JP2015051676A - Control device and control method for hybrid vehicle - Google Patents

Control device and control method for hybrid vehicle Download PDF

Info

Publication number
JP2015051676A
JP2015051676A JP2013184645A JP2013184645A JP2015051676A JP 2015051676 A JP2015051676 A JP 2015051676A JP 2013184645 A JP2013184645 A JP 2013184645A JP 2013184645 A JP2013184645 A JP 2013184645A JP 2015051676 A JP2015051676 A JP 2015051676A
Authority
JP
Japan
Prior art keywords
command value
motor generator
engine
current command
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013184645A
Other languages
Japanese (ja)
Other versions
JP6285670B2 (en
Inventor
雅美 石川
Masami Ishikawa
雅美 石川
芳也 村山
Yoshiya Murayama
芳也 村山
太志 山根
Hiroshi Yamane
太志 山根
充敏 村岡
Mitsutoshi Muraoka
充敏 村岡
太郎 吉田
Taro Yoshida
太郎 吉田
賢治 古澤
Kenji Furusawa
賢治 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2013184645A priority Critical patent/JP6285670B2/en
Priority to KR1020140016244A priority patent/KR102119047B1/en
Priority to US14/329,685 priority patent/US9403438B2/en
Priority to EP14183722.9A priority patent/EP2851229B1/en
Publication of JP2015051676A publication Critical patent/JP2015051676A/en
Application granted granted Critical
Publication of JP6285670B2 publication Critical patent/JP6285670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate dragging torque of a whole motor drive system including a motor generator in an engine traveling mode using only driving force of an engine in a hybrid vehicle.SOLUTION: In a hybrid vehicle having an engine 1, a motor generator 20, an inverter 3 and a power storage device 4, in an engine travelling mode for performing a travelling control only by driving force of the engine 1, when the power storage amount of the power storage device 4 is equal to a predetermined amount or more, a current command value-calculating portion, on the basis of a torque command value, rotation speed of the motor generator 20 and an inverter input DC voltage value, arithmetically calculates a torque current command value and a weak field current command value which bring a load applied by the motor generator 20 to the engine 1 to zero, and a current command value correcting portion arithmetically calculates a torque current correction value and a weak field current correction value which bring a load applied by a motor driving system 2 other than the motor generator 20 to the engine 1 to zero.

Description

本発明は、ハイブリッド車両に用いられるハイブリッド車両用制御装置及び制御方法に関するものである。   The present invention relates to a control apparatus and control method for a hybrid vehicle used in a hybrid vehicle.

ハイブリッド車両は、エンジンと、モータジェネレータと、当該モータジェネレータを駆動するためのインバータと、当該インバータを介して前記モータジェネレータとの間で電力の充放電を行う蓄電装置とを有している。   The hybrid vehicle includes an engine, a motor generator, an inverter for driving the motor generator, and a power storage device that charges and discharges electric power with the motor generator via the inverter.

ここで、ハイブリッド自動車の方式の一つに、エンジンと、モータ駆動系とが機械的に直結されているものがある。ここで、モータ駆動系とは、前記モータジェネレータと、当該モータジェネレータの駆動力をエンジンの駆動軸に伝達するベルト及びプーリとにより構成されるものである。このようなエンジン及びモータ駆動系直結方式のハイブリッド自動車では、エンジンの駆動力のみを用いるエンジン走行モードにおいて、前記モータジェネレータで生じる鉄損等の損失、つまりエンジン出力に対する減速方向の引きずりトルクが発生する。   Here, as one of hybrid vehicle systems, there is one in which an engine and a motor drive system are mechanically directly connected. Here, the motor drive system includes the motor generator, and a belt and a pulley that transmit the drive force of the motor generator to the drive shaft of the engine. In such an engine and motor drive system direct-coupled hybrid vehicle, in an engine running mode that uses only the driving force of the engine, losses such as iron loss generated in the motor generator, that is, drag torque in the deceleration direction with respect to the engine output occurs. .

このような問題を解決するために、モータジェネレータ単体の引きずりトルクを打ち消すためのトルクをモータジェネレータに発生させ、前記モータジェネレータの引きずりトルクがエンジン出力を阻害しないようにゼロトルク制御するものがある(特許文献1参照)。   In order to solve such a problem, there is a type in which a torque for canceling the drag torque of the motor generator alone is generated in the motor generator, and zero torque control is performed so that the drag torque of the motor generator does not disturb the engine output (patent) Reference 1).

しかしながら、前記モータ駆動系を構成するベルトやプーリ等の機械要素でも回転抵抗、つまりエンジン出力に対する減速方向の機械出力(負荷)が発生している。したがって、特許文献1に記載されているようなモータジェネレータ単体の引きずりトルクを打ち消すためのゼロトルク制御をしたとしても、前記モータ駆動系全体としては、エンジン出力に対する減速方向の出力が発生しており、エンジンに負荷を与えているという問題がある。   However, rotation resistance, that is, mechanical output (load) in the deceleration direction with respect to engine output is also generated in mechanical elements such as belts and pulleys constituting the motor drive system. Therefore, even if the zero torque control for canceling the drag torque of the motor generator alone as described in Patent Document 1 is performed, the motor drive system as a whole generates an output in the deceleration direction with respect to the engine output, There is a problem of loading the engine.

特開2013−49359号公報JP2013-49359A

そこで本発明は、上記問題点を解決すべくなされたものであり、ハイブリッド自動車におけるエンジンの駆動力のみを用いるエンジン走行モードにおいて、モータジェネレータ及び当該モータジェネレータとエンジンとを直結するための機械要素からなるモータ駆動系の引きずりトルクをゼロにし、エンジンに負荷を与えないことを主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and includes a motor generator and a mechanical element for directly connecting the motor generator and the engine in an engine travel mode that uses only the driving force of the engine in a hybrid vehicle. The main problem is to make the drag torque of the motor drive system to be zero and not apply a load to the engine.

