JP2015050218A - Photovoltaic power generator - Google Patents

Photovoltaic power generator Download PDF

Info

Publication number
JP2015050218A
JP2015050218A JP2013179039A JP2013179039A JP2015050218A JP 2015050218 A JP2015050218 A JP 2015050218A JP 2013179039 A JP2013179039 A JP 2013179039A JP 2013179039 A JP2013179039 A JP 2013179039A JP 2015050218 A JP2015050218 A JP 2015050218A
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric conversion
solar
temperature
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013179039A
Other languages
Japanese (ja)
Inventor
野村 剛
Takeshi Nomura
剛 野村
南尾 匡紀
Masanori Nano
匡紀 南尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013179039A priority Critical patent/JP2015050218A/en
Priority to US14/468,311 priority patent/US20150059819A1/en
Publication of JP2015050218A publication Critical patent/JP2015050218A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generator capable of solving a conventional problem that the power generation amount decreases as the temperature rises on solar batteries as component elements.SOLUTION: The photovoltaic power generator 1 includes: a cooling pipe 102; a thermoelectric element 103 disposed on the cooling pipe 102; a solar battery 104 disposed on the thermoelectric element 103; a control section 107 that controls the thermoelectric element 103 to switch the function to power generation function or cooling function based on the temperature of the solar battery 104.

Description

本発明は、太陽エネルギーを電気エネルギーに変換する太陽光発電装置に関するものである。   The present invention relates to a solar power generation device that converts solar energy into electrical energy.

従来の太陽光発電装置において、例えば、冷却管上に配置した太陽電池に対して反射鏡を用いて太陽光を集光して、太陽エネルギーを電気エネルギーに変換する、集光型の太陽光発電装置が開発されている(例えば、特許文献1参照)。   In a conventional solar power generation device, for example, a concentrating solar power generation system that condenses sunlight using a reflecting mirror on a solar cell disposed on a cooling pipe and converts the solar energy into electric energy. An apparatus has been developed (see, for example, Patent Document 1).

特許文献1に開示の太陽光発電装置は、図7に示すように、反射鏡301で反射した太陽光を太陽電池302に集光させることで、太陽エネルギーを電気エネルギーに変換している。このとき、太陽光には、熱線が含まれているので、太陽電池302が加熱され、その温度が上昇する。そこで、特許文献1に開示の太陽光発電装置では、熱電変換素子304を太陽電池302と冷却管303との間に配置し、太陽電池302と冷却管303の温度差を利用して熱電変換を行うことで、太陽光の熱エネルギーを有効に活用している。   As shown in FIG. 7, the solar power generation device disclosed in Patent Document 1 condenses solar light reflected by the reflecting mirror 301 onto a solar cell 302 to convert solar energy into electric energy. At this time, since sunlight includes heat rays, the solar cell 302 is heated and its temperature rises. Therefore, in the solar power generation device disclosed in Patent Document 1, the thermoelectric conversion element 304 is disposed between the solar cell 302 and the cooling pipe 303, and thermoelectric conversion is performed using the temperature difference between the solar battery 302 and the cooling pipe 303. By doing so, solar thermal energy is effectively utilized.

特開2004−271063号公報JP 2004-271063 A

しかしながら、従来の太陽光発電装置においては、反射鏡側の太陽電池302は、反射鏡301により太陽光が集光されているので、冷却管303に流通する冷水によって冷却したとしても温度が大きく上昇してしまう可能性がある。ここで、例えばシリコン系の太陽電池の場合、常温での発電効率は20%程度であるが、温度上昇に伴ってその効率は低下し、200℃での発電効率は8%前後になることもある。一方、熱電変換素子の発電効率は3%程度であり、反射鏡側における太陽電池の発電効率の低下は、熱電変換素子の発電から補うことはできない。つまり、従来の太陽光発電装置においては、総発電量が、太陽電池の温度上昇により低下するという課題があった。   However, in the conventional solar power generation apparatus, the solar cell 302 on the reflector side has the temperature greatly increased even if it is cooled by cold water flowing through the cooling pipe 303 because sunlight is collected by the reflector 301. There is a possibility that. Here, for example, in the case of a silicon-based solar cell, the power generation efficiency at room temperature is about 20%, but the efficiency decreases as the temperature rises, and the power generation efficiency at 200 ° C. may be about 8%. is there. On the other hand, the power generation efficiency of the thermoelectric conversion element is about 3%, and the decrease in the power generation efficiency of the solar cell on the reflector side cannot be compensated for by the power generation of the thermoelectric conversion element. That is, the conventional photovoltaic power generation apparatus has a problem that the total power generation amount is reduced due to the temperature increase of the solar cell.

