JP2015050328A - Condenser lens and photovoltaic power generation system using the same - Google Patents

Condenser lens and photovoltaic power generation system using the same Download PDF

Info

Publication number
JP2015050328A
JP2015050328A JP2013181207A JP2013181207A JP2015050328A JP 2015050328 A JP2015050328 A JP 2015050328A JP 2013181207 A JP2013181207 A JP 2013181207A JP 2013181207 A JP2013181207 A JP 2013181207A JP 2015050328 A JP2015050328 A JP 2015050328A
Authority
JP
Japan
Prior art keywords
lens
power generation
region
solar power
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013181207A
Other languages
Japanese (ja)
Inventor
山田 昇
Noboru Yamada
昇 山田
林 健太郎
Kentaro Hayashi
健太郎 林
陽子 大槻
Yoko Otsuki
陽子 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Mitsubishi Rayon Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Nagaoka University of Technology NUC filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013181207A priority Critical patent/JP2015050328A/en
Publication of JP2015050328A publication Critical patent/JP2015050328A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a condenser lens for a photovoltaic power generation system, capable of improving a power generation efficiency of a power generation cell by improving the uniformity of a light quantity distribution on a power generation cell light receiving surface without decreasing the total light receiving quantity on the power generation cell light receiving surface.SOLUTION: In a condenser lens for a photovoltaic power generation system, a central lens region A and a peripheral lens region B outside the central lens region A are provided, the central lens region A includes a plurality of small lens regions A1-An {where, n is an integer of 2 or more), and respective lens focuses of the small lens regions A1-An are located apart from each other and located at a position apart from a lens optical axis of the peripheral lens region B.

Description

本発明は、太陽光発電の技術分野に属し、更に詳細には、集光式太陽光発電装置、特に集光式太陽光発電装置において使用される集光レンズの改良に関する。   The present invention belongs to the technical field of photovoltaic power generation, and more particularly relates to improvement of a concentrating solar power generation device, and more particularly to a condensing lens used in the concentrating solar power generation device.

太陽光発電装置のなかには、寸法が小さく発電効率のよい発電セル(太陽光発電素子又は太陽電池)に集光レンズを用いて太陽光を集光して発電させるタイプの装置がある。このタイプの太陽光発電装置即ち集光式太陽光発電装置においては、発電量を増大させるため、集光された光を発電セルに照射させるための太陽光の追尾システム、より高効率の発電セル、および、より集光倍率の高い集光レンズが用いられている。   Among solar power generation apparatuses, there is a type of apparatus that generates power by collecting sunlight using a condensing lens in a power generation cell (solar power generation element or solar battery) having a small size and good power generation efficiency. In this type of solar power generation device, that is, a concentrating solar power generation device, in order to increase the amount of power generation, a solar tracking system for irradiating the power generation cell with the condensed light, a more efficient power generation cell In addition, a condensing lens having a higher condensing magnification is used.

このような集光式太陽光発電装置における技術的課題として、発電セルの受光面上での光量分布の均一性の向上が挙げられる。通常の集光レンズは設計上光が1点に収束するように製造されるが、これをそのまま集光式太陽光発電装置の集光レンズに適用すると、以下のような問題が発生する。即ち、光は発電セルの受光面内のレンズ焦点に相当する1点にのみ集中してしまう。発電セルの発電量は、基本的には発電セルの受光量によるものであるが、受光面内での光量分布の不均一性が高い場合には、発電セルの発電性能を決める要素の一つである曲線因子(フィルファクター:FF値)が低下し、発電効率が低下してしまう。   As a technical problem in such a concentrating solar power generation device, there is an improvement in the uniformity of the light amount distribution on the light receiving surface of the power generation cell. A normal condensing lens is manufactured so that light converges to one point by design, but if this is applied as it is to a condensing lens of a concentrating solar power generation device, the following problems occur. That is, the light is concentrated only at one point corresponding to the lens focal point in the light receiving surface of the power generation cell. The amount of power generated by the power generation cell is basically based on the amount of light received by the power generation cell. The fill factor (fill factor: FF value) is reduced, and the power generation efficiency is reduced.

この問題を解決するために、発電セルを集光レンズの焦点位置から光軸に沿ってずらして配置し、これにより発電セルの受光面上での光量分布を均一化させることが可能であることは、一般的に知られている。しかしながら、この方法では、集光レンズを通過する光のうち発電セルに到達しなくなる光の割合も増えてしまい、結果的に発電セルの発電効率は向上しない。   In order to solve this problem, it is possible to dispose the power generation cell by shifting it from the focal position of the condenser lens along the optical axis, thereby making it possible to make the light quantity distribution on the light receiving surface of the power generation cell uniform. Is generally known. However, with this method, the proportion of light that does not reach the power generation cell out of the light passing through the condenser lens also increases, and as a result, the power generation efficiency of the power generation cell does not improve.

発電セルの受光面での光量分布の均一化に着目した先行技術としては、LPI社(Light Prescriptions Innovators社)のFresnel-Kohler concentratorが知られている(特許文献1)。特許文献1の発明は、集光機能を有する平面形状のフレネルレンズを光軸と直交する面内において縦横に4分割し、それぞれの分割領域の焦点位置を光軸と直交する面内においてずらすことにより、発電セルの受光面内での光量分布の均一化を図ったものである。しかるに、前述のような、集光レンズを通過する光のうち発電セルに到達しなくなる光の割合が増えるという問題については、特許文献1の発明を用いても本質的に変わりなく同様に存在する。   A Fresnel-Kohler concentrator of LPI (Light Prescriptions Innovators) is known as a prior art that focuses on the uniform distribution of light quantity on the light receiving surface of a power generation cell (Patent Document 1). In the invention of Patent Document 1, a planar Fresnel lens having a condensing function is divided into four in the vertical and horizontal directions in a plane orthogonal to the optical axis, and the focal position of each divided region is shifted in the plane orthogonal to the optical axis. Thus, the light quantity distribution in the light receiving surface of the power generation cell is made uniform. However, the above-mentioned problem that the proportion of the light that does not reach the power generation cell among the light passing through the condenser lens increases is essentially the same even if the invention of Patent Document 1 is used. .

また、太陽光発電における発電量に関する解析については、非特許文献1に記載がある。   Further, Non-Patent Document 1 describes the analysis on the power generation amount in solar power generation.

国際公開第2010/059657号パンフレットInternational Publication No. 2010/059657 Pamphlet

R.Herrero et al., Prog.Photovolt:Res.Appl.2012;20:423-430R. Herrero et al., Prog. Photovolt: Res.Appl.2012; 20: 423-430

本発明は、発電セルの受光面上での受光総量を低下させることなく発電セル受光面上での光量分布の均一性を向上させることで発電セルの発電効率を向上させることのできる太陽光発電装置用の集光レンズ及びそれを用いた太陽光発電装置の何れかの提供を目的とする。   The present invention is a photovoltaic power generation capable of improving the power generation efficiency of a power generation cell by improving the uniformity of the light quantity distribution on the light reception surface of the power generation cell without reducing the total amount of light received on the light reception surface of the power generation cell. It aims at providing either the condensing lens for apparatuses, and the solar power generation device using the same.

本発明者らは、特許文献1の発明で発電セルに到達しなくなる光は主にレンズの中心から大きく離れた周辺部を通る光であることを見出し、レンズ周辺部をレンズ中央部とは別のレンズ領域となし、このレンズ領域のレンズ焦点位置が発電セル受光面の中心となるようにして、複合型のレンズ設計にすることにより、発電セル受光面での光量分布均一性が高められ、かつ受光総量が低下しないことを見出し、本発明を完成させた。   The inventors of the present invention have found that the light that does not reach the power generation cell in the invention of Patent Document 1 is mainly light that passes through a peripheral part far away from the center of the lens, and separates the lens peripheral part from the lens central part. No lens area, the lens focal point position of this lens area is the center of the power generation cell light receiving surface, and by making a composite lens design, the light quantity distribution uniformity on the power generation cell light receiving surface is improved, And it discovered that the total amount of light received did not fall, and completed this invention.