すなわち本発明に係るハイブリッド車両用制御装置は、エンジンと、モータジェネレータと、当該モータジェネレータを駆動するためのインバータと、当該インバータを介して前記モータジェネレータとの間で電力の充放電を行う蓄電装置とを有するハイブリッド車両において、前記エンジン及び前記モータジェネレータの駆動力を用いて走行制御を行うハイブリッド走行モードと、前記エンジンの駆動力のみを用いて走行制御を行うエンジン走行モードとを切り替えるハイブリッド車両用制御装置であって、前記モータジェネレータが出力すべきトルクを示すトルク指令値、前記モータジェネレータの回転数及び、前記インバータに入力されるインバータ入力DC電圧値に基づいて、前記インバータに入力するトルク電流指令値及び弱め界磁電流指令値を演算する電流指令値演算部と、前記モータジェネレータの回転数及び前記インバータ入力DC電圧値に基づいて、前記トルク電流指令値及び前記弱め界磁電流指令値に加算するトルク電流補正値及び弱め界磁電流補正値を演算する電流指令値補正部とを備え、前記エンジン走行モードにおいて、前記蓄電装置の蓄電量が所定値以上の場合に、前記電流指令値演算部が、前記モータジェネレータが前記エンジンに与える負荷をゼロとするトルク電流指令値及び弱め界磁電流指令値を演算し、前記電流指令値補正部が、前記モータジェネレータ以外のモータ駆動系が前記エンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を演算することを特徴とする。   That is, the hybrid vehicle control device according to the present invention includes an engine, a motor generator, an inverter for driving the motor generator, and a power storage device that charges and discharges electric power between the motor generator via the inverter. For a hybrid vehicle that switches between a hybrid travel mode in which travel control is performed using the driving force of the engine and the motor generator, and an engine travel mode in which travel control is performed using only the driving force of the engine A torque current input to the inverter based on a torque command value indicating a torque to be output by the motor generator, a rotation speed of the motor generator, and an inverter input DC voltage value input to the inverter. Command value and field of weakness A current command value calculation unit for calculating a current command value, and a torque current correction value to be added to the torque current command value and the field weakening current command value based on the rotation speed of the motor generator and the inverter input DC voltage value And a current command value correction unit that calculates a field weakening current correction value, and in the engine running mode, when the storage amount of the power storage device is a predetermined value or more, the current command value calculation unit Calculates a torque current command value and a field weakening current command value that make the load applied to the engine zero, and the current command value correction unit sets the load applied to the engine by a motor drive system other than the motor generator to zero. And calculating a torque current correction value and a field weakening current correction value.

このようなものであれば、前記モータジェネレータの回転数とインバータ入力DC電圧値とに基づいて、前記電流指令値演算部が、前記モータジェネレータが前記エンジンに与える負荷をゼロとするトルク電流指令値及び弱め界磁電流指令値を演算し、前記電流指令値補正部が、前記モータジェネレータ以外のモータ駆動系が前記エンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を演算するので、前記モータジェネレータ及び前記モータ駆動系の引きずりトルクを打ち消し、エンジンに負荷を与えないことが可能になる。また、前記トルク電流指令値及び前記弱め界磁電流指令値にそれぞれ前記トルク電流補正値及び前記弱め界磁電流補正値を加算するので、最適な電流値で前記モータジェネレータを駆動させることができ、前記モータジェネレータの効率の低下を最小限に抑えることができる。   If this is the case, based on the rotational speed of the motor generator and the inverter input DC voltage value, the current command value calculation unit causes the torque current command value to zero the load applied to the engine by the motor generator. And the field command current correction value is calculated, and the current command value correction unit calculates a torque current correction value and a field weakening current correction value that make a load applied to the engine by a motor drive system other than the motor generator zero. Therefore, it is possible to cancel the drag torque of the motor generator and the motor drive system and not apply a load to the engine. Further, since the torque current correction value and the field weakening current correction value are added to the torque current command value and the field weakening current command value, respectively, the motor generator can be driven with an optimum current value, A reduction in efficiency of the motor generator can be minimized.

前記モータジェネレータの回転数毎に予め測定された、前記モータジェネレータ以外のモータ駆動系がエンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を示す電流補正値データを格納する電流補正値データ格納部をさらに備え、前記電流指令値補正部が、前記モータジェネレータの回転数とインバータ入力DC電圧とに基づいて、前記電流補正値データ格納部に格納された電流補正値データを用いて、前記トルク電流補正値及び前記弱め界磁電流補正値を演算するものであることが望ましい。
これならば、前記モータジェネレータの回転数毎に予め測定された電流補正値データを用いて前記トルク電流補正値及び前記弱め界磁電流補正値を演算するので、前記モータ駆動系がエンジンに与える負荷を精度よくゼロにすることができるとともに、制御内容を簡略化することができる。
また、前記モータジェネレータの回転数毎に予め測定された、前記モータジェネレータが前記エンジンに与える負荷をゼロとするためにトルク電流指令値及び弱め界磁電流指令値に加算する補正値を示す指令値演算用補正データを格納する指令値演算用補正データ格納部をさらに備え、前記電流指令値演算部が、トルク指令値、前記モータジェネレータの回転数及び、前記インバータに入力されるインバータ入力DC電圧値に基づいて、前記指令値演算用補正データ格納部に格納された指令値演算用補正データを用いて、前記トルク電流指令値及び前記弱め界磁電流指令値を演算するものであることが望ましい。
これならば、前記モータジェネレータの回転数毎に予め測定された指令値演算用補正データを用いて前記トルク電流指令値及び前記弱め界磁電流指令値を演算するので、前記モータジェネレータがエンジンに与える負荷を精度よくゼロにすることができるとともに、制御内容を簡略化することができる。
Stores current correction value data indicating a torque current correction value and a field weakening current correction value, which are measured in advance for each rotation speed of the motor generator so that a load applied to the engine by a motor drive system other than the motor generator is zero. A current correction value data storage unit, wherein the current command value correction unit stores the current correction value data stored in the current correction value data storage unit based on the rotation speed of the motor generator and an inverter input DC voltage; Preferably, the torque current correction value and the field weakening current correction value are calculated.
In this case, since the torque current correction value and the field weakening current correction value are calculated using current correction value data measured in advance for each rotation speed of the motor generator, the load applied to the engine by the motor drive system Can be accurately zeroed, and the control content can be simplified.
Further, a command value indicating a correction value to be added to the torque current command value and the field weakening current command value, which is measured in advance for each rotation speed of the motor generator, so that the load applied to the engine by the motor generator is zero. A command value calculation correction data storage unit for storing calculation correction data is further provided, and the current command value calculation unit includes a torque command value, a rotation speed of the motor generator, and an inverter input DC voltage value input to the inverter. Preferably, the torque current command value and the field weakening current command value are calculated using the command value calculation correction data stored in the command value calculation correction data storage unit.
In this case, since the torque current command value and the field weakening current command value are calculated using the command value calculation correction data measured in advance for each rotation speed of the motor generator, the motor generator gives to the engine. The load can be reduced to zero with high accuracy and the control contents can be simplified.

