JP2015048351A - Method for reducing carbon dioxide using photocatalyst - Google Patents

Method for reducing carbon dioxide using photocatalyst Download PDF

Info

Publication number
JP2015048351A
JP2015048351A JP2013192310A JP2013192310A JP2015048351A JP 2015048351 A JP2015048351 A JP 2015048351A JP 2013192310 A JP2013192310 A JP 2013192310A JP 2013192310 A JP2013192310 A JP 2013192310A JP 2015048351 A JP2015048351 A JP 2015048351A
Authority
JP
Japan
Prior art keywords
carbon dioxide
integrated
photocatalyst
titanium dioxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013192310A
Other languages
Japanese (ja)
Inventor
森屋 市郎
Ichiro Moriya
市郎 森屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013192310A priority Critical patent/JP2015048351A/en
Publication of JP2015048351A publication Critical patent/JP2015048351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To mass-produce an organic compound such as methanol and formaldehyde from steam and carbon dioxide for effectively utilizing carbon dioxide in the air and carbon dioxide in a flue gas as resources in an amount larger than the conventional proposal.SOLUTION: A structural body obtained by scattering an integrated matter (C) made of an integrated matter (A) of titanium oxide, zirconium oxide and cobalt oxide and a photocatalyst (B) having excellent reduction capacity onto an electroconductive substance is arranged into a mixed gas including steam and carbon dioxide, and the integrated matter (C) is irradiated with ultraviolet light. The photocatalyst having excellent reduction capacity is a platinum-carried titanium dioxide.

Description

本発明は、特殊な光触媒を用いることにより紫外線照射の下で水蒸気と二酸化炭素から、メタノール、ホルムアルデヒド等の有用な有機化合物を常温で生成する技術に関する。  The present invention relates to a technique for producing useful organic compounds such as methanol and formaldehyde at room temperature from water vapor and carbon dioxide under ultraviolet irradiation by using a special photocatalyst.

近年、大気中の二酸化炭素濃度の増加により大気の温暖化が進み、異常気象が頻発して地球規模での大きな社会問題になっている。そこで、排気ガス中の二酸化炭素を回収処理する研究が行なわれている。また、この二酸化炭素を資源として有用な有機化合物に変換する研究が行われており、これらの研究の重要性は益々高まって来ている。  In recent years, the warming of the atmosphere has progressed due to an increase in the concentration of carbon dioxide in the atmosphere, and abnormal weather frequently occurs, which has become a big social problem on a global scale. Therefore, research for recovering and processing carbon dioxide in exhaust gas has been conducted. In addition, research on converting carbon dioxide into a useful organic compound as a resource has been conducted, and the importance of these research has been increasing.

それらの研究の中で、光触媒を用いて二酸化炭素分子を構成する炭素を低分子量有機物に変換する試みとしては、1970年代の後半に、高エネルギーの紫外線を照射した後に反応生成物を分析して、可能性を示した報告が有るとされるが、あくまでも分析レベルであって生成量は極微量であり実用に供するものではない。その後、大気の温暖化が観測され、大気中の二酸化炭素分子の増加と関連付けて、大気の温暖化防止のため二酸化炭素分子の低減を目指した研究が活発になっているが未だ実用には至っていない。また、植物の光合成を参考にして二酸化炭素を還元する目的で新規な有機化合物を合成する方法も活発に研究されているが、実用には至っていない。
なお、光触媒を用いた二酸化炭素の固定化実験はほとんどが水中に二酸化チタンの粒子や結晶を浸漬または分散状態にして、擬似太陽光や高エネルギーの紫外光を照射する形態であり、また、酸化され易い犠牲試薬を添加して還元作用を強めるものであり、還元された有機化合物の量も微量であって、本発明がめざす“気相で犠牲試薬なしで空気中の二酸化炭素を実用可能な量で還元”をめざした報告は見出されない。
In those studies, as an attempt to convert the carbon constituting the carbon dioxide molecule into a low molecular weight organic substance using a photocatalyst, the reaction product was analyzed after irradiating high energy ultraviolet rays in the latter half of the 1970s. However, there is a report showing the possibility, but it is an analysis level to the last, and the production amount is extremely small and is not practically used. Since then, atmospheric warming has been observed, and in association with the increase in atmospheric carbon dioxide molecules, research aimed at reducing carbon dioxide molecules to prevent atmospheric warming has become active, but it is still in practical use. Not in. In addition, a method of synthesizing a novel organic compound for the purpose of reducing carbon dioxide with reference to plant photosynthesis has been actively studied, but has not been put into practical use.
Most of the carbon dioxide immobilization experiments using photocatalysts are a form in which titanium dioxide particles or crystals are immersed or dispersed in water and irradiated with simulated sunlight or high-energy ultraviolet light. The sacrificial reagent is easily added to enhance the reduction action, and the amount of the reduced organic compound is very small. The aim of the present invention is “practical use of carbon dioxide in the air without sacrificial reagent in the gas phase” There are no reports aimed at “reduction by quantity”.

近年、光触媒と二酸化炭素還元触媒を複合化して二酸化炭素と水を原料として太陽光の照射下でメタノールを含む低分子量の有機化合物を製造する提案がなされている。(特許文献1および2参照)  In recent years, proposals have been made to combine a photocatalyst and a carbon dioxide reduction catalyst to produce a low molecular weight organic compound containing methanol under the irradiation of sunlight using carbon dioxide and water as raw materials. (See Patent Documents 1 and 2)

しかし特許文献1、2共に、光触媒にて水から水素イオンを生成し、二酸化炭素を供給して二酸化炭素還元触媒の作用によりメタノール等の有機化合物を生成させる技術であり、触媒と光触媒とから構成され、二酸化炭素の還元は光触媒ではなく触媒によって為されることが特徴である。さらに二酸化炭素還元触媒を有効に機能させるためには二酸化炭素還元触媒の近傍を比較的高温の環境にすることが必要であった。  However, both Patent Documents 1 and 2 are technologies that generate hydrogen ions from water with a photocatalyst, supply carbon dioxide, and generate an organic compound such as methanol by the action of a carbon dioxide reduction catalyst. Carbon dioxide is reduced by a catalyst rather than a photocatalyst. Further, in order for the carbon dioxide reduction catalyst to function effectively, it is necessary to make the vicinity of the carbon dioxide reduction catalyst a relatively high temperature environment.

特開2003−275599号公報(第1〜6頁)  JP 2003-275599 A (pages 1 to 6) 特開2004−59507号公報(第1〜7頁)  JP 2004-59507 A (pages 1-7)

本発明は光触媒を用いて、水蒸気と大気中および排気ガス中の二酸化炭素から、メタノール、ホルムアルデヒド等の有用な有機化合物(主に炭素1分子からなるC1化合物)を常温で生成するための方法を提供することを目的とするものである。  The present invention provides a method for producing useful organic compounds such as methanol and formaldehyde (C1 compounds mainly consisting of one molecule of carbon) at room temperature from water vapor and carbon dioxide in the atmosphere and exhaust gas using a photocatalyst. It is intended to provide.