即ち、本発明によれば、上記目的を達成するものとして、
中央部レンズ領域Aとその外側の外周部レンズ領域Bとが設けられ、
中央部レンズ領域Aは、複数の小レンズ領域A1〜An{ここでnは2以上の整数}を含み、
複数の小レンズ領域A1〜Anのそれぞれのレンズ焦点は、互いに離れて位置し、且つ外周部レンズ領域Bのレンズ光軸から離れた位置にある、太陽光発電装置用集光レンズ、
が提供される。
That is, according to the present invention, the above object is achieved as follows:
A central lens region A and an outer peripheral lens region B outside the central lens region A;
The central lens region A includes a plurality of small lens regions A1 to An {where n is an integer of 2 or more}
Each of the lens focal points of the plurality of small lens regions A1 to An is located away from each other and is away from the lens optical axis of the outer peripheral lens region B.
Is provided.

本発明の太陽光発電装置用集光レンズの一態様においては、中央部レンズ領域Aは、外周部レンズ領域Bのレンズ光軸の方向から見て、太陽光発電装置用集光レンズの中心を通り互いに直交する2つの直線を分割線として4つの小レンズ領域A1〜A4に分割されている。本発明の太陽光発電装置用集光レンズの一態様においては、小レンズ領域A1〜A4は、いずれも正方形状をなし、外周部レンズ領域Bの外形は中央部レンズ領域Aと同心且つ同一方向性の正方形である。本発明の太陽光発電装置用集光レンズの一態様においては、小レンズ領域A1〜A4の一辺の長さDと、外周部レンズ領域Bの外形の正方形の一辺の長さLとが、0.03L≦D≦0.48Lの関係にある。   In one aspect of the condensing lens for the solar power generation device of the present invention, the central lens region A is the center of the condensing lens for the solar power generation device when viewed from the lens optical axis direction of the outer peripheral lens region B. Two straight lines orthogonal to each other are divided into four small lens areas A1 to A4 with dividing lines. In one aspect of the condensing lens for a solar power generation device of the present invention, each of the small lens regions A1 to A4 has a square shape, and the outer shape of the outer peripheral lens region B is concentric and in the same direction as the central lens region A. Is a sex square. In one aspect of the condensing lens for a solar power generation device of the present invention, the length D of one side of the small lens regions A1 to A4 and the length L of one side of the outer shape of the outer lens region B are 0. .03L ≦ D ≦ 0.48L.

本発明の太陽光発電装置用集光レンズの一態様においては、小レンズ領域A1〜Anのそれぞれのレンズ光軸は、外周部レンズ領域Bのレンズ光軸と平行である。本発明の太陽光発電装置用集光レンズの一態様においては、小レンズ領域A1〜Anのそれぞれのレンズ焦点は、外周部レンズ領域Bのレンズ焦点平面上にある。本発明の太陽光発電装置用集光レンズの一態様においては、外周部レンズ領域Bのレンズ光軸は太陽光発電装置用集光レンズの中心を通る。   In one aspect of the condensing lens for a solar power generation device of the present invention, the lens optical axes of the small lens regions A1 to An are parallel to the lens optical axis of the outer peripheral lens region B. In one aspect of the condensing lens for a solar power generation device of the present invention, the lens focal points of the small lens regions A1 to An are on the lens focal plane of the outer peripheral lens region B. In one aspect of the condensing lens for a solar power generation device of the present invention, the lens optical axis of the outer peripheral lens region B passes through the center of the condensing lens for the solar power generation device.

また、本発明によれば、上記目的を達成するものとして、
太陽光発電装置用集光レンズと、太陽光発電装置用集光レンズにより集光された光が入射する受光面を備えた発電セルと、を含む太陽光発電装置、
が提供される。
In addition, according to the present invention, the above-mentioned object is achieved as follows:
A solar power generation device including a condensing lens for a solar power generation device and a power generation cell having a light receiving surface on which light collected by the condensing lens for the solar power generation device is incident;
Is provided.

本発明の太陽光発電装置の一態様においては、太陽光発電装置用集光レンズの外周部レンズ領域Bのレンズ光軸は、発電セルの受光面の中心を通る。   In the one aspect | mode of the solar power generation device of this invention, the lens optical axis of the outer peripheral part lens area | region B of the condensing lens for solar power generation devices passes through the center of the light-receiving surface of a power generation cell.

本発明の太陽光発電装置の一態様においては、
太陽光発電装置用集光レンズにおいて、中央部レンズ領域Aは、外周部レンズ領域Bのレンズ光軸の方向から見て、太陽光発電装置用集光レンズの中心を通り互いに直交する2つの直線を分割線として4つの小レンズ領域A1〜A4に分割されており、小レンズ領域A1〜A4は、いずれも正方形状をなし、外周部レンズ領域Bの外形は中央部レンズ領域Aと同心且つ同一方向性の正方形であり、
発電セルの受光面は、太陽光発電装置用集光レンズの外周部レンズ領域Bの外形と同一方向性の正方形状をなし、
互いに直交する2つの分割線のそれぞれの方向に関して、外周部レンズ領域Bのレンズ光軸と小レンズ領域A1〜A4のそれぞれのレンズ光軸との距離(即ち各分割線方向に関する「ずれ量」)Sと、発電セルの受光面の一辺の長さCとが、0.03C≦S≦0.5Cの関係にある。
In one aspect of the solar power generation device of the present invention,
In the concentrating lens for a solar power generation device, the central lens region A has two straight lines that are orthogonal to each other through the center of the condensing lens for the solar power generation device when viewed from the lens optical axis direction of the outer peripheral lens region B. Is divided into four small lens areas A1 to A4, and the small lens areas A1 to A4 are all square, and the outer lens area B has the same outer shape as the central lens area A. A directional square,
The light receiving surface of the power generation cell has a square shape in the same direction as the outer shape of the outer peripheral lens region B of the condensing lens for the solar power generation device,
The distance between the lens optical axis of the outer peripheral lens region B and the lens optical axis of each of the small lens regions A1 to A4 (that is, the “deviation amount” in each dividing line direction) with respect to the directions of the two dividing lines orthogonal to each other. S and the length C of one side of the light receiving surface of the power generation cell have a relationship of 0.03C ≦ S ≦ 0.5C.

本発明により、発電セル受光面での光量分布均一性が高く高効率な太陽光発電装置用集光レンズ及びそれを用いた太陽光発電装置を提供することができる。   According to the present invention, it is possible to provide a high-efficiency condensing lens for a solar power generation device with high uniformity of light amount distribution on the light receiving surface of the power generation cell and a solar power generation device using the same.

集光式太陽光発電装置の概念図。The conceptual diagram of a concentrating solar power generation device. 図1の集光式太陽光発電装置において用いられる集光レンズの部分拡大図。The elements on larger scale of the condensing lens used in the concentrating solar power generation device of FIG. 本発明の太陽光発電装置用集光レンズの一実施形態を示す平面図。The top view which shows one Embodiment of the condensing lens for solar power generation devices of this invention. 本発明の太陽光発電装置の一実施形態を示す概念図。The conceptual diagram which shows one Embodiment of the solar power generation device of this invention. 図4の太陽光発電装置において用いられる集光レンズの部分拡大図。The elements on larger scale of the condensing lens used in the solar power generation device of FIG. 図4の太陽光発電装置において用いられる発電セルの受光面を示す図。The figure which shows the light-receiving surface of the power generation cell used in the solar power generation device of FIG.

以下、本発明の太陽光発電装置用集光レンズ及びそれを用いた太陽光発電装置の概要について、図を用いて説明する。   Hereinafter, the outline | summary of the condensing lens for solar power generation devices of this invention and a solar power generation device using the same is demonstrated using figures.