本発明は、上記課題に鑑みてなされたもので、総発電量の大きな太陽光発電装置を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the solar power generation device with a big total electric power generation amount.

本発明の太陽光発電装置は、この目的を達成するために、冷却部と、前記冷却部に設置された熱電変換素子と、前記熱電変換素子に設置された太陽電池と、前記太陽電池の温度に基づいて、前記熱電変換素子の機能を発電機能と冷却機能とのいずれかに切り換える制御部と、を有することを特徴としている。   In order to achieve this object, the solar power generation device of the present invention has a cooling unit, a thermoelectric conversion element installed in the cooling unit, a solar cell installed in the thermoelectric conversion element, and the temperature of the solar cell. And a control unit that switches the function of the thermoelectric conversion element to either a power generation function or a cooling function.

本発明の太陽光発電装置は、熱電変換素子の機能を切り換えることが可能なものであるため、総発電量の大きい太陽光発電装置を提供することができる。   Since the solar power generation device of the present invention can switch the function of the thermoelectric conversion element, a solar power generation device with a large total power generation amount can be provided.

本発明の実施の形態に係る太陽光発電装置を示す斜視図The perspective view which shows the solar power generation device which concerns on embodiment of this invention. 図1のA−A線で切断したときの断面図Sectional view when cut along line AA in FIG. 本発明の実施の形態に係る太陽光発電装置のシステム構成の一部を示すブロック図The block diagram which shows a part of system configuration | structure of the solar power generation device which concerns on embodiment of this invention. 本発明の実施の形態に係る熱電変換素子を示す斜視図The perspective view which shows the thermoelectric conversion element which concerns on embodiment of this invention 本発明の実施の形態に係る動作を説明するフローチャートThe flowchart explaining the operation | movement which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池温度と発電効率との関係を示す概略図Schematic showing the relationship between solar cell temperature and power generation efficiency according to an embodiment of the present invention 従来の太陽光発電装置を示す概略図Schematic showing a conventional solar power generation device

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すように、本発明の太陽光発電装置1は、架台10に立設したフレーム11によって支持された反射鏡101と、太陽光発電ユニット100とで、構成される。反射鏡101は、断面形状が半円筒状であり、太陽光発電ユニット100に太陽光を集光させるように構成されている。太陽光発電ユニット100は、反射鏡101の焦線付近に配置されるように、フレーム11によって支持されている。すなわち、反射鏡101は、
冷却管102及び熱電変換素子103及び太陽電池104を少なくとも含む太陽光発電ユニット100の下方に配置されている。
As shown in FIG. 1, the solar power generation device 1 of the present invention includes a reflecting mirror 101 supported by a frame 11 erected on a gantry 10 and a solar power generation unit 100. The reflecting mirror 101 has a semi-cylindrical cross-sectional shape and is configured to collect sunlight on the photovoltaic power generation unit 100. The photovoltaic power generation unit 100 is supported by the frame 11 so as to be disposed near the focal line of the reflecting mirror 101. That is, the reflecting mirror 101 is
It is disposed below the solar power generation unit 100 including at least the cooling pipe 102, the thermoelectric conversion element 103, and the solar battery 104.

図2は、図1のA−A線で切断した太陽光発電ユニット100の断面図である。図2に示すように、太陽光発電ユニット100は、冷却管102と、冷却管102の側面に設置された熱電変換素子103a〜103h(以下、まとめて熱電変換素子103ともいう。)と、熱電変換素子103の上面にそれぞれ設置された太陽電池104a〜104h(以下、まとめて太陽電池104ともいう。)を備えている。冷却管102は、冷却部の一例である。   FIG. 2 is a cross-sectional view of the photovoltaic power generation unit 100 cut along line AA in FIG. As shown in FIG. 2, the photovoltaic power generation unit 100 includes a cooling pipe 102, thermoelectric conversion elements 103 a to 103 h (hereinafter, collectively referred to as thermoelectric conversion elements 103) installed on the side surfaces of the cooling pipe 102, and thermoelectrics. Solar cells 104 a to 104 h (hereinafter collectively referred to as solar cells 104) respectively installed on the upper surface of the conversion element 103 are provided. The cooling pipe 102 is an example of a cooling unit.