光触媒は、その物質特有のバンドギャップエネルギーに相当する波長よりも短波長(高エネルギー)の光を受けると、価電子帯の電子が伝導帯へ励起され還元能を有する電子が生成し、価電子帯には高い酸化能を有する正孔が生じる。光照射で生成する電子と正孔は通常は大部分が再結合して熱として失活するが、一部は拡散し表面に達し、酸化反応や還元反応を起こす。代表的な光触媒としては、二酸化チタン、酸化亜鉛等が知られている。  When a photocatalyst receives light having a wavelength shorter (higher energy) than the wavelength corresponding to the band gap energy peculiar to the substance, electrons in the valence band are excited to the conduction band, and electrons having a reducing ability are generated. Holes with high oxidizing ability are generated in the band. Usually, most of the electrons and holes generated by light irradiation are recombined and deactivated as heat, but some of them diffuse and reach the surface to cause an oxidation reaction or a reduction reaction. As typical photocatalysts, titanium dioxide, zinc oxide and the like are known.

光触媒を用いて水蒸気と二酸化炭素からメタノール、ホルムアルデヒド等の有用な低分子有機化合物を生成する場合には、光触媒がまず水分子に作用して、水素イオン(H)と{水酸化物イオン(OH)または、酸素の酸化生成物}を生成し、次いで生成した水素イオンが二酸化炭素に結合してホルムアルデヒドやメタノール等の低分子有機化合物を生成すると思われる。水酸化物イオンを構成する−2価の酸素は正孔の強い酸化作用により容易に酸素分子(O)が生成すると予想されるが、特に気相の場合には酸素分子は容易に生成せず、水酸化物イオンが残留するために新たな水分子の分解が進まない。また光触媒作用によって生成した電子と正孔のうち、電子が還元反応により消費された後に残った正孔を電気的に消去する工程が無いため正孔が過多になり、引き続いて起こる光触媒作用により生成した電子が残っている正孔と再結合して消滅してしまい電子の供給(還元作用)が顕著に減少してしまう。When a useful low-molecular-weight organic compound such as methanol or formaldehyde is produced from water vapor and carbon dioxide using a photocatalyst, the photocatalyst first acts on water molecules to generate hydrogen ions (H + ) and {hydroxide ions ( OH ) or an oxidation product of oxygen}, and then the generated hydrogen ions are bound to carbon dioxide to form low molecular organic compounds such as formaldehyde and methanol. The -valent oxygen constituting the hydroxide ion is expected to easily generate oxygen molecules (O 2 ) due to the strong oxidizing action of holes, but in the case of the gas phase, oxygen molecules cannot be easily generated. Therefore, decomposition of new water molecules does not proceed because hydroxide ions remain. In addition, among the electrons and holes generated by photocatalysis, there is no step of electrically erasing the remaining holes after the electrons are consumed by the reduction reaction, so there is an excess of holes, which are generated by the subsequent photocatalysis. The recombined electrons are recombined with the remaining holes and disappear, and the supply (reduction action) of the electrons is significantly reduced.

緑色植物は、色素とタンパク質の複合体が可視光を吸収して励起電子と正孔が生成すると直ちに電子を移動させて電荷分離を行い、同時にマンガン化合物の触媒作用により水酸化物イオンを酸化して酸素分子として放出することで水酸化物イオンと正孔を共に消費することによって、連続して色素とタンパク質の複合体が可視光を吸収して励起電子と正孔が生成することを可能にしている。さらに電子を再度光エネルギーにより励起してより高い還元能を与え適度な還元能を有する還元性化合物を生成(明反応)して次の工程である二酸化炭素の固定化(暗反応)に利用している。  In green plants, as soon as the complex of dye and protein absorbs visible light and generates excited electrons and holes, the electrons are transferred and charge separation is performed. At the same time, hydroxide ions are oxidized by the catalytic action of manganese compounds. By releasing both hydroxide ions and holes by releasing them as oxygen molecules, the dye-protein complex can continuously absorb visible light and generate excited electrons and holes. ing. Furthermore, the electrons are excited again by light energy to give a higher reducing ability and produce a reducing compound with a moderate reducing ability (light reaction), which is used for the next step, carbon dioxide fixation (dark reaction). ing.

本発明者は、以前にも酸化能力に優れる光触媒と還元能力に優れる光触媒からなる一体化物の内、酸化能力に優れる光触媒が、{二酸化チタンと酸化鉄(III)と白金を担持した酸化セリウム(IV)の一体化物}や、{二酸化チタンとアルミニウム金属の一体化物}や{二酸化チタンと酸化ジルコニウムの一体化物}である二酸化炭素の還元方法などを提案して来た。それらは、実用に適する材料であるが、紫外線や太陽光を照射した時に、より多くの低分子量有機化合物が生成する光触媒材料を見出すことが出来れば、さらに好ましいことである。  The present inventor has previously proposed a photocatalyst excellent in oxidation ability among an integrated product consisting of a photocatalyst excellent in oxidation ability and a photocatalyst excellent in reduction ability, {cerium oxide supporting titanium dioxide, iron (III) oxide and platinum ( IV) integrated product}, {integrated product of titanium dioxide and aluminum metal} and {integrated product of titanium dioxide and zirconium oxide} have been proposed. Although they are materials suitable for practical use, it is more preferable if a photocatalytic material capable of producing more low molecular weight organic compounds when irradiated with ultraviolet rays or sunlight can be found.

そこで本発明者は、さらに二酸化炭素の還元能力に優れた光触媒を鋭意探索し、{二酸化チタンと酸化ジルコニウムと酸化コバルトの一体化物(A)}と、{二酸化チタンに白金を担持した還元能に優れる光触媒(B)}をさらに一体化したものが二酸化炭素の還元に優れる事を見出し、高い電気伝導性を有する板状体上に散布する形態の複合構成体を考案した。その内容は、水蒸気が分解して生成する水酸化物イオンを二酸化チタンと酸化ジルコニウムと酸化マンガンの一体化物(A)により酸化して酸素分子として消費し、同時に還元能に優れる光触媒(B)が、その近傍にある二酸化炭素や酸化ジルコニウムと親和性を持つと思われ、酸化ジルコニウムの近傍にある二酸化炭素に電子を供給して還元することにより、水素イオンが結合してメタノールやホルムアルデヒドが生成する。そこで、そのメタノールやホルムアルデヒドの生成量を測定して、以前の提案よりも多量に生成することを確認し本発明を完成するに至った。  Therefore, the present inventor has eagerly searched for a photocatalyst excellent in carbon dioxide reduction ability, and has {reduced ability in which titanium dioxide, zirconium oxide, and cobalt oxide are integrated (A)} and {reduction ability in which platinum is supported on titanium dioxide. It has been found that a further integrated photocatalyst (B)} is excellent in the reduction of carbon dioxide, and has devised a composite structure that is dispersed on a plate having high electrical conductivity. The content of the photocatalyst (B) is that the hydroxide ions generated by the decomposition of water vapor are oxidized by an integrated product (A) of titanium dioxide, zirconium oxide and manganese oxide and consumed as oxygen molecules, and at the same time have excellent reducing ability. It seems to have affinity with carbon dioxide and zirconium oxide in the vicinity, and by supplying electrons to carbon dioxide in the vicinity of zirconium oxide and reducing it, hydrogen ions are combined to produce methanol and formaldehyde . Therefore, the amount of methanol and formaldehyde produced was measured to confirm that it was produced in a larger amount than the previous proposal, and the present invention was completed.