<集光レンズ>
図3は、本発明の太陽光発電装置用集光レンズの一実施形態を示す平面図である。集光レンズは、全体として一辺の長さがLの正方形板状をなしており、レンズ中心を含む中央部レンズ領域Aとその外側の外周部レンズ領域Bとが設けられている。中央部レンズ領域Aは、複数の小レンズ領域A1〜An{ここでnは2以上の整数}を含む。nは、例えば2〜8であり、好ましくは3〜6であり、本実施形態では4である。nは、2以上であれば光量分布の均一性を高める効果があり、8以下であれば集光レンズ製造が一層容易になる。
<Condensing lens>
FIG. 3 is a plan view showing an embodiment of a condensing lens for a solar power generation device of the present invention. The condenser lens as a whole has a square plate shape with one side of length L, and is provided with a central lens region A including the lens center and an outer peripheral lens region B outside thereof. The central lens area A includes a plurality of small lens areas A1 to An {where n is an integer of 2 or more}. n is, for example, 2 to 8, preferably 3 to 6, and 4 in this embodiment. If n is 2 or more, there is an effect of improving the uniformity of the light quantity distribution, and if it is 8 or less, the manufacturing of the condensing lens becomes easier.

集光レンズの材料としては、ガラスや合成樹脂等の透明材質を使用することができる。合成樹脂としては、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリオレフィン樹脂、ポリスチレン、または、メチルメタクリレート(MMA)とスチレン(St)との共重合体等の高透明性の種々の合成樹脂を用いることができる。これらの樹脂は、金型を用いて、平面板を加熱しプレス成形する、または、加熱溶融した樹脂を射出成形する等の方法で、所望の集光レンズ形状に成形加工することができる。特に、ポリメチルメタクリレート(PMMA)等のメタクリル樹脂が、その光線透過率の高さ、耐熱性、力学的特性、成形加工性にも優れており、レンズ用材料として最適である。このようなメタクリル樹脂とは、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であることが好ましい。   As a material for the condenser lens, a transparent material such as glass or synthetic resin can be used. Examples of the synthetic resin include various highly transparent materials such as acrylic resin, polycarbonate resin, vinyl chloride resin, polyolefin resin, polystyrene, or a copolymer of methyl methacrylate (MMA) and styrene (St). A synthetic resin can be used. These resins can be molded into a desired condensing lens shape by a method such as heating and press-molding a flat plate using a mold, or injection-molding a heat-melted resin. In particular, a methacrylic resin such as polymethyl methacrylate (PMMA) is excellent in its high light transmittance, heat resistance, mechanical properties, and molding processability, and is optimal as a lens material. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and the methyl methacrylate is preferably 80% by weight or more.

<中央部レンズ領域Aおよび外周部レンズ領域B>
外周部レンズ領域Bは、同心円状のフレネルレンズタイプの集光レンズ領域である。外周部レンズ領域Bの光軸は、集光レンズの中心を通って図3の紙面と直交する方向に延びている。図3においては、外周部レンズ領域Bのレンズ主点100が示されている。外周部レンズ領域Bの外形は、集光レンズの外形に一致する。
<Center lens area A and outer lens area B>
The outer peripheral lens region B is a concentric Fresnel lens type condensing lens region. The optical axis of the outer peripheral lens region B extends in the direction orthogonal to the paper surface of FIG. 3 through the center of the condenser lens. In FIG. 3, the lens principal point 100 of the outer peripheral lens region B is shown. The outer shape of the outer peripheral lens region B matches the outer shape of the condenser lens.

中央部レンズ領域Aは、外周部レンズ領域Bの光軸の方向即ち図3の紙面と直交する方向から見て、集光レンズの中心を通り互いに直交する2つの直線即ち図3における縦横十文字の線を分割線として4つの小レンズ領域A1〜A4に分割されている。小レンズ領域A1〜A4は、それぞれ同心円状のフレネルレンズタイプの集光レンズ領域である。小レンズ領域A1〜A4のそれぞれの光軸は、外周部レンズ領域Bの光軸と平行であり、図3の紙面と直交する方向に延びている。図3においては、各小レンズ領域A1〜A4のレンズ主点101,102,103,104が示されている。   The central lens area A is two straight lines that are orthogonal to each other through the center of the condenser lens when viewed from the direction of the optical axis of the outer peripheral lens area B, that is, the direction orthogonal to the paper surface of FIG. The line is divided into four small lens areas A1 to A4 with a dividing line. The small lens areas A1 to A4 are concentric Fresnel lens type condensing lens areas. The optical axes of the small lens areas A1 to A4 are parallel to the optical axis of the outer peripheral lens area B and extend in a direction perpendicular to the paper surface of FIG. In FIG. 3, the lens principal points 101, 102, 103, and 104 of the small lens regions A1 to A4 are shown.

小レンズ領域A1〜A4はいずれも正方形状をなし、外周部レンズ領域Bの外形は中央部レンズ領域Aと同心且つ同一方向性の正方形である。   The small lens areas A1 to A4 are all square, and the outer peripheral lens area B is a concentric and directional square with the central lens area A.

図5には、中央部レンズ領域Aの4つの小レンズ領域A1〜A4のうちの1つの小レンズ領域と、これに対応する外周部レンズ領域Bの部分とが示されている。小レンズ領域A1〜A4の一辺の長さはDであり、外周部レンズ領域Bの外形の正方形の一辺の長さは上記のようにLである。   FIG. 5 shows one small lens region among the four small lens regions A1 to A4 in the central lens region A and a portion of the outer peripheral lens region B corresponding thereto. The length of one side of the small lens areas A1 to A4 is D, and the length of one side of the outer shape of the outer lens area B is L as described above.

集光レンズには、回折構造を設けて集光効率を向上させることをも、併せて適用することができる。   It is also possible to apply to the condensing lens to provide a diffractive structure to improve the condensing efficiency.

尚、以上の実施形態では、外周部レンズ領域B、中央部レンズ領域A及び各小レンズ領域A1〜A4が、いずれも正方形状であるが、本発明は、これに限定されるものではない。例えば、外周部レンズ領域B、中央部レンズ領域A及び各小レンズ領域A1〜A4を、互いに同一の方向性の長方形状とし、外周部レンズ領域Bと中央部レンズ領域Aとを同心に配置することができる。更に、外周部レンズ領域Bと中央部レンズ領域Aとを同心且つ同一方向性の正六角形とし、集光レンズの中心を通り互いに60度の角度をなし且つ中央部レンズ領域Aの正六角形の頂点を通る3つの直線を分割線として中央部レンズ領域Aを6分割して6つの正三角形状の小レンズ領域を形成することができる。上記実施形態を含め、このようにすることで、多数の集光レンズを2次元的に隙間なく配列することができ、太陽光を無駄なく利用することが可能な太陽光発電装置を得ることができる。   In the above embodiment, the outer peripheral lens region B, the central lens region A, and the small lens regions A1 to A4 are all square, but the present invention is not limited to this. For example, the outer peripheral lens region B, the central lens region A, and the small lens regions A1 to A4 are rectangular with the same direction, and the outer peripheral lens region B and the central lens region A are arranged concentrically. be able to. Further, the outer peripheral lens region B and the central lens region A are concentric and unidirectional regular hexagons, pass through the center of the condenser lens and form an angle of 60 degrees with each other, and the apex of the regular hexagons of the central lens region A The center lens region A can be divided into six by using the three straight lines passing through the dividing lines as six dividing lines to form six equilateral triangular small lens regions. By doing in this way including the above-mentioned embodiment, it is possible to obtain a photovoltaic power generation apparatus that can arrange a large number of condensing lenses two-dimensionally without gaps and can use sunlight without waste. it can.

<発電セル>
図4は本発明の太陽光発電装置の一実施形態を示す概念図であり、図6はそこで用いられる発電セルの受光面を示す図である。太陽光発電装置は、以上のような集光レンズと、該集光レンズにより集光された光が入射する受光面を備えた発電セル6と、を含む。
<Power generation cell>
FIG. 4 is a conceptual diagram showing an embodiment of the solar power generation device of the present invention, and FIG. 6 is a diagram showing a light receiving surface of a power generation cell used there. The solar power generation device includes the above-described condensing lens and the power generation cell 6 including a light receiving surface on which light collected by the condensing lens is incident.