本発明の太陽光発電装置1は、詳細は後述するが、この熱電変換素子103の機能を、太陽電池104の温度によって発電機能と冷却機能とで切り替えて使用することで、太陽電池104の発電効率を高くすることができるものである。具体的には、本発明の太陽光発電装置1は、太陽電池104の温度が設定温度以下か否かを測定して、太陽電池104の温度が設定温度以下の場合は、熱電変換素子103を発電機能で使用して発電量を増やし、太陽電池104の温度が設定温度より高い場合は、熱電変換素子103を冷却機能で使用して太陽電池104の発電効率の低下を防ぐことで、太陽光発電装置1全体の発電効率を高くするものである。   Although the solar power generation device 1 of the present invention will be described in detail later, the function of the thermoelectric conversion element 103 is switched between a power generation function and a cooling function depending on the temperature of the solar cell 104, thereby generating power from the solar cell 104. Efficiency can be increased. Specifically, the solar power generation device 1 of the present invention measures whether or not the temperature of the solar cell 104 is equal to or lower than the set temperature. When the temperature of the solar cell 104 is equal to or lower than the set temperature, the thermoelectric conversion element 103 is When the power generation function is used to increase the amount of power generation and the temperature of the solar cell 104 is higher than the set temperature, the thermoelectric conversion element 103 is used for the cooling function to prevent a decrease in the power generation efficiency of the solar cell 104, thereby reducing sunlight. The power generation efficiency of the power generation device 1 as a whole is increased.

冷却管102は、断面は8角形である角筒形状を有し、側面は矩形の平面を有している。冷却管102の内部には図示しない冷却水が流通しており、冷却管102の壁面および熱電変換素子103を介して太陽電池104を冷却することが可能な構造となっている。冷却管102に冷却水を流通させることで、太陽電池104の温度上昇を防ぎ、太陽電池104の発電効率の低下を防ぐことができる。本実施の形態では、冷却管102の断面形状を角筒形状としているため、一般的に平面で構成される太陽電池104と冷却管102との密着性を高めると共に、冷却管102内を流通する冷却水の量を少なくすることができるので、より発電効率の高い太陽光発電装置1を実現している。   The cooling pipe 102 has a rectangular tube shape with an octagonal cross section, and a side surface has a rectangular flat surface. Cooling water (not shown) circulates inside the cooling pipe 102, so that the solar cell 104 can be cooled via the wall surface of the cooling pipe 102 and the thermoelectric conversion element 103. By causing the cooling water to flow through the cooling pipe 102, it is possible to prevent the temperature of the solar cell 104 from rising and to prevent the power generation efficiency of the solar cell 104 from decreasing. In the present embodiment, since the cross-sectional shape of the cooling tube 102 is a square tube shape, the adhesion between the solar cell 104 and the cooling tube 102 that are generally configured as a plane is improved, and the inside of the cooling tube 102 is circulated. Since the amount of cooling water can be reduced, the solar power generation device 1 with higher power generation efficiency is realized.

太陽電池104は、例えば、ケイ素や化合物半導体の結晶あるいはアモルファスシリコンなどから成り、半導体の光起電力効果を利用して光エネルギー(太陽エネルギー)を、直接、電気エネルギーに変換する。   The solar cell 104 is made of, for example, silicon, a compound semiconductor crystal, amorphous silicon, or the like, and directly converts light energy (solar energy) into electric energy by using the photovoltaic effect of the semiconductor.