前記電流指令値補正部が、前記蓄電装置の蓄電量が満充電状態の場合に、前記トルク電流補正値及び前記弱め界磁電流補正値を演算するものであることが望ましい。
これならば、前記蓄電装置を過不足なく充電することができるとともに、前記蓄電装置の過充電を防止し、前記蓄電装置の劣化を防ぐことができる。
It is desirable that the current command value correction unit is configured to calculate the torque current correction value and the field weakening current correction value when the storage amount of the power storage device is in a fully charged state.
If it is this, while being able to charge the said electrical storage apparatus without excess and deficiency, the overcharge of the said electrical storage apparatus can be prevented, and deterioration of the said electrical storage apparatus can be prevented.

このように構成した本発明によれば、ハイブリッド自動車におけるエンジンの駆動力のみを用いるエンジン走行モードにおいて、モータジェネレータ及び当該モータジェネレータとエンジンとを直結するための機械要素からなるモータ駆動系の引きずりトルクをゼロにし、エンジンに負荷を与えないことが可能になる。   According to the present invention configured as described above, drag torque of a motor drive system including a motor generator and a mechanical element for directly connecting the motor generator and the engine in an engine travel mode using only the drive force of the engine in a hybrid vehicle. Can be made zero and no load is applied to the engine.

本実施形態におけるハイブリッド車両の構成を示す概略図。Schematic which shows the structure of the hybrid vehicle in this embodiment. 本実施形態におけるハイブリッド車両用制御装置の回路構成を示す図。The figure which shows the circuit structure of the control apparatus for hybrid vehicles in this embodiment. 本実施形態におけるモータジェネレータ回転数とトルク電流補正値及び弱め界磁電流補正値との関係(一例)を示す図。The figure which shows the relationship (an example) between the motor generator rotation speed in this embodiment, a torque current correction value, and a field weakening current correction value.

以下に本発明に係るハイブリッド車両用制御装置の一実施形態について図面を参照して説明する。   An embodiment of a control apparatus for a hybrid vehicle according to the present invention will be described below with reference to the drawings.

本実施形態に係るハイブリッド車両用制御装置100は、図1に示すように、エンジン1と、モータジェネレータ20を含むモータ駆動系2と、モータジェネレータ20を駆動するためのインバータ3と、インバータ3を介してモータジェネレータ20との間で電力の充放電を行う蓄電装置4と、車両の各補機7及び直流補助電源8に給電する補機類電力系統S1と、モータジェネレータ20を力行運転又は回生運転するモータ電力系統S2とを有するハイブリッド車両に適用されるものである。   As shown in FIG. 1, the hybrid vehicle control device 100 according to the present embodiment includes an engine 1, a motor drive system 2 including a motor generator 20, an inverter 3 for driving the motor generator 20, and an inverter 3. Power storage device 4 that charges and discharges power to and from motor generator 20, auxiliary power system S 1 that supplies power to each auxiliary device 7 and DC auxiliary power supply 8 of the vehicle, and power running operation or regeneration of motor generator 20. The present invention is applied to a hybrid vehicle having a motor power system S2 to be operated.

補機類電力系統S1は、直流主電源となる蓄電装置4(例えば48Vのリチウムイオンバッテリ)と、当該蓄電装置4の出力端子に接続された電路の開閉を行うスイッチ5(DCコンタクタ)と、当該スイッチ5の下流に設けられた平滑コンデンサ6(直流リンクコンデンサ)と、当該平滑コンデンサ6とを介して接続され、車両の各補機(例えば電動パワーステアリング、エアコンディショナ、ECU等)7及び直流補助電源(例えば12V/24Vバッテリ)8に給電する系統である。また、補機類電力系統S1は、DC/DCコンバータ9を有するものであり、当該DC/DCコンバータ9の出力段には、車両の各補機7と直流補助電源8とが並列に接続されている。   The auxiliary power system S1 includes a power storage device 4 (for example, a 48V lithium ion battery) serving as a DC main power source, a switch 5 (DC contactor) that opens and closes an electric circuit connected to the output terminal of the power storage device 4, and A smoothing capacitor 6 (DC link capacitor) provided downstream of the switch 5 and the smoothing capacitor 6 are connected to each auxiliary machine (for example, electric power steering, air conditioner, ECU, etc.) 7 of the vehicle, and This is a system for supplying power to a DC auxiliary power source (for example, 12V / 24V battery) 8. The auxiliary power system S1 includes a DC / DC converter 9, and each auxiliary machine 7 and DC auxiliary power supply 8 of the vehicle are connected in parallel to the output stage of the DC / DC converter 9. ing.

モータ電力系統S2は、平滑コンデンサ6を介して補機類電力系統S1と並列に接続され、蓄電装置4からの直流電圧の電圧変換を行う昇圧回路10と、当該昇圧回路10から出力される直流電圧を交流電圧に変換してモータジェネレータ20に出力するインバータ3とを備える。   The motor power system S2 is connected in parallel with the auxiliary machinery power system S1 via the smoothing capacitor 6, and performs the voltage conversion of the DC voltage from the power storage device 4 and the DC output from the voltage boosting circuit 10. And an inverter 3 that converts the voltage into an AC voltage and outputs the AC voltage to the motor generator 20.