発電セル6は、レンズで集光された光を電気に変換する光電変換素子であり、結晶シリコン系のもの及び多接合化合物系のものなどの、任意の光電変換素子を用いることができる。受光面の大きさは特に限定されないが、集光レンズの面積が受光面の面積に比較して100倍から3000倍程度となるように設計されることが好ましい。100倍以上だとコスト低減の観点から有利であり、3000倍以下だと受光面への集光効率(光学効率)が高くなる。300倍以上2000倍以下がさらに好ましい。   The power generation cell 6 is a photoelectric conversion element that converts light collected by a lens into electricity, and an arbitrary photoelectric conversion element such as a crystalline silicon type or a multi-junction compound type can be used. The size of the light receiving surface is not particularly limited, but is preferably designed so that the area of the condenser lens is about 100 to 3000 times the area of the light receiving surface. If it is 100 times or more, it is advantageous from the viewpoint of cost reduction, and if it is 3000 times or less, the light collection efficiency (optical efficiency) on the light receiving surface becomes high. More preferably, it is 300 times or more and 2000 times or less.

図4及び図6において、xyz直交座標系が示されている。図4及び図6に示されるように、外周部レンズ領域Bは、レンズ主点100を通りレンズ主面と垂直に交わるレンズ光軸110上にレンズ焦点120を持つ。同様に、小レンズ領域A1〜A4は、それぞれ、レンズ主点101〜104を通りレンズ主面と垂直に交わるレンズ光軸111〜114上にレンズ焦点121〜124を持つ。ここで、外周部レンズ領域Bのレンズ光軸110の方向から見て、外周部レンズ領域Bのレンズ主点100からレンズ主平面上のx軸方向及びy軸方向に沿ってそれぞれ距離sずつ離れた位置(即ちxy各軸方向に関し「ずれた位置」)に、レンズ主点101〜104、光軸111〜114及びレンズ焦点121〜124が位置する。   4 and 6, an xyz orthogonal coordinate system is shown. As shown in FIGS. 4 and 6, the outer peripheral lens region B has a lens focal point 120 on a lens optical axis 110 that passes through the lens principal point 100 and intersects the lens principal surface perpendicularly. Similarly, the small lens areas A1 to A4 have lens focal points 121 to 124 on lens optical axes 111 to 114 that pass through the lens principal points 101 to 104 and intersect the lens principal surface, respectively. Here, when viewed from the direction of the lens optical axis 110 in the outer peripheral lens region B, the lens main point 100 in the outer peripheral lens region B is separated by a distance s along the x-axis direction and the y-axis direction on the lens main plane. The lens principal points 101 to 104, the optical axes 111 to 114, and the lens focal points 121 to 124 are located at the positions (that is, “shifted positions” in the xy directions).

かくして、小レンズ領域A1〜A4のそれぞれのレンズ焦点121〜124は、外周部レンズ領域Bのレンズ焦点平面上にて互いに離れて位置し、且つ外周部レンズ領域Bのレンズ光軸110から離れた位置(即ちxy各軸方向に関し「ずれた位置」)にある。即ち、外周部レンズ領域Bのレンズ焦点距離と小レンズ領域A1〜A4のレンズ焦点距離とは等しい。   Thus, the lens focal points 121 to 124 of the small lens areas A1 to A4 are positioned away from each other on the lens focal plane of the outer peripheral lens area B and away from the lens optical axis 110 of the outer peripheral lens area B. It is in a position (that is, a “shifted position” with respect to the xy axes). That is, the lens focal length of the outer peripheral lens region B is equal to the lens focal length of the small lens regions A1 to A4.

集光レンズ1と発電セル6とは、金属枠などに取り付けられ、位置関係が固定される。図1及び図2に示されるように、集光レンズ1の入射面2に入射した入射光3は、集光レンズの出射面4から出射して出射光5となり、発電セル6の受光面に照射される。この基本的構成は、集光レンズとして上記の本発明による集光レンズを用いた本発明の太陽光発電装置においても、同様である。   The condenser lens 1 and the power generation cell 6 are attached to a metal frame or the like, and the positional relationship is fixed. As shown in FIGS. 1 and 2, the incident light 3 that has entered the incident surface 2 of the condenser lens 1 exits from the exit surface 4 of the condenser lens to become outgoing light 5, and is incident on the light receiving surface of the power generation cell 6. Irradiated. This basic configuration is the same in the photovoltaic power generation apparatus of the present invention using the above-described condensing lens according to the present invention as a condensing lens.

<太陽光発電装置>
以下、太陽光発電装置の特性を決定する要素について説明する。太陽光発電装置における発電性能は、発電セル受光面における受光量および光量分布の均一度に依存する。
<Solar power generator>
Hereinafter, the elements that determine the characteristics of the solar power generation device will be described. The power generation performance of the solar power generation device depends on the amount of light received on the light receiving surface of the power generation cell and the uniformity of the light amount distribution.

太陽と集光レンズ1とを正対させたとき、太陽から発せられ集光レンズ1の入射面2に入射する入射光3の光量と、集光レンズ1の出射面4から出射した出射光5のうち発電セル6の受光面に入射する光量との比率、すなわち[発電セル6の受光面への入射光量]/[集光レンズ入射面2への入射光量]を、集光レンズの光学効率ηoptといい、受光量の指標として用いる。光学効率ηoptが1に近いほど、発電セル6の受光量が高く、発電性能が高いことを示す。 When the sun and the condenser lens 1 face each other, the amount of incident light 3 emitted from the sun and incident on the incident surface 2 of the condenser lens 1 and the outgoing light 5 emitted from the output surface 4 of the condenser lens 1 Ratio of the amount of light incident on the light receiving surface of the power generation cell 6, that is, [the amount of light incident on the light receiving surface of the power generation cell 6] / [the amount of incident light on the light incident surface 2 of the condensing lens], It is called ηopt and is used as an index of the amount of received light. The closer the optical efficiency η opt is to 1, the higher the amount of light received by the power generation cell 6 and the higher the power generation performance.

また、発電セル6の受光面における光量分布の均一度の指標としては、PAR(Peak-to-Average Ratio)を用いることができる。PARは、光量分布の最大値と平均値との比率すなわち[最大値]/[平均値]によって表され、数値が高いほど光量分布の不均一性が高いことを示し、数値が1に近いほど光量分布の均一性が高いことを示す。PAR値が高くなると発電セルの評価指標の一つである曲線因子(FF値)が低下することがEUPVSEC(European Photovoltaic Solar Energy Conference)をはじめとした国際学会や非特許文献1等で報告されている。すなわち、PAR値が低い方が発電セル受光面における光量分布の均一性が高く、発電性能が高いことを示す。   Further, PAR (Peak-to-Average Ratio) can be used as an index of the uniformity of the light amount distribution on the light receiving surface of the power generation cell 6. The PAR is represented by the ratio between the maximum value and the average value of the light amount distribution, that is, [maximum value] / [average value]. The higher the numerical value, the higher the non-uniformity of the light amount distribution. It shows that the uniformity of the light quantity distribution is high. It has been reported in international conferences such as EUPVSEC (European Photovoltaic Solar Energy Conference) and non-patent literature 1 that the fill factor (FF value), which is one of the evaluation indices of power generation cells, decreases as the PAR value increases. Yes. That is, the lower the PAR value, the higher the uniformity of the light amount distribution on the light receiving surface of the power generation cell, and the higher the power generation performance.

通常の単一フレネルレンズの場合、光は発電セル6の受光面の中心部に強く集中しているため、PARは高い値となり好ましくない。但し、発電セル6の受光面の中心部が焦点位置となるため、光学効率ηoptは高く、非常に高い効率で光が発電セル受光面に到達する。 In the case of a normal single Fresnel lens, light is strongly concentrated at the center of the light receiving surface of the power generation cell 6, which is not preferable because the PAR is high. However, since the central portion of the light receiving surface of the power generation cell 6 is the focal position, the optical efficiency η opt is high, and light reaches the power generation cell light receiving surface with very high efficiency.