図3は、本発明の太陽光発電装置1のシステム構成の一部を示すブロック図である。図3に示すように、太陽光発電装置1は、温度センサー106a〜106h(以下、まとめて温度センサー106ともいう。)と、制御部107a〜107h(以下、まとめて制御部107ともいう。)を備えている。温度センサー106a〜106hは、太陽電池104a〜104hの温度をそれぞれ測定するために、それぞれに対応して設けられている。温度センサー106としては、例えば、熱電対を用いることができ、太陽電池104の裏面や側面に貼着して設けられる。制御部107a〜107hは、熱電変換素子103a〜103hにそれぞれに対応し、熱電変換素子103a〜103hを制御する。制御部107a〜107hは、温度センサー106a〜106hが測定した太陽電池104a〜104hの温度に基づき、それぞれが対応する熱電変換素子103a〜103hの機能を発電機能又は冷却機能に切り換える。   FIG. 3 is a block diagram showing a part of the system configuration of the photovoltaic power generation apparatus 1 of the present invention. As shown in FIG. 3, the solar power generation device 1 includes temperature sensors 106 a to 106 h (hereinafter collectively referred to as a temperature sensor 106) and control units 107 a to 107 h (hereinafter also collectively referred to as a control unit 107). It has. The temperature sensors 106a to 106h are provided corresponding to the respective solar cells 104a to 104h in order to measure the temperatures of the solar cells 104a to 104h. As the temperature sensor 106, for example, a thermocouple can be used, which is attached to the back surface or side surface of the solar cell 104. Control units 107a to 107h correspond to thermoelectric conversion elements 103a to 103h, respectively, and control thermoelectric conversion elements 103a to 103h. Based on the temperature of the solar cells 104a to 104h measured by the temperature sensors 106a to 106h, the control units 107a to 107h switch the functions of the corresponding thermoelectric conversion elements 103a to 103h to the power generation function or the cooling function.

また、温度センサー106a〜106hを用いず、熱電変換素子103a〜103hが発電した電圧値を測定して、太陽電池104a〜104hの温度を求めてもよい。この場合、温度センサー106a〜106hを用いる必要がなく太陽電池104の温度を測定することができるので、太陽光発電装置1における部品点数の削減が図れる。   Further, the temperature values of the solar cells 104a to 104h may be obtained by measuring voltage values generated by the thermoelectric conversion elements 103a to 103h without using the temperature sensors 106a to 106h. In this case, since it is not necessary to use the temperature sensors 106a to 106h and the temperature of the solar cell 104 can be measured, the number of parts in the solar power generation device 1 can be reduced.

図4は、熱電変換素子103を示す斜視図である。本発明の熱電変換素子103は、ゼーベック効果およびペルチェ効果の両方の機能を有するものである。   FIG. 4 is a perspective view showing the thermoelectric conversion element 103. The thermoelectric conversion element 103 of the present invention has both the Seebeck effect and the Peltier effect.

本発明における発電機能とは、このゼーベック効果により発電される機能をいう。本発明では、太陽光によって加熱された太陽電池104と、冷却管102を流通する冷却水との温度差を利用して、ゼーベック効果による発電を行っている。ここで、ゼーベック効果とは、種類の異なる金属または半導体を接合させ、その接合部に温度差を設けることによって、温度差に応じて起電力が発生する現象である。   The power generation function in the present invention refers to a function that generates power by the Seebeck effect. In the present invention, power generation by the Seebeck effect is performed using a temperature difference between the solar cell 104 heated by sunlight and the cooling water flowing through the cooling pipe 102. Here, the Seebeck effect is a phenomenon in which an electromotive force is generated according to a temperature difference by joining different types of metals or semiconductors and providing a temperature difference at the junction.

また、本発明における冷却機能とは、このペルチェ効果のうち、熱の吸収作用を利用して冷却する機能をいう。本発明では、熱電変換素子103に電力を供給することで、太陽光によって加熱された太陽電池104から冷却管102側に熱を輸送して、太陽電池104を冷却している。ここで、ペルチェ効果とは、ゼーベック効果とは逆の現象で、種類の異なる金属または半導体を接合させ、電流を流すと、電流の方向と大きさに依存した熱の吸収と放出が起こる現象である。   In addition, the cooling function in the present invention refers to a function of cooling using the heat absorption action in the Peltier effect. In the present invention, by supplying electric power to the thermoelectric conversion element 103, heat is transported from the solar cell 104 heated by sunlight to the cooling tube 102 side to cool the solar cell 104. Here, the Peltier effect is a reverse phenomenon to the Seebeck effect. When different types of metals or semiconductors are joined together and a current flows, heat absorption and release depending on the direction and magnitude of the current occur. is there.

