Ltd Age formation-inhibitory composition
JP2002527471A (en) * 1998-10-22 2002-08-27 ユニヴァースティ オブ サウス カロライナ How to inhibit diabetic complications
JP2008509169A (en) * 2004-08-10 2008-03-27 メディキュア・インターナショナル・インコーポレーテッド Combination therapy using vitamin B6-related compounds and ACE inhibitors and use thereof for the treatment of diabetic diseases
WO2009071101A1 (en) * 2007-12-07 2009-06-11 Action Pharma A/S N-modified aminoguanidine derivatives

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, AN-SHU ET AL.: "Antioxidant activity of a schiff base of pyridoxal and aminoguanidine", FREE RADICAL BIOLOGY AND MEDICINE, vol. 35, no. 11, JPN6017014801, 2003, pages 1392 - 1403, XP002983335, DOI: doi:10.1016/j.freeradbiomed.2003.08.014 *
JEVTOVIC, VIOLETA S. ET AL.: "Transition metal complexes with thiosemicarbazide-based ligands. Part 47. Synthesis, physicochemical", JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, vol. 68, no. 12, JPN6017014804, 2003, pages 929 - 942 *
MIYOSHI H. ET AL.: "Aminoguanidine pyridoxal adduct is superior to aminoguanidine for preventing diabetic nephropathy in", HORMONE AND METABOLIC RESEARCH, vol. 34, no. 7, JPN6017014802, 2002, pages 371 - 377 *
TAGUCHI, TADAO ET AL.: "Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal", EUROPEAN JOURNAL OF PHARMACOLOGY, vol. 378, no. 3, JPN6017014803, 1999, pages 283 - 289, XP055310327, DOI: doi:10.1016/S0014-2999(99)00471-9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143024A1 (en) * 2015-03-09 2016-09-15 株式会社パーマケム・アジア Pyridoxal-aminoguanidine derivative or salt thereof, and method for producing same

Also Published As

Publication number Publication date
JP6148127B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP7079527B2 (en) Intracyclic thiamidinoamide-arylamide compounds and their uses for the treatment of hepatitis B
JP6608812B2 (en) Hydrochloride form for EZH2 inhibition
CN112912077A (en) Combination therapy for the treatment of triple negative breast cancer
EP2586780A1 (en) 2-aryl imidazo[1,2-a]pyridine-3-acetamide derivatives, preparation methods and use thereof
WO2002089809A1 (en) Medicinal uses of hydrazones and hydrazines
EP2041114B1 (en) Inhibitors of advanced glycation end products
KR20190062502A (en) How to treat acute kidney damage
EP3091005B1 (en) 1,2-naphthoquinone derivative and method for preparing same
CN101798300B (en) N-phenylindole methyl substituted bis-benzimidazole derivative and application thereof in reducing blood pressure and the like
JP6148127B2 (en) Pyridoxal / aminoguanidine derivatives or salts thereof, and production method thereof
KR20230106610A (en) Succinate as a therapeutic agent and its crystalline form
JP5430552B2 (en) Pharmaceutical composition for preventing or treating protozoan diseases comprising a benzo [a] phenoxatin compound as an active ingredient
JP2024012474A (en) Deuterated imidazolidinedione compounds and their uses
CN106478619B (en) A kind of xanthine oxidase inhibitor and its application
WO2016143024A1 (en) Pyridoxal-aminoguanidine derivative or salt thereof, and method for producing same
CN113773293B (en) Chrysin derivative and preparation method thereof
JP2007530566A (en) (R) -Enoximone sulfoxide and its use in the treatment of PDE-III mediated diseases
CN113768915B (en) Application of chrysin derivative in preparation of medicines
JP3049816B2 (en) Inotropic drugs
JPWO2006087935A1 (en) Pharmaceutical composition containing a phenoxazinium compound as an active ingredient
CA2496452A1 (en) Inhibitors of post-amadori advanced glycation end products
JP7327788B2 (en) Saccharification product production inhibitor and pharmaceutical composition
JPH06135943A (en) New uracil derivative and therapeutic agent for allergic disease comprising the same as active ingredient
ITMI20110208A1 (en) HETEROCYCLES WITH ANTI-HYPERTENSIVE ACTIVITY
KR20170033320A (en) Azole benzene derivative and crystal thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250