ここで一体化物とは、2種類以上の粒子が圧着し接合した状態の粉体を言う。つまり、2種類以上の個体粒子が機械的な力でこすり合わされて、圧着、接合し一体になったものである。  Here, the integrated product refers to a powder in a state where two or more kinds of particles are bonded by pressure bonding. That is, two or more kinds of solid particles are rubbed together by mechanical force, and are bonded and joined together.

従来、複合体あるいは複合化物という名称が一般的に用いられているが、複合とは2種類以上の物質が付着した状態にあるのか、または、不均一に混合された状態にあるのか、または、均一に混合された状態にあるのかが、不明確であった。
本発明の混合物は、2種類以上の物質が単にこすり合わされた状態、つまり、互いに界面を維持したまま、圧着、接合して一体になったものを言う。
Conventionally, the name of a complex or a complex is generally used, and the term “composite” means that two or more kinds of substances are attached, or are in a state of being mixed inhomogeneously, or It was unclear whether the mixture was uniformly mixed.
The mixture of the present invention refers to a state in which two or more kinds of substances are simply rubbed together, that is, a combination of pressure bonding and joining while maintaining an interface with each other.

さらに、本発明の場合は、二酸化チタンや、白金を担持した二酸化チタンの粒径がナノメートルの大きさであるので、こすり合った相手と長大な界面を持つことになる。またナノメートルオーダーの粒子は、いったん付着するとファンデルワールス力によって、付着状態が保たれるので、被付着物と分離する事がなくなる。このように、従来使われている圧着物とは違った性質を持った全く新しい複合体であるので、一体化物という名称を用いている。  Further, in the case of the present invention, since the particle diameter of titanium dioxide or titanium dioxide carrying platinum is nanometer, it has a long interface with the rubbing partner. In addition, once the nanometer order particles are attached, the attached state is maintained by van der Waals force, so that they are not separated from the adherend. Thus, since it is a completely new composite having properties different from those of conventionally used pressure-bonded products, the name of an integrated product is used.

つまり、本発明は、以下の内容をその要旨とするものである。
(1)水蒸気と二酸化炭素を含む混合気体中に、
二酸化チタンと酸化ジルコニウムと酸化コバルトからなる一体化物(A)と
二酸化チタンに白金を担持したもの(B)
を一体化した物(C)を電気伝導性物質上に散布した構成体(D)を配置し、
一体化物(C)に紫外光を照射して、
有機化合物を生成させることを特徴とする二酸化炭素の還元方法
(2)電気伝導性物質が、銅板である請求項1に記載の二酸化炭素の還元方法
That is, the gist of the present invention is as follows.
(1) In a mixed gas containing water vapor and carbon dioxide,
Integrated material consisting of titanium dioxide, zirconium oxide and cobalt oxide (A) and titanium dioxide carrying platinum (B)
The structure (D) in which the object (C) integrated with the material is dispersed on the electrically conductive material,
Irradiate the integrated product (C) with ultraviolet light,
The method for reducing carbon dioxide characterized by producing an organic compound (2) The method for reducing carbon dioxide according to claim 1, wherein the electrically conductive substance is a copper plate.

本発明の二酸化炭素の還元方法を用いることにより、紫外光や太陽光の照射により、水蒸気と二酸化炭素を原料として、メタノール、ホルムアルデヒド等の有用な低分子量の有機化合物を生成することが可能となる。メタノールはそれ自体有用な有機化合物であり、ホルムアルデヒドは、より付加価値の高い有機化合物の原料となる。  By using the carbon dioxide reduction method of the present invention, it becomes possible to produce useful low-molecular-weight organic compounds such as methanol and formaldehyde from water vapor and carbon dioxide as raw materials by irradiation with ultraviolet light or sunlight. . Methanol is a useful organic compound by itself, and formaldehyde is a raw material for organic compounds with higher added value.

被還元剤として二酸化炭素を選択する場合は、空気中に微量に含まれる二酸化炭素でもよいし、二酸化炭素をより多く含む燃焼排ガスでも良いので、近年注目されている二酸化炭素の削減ならびに再資源化となる。  When carbon dioxide is selected as the reductant, carbon dioxide contained in a minute amount in the air or combustion exhaust gas containing more carbon dioxide may be used. It becomes.

本発明は、まず二酸化チタンと酸化ジルコニウムと酸化コバルトからなる一体化物(A)と二酸化チタンに白金を担持したもの(B)をさらに一体化したもの(C)を電気伝導性物質上に散布したもの(D)を冷却しておき、次に水蒸気と二酸化炭素を含む混合気体中に、冷却しておいた(D)を配置し、一体化物(C)に紫外光を含む光を照射する。このような形態とすることで、冷却しておいた(C)の表面に雰囲気中の水分が結露して水の薄膜が生成し、一体化物表面への窒素の多層物理吸着層生成を防止する結果、光触媒本来の作用が発現し、二酸化炭素を還元して低分子量の有機化合物が生成する。In the present invention, first, an integrated product (A) composed of titanium dioxide, zirconium oxide and cobalt oxide and a product (B) in which platinum is supported on titanium dioxide (B) are further dispersed on an electrically conductive material. The thing (D) is cooled, and then the cooled (D) is placed in a mixed gas containing water vapor and carbon dioxide, and the integrated product (C) is irradiated with light containing ultraviolet light. By adopting such a form, moisture in the atmosphere is condensed on the cooled surface of (C) to form a thin film of water, thereby preventing generation of a multilayer physical adsorption layer of nitrogen on the surface of the integrated product. As a result, the original action of the photocatalyst is exhibited, and carbon dioxide is reduced to produce a low molecular weight organic compound.

(C)は、通常では表面に窒素が吸着しており、冷蔵庫で冷却すると窒素が脱離して清浄表面となる。そこに凝結した水分が結露して水の薄膜を形成し、次の工程での紫外光照射による(C)表面への窒素の吸着を防止し光触媒本来の性質(光触媒活性)を発現する。微粒子二酸化チタン表面は、大気と接触した状態だと紫外光を照射すると窒素の吸着が先行して生じて、水分の分解等の光触媒としての活性が著しく阻害される。In (C), nitrogen is normally adsorbed on the surface, and when it is cooled in a refrigerator, nitrogen is desorbed to become a clean surface. Water condensed there condenses to form a thin film of water, prevents the adsorption of nitrogen on the surface of (C) due to ultraviolet light irradiation in the next step, and develops the original properties (photocatalytic activity) of the photocatalyst. When the surface of the fine particle titanium dioxide is in contact with the atmosphere, when it is irradiated with ultraviolet light, nitrogen adsorption precedes and the activity as a photocatalyst such as water decomposition is significantly inhibited.

本発明では、(A)と(B)を一体化したもの(C)を電気伝導性物質上に散布したもの(D)をシャーレなどの皿状容器に入れて使用すると実験が容易である。  In the present invention, when (A) and (B) integrated (C) are dispersed on an electrically conductive material (D) are placed in a dish-like container such as a petri dish, the experiment is easy.

以降(A)と(B)を一体化したもの(C)を電気伝導性物質上に散布したもの(D)をシャーレなどの皿状容器に入れたものを試験体と称する。  Hereinafter, a sample in which (A) and (B) integrated (C) are dispersed on an electrically conductive material (D) in a dish-like container such as a petri dish is referred to as a test specimen.