ここで、本実施形態に係るハイブリッド車両は、エンジン1及びモータジェネレータ20の動力を並列で車輪の駆動に使用するパラレル方式を採用したものである。具体的には、図1に示すように、エンジン1の駆動軸11と、モータジェネレータ20を含み、ベルト21やプーリ22等により構成されるモータ駆動系2とが直結されるとともに、クラッチ等を設けられておらず、切り離しできない構造、つまり、エンジン1と、モータジェネレータ20とが常に機械的に接続されているものである。   Here, the hybrid vehicle according to the present embodiment employs a parallel system that uses the power of the engine 1 and the motor generator 20 in parallel to drive the wheels. Specifically, as shown in FIG. 1, a drive shaft 11 of the engine 1 and a motor drive system 2 including a motor generator 20 and including a belt 21 and a pulley 22 are directly connected, and a clutch and the like are connected. A structure that is not provided and cannot be separated, that is, the engine 1 and the motor generator 20 are always mechanically connected.

そして、このハイブリッド車両を制御するハイブリッド車両用制御装置100は、エンジン1の駆動力のみを用いて走行制御を行うエンジン走行モードM1と、エンジン1の駆動力に加えてモータジェネレータ20の駆動力を補助的に用いて走行制御を行うハイブリッド走行モードM2とを切り替えるものである。   The hybrid vehicle control apparatus 100 that controls the hybrid vehicle uses an engine traveling mode M1 that performs traveling control using only the driving force of the engine 1, and the driving force of the motor generator 20 in addition to the driving force of the engine 1. This is used to switch between the hybrid traveling mode M2 that performs traveling control in an auxiliary manner.

具体的にハイブリッド車両用制御装置100は、図2に示すように、インバータ3に入力するトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する電流指令値演算部101と、蓄電装置4の蓄電量が所定値以上の場合に、トルク電流指令値Cq及び弱め界磁電流指令値に加算するトルク電流補正値Rq及び弱め界磁電流補正値Rdを演算する電流指令値補正部102と、トルク電流補正値Rq及び弱め界磁電流補正値Rdを、トルク電流指令値Cq及び弱め界磁電流指令値Cdに加算する加算器103とを備える。   Specifically, as shown in FIG. 2, the hybrid vehicle control device 100 includes a current command value calculation unit 101 that calculates a torque current command value Cq and a field weakening current command value Cd that are input to the inverter 3, and a power storage device 4. Current command value correction unit 102 for calculating torque current correction value Rq and field weakening current correction value Rd to be added to torque current command value Cq and field weakening current command value when And an adder 103 that adds the torque current correction value Rq and the field weakening current correction value Rd to the torque current command value Cq and the field weakening current command value Cd.

電流指令値演算部101は、モータジェネレータ20が出力すべきトルクを示し、ECU(エンジンコントロールユニット)から入力されるトルク指令値と、モータジェネレータ20の回転数、及びインバータ3に入力される直流電圧値であるインバータ入力DC電圧値とに基づいて、トルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。   The current command value calculation unit 101 indicates the torque to be output by the motor generator 20, the torque command value input from the ECU (engine control unit), the rotation speed of the motor generator 20, and the DC voltage input to the inverter 3. The torque current command value Cq and the field weakening current command value Cd are calculated based on the inverter input DC voltage value which is a value.

具体的には、電流指令値演算部101は、ハイブリッド車両が、エンジン走行モードM1又はハイブリッド走行モードM2のうち選択されている走行モードに応じて、モータジェネレータ20に所定のトルクを発生させるようにトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。   Specifically, current command value calculation unit 101 causes motor / generator 20 to generate a predetermined torque in accordance with the travel mode selected from engine travel mode M1 or hybrid travel mode M2. Torque current command value Cq and field weakening current command value Cd are calculated.

さらに具体的に説明すると、ハイブリッド車両がエンジン走行モードM1で走行しているときは、電流指令値演算部101は、蓄電装置4の蓄電量が所定値以下の場合にはモータジェネレータ20が回生運転するようにトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。また、蓄電装置4の蓄電量が所定値以上の場合、例えば蓄電装置4の蓄電量が満充電状態の場合に、には、モータジェネレータ20単体の引きずりトルク、つまりモータジェネレータ20単体でエンジン1に与える負荷がゼロになるようなトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。さらに、ハイブリッド車両がハイブリッド走行モードM2で走行しているときは、電流指令値演算部101は、モータジェネレータ20がエンジン1を補助(力行運転)するように所定のトルクを発生させるためのトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。   More specifically, when the hybrid vehicle is traveling in the engine traveling mode M1, the current command value calculation unit 101 causes the motor generator 20 to perform regenerative operation when the amount of power stored in the power storage device 4 is equal to or less than a predetermined value. Thus, the torque current command value Cq and the field weakening current command value Cd are calculated. When the amount of electricity stored in power storage device 4 is equal to or greater than a predetermined value, for example, when the amount of electricity stored in power storage device 4 is fully charged, drag torque of motor generator 20 alone, that is, motor generator 20 alone is applied to engine 1. A torque current command value Cq and a field weakening current command value Cd are calculated so that the applied load becomes zero. Further, when the hybrid vehicle is traveling in the hybrid travel mode M2, the current command value calculation unit 101 generates a torque current for generating a predetermined torque so that the motor generator 20 assists the engine 1 (powering operation). The command value Cq and the field weakening current command value Cd are calculated.

ここで、電流指令値演算部101は、エンジン走行モードM1で走行しているときであって、蓄電装置4の蓄電量が所定値以上の場合、例えば蓄電装置4の蓄電量が満充電状態の場合に、指令値演算用補正データを用いて、トルク電流指令値Cq及び弱め界磁電流指令値Cdを演算する。具体的にこの指令値演算用補正データは、モータジェネレータ20により生じる引きずりトルク、つまりモータジェネレータ20がエンジン1に与える負荷をゼロにするようにトルク電流指令値Cq及び弱め界磁電流指令値Cdに加算する指令値を示すデータである。   Here, when the current command value calculation unit 101 is traveling in the engine travel mode M1 and the amount of power stored in the power storage device 4 is equal to or greater than a predetermined value, for example, the amount of power stored in the power storage device 4 is in a fully charged state. In this case, the torque current command value Cq and the field weakening current command value Cd are calculated using the command value calculation correction data. Specifically, the correction data for command value calculation includes the torque current command value Cq and the field weakening current command value Cd so that the drag torque generated by the motor generator 20, that is, the load applied to the engine 1 by the motor generator 20 is zero. This is data indicating the command value to be added.