一方、特許文献1に記載のFresnel-Kohler concentrator(四分割フレネルレンズ)については、焦点が複数あるためにPARは大きく改善されるが、光学効率ηoptは低下する傾向にある。 On the other hand, the Fresnel-Kohler concentrator described in Patent Document 1 has a large number of focal points, so the PAR is greatly improved, but the optical efficiency η opt tends to decrease.

以上のことを前提として、本発明の集光レンズ及び太陽光発電装置の機能上の特徴であるところの、光学効率ηoptを低下させずにPARの低減を実現することにつき、以下に説明する。 On the premise of the above, it will be described below that the reduction of PAR is realized without reducing the optical efficiency η opt , which is a functional feature of the condenser lens and the solar power generation device of the present invention. .

本発明の集光レンズでは、全レンズ領域を、中央部レンズ領域Aとその外側の外周部レンズ領域Bとに分けている。   In the condensing lens of the present invention, the entire lens region is divided into a central lens region A and an outer peripheral lens region B outside the central lens region A.

ここで、レンズ中心から離れて位置している外周部レンズ領域Bについては、光学効率向上を重視する観点から、焦点位置を発電セル受光面の中心に配置している。集光レンズを通る光は、レンズ中心から離れた箇所を通る光ほど発電セル6の受光面に到達しにくくなるので、レンズ中心から離れた外周部レンズ領域Bは発電セル受光面の中心に焦点が位置するように構成するのが光学効率の低下を防ぐ意味で好適である。   Here, with respect to the outer peripheral lens region B located away from the lens center, the focal position is arranged at the center of the power generation cell light receiving surface from the viewpoint of emphasizing improvement in optical efficiency. Since the light passing through the condensing lens is less likely to reach the light receiving surface of the power generation cell 6 as the light passes through the part away from the lens center, the outer peripheral lens region B away from the lens center is focused on the center of the power generating cell light receiving surface. In order to prevent a decrease in optical efficiency, it is preferable to configure so that is positioned.

また、レンズ中心の近くに位置している中央部レンズ領域Aについては、PAR低減を重視する観点から、発電セル受光面の中心から離れたそれぞれ互いに異なる位置に焦点を持つ、複数の小レンズ領域A1〜A4に分割している。レンズ中心の近くを通る光は、焦点位置が発電セル受光面の中心から多少ずれていても発電セル受光面に到達しなくなることは起こりにくい。このため、レンズ中心に近い中央部レンズ領域Aは、PAR低減の観点から、さらに4つの小レンズ領域A1〜A4に分割し、それぞれの小レンズ領域A1〜A4の焦点が発電セル受光面の中心からある程度離れて位置するようにし、光量の過度な集中を抑えることが好ましい。   For the central lens region A located near the center of the lens, a plurality of small lens regions having focal points at different positions away from the center of the power generation cell light receiving surface from the viewpoint of emphasizing PAR reduction. It is divided into A1 to A4. Light that passes near the center of the lens is unlikely to reach the power generation cell light receiving surface even if the focal position is slightly deviated from the center of the power generation cell light reception surface. For this reason, the central lens region A close to the lens center is further divided into four small lens regions A1 to A4 from the viewpoint of PAR reduction, and the focal points of the small lens regions A1 to A4 are the centers of the power generation cell light receiving surfaces. It is preferable to be located some distance away from the light source to suppress excessive concentration of the light amount.

中央部レンズ領域Aと外周部レンズ領域Bとの大きさの比率は、PARと光学効率とに影響を及ぼす。集光レンズ全体の一辺の長さに該当する外周部レンズ領域Bの正方形外形の一辺の長さLと、各小レンズ領域A1〜A4の一辺の長さDとが、以下の式1:
(式1) 0.03L≦D≦0.48L
を満たす関係にあることが好ましい。Dが0.03Lより大きいとPAR低減の効果が高く、Dが0.48L以下だと光学効率向上の効果が高い。より好ましくは0.20L≦D≦0.45Lであり、さらに好ましくは0.25L≦D≦0.38Lである。
The ratio of the size of the central lens region A and the outer peripheral lens region B affects the PAR and the optical efficiency. The length L of one side of the square shape of the outer peripheral lens region B corresponding to the length of one side of the entire condensing lens and the length D of one side of each small lens region A1 to A4 are expressed by the following formula 1:
(Formula 1) 0.03L ≦ D ≦ 0.48L
It is preferable that the relationship is satisfied. When D is greater than 0.03L, the effect of reducing PAR is high, and when D is 0.48L or less, the effect of improving optical efficiency is high. More preferably, 0.20L ≦ D ≦ 0.45L, and still more preferably 0.25L ≦ D ≦ 0.38L.

小レンズ領域A1〜A4の好適な焦点位置は、発電セル受光面の大きさに依存する。発電セル受光面が一辺の長さCの正方形状をなす場合、小レンズ領域A1〜A4の焦点位置は発電セル受光面の中心からx軸方向及びy軸方向にそれぞれSずつずれた位置に配置されることが好ましく、またSとCとは以下の式2:
(式2) 0.03C≦S≦0.5C
を満たす関係にあることが好ましい。Sが0.03Cより大きいとPAR低減の効果が高く、Sが0.5C以下だと光学効率向上の効果が高い。より好ましくは0.06C≦S≦0.42Cであり、さらに好ましくは0.10C≦S≦0.38Cである。Sは、x軸方向及びy軸方向のそれぞれに関して、外周部レンズ領域Bのレンズ主点100からの小レンズ領域A1〜A4のレンズ主点101〜104のずれ量、或いは外周部レンズ領域Bのレンズ光軸110からの小レンズ領域A1〜A4のレンズ光軸111〜114のずれ量、に相当する。
Suitable focal positions of the small lens areas A1 to A4 depend on the size of the power generation cell light receiving surface. When the power generation cell light receiving surface has a square shape with a side length C, the focal positions of the small lens areas A1 to A4 are arranged at positions shifted by S from the center of the power generation cell light reception surface in the x-axis direction and the y-axis direction, respectively. Preferably, S and C are represented by the following formula 2:
(Formula 2) 0.03C ≦ S ≦ 0.5C
It is preferable that the relationship is satisfied. When S is greater than 0.03C, the effect of reducing PAR is high, and when S is 0.5C or less, the effect of improving optical efficiency is high. More preferably, 0.06C ≦ S ≦ 0.42C, and still more preferably 0.10C ≦ S ≦ 0.38C. S is the amount of deviation of the lens principal points 101 to 104 of the small lens areas A1 to A4 from the lens principal point 100 of the outer peripheral lens area B with respect to each of the x axis direction and the y axis direction, or the outer lens area B. This corresponds to the amount of deviation of the lens optical axes 111 to 114 in the small lens areas A1 to A4 from the lens optical axis 110.

本発明の集光レンズを用いた太陽光発電装置において、最大発電量は以下のように見積もることができる。   In the solar power generation apparatus using the condensing lens of the present invention, the maximum power generation amount can be estimated as follows.