ここで、(A)を構成する二酸化チタン、酸化ジルコニウム、酸化コバルトと(B)を構成する二酸化チタンは粉体でも塊状でも板状でも箔状でも良いが、粉体が好ましく、その粒径は小さいほど表面積が大きいので好ましい。  Here, titanium dioxide constituting (A), zirconium oxide, cobalt oxide and titanium dioxide constituting (B) may be powder, lump, plate or foil, but powder is preferred, and the particle size is The smaller the surface area, the larger the surface area.

ここで、被還元物として二酸化炭素分子を用いる場合を説明する。
まず、(A)と(B)からなる一体化物(C)を電気伝導性の板または箔上に散布させ(D)シャーレに入れたもの(試験体)を冷却しておき、次に例えば光が透過する袋状、箱状または管状容器内に、冷却しておいた試験体(D)を配置し、二酸化炭素ガスと水蒸気を含む混合気体を容器内に導入し、上部から紫外光を含む光を照射すれば良い。光源は容器の外側でも良いし、内部に設置しても良い。混合気体は大気を用いても良いし、水蒸気と二酸化炭素を含む人工的な気体でも良いし、二酸化炭素濃度が高い燃焼排気ガスでも良い。
Here, the case where a carbon dioxide molecule is used as a reductant will be described.
First, an integrated product (C) composed of (A) and (B) is sprayed on an electrically conductive plate or foil, (D) a sample placed in a petri dish (test body) is cooled, and then, for example, light A cooled specimen (D) is placed in a bag-like, box-like or tubular container that allows the gas to pass through, a mixed gas containing carbon dioxide gas and water vapor is introduced into the container, and ultraviolet light is contained from above. What is necessary is just to irradiate light. The light source may be outside or inside the container. The mixed gas may be air, an artificial gas containing water vapor and carbon dioxide, or combustion exhaust gas having a high carbon dioxide concentration.

紫外光を照射すると光触媒の作用によって混合気体中の水蒸気と二酸化炭素が消費されて低分子量の有機化合物が生成するので、混合気体の組成は変化する。そこで、混合気体を一定時間ごとに一定量の初期の混合気体と交換しても良いし、生成物である二酸化炭素の還元物(つまり低分子量の有機化合物)を回収しつつ、初期の混合気体を連続で供給しても良い。なお、以下の説明では、供給する混合気体が大気の場合について述べる。  When the ultraviolet light is irradiated, water vapor and carbon dioxide in the mixed gas are consumed by the action of the photocatalyst and a low molecular weight organic compound is generated, so that the composition of the mixed gas changes. Therefore, the mixed gas may be exchanged for a certain amount of the initial mixed gas every certain time, or the initial mixed gas may be recovered while recovering the reduction product of carbon dioxide (that is, a low molecular weight organic compound). May be supplied continuously. In the following description, the case where the mixed gas to be supplied is the atmosphere will be described.

一体化物の表面に結露する結露水の厚さは、容器に供給する大気の容積と温度、湿度および一体化物(C)の表面績によってほぼ決まると思われる。容器に供給する大気の温度、湿度の適値は、供給する大気の容積、一体化物(C)の重量、一体化物の散布状態によって変化するので一概には言えず、実際に大気を供給して生成する低分子有機生成物の濃度を測定して最も濃度が高い時の温度、湿度を維持するのが好いが、0.1gの一体化物を直径60mmの円形にほぼ均一に散布させた場合に、温度が22〜26℃、湿度が65〜75%で好結果が得られ、0.2gの一体化物を直径60mmの円形にほぼ均一に散布させた場合には、温度が28〜32℃、湿度が60〜70%で好結果が得られた。しかし、これらの条件はあくまでも目安であって、実際の装置で実際の運転条件のもとで、その都度、最適値を求めるのが好い。  It is considered that the thickness of the condensed water condensed on the surface of the integrated object is almost determined by the volume and temperature of the atmosphere supplied to the container, the humidity, and the surface quality of the integrated object (C). Appropriate values for the temperature and humidity of the atmosphere supplied to the container vary depending on the volume of the atmosphere supplied, the weight of the integrated product (C), and the dispersion state of the integrated product. It is preferable to measure the concentration of the low-molecular-weight organic product to be generated and maintain the temperature and humidity at the highest concentration, but when 0.1 g of the integrated product is dispersed almost uniformly in a circle with a diameter of 60 mm. When the temperature is 22 to 26 ° C. and the humidity is 65 to 75%, good results are obtained. When 0.2 g of the integrated product is dispersed almost uniformly in a circle with a diameter of 60 mm, the temperature is 28 to 32 ° C., Good results were obtained at a humidity of 60-70%. However, these conditions are only a guideline, and it is preferable to obtain an optimum value each time under actual operating conditions with an actual device.

その他の要素としては、紫外光の照射中に光触媒作用による水の分解作用が生じるが、一体化物周辺の温度や湿度が低いと一体化物(C)表面の結露部分が消失し窒素分子の吸着が始まるので好ましくなく、一方、温度や湿度が高すぎると結露量が多すぎて光触媒表面の水の液膜が厚くなって、一体化物(C)表面に生成した水素イオンと大気中の二酸化炭素分子が接触しにくくなる事や、酸化ジルコニウムと二酸化炭素の親和性が妨げられて、酸化ジルコニウム近傍での二酸化炭素の還元が起こりにくくなって、低分子有機化合物の生成が極端に減少するので好ましくない。  As other factors, water decomposition by photocatalysis occurs during irradiation with ultraviolet light, but if the temperature and humidity around the integrated object are low, the dew condensation on the surface of the integrated object (C) disappears and nitrogen molecules are adsorbed. On the other hand, if the temperature or humidity is too high, the amount of condensation is too much and the liquid film of water on the surface of the photocatalyst becomes thick, so that hydrogen ions generated on the surface of the integrated product (C) and carbon dioxide molecules in the atmosphere Is difficult to contact, and the affinity between zirconium oxide and carbon dioxide is hindered, making it difficult for carbon dioxide to be reduced in the vicinity of zirconium oxide, and the production of low-molecular organic compounds is extremely reduced, which is not preferable. .

また本発明の二酸化炭素の還元においては、一体化物(C)が大気と接触した時に一体化物(C)の表面が結露する温度に保たれている必要がある。さらに、還元中も一体化物(C)の表面が露点以下の温度に保たれているのが好ましい。すなわち、一体化物(C)を取り囲む気体(室内空気)が一体化物(C)の表面に氷結せずに隙間なく液膜を生成するように、一体化物(C)の表面温度が1℃〜露点温度に保たれているのが好く、1〜10℃、更に好適には1〜5°C程度の低温を維持するのが好ましい。Moreover, in the reduction | restoration of the carbon dioxide of this invention, when the integrated object (C) contacts air | atmosphere, it is necessary to maintain the temperature at which the surface of the integrated object (C) dew condensation. Furthermore, it is preferable that the surface of the integrated product (C) is kept at a temperature below the dew point even during the reduction. That is, the surface temperature of the integrated object (C) is 1 ° C. to dew point so that the gas (room air) surrounding the integrated object (C) does not freeze on the surface of the integrated object (C) and forms a liquid film without gaps. It is preferable to maintain the temperature, and it is preferable to maintain a low temperature of about 1 to 10 ° C, more preferably about 1 to 5 ° C.