電流指令値補正部102は、エンジン走行モードM1で走行しているときであって、蓄電装置4の蓄電量が所定値以上の場合、例えば蓄電装置4の蓄電量が満充電状態の場合に、トルク電流補正値Rq及び弱め界磁電流補正値Rdを示す電流補正値データを用いて、トルク電流指令値Cq及び弱め界磁電流指令値Cdに加算するトルク電流補正値Rq及び弱め界磁電流補正値Rdを演算する。そして、図2に示すように、電流指令値補正部102が演算したトルク電流補正値Rq及び弱め界磁電流補正値Rdを加算器103に入力し、加算器103がトルク電流指令値Cq及び弱め界磁電流指令値Cdにトルク電流補正値Rq及び弱め界磁電流補正値Rdを加算する。   The current command value correction unit 102 is when traveling in the engine travel mode M1 and the power storage amount of the power storage device 4 is equal to or greater than a predetermined value, for example, when the power storage amount of the power storage device 4 is in a fully charged state. Torque current correction value Rq and field weakening current correction to be added to torque current command value Cq and field weakening current command value Cd using current correction value data indicating torque current correction value Rq and field weakening current correction value Rd The value Rd is calculated. Then, as shown in FIG. 2, the torque current correction value Rq and the field weakening current correction value Rd calculated by the current command value correction unit 102 are input to the adder 103, and the adder 103 receives the torque current command value Cq and the weakening. The torque current correction value Rq and the field weakening current correction value Rd are added to the field current command value Cd.

ここで、電流補正値データは、モータジェネレータ20以外のモータ駆動系2により生じる引きずりトルク、つまりモータ駆動系2がエンジン1に与える負荷をゼロにするようなトルク電流補正値Rq及び弱め界磁電流補正値Rdを示すデータである。具体的には、モータ駆動系2を構成するモータジェネレータ20以外の機械要素、例えばベルト21やプーリ22等の機械要素で生じる機械的損失(負荷)をゼロにするようにトルク電流補正値Rq及び弱め界磁電流補正値Rdが設定されている。   Here, the current correction value data includes the drag torque generated by the motor drive system 2 other than the motor generator 20, that is, the torque current correction value Rq and the field weakening current that make the load applied to the engine 1 by the motor drive system 2 zero. This is data indicating the correction value Rd. Specifically, the torque current correction value Rq and the mechanical loss (load) generated in mechanical elements other than the motor generator 20 constituting the motor drive system 2, for example, mechanical elements such as the belt 21 and the pulley 22 are set to zero. A field weakening current correction value Rd is set.

このトルク電流補正値Rq及び弱め界磁電流補正値Rdは、モータジェネレータ20以外のモータ駆動系2がエンジン1に与える負荷が各ハイブリッド車両によって異なることから、各ハイブリッド車両により個別に設定されるものである。   The torque current correction value Rq and the field weakening current correction value Rd are individually set for each hybrid vehicle because the load applied to the engine 1 by the motor drive system 2 other than the motor generator 20 differs depending on the hybrid vehicle. It is.

トルク電流補正値Rq及び弱め界磁電流補正値Rdの設定方法の一例としては、図3に示すように、エンジン1及びモータジェネレータ20を含むモータ駆動系2をハイブリッド車両に搭載した状態でモータジェネレータ20以外のモータ駆動系2がエンジン1に与える負荷をモータジェネレータ20の回転数毎に測定し、当該負荷に基づいて設定する方法が考えられる。   As an example of a method for setting the torque current correction value Rq and the field weakening current correction value Rd, as shown in FIG. 3, the motor generator 2 including the engine 1 and the motor generator 20 is mounted on the hybrid vehicle. A method is conceivable in which a load applied to the engine 1 by a motor drive system 2 other than 20 is measured for each rotation speed of the motor generator 20 and set based on the load.

ここで、測定されたトルク電流補正値Rq及び弱め界磁電流補正値Rdは、モータジェネレータ20の回転数と各補正値との関係を示す表形式のデータとして格納されていても良いし、多項式近似した数式データとして格納されているものでも良い。   Here, the measured torque current correction value Rq and the field weakening current correction value Rd may be stored as tabular data indicating the relationship between the rotational speed of the motor generator 20 and each correction value, or a polynomial expression. It may be stored as approximate mathematical data.

このように構成したハイブリッド車両用制御装置100によれば、モータジェネレータ20の回転数及びインバータ入力DC電圧値に基づいて、電流指令値演算部101がモータジェネレータ20単体がエンジン1に与える負荷がゼロになるようなトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算し、電流指令値補正部102がモータジェネレータ20以外のモータ駆動系2がエンジン1に与える負荷がゼロになるようなトルク電流補正値Rq及び弱め界磁電流補正値Rdを演算し、トルク電流指令値Cq及び弱め界磁電流指令値Cdとトルク電流補正値Rq及び弱め界磁電流補正値Rdとを加算するので、モータジェネレータ20及びモータ駆動系2の両方の引きずりトルクをゼロにし、エンジン1に負荷を与えないことが可能になる。また、トルク電流指令値Cq及び弱め界磁電流指令値Cdにそれぞれトルク電流補正値Rq及び弱め界磁電流補正値Rdを加算するので、最適な電流値でモータジェネレータ20を駆動させることができ、モータジェネレータ20の効率の低下を最小限に抑えることができる。   According to hybrid vehicle control apparatus 100 configured as described above, current command value calculation unit 101 has zero load applied to engine 1 by motor generator 20 alone, based on the rotational speed of motor generator 20 and the inverter input DC voltage value. Torque current command value Cq and field weakening current command value Cd are calculated so that the load applied to the engine 1 by the motor drive system 2 other than the motor generator 20 by the current command value correction unit 102 becomes zero. The current correction value Rq and the field weakening current correction value Rd are calculated, and the torque current command value Cq and the field weakening current command value Cd are added to the torque current correction value Rq and the field weakening current correction value Rd. It is possible to make the drag torque of both the generator 20 and the motor drive system 2 zero so that no load is applied to the engine 1. That. Further, since the torque current correction value Rq and the field weakening current correction value Rd are added to the torque current command value Cq and the field weakening current command value Cd, respectively, the motor generator 20 can be driven with an optimum current value. A decrease in efficiency of the motor generator 20 can be minimized.