熱電変換素子103は、図4に示すように、P型熱電変換素子103pとN型熱電変換素子103nとを配線基板105に実装して、電気的に直列に接続して形成される。   As shown in FIG. 4, the thermoelectric conversion element 103 is formed by mounting a P-type thermoelectric conversion element 103p and an N-type thermoelectric conversion element 103n on a wiring board 105 and electrically connecting them in series.

熱電変換素子103の材料としては、例えば、ビスマス・テルル系の合金を用いている。具体的には、P型熱電変換素子103pとしては、ビスマス・テルル系の合金にSb等をドーパントとして添加したものを用い、N型熱電変換素子103nとしては、ビスマス・テルル系の合金にSe等をドーパントとして添加したものを用いている。   As a material of the thermoelectric conversion element 103, for example, a bismuth-tellurium-based alloy is used. Specifically, as the P-type thermoelectric conversion element 103p, a bismuth-tellurium-based alloy added with Sb or the like as a dopant is used. As the N-type thermoelectric conversion element 103n, bismuth-tellurium-based alloy Se or the like is used. Is added as a dopant.

本発明の太陽光発電装置1の動作中の制御について、図5を用いて説明する。   Control during operation of the photovoltaic power generation apparatus 1 of the present invention will be described with reference to FIG.

図5に示すように、太陽光発電装置1の動作中においては、まず、ステップS10において、制御部107a〜107hによる制御により、それぞれの温度センサー106a〜106hを用いて、対応する太陽電池104a〜104hの温度を測定する。   As shown in FIG. 5, during the operation of the solar power generation device 1, first, in step S <b> 10, by the control by the control units 107 a to 107 h, the corresponding solar cells 104 a to 104 a are used using the respective temperature sensors 106 a to 106 h. Measure the temperature at 104h.

次に、ステップS11において、制御部107a〜107hで、対応する太陽電池104a〜104hの温度が設定温度以下か否かを判定する。ここで、太陽電池104a〜104hの温度が設定温度以下である場合(ステップS11のYes)は、ステップS12に進み、対応する熱電変換素子103a〜103hを発電機能として使用して発電を行う。一方、太陽電池104a〜104hの温度が設定温度より高い場合(ステップS11のNo)、ステップS13に進み、設定温度以上の太陽電池104の下面に設置した熱電変換素子103を冷却機能として使用して太陽電池104の冷却を行う。例えば、太陽電池104eの温度のみが設定温度より高くなれば、太陽電池104eの下面に設置した熱電変換素子103eのみを冷却機能として使用し、その他の熱電変換素子103a〜d、103f〜hは発電機能として使用する。このようにして、一部の太陽電池104の温度が設定温度より高くなった場合に、対応する熱電変換素子103のみで個別に冷却することで、各太陽電池104間の特性ばらつきや状態に応じた制御が可能となり、太陽電池104の発電効率を均一化させることができる。なお、前述のように、太陽電池104の温度が設定温度以下の場合は、太陽電池104と冷却管102の温度差を利用して発電するため、太陽光発電装置1の全体の発電量を大きくすることができる。   Next, in step S11, the control units 107a to 107h determine whether or not the temperatures of the corresponding solar cells 104a to 104h are equal to or lower than the set temperature. Here, when the temperature of solar cell 104a-104h is below setting temperature (Yes of step S11), it progresses to step S12 and generates electric power using corresponding thermoelectric conversion element 103a-103h as a power generation function. On the other hand, when the temperature of solar cell 104a-104h is higher than preset temperature (No of step S11), it progresses to step S13 and uses the thermoelectric conversion element 103 installed in the lower surface of the solar cell 104 more than preset temperature as a cooling function. The solar cell 104 is cooled. For example, if only the temperature of the solar cell 104e becomes higher than the set temperature, only the thermoelectric conversion element 103e installed on the lower surface of the solar cell 104e is used as a cooling function, and the other thermoelectric conversion elements 103a to 103d and 103f to h generate power. Use as a function. In this way, when the temperature of some of the solar cells 104 becomes higher than the set temperature, the cooling is individually performed only with the corresponding thermoelectric conversion elements 103, so that the characteristics vary between the solar cells 104 and the state. Control becomes possible, and the power generation efficiency of the solar cell 104 can be made uniform. As described above, when the temperature of the solar cell 104 is equal to or lower than the set temperature, power generation is performed using the temperature difference between the solar cell 104 and the cooling pipe 102, so the total power generation amount of the solar power generation device 1 is increased. can do.