段落[0026][0027][0028]にも記したように、結露した液膜の厚さは、供給する大気の温度と湿度、一体化物(C)の多少や散布状態による表面積の大きさによって微妙に変化し、結露した液膜の厚さによって二酸化炭素の還元量が変化するので好ましい液膜の厚さを維持するのが重要である。  As described in paragraphs [0026], [0027] and [0028], the thickness of the condensed liquid film depends on the temperature and humidity of the supplied air, the amount of the integrated material (C), and the size of the surface area depending on the state of dispersion. It is important to maintain a preferable thickness of the liquid film because the amount of carbon dioxide reduction varies depending on the thickness of the liquid film that has changed slightly and has condensed.

本発明を実施するには、2つの形態が考えられ、
(1)一体化物(C)から生成する低分子有機物の量が減少したら、別に用意した一体化 物(C)を冷却しておいたものと交換し、水蒸気と二酸化炭素を含む大気を供給す る操作を繰り返す。
(2)容器内の試験体の直下に氷や保冷剤を接触させて、連続して冷却することにより、 (C)の表面を絶えず適度な液膜厚の結露状態にして、水蒸気と二酸化炭素を含む 大気を連続または断続的に供給して二酸化炭素の還元を連続して行う。一体化物表 面を絶えず結露状態に維持する方法としては、一体化物の表面温度を雰囲気の露点 以下に保てば良く、一体化物を乗せた金属板を冷却して、間接的に一体化物を冷却 してもよい。
Two forms of implementing the present invention are possible:
(1) When the amount of low-molecular-weight organic matter generated from the integrated product (C) decreases, replace the separately prepared integrated product (C) with one that has been cooled, and supply the atmosphere containing water vapor and carbon dioxide. Repeat the operation.
(2) By contacting ice or a cold insulation agent directly under the test specimen in the container and continuously cooling, the surface of (C) is constantly brought into a dew-condensed state with an appropriate liquid film thickness, and water vapor and carbon dioxide. Reducing carbon dioxide continuously by supplying air containing or continuously or intermittently. As a method of constantly maintaining the surface of the integrated object in the dew condensation state, the surface temperature of the integrated object may be kept below the dew point of the atmosphere, and the integrated object is cooled indirectly by cooling the metal plate on which the integrated object is placed. May be.

2つの形態には、下記のような特徴がある。
(1)は、供給する大気は結露に必要な条件を満たしていれば良いが、(A)と(B) からなる一体化物(C)を含む試験体を、冷却してある別の試験体に定期的に取り 換える必要がある。
(2)は、連続して還元を行えるが適度の液膜厚の結露状態を安定して維持する必要が あるので、供給する大気の温湿度を絶えず管理する必要が有り(1)よりも高度 な管理が必要となる。
The two forms have the following characteristics.
(1) The supplied air only needs to satisfy the conditions necessary for dew condensation, but another test body in which the test body including the integrated product (C) composed of (A) and (B) is cooled is used. It is necessary to replace it regularly.
In (2), although it is possible to perform continuous reduction, it is necessary to stably maintain the dew condensation state with an appropriate liquid film thickness. Therefore, it is necessary to constantly control the temperature and humidity of the supplied air. Management is required.

本発明に使用する(A)と(B)からなる一体化物(C)は、調整は大気中でも良いが、低温で除湿した大気中または減圧乾燥した大気中で行うのが良く、調整後は低温の大気中でも良いが、低温で減圧乾燥した状態などに保つのが好ましい。調整後に一体化物表面に物理吸着している窒素を除き、その後も一体化物を窒素と接触させない状態での保管が実現出来れば、最適である。
調整に使用する原料も表面が清浄な状態で保管するのが好ましい。
The integrated product (C) composed of (A) and (B) used in the present invention may be adjusted in the air, but is preferably performed in the air dehumidified at low temperature or in the air dried under reduced pressure. Although it may be in the atmosphere, it is preferable to keep it at a low temperature under reduced pressure. It is optimal if storage can be realized in a state in which the integrated product is not brought into contact with nitrogen after removing the nitrogen physically adsorbed on the integrated product surface after adjustment.
It is preferable to store the raw materials used for the adjustment in a state where the surface is clean.

混合気体導入前の試験体の処理方法としては、一定時間冷蔵庫内に保存すればよいが、さらに好ましくは、まず試験体を減圧して(A)と(B)からなる一体化物(C)の表面に物理吸着している窒素を除去し、次に(C)を冷却しておく。あるいは減圧と冷却を同時に行ってもよい。  As a method for treating the specimen before introducing the mixed gas, it may be stored in the refrigerator for a certain period of time, but more preferably, the specimen is first decompressed and the integrated body (C) composed of (A) and (B). Nitrogen physically adsorbed on the surface is removed, and then (C) is cooled. Or you may perform pressure reduction and cooling simultaneously.

さらに、本発明の構成の他の点について述べる。  Furthermore, other points of the configuration of the present invention will be described.

光触媒粒子は、同一粒子表面に酸化サイトと還元サイトを有している。本発明の構成成分である(A)と(B)も酸化サイトのみならず還元サイトも有するので、(A)または(B)のみを用いても二酸化炭素の還元は可能であるが、(A)と(B)からなる一体化物(C)の形態で用いたほうが二酸化炭素の還元能力が高く好ましい。  The photocatalyst particles have an oxidation site and a reduction site on the same particle surface. Since (A) and (B) which are constituents of the present invention have not only an oxidation site but also a reduction site, carbon dioxide can be reduced using only (A) or (B). ) And (B) are preferably used in the form of an integrated product (C) because of its high ability to reduce carbon dioxide.

また、(C)を特に電気伝導性物質上に散布しなくとも二酸化炭素が還元されるが、電気伝導性物質上に散布したほうが、二酸化炭素の還元量が増大する。  Further, carbon dioxide is reduced even if (C) is not particularly sprayed on the electrically conductive material, but the amount of carbon dioxide reduction increases when sprayed on the electrically conductive material.

酸化ジルコニウムは、高純度試薬、標準純度試薬、工業材料用を用いることができ、部分安定化ジルコニアや安定化ジルコニアも使用できる。部分安定化ジルコニアや安定化ジルコニアは、酸素イオン透過性能を有するので、光触媒作用で生じた酸素イオンを触媒活性点から移動させて、水素イオンとの再結合を防止する効果が期待できるが価格が高価である。なお、酸化ジルコニウムは粒径が小さいほど好ましい。  Zirconium oxide can be used as a high purity reagent, a standard purity reagent, or an industrial material, and partially stabilized zirconia and stabilized zirconia can also be used. Partially stabilized zirconia and stabilized zirconia have oxygen ion permeation performance, so that the effect of preventing recombination with hydrogen ions by moving oxygen ions generated by photocatalysis from the catalytic active point can be expected. Expensive. In addition, a zirconium oxide is so preferable that a particle size is small.