また、電流指令値演算部101が、予め測定された、モータジェネレータ20がエンジン1に与える負荷をゼロにするようなトルク電流指令値Cq及び弱め界磁電流指令値Cdを示す指令値演算用補正データを用いて、トルク電流指令値Cq及び弱め界磁電流指令値Cdを演算するので、モータジェネレータ20がエンジンに与える負荷を精度よくゼロにすることができるとともに、制御内容を簡略化することができる。
同様に、電流指令値補正部102が、予め設定された、モータ駆動系2がエンジン1に与える負荷をゼロにするようなトルク電流補正値Rq及び弱め界磁電流補正値Rdを示す電流補正値データを用いて、トルク電流補正値Rq及び弱め界磁電流補正値Rdを演算するので、モータ駆動系2がエンジン1に与える負荷を精度よくゼロにすることができるとともに、制御内容を簡略化することができる。
Further, the current command value calculation unit 101 corrects the command value calculation that indicates the torque current command value Cq and the field weakening current command value Cd that are measured in advance so that the load applied to the engine 1 by the motor generator 20 is zero. Since the torque current command value Cq and the field weakening current command value Cd are calculated using the data, the load applied to the engine by the motor generator 20 can be accurately zeroed, and the control contents can be simplified. it can.
Similarly, the current command value correction unit 102 sets a preset current correction value indicating a torque current correction value Rq and a field weakening current correction value Rd that make the load applied to the engine 1 by the motor drive system 2 zero. Since the torque current correction value Rq and the field weakening current correction value Rd are calculated using the data, the load applied to the engine 1 by the motor drive system 2 can be accurately zeroed, and the control contents are simplified. be able to.

さらに、蓄電装置4の蓄電量が満充電状態の場合に、モータジェネレータ20及びモータ駆動系2がエンジン1に与える負荷がゼロになるように、電流指令値演算部101がトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算し、電流指令値補正部102がトルク電流補正値Rq及び弱め界磁電流補正値Rdを演算するので、蓄電装置4を過不足なく充電することができるとともに、蓄電装置4の過充電を防止し、蓄電装置4の劣化を防ぐことができる。   Furthermore, when the amount of power stored in the power storage device 4 is in a fully charged state, the current command value calculation unit 101 sets the torque current command value Cq and the motor command 20 so that the load applied to the engine 1 by the motor generator 20 and the motor drive system 2 becomes zero. The field weakening current command value Cd is calculated, and the current command value correction unit 102 calculates the torque current correction value Rq and the field weakening current correction value Rd, so that the power storage device 4 can be charged without excess or deficiency, Overcharging of the power storage device 4 can be prevented, and deterioration of the power storage device 4 can be prevented.

なお、本発明は前記実施形態に限られるものではない。
例えば、モータジェネレータ20及びモータ駆動系2がエンジン1に与える負荷がゼロになるように、電流指令値演算部101がトルク電流指令値Cq及び弱め界磁電流指令値Cdを演算し、電流指令値補正部102がトルク電流補正値Rq及び弱め界磁電流補正値Rdを演算するのは、蓄電装置4の蓄電量が満充電状態の場合に限られるものではなく、モータジェネレータ20がエンジン1の駆動力を補助しない場合に広く適用できる。
The present invention is not limited to the above embodiment.
For example, the current command value calculation unit 101 calculates the torque current command value Cq and the field weakening current command value Cd so that the load applied to the engine 1 by the motor generator 20 and the motor drive system 2 becomes zero, and the current command value The correction unit 102 calculates the torque current correction value Rq and the field weakening current correction value Rd not only when the storage amount of the power storage device 4 is in a fully charged state, but the motor generator 20 drives the engine 1. Can be widely applied when power is not assisted.

また、ハイブリッド車両用制御装置100が適用されるハイブリッド車両は、エンジン1の駆動軸11と、モータジェネレータ20を含み、ベルト21やプーリ22等により構成されるモータ駆動系2とが直結されるものに限られず、例えばクラッチ等を設けるなど、エンジン1とモータ駆動系2とが機械的に切り離し可能なものでも良い。   The hybrid vehicle to which the hybrid vehicle control device 100 is applied includes a drive shaft 11 of the engine 1 and a motor drive system 2 that includes a motor generator 20 and includes a belt 21, a pulley 22, and the like. However, the engine 1 and the motor drive system 2 can be mechanically separated, for example, by providing a clutch or the like.

さらに、モータ電力系統S2は、昇圧回路10を有するものに限られず、昇圧回路10が無い構成でも良い。   Further, the motor power system S2 is not limited to the one having the booster circuit 10, and may have a configuration without the booster circuit 10.

加えて、指令値演算用補正データは、専用の指令値演算用補正データ格納部(不図示)に格納されていても良いし、電流指令値演算部101に格納されていても良い。
同様に、電流補正値データは、専用の電流補正値データ格納部(不図示)に格納されていても良いし、電流指令値補正部102に格納されていても良い。
In addition, the command value calculation correction data may be stored in a dedicated command value calculation correction data storage unit (not shown), or may be stored in the current command value calculation unit 101.
Similarly, the current correction value data may be stored in a dedicated current correction value data storage unit (not shown) or may be stored in the current command value correction unit 102.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・ハイブリッド車両用制御装置
1 ・・・エンジン
11 ・・・駆動軸
2 ・・・モータ駆動系
20 ・・・モータジェネレータ
21 ・・・ベルト
22 ・・・プーリ
3 ・・・インバータ
4 ・・・蓄電装置
5 ・・・スイッチ
6 ・・・平滑コンデンサ
7 ・・・補機
8 ・・・直流補助電源
9 ・・・DC/DCコンバータ
10 ・・・昇圧回路
101・・・電流指令値演算部
102・・・電流指令値補正部
DESCRIPTION OF SYMBOLS 100 ... Hybrid vehicle control apparatus 1 ... Engine 11 ... Drive shaft 2 ... Motor drive system 20 ... Motor generator 21 ... Belt 22 ... Pulley 3 ... Inverter 4・ ・ Power storage device 5 ・ ・ ・ Switch 6 ・ ・ ・ Smoothing capacitor 7 ・ ・ ・ Auxiliary machine 8 ・ ・ ・ DC auxiliary power supply 9 ・ ・ ・ DC / DC converter 10 ・ ・ ・ Boost circuit 101 ・ ・ ・ Current command value calculation Unit 102 ... Current command value correction unit