ここで、熱電変換素子103を冷却機能で使用する場合、熱電変換素子103に電流を流してペルチェとして動作させる必要があるため、流す電流以上に冷却による発電効率の上昇分が大きくならないと、太陽光発電装置1全体の発電効率が低下することになる。そのため、本発明では、用いる太陽電池の特性などに合わせて予め実験を行うなどによって、熱電変換素子に流す電流以上に、冷却による太陽電池の発電効率の向上が大きくなる境界の温度を求め、この温度を所望の設定温度として予め設定しておく必要がある。   Here, when the thermoelectric conversion element 103 is used for the cooling function, it is necessary to flow a current through the thermoelectric conversion element 103 to operate as a Peltier. Therefore, if the increase in power generation efficiency due to cooling does not increase beyond the flowing current, The power generation efficiency of the entire photovoltaic power generation apparatus 1 is reduced. Therefore, in the present invention, by performing experiments in advance according to the characteristics of the solar cell to be used, etc., the temperature of the boundary at which the improvement in the power generation efficiency of the solar cell by cooling becomes greater than the current flowing through the thermoelectric conversion element. It is necessary to preset the temperature as a desired set temperature.

図6は、熱電変換素子103を発電機能で使用した場合の太陽電池温度(素子温度)と発電効率(変換効率)との関係を示す図である。図6に示すように、太陽電池の温度が高くなると、発電効率が下がることが分かっている。例えば、太陽電池の材料が結晶シリコンの場合、太陽電池の光電変換部の温度が10℃上がると、発電効率は、約4%低下する。   FIG. 6 is a diagram showing the relationship between the solar cell temperature (element temperature) and the power generation efficiency (conversion efficiency) when the thermoelectric conversion element 103 is used in the power generation function. As shown in FIG. 6, it is known that the power generation efficiency decreases as the temperature of the solar cell increases. For example, when the material of the solar cell is crystalline silicon, the power generation efficiency decreases by about 4% when the temperature of the photoelectric conversion unit of the solar cell increases by 10 ° C.

なお、反射鏡101は、図1では長手方向に垂直な断面が半円筒状であるトラフ形状として図示しているが、所望の特性を実現できる構成であれば、多数の平面鏡の組み合わせや、複数のパラボラ型反射鏡を組み合せて構成してもよい。   In FIG. 1, the reflecting mirror 101 is illustrated as a trough shape whose cross section perpendicular to the longitudinal direction is a semi-cylindrical shape. These parabolic reflectors may be combined.

また、反射鏡101は、太陽エネルギーを最大限利用するためには、太陽光に対して正対する方向に向ける方が望ましく、太陽の移動に追従するように追尾装置(図示せず)を用いてもよい。   In order to make maximum use of solar energy, the reflecting mirror 101 is preferably directed in the direction facing the sunlight, and a tracking device (not shown) is used to follow the movement of the sun. Also good.

なお、本実施の形態では、角筒形状の冷却管102のすべての側面に熱電変換素子103および太陽電池104を搭載したが、これに限られるものではない。例えば、反射鏡101側のみに搭載しても構わない。   In the present embodiment, the thermoelectric conversion element 103 and the solar cell 104 are mounted on all side surfaces of the rectangular tube-shaped cooling pipe 102, but the present invention is not limited to this. For example, it may be mounted only on the reflecting mirror 101 side.

さらに、冷却管102の形状は、角筒形状に限られるものではなく、円筒状であってもよい。   Furthermore, the shape of the cooling pipe 102 is not limited to the rectangular tube shape, and may be a cylindrical shape.