酸化コバルトは、高純度試薬、標準純度試薬、工業材料用を用いることができる。
コバルトの価数により複数の種類があるが、特に種類を特定しない。四三酸化コバルト(Co)の構造で存在するのものを使用できるが、酸化コバルト(II)や酸化コバルト(IV)を用いることもできる。
As the cobalt oxide, a high purity reagent, a standard purity reagent, or an industrial material can be used.
There are multiple types depending on the valence of cobalt, but the type is not particularly specified. Ones can be used to present the structure of forty-three cobalt oxide (Co 3 O 4), but can also be used cobalt (II) oxide and cobalt oxide (IV).

さらに本発明の還元能力に優れる光触媒(B)としては、白金を担持した二酸化チタンが好ましい。  Furthermore, as the photocatalyst (B) excellent in reducing ability of the present invention, titanium dioxide carrying platinum is preferable.

白金の担持方法としては水溶性白金化合物を溶解した水溶液中に二酸化チタンを分散させ、紫外光を照射して二酸化チタン表面に白金を沈殿させる光デポジション法が好適である。  As a method for supporting platinum, a photodeposition method in which titanium dioxide is dispersed in an aqueous solution in which a water-soluble platinum compound is dissolved, and platinum is precipitated on the surface of titanium dioxide by irradiation with ultraviolet light is suitable.

本発明に用いる二酸化チタンとしては粒径の小さなものほど表面積が大きいので好ましいが粒状であれば市販の材料でも良い。二酸化チタンを用いる場合は、アナターゼ型、ルチル型、ブルッカイト型を用いる事が出来るがアナターゼ型が特に好ましい。粒径は小さいほど単位重量当たりの表面積が大きくなるので好ましく、100nm以下が好ましく特に10nm以下が好ましい。  As titanium dioxide used in the present invention, a smaller particle size is preferable because it has a larger surface area, but a commercially available material may be used as long as it is granular. When titanium dioxide is used, anatase type, rutile type and brookite type can be used, but anatase type is particularly preferable. The smaller the particle size, the larger the surface area per unit weight, so 100 nm or less is preferable, and 10 nm or less is particularly preferable.

また本発明の二酸化炭素の還元は一体化物(C)を1〜8℃程度に冷却し、(C)が0.2g程度の少量の場合、導入する大気などの混合気体が夏季の室湿度程度の大気を用いて実施できるが、導入混合気体の温湿度は一体化物表面に混合気体の水分が適度な液膜厚で結露可能な温湿度である必要がある。  The reduction of carbon dioxide according to the present invention cools the integrated product (C) to about 1 to 8 ° C., and when (C) is a small amount of about 0.2 g, the mixed gas such as the introduced air is about the room humidity in summer. However, the temperature and humidity of the introduced mixed gas must be such that the moisture of the mixed gas can be condensed on the surface of the integrated object with an appropriate liquid film thickness.

つまり、一体化物の表面に結露による適度な膜厚の液膜が生成すればよいので、混合気体が燃焼排ガスのように高温の場合でも適量の水蒸気が含まれている場合には、一体化物の表面温度が露点以下であれば結露が生じて光触媒効果が発現すると思われるので、二酸化炭素の還元が可能と思われる。  In other words, a liquid film with an appropriate film thickness may be generated on the surface of the integrated product, so if the gas mixture contains a proper amount of water vapor even at high temperatures such as combustion exhaust gas, If the surface temperature is below the dew point, dew condensation will occur and the photocatalytic effect will appear, so carbon dioxide can be reduced.

次に、本発明の構成成分である、(A)と(B)の調製方法について述べる。  Next, a method for preparing (A) and (B), which are constituent components of the present invention, will be described.

まず、(A)の調製方法は、室温で乳鉢に二酸化チタンと酸化ジルコニウムと酸化コバルトを取りスパチェラ等で均一に混ぜてから強くこすって圧着すればよい。通常は室温で使用できるが、さらに圧着後に700℃以下で焼成、粉砕してもよい。700℃以上に昇温すると二酸化チタンがアナターゼ型からルチル型へ変化し易いので好ましくない。また、圧着する場合には、各種のボールミルで摩砕・接合しても良い。  First, the preparation method of (A) may be carried out by pressing titanium dioxide, zirconium oxide and cobalt oxide into a mortar at room temperature and mixing them uniformly with a spatula or the like, followed by strong rubbing and pressure bonding. Usually, it can be used at room temperature, but may further be fired and pulverized at 700 ° C. or lower after pressure bonding. When the temperature is raised to 700 ° C. or higher, titanium dioxide tends to change from anatase type to rutile type, which is not preferable. Moreover, when crimping, you may grind and join with various ball mills.

(A)の配合割合(重量比)は、各成分の粒径等によるが、二酸化チタンが全体の10〜50%、酸化ジルコニウムが全体の30〜70%、酸化コバルトが全体の5〜40%で全体で100%になる割合を選択できる。  The blending ratio (weight ratio) of (A) depends on the particle size of each component, but titanium dioxide is 10 to 50% of the whole, zirconium oxide is 30 to 70% of the whole, and cobalt oxide is 5 to 40% of the whole. The ratio of 100% can be selected as a whole.

本発明で、配合割合は重量比であり、以下も同じである。  In the present invention, the blending ratio is a weight ratio, and so on.

(A)と(B)の割合は、(A)/(B)=20/80〜80/20が好ましい。使用する粒子の粒径などにより、好適な比率を選択する。  The ratio of (A) and (B) is preferably (A) / (B) = 20/80 to 80/20. A suitable ratio is selected depending on the particle size of the particles to be used.

還元能力に優れる光触媒(B)としては、微粒子アナターゼ型二酸化チタンをそのまま用いても良いが、微粒子アナターゼ型二酸化チタンに白金を光デポジション法によって担持したものを用いるのが好ましい。また、二酸化チタンに水溶性アルカリ化合物を含浸、乾燥、焼成し粉砕したもの(二酸化チタン・アルカリ化合物複合体)を用いても良いし、二酸化チタン・アルカリ化合物複合体に白金を光デポジション法によって担持したものを用いても良い。  As the photocatalyst (B) excellent in reducing ability, fine particle anatase type titanium dioxide may be used as it is, but it is preferable to use a fine particle anatase type titanium dioxide carrying platinum by a photodeposition method. Further, titanium dioxide impregnated with a water-soluble alkali compound, dried, fired and pulverized (titanium dioxide / alkali compound composite) may be used, or platinum is added to the titanium dioxide / alkali compound composite by a photodeposition method. You may use what was carry | supported.

本発明においては、(A)と(B)を一体化して用いるが、一体化は両者がほぼ均一に混合され接合していれば良く、乳鉢で軽くすりつぶす程度でよい。工業的には、ボールミル等で圧接できる。  In the present invention, (A) and (B) are used in an integrated manner. However, the integration is only required to be almost uniformly mixed and joined, and it is sufficient to lightly grind them with a mortar. Industrially, it can be pressed by a ball mill or the like.

次いで、上記の(A)と(B)の一体化物(C)を、電気伝導性物質(例えば銅板)上に散布するが、散布方法は、単に上部から電気伝導性物質上に平面的に均一に落下させてもよく、落下させた後に金属板やプラスチック板で軽くこすってさらに均一に分布させても良い。  Next, the integrated product (C) of the above (A) and (B) is spread on an electrically conductive material (for example, a copper plate). It is possible to drop the liquid into a metal plate, or after the film is dropped, it may be lightly rubbed with a metal plate or a plastic plate and distributed more uniformly.