Claims (4)

エンジンと、モータジェネレータと、当該モータジェネレータを駆動するためのインバータと、当該インバータを介して前記モータジェネレータとの間で電力の充放電を行う蓄電装置とを有するハイブリッド車両において、前記エンジン及び前記モータジェネレータの駆動力を用いて走行制御を行うハイブリッド走行モードと、前記エンジンの駆動力のみを用いて走行制御を行うエンジン走行モードとを切り替えるハイブリッド車両用制御装置であって、
前記モータジェネレータが出力すべきトルクを示すトルク指令値、前記モータジェネレータの回転数及び、前記インバータに入力されるインバータ入力DC電圧値に基づいて、前記インバータに入力するトルク電流指令値及び弱め界磁電流指令値を演算する電流指令値演算部と、
前記モータジェネレータの回転数及び前記インバータ入力DC電圧値に基づいて、前記トルク電流指令値及び前記弱め界磁電流指令値に加算するトルク電流補正値及び弱め界磁電流補正値を演算する電流指令値補正部とを備え、
前記エンジン走行モードにおいて、前記蓄電装置の蓄電量が所定値以上の場合に、前記電流指令値演算部が、前記モータジェネレータが前記エンジンに与える負荷をゼロとするトルク電流指令値及び弱め界磁電流指令値を演算し、前記電流指令値補正部が、前記モータジェネレータ以外のモータ駆動系が前記エンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を演算するハイブリッド車両用制御装置。
In a hybrid vehicle having an engine, a motor generator, an inverter for driving the motor generator, and a power storage device that charges and discharges electric power to and from the motor generator via the inverter, the engine and the motor A hybrid vehicle control device that switches between a hybrid travel mode in which travel control is performed using the driving force of a generator and an engine travel mode in which travel control is performed using only the driving force of the engine,
Based on the torque command value indicating the torque to be output by the motor generator, the rotation speed of the motor generator, and the inverter input DC voltage value input to the inverter, the torque current command value input to the inverter and the field weakening A current command value calculation unit for calculating a current command value;
A current command value for calculating a torque current correction value and a field weakening current correction value to be added to the torque current command value and the field weakening current command value based on the rotation speed of the motor generator and the inverter input DC voltage value A correction unit,
In the engine running mode, when the power storage amount of the power storage device is greater than or equal to a predetermined value, the current command value calculation unit causes a torque current command value and a field weakening current to zero the load that the motor generator applies to the engine. A hybrid vehicle control that calculates a command value, and wherein the current command value correction unit calculates a torque current correction value and a field weakening current correction value that make a load applied to the engine by a motor drive system other than the motor generator zero. apparatus.
前記モータジェネレータの回転数毎に予め測定された、前記モータジェネレータ以外のモータ駆動系がエンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を示す電流補正値データを格納する電流補正値データ格納部をさらに備え、
前記電流指令値補正部が、前記モータジェネレータの回転数に基づいて、前記電流補正値データ格納部に格納された電流補正値データを用いて、前記トルク電流補正値及び前記弱め界磁電流補正値を演算するものである請求項1記載のハイブリッド車両用制御装置。
Stores current correction value data indicating a torque current correction value and a field weakening current correction value, which are measured in advance for each rotation speed of the motor generator so that a load applied to the engine by a motor drive system other than the motor generator is zero. A current correction value data storage unit;
The current command value correction unit uses the current correction value data stored in the current correction value data storage unit based on the number of revolutions of the motor generator, and uses the torque current correction value and the field weakening current correction value. The hybrid vehicle control device according to claim 1, wherein
前記電流指令値補正部が、前記蓄電装置の蓄電量が満充電状態の場合に、前記トルク電流補正値及び前記弱め界磁電流補正値を演算するものである請求項1又は2記載のハイブリッド車両用制御装置。   3. The hybrid vehicle according to claim 1, wherein the current command value correction unit calculates the torque current correction value and the field weakening current correction value when the storage amount of the power storage device is in a fully charged state. Control device. エンジンと、モータジェネレータと、当該モータジェネレータを駆動するためのインバータと、当該インバータを介して前記モータジェネレータとの間で電力の充放電を行う蓄電装置とを有するハイブリッド車両において、前記エンジン及び前記モータジェネレータの駆動力を用いて走行制御を行うハイブリッド走行モードと、前記エンジンの駆動力のみを用いて走行制御を行うエンジン走行モードとを切り替えるハイブリッド車両用制御プログラムであって、
前記モータジェネレータが出力すべきトルクを示すトルク指令値、前記モータジェネレータの回転数及び、前記インバータに入力されるインバータ入力DC電圧値に基づいて、前記インバータに入力するトルク電流指令値及び弱め界磁電流指令値を演算する電流指令値演算部と、
前記モータジェネレータの回転数及び前記インバータ入力DC電圧値に基づいて、前記トルク電流指令値及び前記弱め界磁電流指令値に加算するトルク電流補正値及び弱め界磁電流補正値を演算する電流指令値補正部と、としての機能をコンピュータに備えさせ、
前記エンジン走行モードにおいて、前記蓄電装置の蓄電量が所定値以上の場合に、前記電流指令値演算部が、前記モータジェネレータが前記エンジンに与える負荷をゼロとするトルク電流指令値及び弱め界磁電流指令値を演算し、前記電流指令値補正部が、前記モータジェネレータ以外のモータ駆動系が前記エンジンに与える負荷をゼロとするトルク電流補正値及び弱め界磁電流補正値を演算することを特徴とするハイブリッド車両用制御プログラム。
In a hybrid vehicle having an engine, a motor generator, an inverter for driving the motor generator, and a power storage device that charges and discharges electric power to and from the motor generator via the inverter, the engine and the motor A hybrid vehicle control program for switching between a hybrid travel mode in which travel control is performed using a driving force of a generator and an engine travel mode in which travel control is performed using only the driving force of the engine,
Based on the torque command value indicating the torque to be output by the motor generator, the rotation speed of the motor generator, and the inverter input DC voltage value input to the inverter, the torque current command value input to the inverter and the field weakening A current command value calculation unit for calculating a current command value;
A current command value for calculating a torque current correction value and a field weakening current correction value to be added to the torque current command value and the field weakening current command value based on the rotation speed of the motor generator and the inverter input DC voltage value Provide the computer with a function as a correction unit,
In the engine running mode, when the power storage amount of the power storage device is greater than or equal to a predetermined value, the current command value calculation unit causes a torque current command value and a field weakening current to zero the load that the motor generator applies to the engine. A command value is calculated, and the current command value correction unit calculates a torque current correction value and a field weakening current correction value that make a load applied to the engine by a motor drive system other than the motor generator zero. A hybrid vehicle control program.
JP2013184645A 2013-09-06 2013-09-06 Control device and control method for hybrid vehicle Active JP6285670B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013184645A JP6285670B2 (en) 2013-09-06 2013-09-06 Control device and control method for hybrid vehicle
KR1020140016244A KR102119047B1 (en) 2013-09-06 2014-02-12 Control device for hybrid vehicle and control method for hybrid vehicle
US14/329,685 US9403438B2 (en) 2013-09-06 2014-07-11 Control device for hybrid vehicle and control method for hybrid vehicle
EP14183722.9A EP2851229B1 (en) 2013-09-06 2014-09-05 Control device for hybrid vehicle and control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184645A JP6285670B2 (en) 2013-09-06 2013-09-06 Control device and control method for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2015051676A true JP2015051676A (en) 2015-03-19
JP6285670B2 JP6285670B2 (en) 2018-02-28