なお、本発明のように、所望の設定温度以下か否かに基づいて熱電変換素子を冷却機能と発電機能とで切り替えて使用するのは、反射鏡が無い太陽光発電装置においても効果がある。ただし、反射鏡101を備える太陽光発電装置1においては、各太陽電池104a〜104hの発電効率の均一化も図れるため、このような反射鏡を備える太陽光発電装置1で用いることがなお望ましい。   Note that, as in the present invention, switching the thermoelectric conversion element between the cooling function and the power generation function based on whether or not the temperature is equal to or lower than a desired set temperature is also effective in a solar power generation apparatus without a reflecting mirror. . However, in the solar power generation device 1 provided with the reflecting mirror 101, since the power generation efficiency of each of the solar cells 104a to 104h can be made uniform, it is still preferable to use the solar power generation device 1 provided with such a reflecting mirror.

以上のように、本発明は、太陽光発電装置として有用である。   As described above, the present invention is useful as a solar power generation device.

1 太陽光発電装置
10 架台
11 フレーム
100 太陽光発電ユニット
101 反射鏡
102 冷却管
103、103a〜103h 熱電変換素子
104、104a〜104h 太陽電池
103n N型熱電変換素子
103p P型熱電変換素子
105 配線基板
106a〜106h 温度センサー
107a〜106h 制御部
DESCRIPTION OF SYMBOLS 1 Solar power generation device 10 Base 11 Frame 100 Solar power generation unit 101 Reflector 102 Cooling tube 103, 103a-103h Thermoelectric conversion element 104, 104a-104h Solar cell 103n N type thermoelectric conversion element 103p P type thermoelectric conversion element 105 Wiring board 106a to 106h Temperature sensor 107a to 106h Control unit

Claims (5)

冷却部と、
前記冷却部に設置された熱電変換素子と、
前記熱電変換素子に設置された太陽電池と、
前記太陽電池の温度に基づいて、前記熱電変換素子の機能を発電機能と冷却機能とのいずれかに切り換える制御部と、を有する
太陽光発電装置。
A cooling section;
A thermoelectric conversion element installed in the cooling unit;
A solar cell installed in the thermoelectric conversion element;
A solar power generation apparatus comprising: a control unit that switches a function of the thermoelectric conversion element to either a power generation function or a cooling function based on a temperature of the solar cell.
前記熱電変換素子に流す電流以上に、冷却による前記太陽電池の発電効率の向上が大きくなる境界の温度を設定温度として予め設定しておき、
前記制御部は、前記太陽電池の温度が設定温度以下の場合は、前記熱電変換素子を発電機能で使用し、前記太陽電池の温度が前記設定温度より高い場合は、前記熱電変換素子を冷却機能で使用するように制御する、
請求項1に記載の太陽光発電装置。
More than the current flowing through the thermoelectric conversion element, the temperature of the boundary where the improvement of the power generation efficiency of the solar cell by cooling is set in advance as a set temperature,
The control unit uses the thermoelectric conversion element in a power generation function when the temperature of the solar cell is equal to or lower than a set temperature, and functions to cool the thermoelectric conversion element when the temperature of the solar cell is higher than the set temperature. Control to use in,
The solar power generation device according to claim 1.
前記制御部は、前記熱電変換素子が発電した電圧値を用いて前記太陽電池の温度を測定する、
請求項1又は2に記載の太陽光発電装置。
The control unit measures the temperature of the solar cell using a voltage value generated by the thermoelectric conversion element.
The solar power generation device according to claim 1 or 2.
前記冷却部および前記熱電変換素子および前記太陽電池を少なくとも含む太陽光発電ユニットの下方に配置された反射鏡をさらに有し、
前記太陽光発電ユニットは、複数の前記熱電変換素子と、それぞれの熱電変換素子に対応した複数の前記太陽電池とを有する、
請求項1から3いずれか1項に記載の太陽光発電装置。
A reflection mirror disposed below a solar power generation unit including at least the cooling unit, the thermoelectric conversion element, and the solar cell;
The solar power generation unit includes a plurality of the thermoelectric conversion elements and a plurality of the solar cells corresponding to the respective thermoelectric conversion elements.
The solar power generation device of any one of Claim 1 to 3.
前記冷却部の断面形状が、角筒形状である、
請求項4に記載の太陽光発電装置。
The cross-sectional shape of the cooling part is a rectangular tube shape,
The solar power generation device according to claim 4.
JP2013179039A 2013-08-30 2013-08-30 Photovoltaic power generator Pending JP2015050218A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013179039A JP2015050218A (en) 2013-08-30 2013-08-30 Photovoltaic power generator
US14/468,311 US20150059819A1 (en) 2013-08-30 2014-08-25 Solar power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179039A JP2015050218A (en) 2013-08-30 2013-08-30 Photovoltaic power generator