最大発電量Pmは、以下の式3:
(式3) Pm=Isc・Voc・FF
に示したように、短絡電流Iscと開放電圧VocとフィルファクターFFとの積で表すことができるが、発電セル受光面での放射照度が不均一である場合、FF値の低下により発電量が低下することがわかっている(非特許文献1など)。非特許文献1では、発電セル受光面上における放射照度の最大値と平均値との比であるPARを用いて、PARとFF値との関係を明らかにしており、この関係を式3に適用し、更にIscは発電セル受光面に取り込まれる光の量に比例すなわちηoptに比例することを式3に適用すると、最大発電量の相対値は、以下の式4:
(式4) Pm∝ηopt・Voc・FFth{1.0−0.0178(PAR−1.0)}
で表すことができる。ここで、FFthは均一照射時のフィルファクターの値である。
Maximum power generation Pm is expressed by the following formula 3:
(Formula 3) Pm = Isc · Voc · FF
As shown in Fig. 4, it can be expressed by the product of the short-circuit current Isc, the open-circuit voltage Voc, and the fill factor FF. If the irradiance on the light-receiving surface of the power generation cell is non-uniform, It is known that it decreases (Non-Patent Document 1, etc.). Non-Patent Document 1 clarifies the relationship between the PAR and the FF value by using PAR, which is the ratio between the maximum value and the average value of the irradiance on the light-receiving surface of the power generation cell. Furthermore, when Isc is proportional to the amount of light taken into the light receiving surface of the power generation cell, that is, proportional to η opt , the relative value of the maximum power generation amount is expressed by the following Equation 4:
(Formula 4) Pm∝η opt · Voc · FFth {1.0-0.0178 (PAR-1.0)}
Can be expressed as Here, FFth is a value of a fill factor at the time of uniform irradiation.

式4中でVoc及びFFthは定数であるので、式4の値は以下の式5:
(式5) Pm∝ηopt{1.0−0.0178(PAR−1.0)}
の値に比例するといえる。
Since Voc and FFth are constants in Equation 4, the value of Equation 4 is the following Equation 5:
(Formula 5) Pm∝η opt {1.0-0.0178 (PAR-1.0)}
It can be said that it is proportional to the value of.

そこで、以下の実施例及び比較例での最大発電量の相対的な評価においては、式5の右辺の計算値を用いて比較することとした。   Therefore, in the relative evaluation of the maximum power generation amount in the following examples and comparative examples, comparison was made using the calculated value on the right side of Equation 5.

以下の実施例及び比較例は、光学の原理に基づく計算(光線追跡法による光学シミュレーション)により行ったものである。尚、本発明の実施例は、上記実施形態に準拠している。   The following examples and comparative examples were performed by calculation based on the principle of optics (optical simulation by the ray tracing method). In addition, the Example of this invention is based on the said embodiment.

以下の実施例1〜実施例11、比較例1及び比較例2は、幾何集光倍率が1000倍となるように構成された集光レンズ及び発電セルを含む太陽光発電装置に関するものである。   The following Examples 1 to 11, Comparative Example 1 and Comparative Example 2 relate to a solar power generation apparatus including a condensing lens and a power generation cell configured to have a geometric condensing magnification of 1000 times.

<実施例1>
集光レンズとして、板厚3.0mm、一辺の長さLが200mmの正方形状のPMMA板の片面に、外周部レンズ領域Bおよび中央部小レンズ領域A1〜A4を設け、各小レンズ領域の一辺の長さDを60mmとしたものを用いた。外周部レンズ領域Bのレンズ光軸110が集光レンズの中心を通るようにした。小レンズ領域A1〜A4のレンズ主点101〜104の位置は外周部レンズ領域Bのレンズ主点100の位置からx軸方向及びy軸方向にそれぞれS=1.8mmずれた位置とした。このSの値により、小レンズ領域A1〜A4のレンズ主点101〜104の位置が特定される(以下同様)。各レンズ領域のレンズはフレネルレンズで構成され、レンズ斜面の傾斜角度(レンズ角度)はレンズ主点からの距離に応じて設計された。いくつかの代表的な距離におけるフレネルレンズ斜面の傾斜角度を表1に示す。各レンズ領域のレンズ焦点距離fは200mmとした。各レンズ領域のレンズのピッチは0.5mmとした。
<Example 1>
As a condenser lens, an outer peripheral lens region B and central small lens regions A1 to A4 are provided on one surface of a square PMMA plate having a plate thickness of 3.0 mm and a side length L of 200 mm. The one whose side length D was 60 mm was used. The lens optical axis 110 in the outer peripheral lens region B is made to pass through the center of the condenser lens. The positions of the lens principal points 101 to 104 in the small lens areas A1 to A4 were shifted from the position of the lens principal point 100 in the outer peripheral lens area B by S = 1.8 mm in the x-axis direction and the y-axis direction, respectively. The position of the lens principal points 101 to 104 of the small lens areas A1 to A4 is specified by the value of S (the same applies hereinafter). The lens in each lens area is composed of a Fresnel lens, and the inclination angle (lens angle) of the lens slope is designed according to the distance from the lens principal point. Table 1 shows the inclination angles of the slopes of the Fresnel lens at several typical distances. The lens focal length f of each lens region was 200 mm. The lens pitch in each lens area was 0.5 mm.

発電セル6の受光面は、一辺の長さCが√(40)mmの正方形状をなすものとした。集光レンズと発電セル受光面との距離は200mmとし、集光レンズの外周部レンズ領域Bのレンズ光軸110が発電セル受光面の中心を通るように、集光レンズ及び発電セル6を配置した。   The light receiving surface of the power generation cell 6 has a square shape with a side length C of √ (40) mm. The distance between the condensing lens and the power generation cell light receiving surface is 200 mm, and the condensing lens and the power generation cell 6 are arranged so that the lens optical axis 110 in the outer peripheral lens region B of the condensing lens passes through the center of the power generation cell light receiving surface. did.

光源は、太陽光を仮定してAM1.5Dスペクトルの300〜2000nmの範囲を使用し、太陽の視直径を考慮し広がり角0.53°の光とした。   The light source was assumed to be sunlight and the range of 300 to 2000 nm of the AM1.5D spectrum was used, and the light having a spread angle of 0.53 ° was considered in consideration of the visual diameter of the sun.

また、集光レンズの材質はPMMAとし、屈折率は以下の式6:
(式6) 1.4779+(5.0496×10)/λ−6.94×107/λの値を用いた。
The material of the condenser lens is PMMA, and the refractive index is expressed by the following formula 6:
(Expression 6) A value of 1.47979+ (5.0496 × 10 3 ) / λ 2 −6.94 × 107 / λ 4 was used.

上記の条件で、光線追跡法による光学シミュレーションを行い、発電セル受光面に到達するフォトン数をカウントしたところ、集光レンズの光学効率ηoptは80%と、後述する比較例1のηoptと同等であった。また発電セル受光面を20×20のメッシュに分割し、到達フォトン数の最も多かったエリアのフォトン数と全エリアのフォトン数の平均値との比率PARを算出したところ、2.97となり、後述する比較例1のPARに比べ著しく低減した。また、式5を用いて最大発電量の相対値を導いたところ(比較例1の計算結果を1とした)1.17となり、比較例1の単一フレネルレンズの場合及び比較例2の四分割フレネルレンズの場合に比較して、高い値となった。結果を表2に示す。 In the above conditions, subjected to optical simulation by a ray tracing method, it was counted number of photons reaching the power generation cell light-receiving surface, and 80% optical efficiency eta opt of the condenser lens, and eta opt Comparative Example 1 to be described later It was equivalent. The power generation cell light-receiving surface was divided into 20 × 20 meshes, and the ratio PAR between the number of photons in the area with the highest number of reached photons and the average value of the number of photons in all areas was calculated to be 2.97, which will be described later. As compared with the PAR of Comparative Example 1, it was significantly reduced. Moreover, when the relative value of the maximum power generation amount was derived using Equation 5, the calculation result of Comparative Example 1 was set to 1.17, which was the case of the single Fresnel lens of Comparative Example 1 and the four of Comparative Example 2. The value was higher than in the case of a split Fresnel lens. The results are shown in Table 2.

<比較例1>
集光レンズとして、板厚3.0mm、一辺の長さLが200mmの正方形のPMMA板の片面に、通常のフレネルレンズ(単一フレネルレンズ)を形成させたものを用いた。焦点距離fは200mmとし、レンズ主点からの距離に応じたフレネルレンズのレンズ角度は表1の通りとした。
<Comparative Example 1>
As the condenser lens, an ordinary Fresnel lens (single Fresnel lens) formed on one side of a square PMMA plate having a thickness of 3.0 mm and a side length L of 200 mm was used. The focal length f was 200 mm, and the lens angle of the Fresnel lens according to the distance from the lens principal point was as shown in Table 1.