Family

ID=52701055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184645A Active JP6285670B2 (en) 2013-09-06 2013-09-06 Control device and control method for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP6285670B2 (en)
KR (1) KR102119047B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128209A (en) * 2016-01-20 2017-07-27 スズキ株式会社 Hybrid vehicle
KR20190027386A (en) * 2016-07-13 2019-03-14 르노 에스.아.에스. Method for controlling members of a hybrid transmission of an automotive vehicle
EP3988411A1 (en) 2020-10-26 2022-04-27 Suzuki Motor Corporation Control device of hybrid vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010579A1 (en) * 2015-07-10 2017-01-19 볼보 컨스트럭션 이큅먼트 에이비 Pre-charge of hybrid construction machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324615A (en) * 1999-05-14 2000-11-24 Toyota Motor Corp Power generator, hybrid vehicle and controller for the power generator
JP2000354305A (en) * 1999-06-08 2000-12-19 Nissan Motor Co Ltd Motor controller
JP2007302121A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Power output device and its control method
JP2012222856A (en) * 2011-04-04 2012-11-12 Ntn Corp Motor drive control method in electric vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938713B1 (en) * 1999-09-20 2005-09-06 Hitachi, Ltd. Dynamotor of hybrid vehicle, and method of control thereof
JP4386451B2 (en) * 2006-03-06 2009-12-16 株式会社日立製作所 Control device for electric vehicle
JP5706274B2 (en) 2011-08-31 2015-04-22 ダイムラー・アクチェンゲゼルシャフトDaimler AG Control device for hybrid vehicle
JP5845827B2 (en) 2011-11-07 2016-01-20 トヨタ自動車株式会社 Hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324615A (en) * 1999-05-14 2000-11-24 Toyota Motor Corp Power generator, hybrid vehicle and controller for the power generator
JP2000354305A (en) * 1999-06-08 2000-12-19 Nissan Motor Co Ltd Motor controller
JP2007302121A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Power output device and its control method
JP2012222856A (en) * 2011-04-04 2012-11-12 Ntn Corp Motor drive control method in electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128209A (en) * 2016-01-20 2017-07-27 スズキ株式会社 Hybrid vehicle
KR20190027386A (en) * 2016-07-13 2019-03-14 르노 에스.아.에스. Method for controlling members of a hybrid transmission of an automotive vehicle
KR102161711B1 (en) 2016-07-13 2020-10-06 르노 에스.아.에스. Method of controlling members of hybrid transmission of an automatic vehicle
EP3988411A1 (en) 2020-10-26 2022-04-27 Suzuki Motor Corporation Control device of hybrid vehicle
JP7563109B2 (en) 2020-10-26 2024-10-08 スズキ株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
KR102119047B1 (en) 2020-06-04
KR20150028695A (en) 2015-03-16
JP6285670B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
EP3235670B1 (en) Power controller of hybrid vehicle
EP2851229B1 (en) Control device for hybrid vehicle and control method for hybrid vehicle
CN107264289B (en) The traveling drive of vehicle
JP5454789B2 (en) Control device for electric vehicle
US10024945B2 (en) Abnormality diagnosis apparatus that determines an abnormality of a power-supply voltage sensor
JP5942958B2 (en) Electric vehicle
JP2015140052A (en) hybrid vehicle
JP6285670B2 (en) Control device and control method for hybrid vehicle
CN103094891B (en) Battery protector
JP2014133457A (en) Hybrid vehicle engine-operation control device
JP5358622B2 (en) Rotating electrical machine control device
US11097722B2 (en) Electric vehicle
JP2013103645A (en) Hybrid vehicle control device
JP2012165589A (en) Power generation control system of vehicle
JP5397324B2 (en) Power equipment
CN111684707B (en) Inverter control method and inverter control device
JP6156619B2 (en) Hybrid vehicle operation control device
JP2011239629A (en) Control device for electric vehicle
JP2015202018A (en) voltage conversion device
JP2015201937A (en) voltage conversion device
CN113261199B (en) Motor control device
US20180222326A1 (en) Vehicular power source device and method of controlling vehicular power source device
JP2013251988A (en) Motor generator control device
JP6322417B2 (en) Voltage fluctuation control device
JP2014093883A (en) Motive power output device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6285670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250