Publications (1)

Publication Number Publication Date
JP2015050218A true JP2015050218A (en) 2015-03-16

Family

ID=52700026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179039A Pending JP2015050218A (en) 2013-08-30 2013-08-30 Photovoltaic power generator

Country Status (1)

Country Link
JP (1) JP2015050218A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123277A (en) * 1982-12-28 1984-07-17 Toki Nagai Composite electromotive device utilizing solar energy, etc.
JP2003069065A (en) * 2001-08-29 2003-03-07 Canon Inc Photovoltaic power generation system
JP2003124500A (en) * 2001-10-15 2003-04-25 Sharp Corp Optocoupler
WO2012074341A2 (en) * 2010-12-03 2012-06-07 Kim Han Sik Tree-shaped solar cell module
US20120192922A1 (en) * 2009-10-16 2012-08-02 Consuntrate Pty Ltd Solar collector
WO2012143003A2 (en) * 2011-04-21 2012-10-26 Bpe E. K. Solar device
US20130008488A1 (en) * 2011-07-07 2013-01-10 Holmes John W Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems
US8420926B1 (en) * 2007-10-02 2013-04-16 University Of Central Florida Research Foundation, Inc. Hybrid solar cell integrating photovoltaic and thermoelectric cell elements for high efficiency and longevity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123277A (en) * 1982-12-28 1984-07-17 Toki Nagai Composite electromotive device utilizing solar energy, etc.
JP2003069065A (en) * 2001-08-29 2003-03-07 Canon Inc Photovoltaic power generation system
JP2003124500A (en) * 2001-10-15 2003-04-25 Sharp Corp Optocoupler
US8420926B1 (en) * 2007-10-02 2013-04-16 University Of Central Florida Research Foundation, Inc. Hybrid solar cell integrating photovoltaic and thermoelectric cell elements for high efficiency and longevity
US20120192922A1 (en) * 2009-10-16 2012-08-02 Consuntrate Pty Ltd Solar collector
WO2012074341A2 (en) * 2010-12-03 2012-06-07 Kim Han Sik Tree-shaped solar cell module
WO2012143003A2 (en) * 2011-04-21 2012-10-26 Bpe E. K. Solar device
US20130008488A1 (en) * 2011-07-07 2013-01-10 Holmes John W Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems

Similar Documents

Publication Publication Date Title
Mohsenzadeh et al. A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design
Qiu et al. Development of a novel cascading TPV and TE power generation system
Yang et al. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization
Tyagi et al. Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation
Zimmermann et al. A high-efficiency hybrid high-concentration photovoltaic system
KR100999513B1 (en) Hybrid generator using solar ray and heat
US20110259386A1 (en) Thermoelectric generating module
KR102050335B1 (en) Method and apparatus for measuring efficiency of solar photovoltaic-thermoelectric fusion device
EP2660880A2 (en) Concentrated photovoltaic/quantum well thermoelectric power source
US9331258B2 (en) Solar thermoelectric generator
Tobias et al. Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux
US20150059819A1 (en) Solar power generation device
Maslamani et al. Development of solar thermoelectric generator
KR101134077B1 (en) Co-generating system applied thermoelectric element using high efficiency concentrating photovoltaics system
KR101001328B1 (en) Compound generator using solar energy
KR20110066307A (en) Method for forming a light-converging flexible IC module using Peltier device
KR100893508B1 (en) Complex generator using thermoelectric element and solar cell for solar generator of electric power
Yazawa et al. Thermal challenges on solar concentrated thermoelectric CHP systems
JP2015050218A (en) Photovoltaic power generator
JP6255553B2 (en) Solar power system
KR102023697B1 (en) Solar panel apparatus for multiple generation using a solar energy
Farahani et al. Investigation of power generated from a PVT-TEG system in Iranian cities
RU2600310C2 (en) Method of converting solar energy and device for its implementation
Kurt et al. Optimization of concentrated solar thermoelectric generator system for highest yearly electric output
Najafi et al. Modeling and analysis of a combined photovoltaic-thermoelectric power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327