発電セル6および光源については実施例1と同様にして光学シミュレーションを行ったところ、光学効率ηoptは80%であった。また、実施例1と同様にしてPARを算出したところ、11.3となり、前述した実施例1のPARに比べ非常に大きく、発電セル受光面内の光量分布は非常に不均一性が高かった。最大発電量の計算値は実施例1より低い値となった。結果を表2に示す。 When an optical simulation was performed on the power generation cell 6 and the light source in the same manner as in Example 1, the optical efficiency η opt was 80%. The PAR calculated in the same manner as in Example 1 was 11.3, which was much larger than the PAR in Example 1 described above, and the light amount distribution in the light receiving surface of the power generation cell was very uneven. . The calculated value of the maximum power generation amount was lower than that in Example 1. The results are shown in Table 2.

<比較例2>
集光レンズとして、板厚3.0mm、一辺の長さLが200mmの正方形のPMMA板の片面に、外周部レンズ領域Bが存在せず小レンズ領域A1〜A4のみからなる複合フレネルレンズ(四分割フレネルレンズ)を形成させたものを用いた。各小レンズ領域の一辺の長さDは100mmとした。小レンズ領域A1〜A4のレンズ主点101〜104の位置は集光レンズの中心点からx軸方向及びy軸方向にそれぞれS=1.8mmずれた位置とした。各小レンズ領域のレンズは、フレネルレンズで構成され、焦点距離fは200mmとし、レンズ主点からの距離に応じたフレネルレンズのレンズ角度は表1の通りとした。
<Comparative example 2>
As a condensing lens, a composite Fresnel lens consisting of only small lens areas A1 to A4 without an outer peripheral lens area B on one side of a square PMMA plate having a thickness of 3.0 mm and a side length L of 200 mm (four What formed the division | segmentation Fresnel lens) was used. The length D of one side of each small lens region was 100 mm. The positions of the lens principal points 101 to 104 in the small lens areas A1 to A4 were shifted from the center point of the condenser lens by S = 1.8 mm in the x-axis direction and the y-axis direction, respectively. The lens in each small lens area is composed of a Fresnel lens, the focal length f is 200 mm, and the lens angle of the Fresnel lens according to the distance from the lens principal point is as shown in Table 1.

発電セル6および光源については実施例1と同様にして光学シミュレーションを行ったところ、光学効率ηoptは68%と、前述した実施例1に比べ劣る結果となった。また、実施例1と同様にしてPARを算出したところ、3.87となった。比較例1の計算値を1としたときの最大発電量の相対値は、0.98であり、実施例1よりも低い値となった。結果を表2に示す。 When the optical simulation was performed on the power generation cell 6 and the light source in the same manner as in Example 1, the optical efficiency η opt was 68%, which was inferior to that in Example 1 described above. Moreover, when PAR was calculated in the same manner as in Example 1, it was 3.87. The relative value of the maximum power generation amount when the calculated value of Comparative Example 1 was 1 was 0.98, which was lower than that of Example 1. The results are shown in Table 2.

<実施例2〜実施例11>
集光レンズサイズ、発電セル受光面のサイズおよびレンズ領域の構成は実施例1と同様の設計で、但し、小レンズ領域の一辺の長さD及び小レンズ領域の主点位置Sの値を表2に示すように設計した。これらに関して最大発電量の計算を実施したところ、比較例1及び比較例2に比較して高い値となった。結果を表2に示す。
<Example 2 to Example 11>
The condensing lens size, the power generation cell light receiving surface size, and the lens area configuration are the same as those in the first embodiment, except that the length D of one side of the small lens area and the principal point position S of the small lens area are represented. 2 was designed. When the maximum power generation amount was calculated for these, the values were higher than those of Comparative Example 1 and Comparative Example 2. The results are shown in Table 2.

以下の実施例12〜実施例22、比較例3は、幾何集光倍率が400倍となるように構成された集光レンズ及び発電セルを含む太陽光発電装置に関するものである。 The following Examples 12 to 22 and Comparative Example 3 relate to a solar power generation apparatus including a condensing lens and a power generation cell that are configured so that the geometric condensing magnification is 400 times.

<実施例12〜実施例22>
発電セル受光面を一辺の長さ10mmの正方形状をなすものとし、小レンズ領域の一辺の長さD及び小レンズ領域の主点位置Sの値を表3に示すようにしたこと以外は、実施例1と同じ設計とし、実施例1と同様の方法で計算を実施した。比較例3の計算値を1としたときの最大発電量の相対値は、比較例3に比較して高い値となった。結果を表3に示す。
<Example 12 to Example 22>
The power generation cell light-receiving surface has a square shape with a side length of 10 mm, and the values of the length D of one side of the small lens region and the principal point position S of the small lens region are as shown in Table 3, The calculation was performed in the same manner as in Example 1 with the same design as in Example 1. The relative value of the maximum power generation amount when the calculated value of Comparative Example 3 was 1 was higher than that of Comparative Example 3. The results are shown in Table 3.

<比較例3>
発電セル受光面を一辺の長さ10mmの正方形状をなすものとしたこと以外は、比較例1と同じ設計とした。最大発電量の計算値は実施例12〜実施例22に比べて低い値となった。
<Comparative Example 3>
The design was the same as that of Comparative Example 1 except that the power-receiving cell light-receiving surface had a square shape with a side length of 10 mm. The calculated value of the maximum power generation amount was lower than those in Examples 12-22.

本発明の集光レンズは、集光式太陽光発電装置において好適に用いることができる。   The condensing lens of this invention can be used suitably in a concentrating solar power generation device.

1 集光レンズ
100 外周部レンズ領域Bのレンズ主点
101 小レンズ領域A1のレンズ主点
102 小レンズ領域A2のレンズ主点
103 小レンズ領域A3のレンズ主点
104 小レンズ領域A4のレンズ主点
110 外周部レンズ領域Bのレンズ光軸
111 小レンズ領域A1のレンズ光軸
112 小レンズ領域A2のレンズ光軸
113 小レンズ領域A3のレンズ光軸
114 小レンズ領域A4のレンズ光軸
120 外周部レンズ領域Bのレンズ焦点
121 小レンズ領域A1のレンズ焦点
122 小レンズ領域A2のレンズ焦点
123 小レンズ領域A3のレンズ焦点
124 小レンズ領域A4のレンズ焦点
2 入射面
3 入射光
4 出射面
5 出射光
6 発電セル
A 中央部レンズ領域
A1〜A4 小レンズ領域
B 外周部レンズ領域
DESCRIPTION OF SYMBOLS 1 Condensing lens 100 Lens principal point 101 of outer peripheral lens area B Lens principal point 102 of small lens area A1 Lens principal point 103 of small lens area A2 Lens principal point 104 of small lens area A3 Lens principal point of small lens area A4 110 Lens optical axis 111 of outer lens area B Lens optical axis 112 of small lens area A1 Lens optical axis 113 of small lens area A2 Lens optical axis 114 of small lens area A3 Lens optical axis 120 of small lens area A4 Lens focus 121 in the region B Lens focus 122 in the small lens region A1 Lens focus 123 in the small lens region A2 Lens focus 124 in the small lens region A3 Lens focus 2 in the small lens region A4 Incident surface 3 Incident light 4 Emitted surface 5 Emitted light 6 Power generation cell A Central lens region A1 to A4 Small lens region B Outer lens region

Claims (10)