次に、一体化物(C)を電気伝導性物質上に分散させシャーレ等に入れた試験体を冷蔵庫に保存する。保存時間は一体化物の量や原料微粒子の表面績によるが、実施例で用いた一体化物の重量が0.2gの場合には冷蔵庫内での保存時間は24時間以上が好ましく、48時間以上がさらに好ましい。  Next, the specimen (C) dispersed on the electrically conductive material and placed in a petri dish or the like is stored in a refrigerator. The storage time depends on the amount of the integrated product and the surface quality of the raw material fine particles. However, when the weight of the integrated product used in the examples is 0.2 g, the storage time in the refrigerator is preferably 24 hours or more, and 48 hours or more. Further preferred.

さらに、本発明の他の構成成分について述べる。Furthermore, other components of the present invention will be described.

本発明に用いる水蒸気は、大気中に存在する水蒸気を用いてもよいし、大気が乾燥している場合には地下水や水道水を蒸発させて加湿してもよい。本発明時の実験においては、真夏の高温、高湿度の場合に、エタノール、ホルムアルデヒドの発生量が高い傾向が認められた。また、加湿用の水は、不純物が少ないほうがよく、純水が好適である。    The water vapor used in the present invention may be water vapor existing in the atmosphere, or may be humidified by evaporating ground water or tap water when the air is dry. In the experiments at the time of the present invention, it was recognized that ethanol and formaldehyde generation tended to be high at high temperatures and high humidity in midsummer. Moreover, the water for humidification should have few impurities, and pure water is suitable.

被還元物である二酸化炭素は、大気中の二酸化炭素、燃焼排ガス中の二酸化炭素等を用いる事ができる。燃焼排ガス中の二酸化炭素濃度は、大気中の二酸化炭素濃度よりも格段に高いので、一体化物との接触頻度が増して有用な有機物の生成に有利である。燃焼排ガスを用いる場合にはエアフィルタ等で排ガス中の微粒子を除去し、水蒸気と二酸化炭素以外のガス成分を除去したほうが良い。また、大気中の二酸化炭素を濃縮してもよい。  Carbon dioxide in the atmosphere, carbon dioxide in combustion exhaust gas, or the like can be used as the carbon dioxide that is a reduction target. Since the carbon dioxide concentration in the combustion exhaust gas is much higher than the carbon dioxide concentration in the atmosphere, the contact frequency with the integrated substance is increased, which is advantageous for the production of useful organic substances. When using combustion exhaust gas, it is better to remove particulates in the exhaust gas with an air filter or the like and remove gas components other than water vapor and carbon dioxide. Moreover, you may concentrate the carbon dioxide in air | atmosphere.

本発明に使用する電気伝導性物質は、電気伝導度の高い物質なら種類を選ばないが、銅やアルミニウムなどの金属の板状または箔状のものが好ましく、特に銅板が好ましい。  The type of the electrically conductive material used in the present invention is not limited as long as it is a material having high electrical conductivity, but a metal plate or foil such as copper or aluminum is preferable, and a copper plate is particularly preferable.

本発明に使用する紫外線を含む光源は、紫外線ランプ、ブラックライト等の紫外線を含む光源でも良いし、太陽光でも良い。本発明は二酸化炭素ガスを還元して化学などの産業原料として有効な低分子有機化合物を生み出すものであるから、工場建屋内で実施される場合が多いと思われ、特に自然光にこだわる必要はなく、安価な紫外線源を用いるのが好い。ブラックライトと同様な波長のLEDが入手できれば、長寿命で、使用電力に対して高効率で、波長としても無駄なく利用できるので最も好ましいと思われる。  The light source containing ultraviolet rays used in the present invention may be a light source containing ultraviolet rays such as an ultraviolet lamp or black light, or may be sunlight. Since the present invention reduces carbon dioxide gas to produce low-molecular organic compounds that are effective as industrial raw materials such as chemistry, it seems that it is often implemented in factory buildings, and there is no need to be particular about natural light. It is preferable to use an inexpensive ultraviolet light source. If an LED having the same wavelength as that of the black light is available, it is most preferable because it has a long life, is highly efficient with respect to the power used, and can be used without waste as a wavelength.

次に実施例により本発明をさらに詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。また、実施例中の「%」および「部」は特に別途注記しない限り重量基準である。  EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the Example shown below. In the examples, “%” and “parts” are based on weight unless otherwise noted.

1.1 (A)と(B)からなる一体化物(C)の調整
1.1.1 (A)の調製
乳鉢にテイカ株式会社製アナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100(粒径6nm 比表面積260m/g)の0.3gと関東化学株式会社製高純度試薬の高純度酸化ジルコニウム3N(粒径30〜50ミクロン)の0.5gと、関東化学製試薬1級の酸化コバルト(Co)の0.2gを取り均一にかきまぜた後強く擦りながらかき混ぜて(A)を調製した。
1.1.2 (B)の調製
内径93mmのガラス製シャーレにテイカ株式会社製アナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100の1.0gを取り、純水30mlを加えて攪拌し1%塩化白金酸水溶液0.3gを加えて攪拌し、試薬特級エタノール0.1gを加えて攪拌し20Wブラックライト直下10cmに置きブラックライトを20時間照射した後、120℃1時間乾燥して、白金担持二酸化チタンを調製した。
1.1.3 一体化物(C)の調製
1.1.1で得られた(A)と1.1.2で得られた(B)を乳鉢に1:1の比率で計1.0g取り軽くかき混ぜて本発明の一体化物(二酸化チタン:酸化ジルコニウム:酸化コバルト:白金担持二酸化チタン=1.5:2.5:1.0:5)を調製した。
1.1 Preparation of integrated product (C) composed of (A) and (B) 1.1.1 Preparation of (A) White titanium dioxide AMT-100 having anatase type crystal structure manufactured by Teika Co., Ltd. in a mortar ( 0.3 g of particle size 6 nm, specific surface area 260 m 2 / g), 0.5 g of high purity zirconium oxide 3N (particle size 30-50 microns) manufactured by Kanto Chemical Co., Ltd., and grade 1 reagent manufactured by Kanto Chemical (A) was prepared by taking 0.2 g of cobalt oxide (Co 3 O 4 ) and stirring it uniformly, followed by stirring with strong rubbing.
1.1.2 Preparation of (B) Take 1.0 g of white titanium dioxide AMT-100 having an anatase type crystal structure manufactured by Teika Co., Ltd. into a glass petri dish with an inner diameter of 93 mm, add 30 ml of pure water and stir. Add 0.3 g of 1% aqueous solution of chloroplatinic acid and stir, add 0.1 g of reagent grade ethanol and stir, place under 10 cm of 20 W black light and irradiate with black light for 20 hours, then dry at 120 ° C. for 1 hour, Platinum-supported titanium dioxide was prepared.
1.1.3 Preparation of integrated product (C) A total of 1.0 g of (A) obtained in 1.1.1 and (B) obtained in 1.1.2 at a ratio of 1: 1 in a mortar. It was lightly stirred to prepare an integrated product of the present invention (titanium dioxide: zirconium oxide: cobalt oxide: platinum-supported titanium dioxide = 1.5: 2.5: 1.0: 5).