中央部レンズ領域Aとその外側の外周部レンズ領域Bとが設けられ、
中央部レンズ領域Aは、複数の小レンズ領域A1〜An{ここでnは2以上の整数}を含み、
複数の小レンズ領域A1〜Anのそれぞれのレンズ焦点は、互いに離れて位置し、且つ外周部レンズ領域Bのレンズ光軸から離れた位置にある、太陽光発電装置用集光レンズ。
A central lens region A and an outer peripheral lens region B outside the central lens region A;
The central lens region A includes a plurality of small lens regions A1 to An {where n is an integer of 2 or more}
The condensing lens for solar power generation devices in which the lens focal points of the plurality of small lens regions A1 to An are located apart from each other and located away from the lens optical axis of the outer peripheral lens region B.
中央部レンズ領域Aは、外周部レンズ領域Bのレンズ光軸の方向から見て、太陽光発電装置用集光レンズの中心を通り互いに直交する2つの直線を分割線として4つの小レンズ領域A1〜A4に分割されている、請求項1に記載の太陽光発電装置用集光レンズ。   The central lens region A is divided into four small lens regions A1 with two straight lines passing through the center of the condensing lens for the solar power generation device as viewed from the direction of the lens optical axis of the outer peripheral lens region B. The condensing lens for solar power generation devices of Claim 1 divided | segmented into -A4. 小レンズ領域A1〜A4は、いずれも正方形状をなし、外周部レンズ領域Bの外形は中央部レンズ領域Aと同心且つ同一方向性の正方形である、請求項2に記載の太陽光発電装置用集光レンズ。   The small lens regions A1 to A4 each have a square shape, and the outer shape of the outer lens region B is a concentric and directional square with the central lens region A. Condenser lens. 小レンズ領域A1〜A4の一辺の長さDと、外周部レンズ領域Bの外形の正方形の一辺の長さLとが、0.03L≦D≦0.48Lの関係にある、請求項3に記載の太陽光発電装置用集光レンズ。   The length D of one side of the small lens regions A1 to A4 and the length L of one side of the outer square of the outer lens region B are in a relationship of 0.03L ≦ D ≦ 0.48L. The condensing lens for solar power generation devices of description. 小レンズ領域A1〜Anのそれぞれのレンズ光軸は、外周部レンズ領域Bのレンズ光軸と平行である、請求項1〜4の何れか一項に記載の太陽光発電装置用集光レンズ。   5. The condensing lens for a solar power generation device according to claim 1, wherein the lens optical axes of the small lens regions A <b> 1 to An are parallel to the lens optical axis of the outer peripheral lens region B. 6. 小レンズ領域A1〜Anのそれぞれのレンズ焦点は、外周部レンズ領域Bのレンズ焦点平面上にある、請求項1〜5の何れか一項に記載の太陽光発電装置用集光レンズ。   The condensing lens for solar power generation devices according to any one of claims 1 to 5, wherein the lens focal points of the small lens regions A1 to An are on the lens focal plane of the outer peripheral lens region B. 外周部レンズ領域Bのレンズ光軸は太陽光発電装置用集光レンズの中心を通る、請求項1〜6の何れか一項に記載の太陽光発電装置用集光レンズ。   The condensing lens for solar power generation devices according to any one of claims 1 to 6, wherein a lens optical axis of the outer peripheral lens region B passes through a center of the condensing lens for solar power generation devices. 請求項1〜7の何れか一項に記載の太陽光発電装置用集光レンズと、太陽光発電装置用集光レンズにより集光された光が入射する受光面を備えた発電セルと、を含む太陽光発電装置。   A condensing lens for a solar power generation device according to any one of claims 1 to 7, and a power generation cell including a light receiving surface on which light collected by the condensing lens for a solar power generation device is incident. Including solar power generator. 太陽光発電装置用集光レンズの外周部レンズ領域Bのレンズ光軸は、発電セルの受光面の中心を通る、請求項8に記載の太陽光発電装置。   The solar power generation device according to claim 8, wherein the lens optical axis of the outer peripheral lens region B of the condensing lens for the solar power generation device passes through a center of a light receiving surface of the power generation cell. 太陽光発電装置用集光レンズにおいて、中央部レンズ領域Aは、外周部レンズ領域Bのレンズ光軸の方向から見て、太陽光発電装置用集光レンズの中心を通り互いに直交する2つの直線を分割線として4つの小レンズ領域A1〜A4に分割されており、小レンズ領域A1〜A4は、いずれも正方形状をなし、外周部レンズ領域Bの外形は中央部レンズ領域Aと同心且つ同一方向性の正方形であり、
発電セルの受光面は、太陽光発電装置用集光レンズの外周部レンズ領域Bの外形と同一方向性の正方形状をなし、
互いに直交する2つの分割線のそれぞれの方向に関して、外周部レンズ領域Bのレンズ光軸と小レンズ領域A1〜A4のそれぞれのレンズ光軸との距離Sと、発電セルの受光面の一辺の長さCとが、0.03C≦S≦0.5Cの関係にある、請求項9に記載の太陽光発電装置。
In the concentrating lens for a solar power generation device, the central lens region A has two straight lines that are orthogonal to each other through the center of the condensing lens for the solar power generation device when viewed from the lens optical axis direction of the outer peripheral lens region B. Is divided into four small lens areas A1 to A4, and the small lens areas A1 to A4 are all square, and the outer lens area B has the same outer shape as the central lens area A. A directional square,
The light receiving surface of the power generation cell has a square shape in the same direction as the outer shape of the outer peripheral lens region B of the condensing lens for the solar power generation device,
The distance S between the lens optical axis of the outer peripheral lens region B and the lens optical axes of the small lens regions A1 to A4 and the length of one side of the light receiving surface of the power generation cell with respect to the directions of the two dividing lines orthogonal to each other The solar power generation device according to claim 9, wherein C is in a relationship of 0.03C ≦ S ≦ 0.5C.
JP2013181207A 2013-09-02 2013-09-02 Condenser lens and photovoltaic power generation system using the same Pending JP2015050328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181207A JP2015050328A (en) 2013-09-02 2013-09-02 Condenser lens and photovoltaic power generation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181207A JP2015050328A (en) 2013-09-02 2013-09-02 Condenser lens and photovoltaic power generation system using the same

Publications (1)

Publication Number Publication Date
JP2015050328A true JP2015050328A (en) 2015-03-16

Family

ID=52700096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181207A Pending JP2015050328A (en) 2013-09-02 2013-09-02 Condenser lens and photovoltaic power generation system using the same

Country Status (1)

Country Link
JP (1) JP2015050328A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059657A2 (en) * 2008-11-18 2010-05-27 Light Prescriptions Innovators, Llc Köhler concentrator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059657A2 (en) * 2008-11-18 2010-05-27 Light Prescriptions Innovators, Llc Köhler concentrator

Similar Documents

Publication Publication Date Title
Feng et al. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator
Wang et al. Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system
Alrwashdeh The effect of solar tower height on its energy output at Ma’an-Jordan
CN109581550A (en) A kind of Fresnel light condensing lens and preparation method thereof
CN103022205B (en) Line condensing lens
KR101909228B1 (en) Apparatus of concentrator for cpv using linear fresnel lens
CN203608146U (en) Flat type solar concentrator
JP2015050328A (en) Condenser lens and photovoltaic power generation system using the same
CN109087959B (en) Solar cell packaging structure
CN203179925U (en) Linear condensing lens
CN106405694B (en) Off-axis non-rotational symmetry superposition hot spot light-focusing Fresnel lens and preparation method thereof
WO2011029214A1 (en) Solar condensing device
CN208521950U (en) A kind of concentrating solar battery of integrated fractal ring
Li et al. Improving angular acceptance of stationary low-concentration photovoltaic compound parabolic concentrators using acrylic lens-walled structure
CN202735580U (en) Two-time condenser
Lv et al. Non-uniform sizing of PV cells in the dense-array module to match the non-uniform illumination in dish-type CPV systems
CN103066145B (en) A kind of condensation combination system based on minitype gallium arsenide photovoltaic cell
Abd-Rahman et al. Design optimization of compound parabolic concentrator (CPC) for improved performance
CN201852991U (en) Quadruple parabolic cylinder optical collector
CN103513410A (en) Secondary condenser
TW201349523A (en) Concentrated photovoltaic cell
CN202794686U (en) Fresnel solar energy collecting lens
KR101109044B1 (en) Apparatus for condensing sunlight
KR101469583B1 (en) Apparatus for condensing sunlight
KR20090007514A (en) Solar cell to improve efficiency of sunlight collection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161012

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205