1.2 二酸化炭素の還元実験
内径68mmのガラス製シャーレに銅板を敷いたものに1.1.3で得られた一体化物0.2gを銅版上に一様に散布した試験体を、冷蔵庫(冷蔵庫内での結露を防止するためエステー株式会社製家庭用除湿剤ドライペット(成分塩化カルシウム)を入れた)中で3日間冷却した後取り出し(取り出し時の冷蔵庫内温湿度は3℃、30%)、ガスバリア袋(大倉工業株式会社製、OE−4)に入れ、入り口を熱シールする。ガスバリア袋に1cm角のウレタンテープを貼り、袋内の空気が約1000mlになるように注射器で空気を注入し、ブラックライト(東芝ライテック社製ブラックライト蛍光ランプ FL20S−BLB−A(20W))直下にセットした。試験体中の一体化物はブラックライトの直下10cmの位置であった。そしてブラックライトを30分間照射し、照射後、袋内のメタノールガス濃度を北川式ガス検知管No119U、ホルムアルデヒドガス濃度を北川式ガス検知管No171SAを用いて測定し、光触媒1gで1時間照射あたりのメタノールガスおよびホルムアルデヒドガスのμmol数を算出(ガス濃度(ppm)×残存空気容積(ml)/{照射時間(0.5Hr)×光触媒重量(0.2g)×22400})した。注入した空気の温度は30.6℃湿度66%であり、測定結果は表1の通りであった。
なお、ブラックライト照射後にバリア袋内に残った気体はガス検知管2種類の測定で吸引した200mlを含め1000mlであった。
1.2 Carbon dioxide reduction experiment A test specimen in which 0.2 g of the integrated product obtained in 1.1.3 was uniformly sprayed on a copper plate on a glass petri dish with an inner diameter of 68 mm and a copper plate was placed in a refrigerator ( In order to prevent condensation in the refrigerator, cool it for 3 days in a household dehumidifier dry pet (component calcium chloride) manufactured by Este Co., Ltd., and then take it out. ), Put in a gas barrier bag (OE-4, OE-4) and heat seal the entrance. A 1cm square urethane tape is attached to the gas barrier bag, and air is injected with a syringe so that the air in the bag becomes about 1000 ml. Just under the black light (black light fluorescent lamp FL20S-BLB-A (20W) manufactured by Toshiba Lighting & Technology Corp.) Set. The integrated product in the test body was at a position 10 cm immediately below the black light. Then, the black light is irradiated for 30 minutes, and after irradiation, the methanol gas concentration in the bag is measured using the Kitagawa gas detector tube No119U and the formaldehyde gas concentration is measured using the Kitagawa gas detector tube No171SA. The number of μmoles of methanol gas and formaldehyde gas was calculated (gas concentration (ppm) × residual air volume (ml) / {irradiation time (0.5 Hr) × photocatalyst weight (0.2 g) × 22400}). The temperature of the injected air was 30.6 ° C. and the humidity was 66%, and the measurement results were as shown in Table 1.
The gas remaining in the barrier bag after irradiation with black light was 1000 ml including 200 ml sucked in the measurement of two types of gas detector tubes.

2.1 (A)と(B)からなる一体化物(C)の調整
2.1.1 (A)の調製
乳鉢にテイカ株式会社製アナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100(粒径6nm 比表面積260m/g)の0.5gと関東化学株式会社製高純度試薬の高純度酸化ジルコニウム3Nの0.5gと関東化学製試薬1級酸化コバルトの0.5gを取り均一にかきまぜた後強く擦りながらかき混ぜて(A)を調製した。
2.1 Preparation of integrated product (C) composed of (A) and (B) 2.1.1 Preparation of (A) White titanium dioxide AMT-100 having anatase type crystal structure manufactured by Teika Co., Ltd. in a mortar ( Uniformly take 0.5 g of particle size 6 nm, specific surface area 260 m 2 / g), 0.5 g of high-purity zirconium oxide 3N of high-purity reagent manufactured by Kanto Chemical Co., Ltd. and 0.5 g of reagent primary cobalt oxide manufactured by Kanto Chemical Co., Ltd. After stirring, (A) was prepared by mixing with strong rubbing.

2.1.2 (B)の調製
(B)は1.1.2で調整したものを用いた。
2.1.3 一体化物(C)の調製
2.1.1で得られた(A)と1.1.2で得られた(B)を乳鉢に1:1の比率で計1.0g取り軽くかき混ぜて本発明の一体化物(二酸化チタン:酸化ジルコニウム:酸化コバルト:白金担持二酸化チタン=0.166:0.166:0.166:0.5)を調製した。
2.2.二酸化炭素の還元実験
内径68mmのガラス製シャーレに銅板を敷いたものに1.1.3で得られた一体化物0.2gを銅版上に一様に散布した試験体を、冷蔵庫(冷蔵庫内での結露を防止するためエステー株式会社製家庭用除湿剤ドライペット(成分塩化カルシウム)を入れた)中で3日間冷却した後取り出し(取り出し時の冷蔵庫内温湿度は2℃、15%)、ガスバリア袋(大倉工業株式会社製、OE−4)に入れ、入り口を熱シールする。ガスバリア袋に1cm角のウレタンテープを貼り、袋内の空気が約1000mlになるように注射器で空気を注入し、ブラックライト(東芝ライテック社製ブラックライト蛍光ランプ FL20S−BLB−A(20W))直下にセットした。試験体中の一体化物はブラックライトの直下10cmの位置であった。そしてブラックライトを30分間照射し、照射後、袋内のメタノールガス濃度を北川式ガス検知管No119U、ホルムアルデヒドガス濃度を北川式ガス検知管No171SAを用いて測定し、光触媒1gで1時間照射あたりのメタノールガスおよびホルムアルデヒドガスのμmol数を算出(ガス濃度(ppm)×残存空気容積(ml)/{照射時間(0.5Hr)×光触媒重量(0.2g)×22400})した。注入した空気の温度は32.5℃湿度67%であり、測定結果は表1の通りであった。
なお、ブラックライト照射後にバリア袋内に残った気体はガス検知管2種類の測定で吸引した200mlを含め1000mlであった。
2.1.2 Preparation of (B) (B) was prepared according to 1.1.2.
2.1.3 Preparation of integrated product (C) A total of 1.0 g of (A) obtained in 2.1.1 and (B) obtained in 1.1.2 at a ratio of 1: 1 in a mortar. The mixture was lightly stirred to prepare an integrated product of the present invention (titanium dioxide: zirconium oxide: cobalt oxide: platinum-supported titanium dioxide = 0.166: 0.166: 0.166: 0.5).
2.2. Carbon dioxide reduction experiment A test specimen in which 0.2 g of an integrated product obtained in 1.1.3 was uniformly spread on a copper plate on a glass petri dish with an inner diameter of 68 mm was placed in a refrigerator (in the refrigerator). In order to prevent condensation, cool it for 3 days in a domestic dehumidifier dry pet (component calcium chloride) made by Este Co., Ltd. and take it out (temperature and humidity in the refrigerator at the time of removal is 2 ° C, 15%), gas barrier Put in a bag (OE-4, OE-4) and heat seal the entrance. A 1cm square urethane tape is attached to the gas barrier bag, and air is injected with a syringe so that the air in the bag becomes about 1000 ml. Just under the black light (black light fluorescent lamp FL20S-BLB-A (20W) manufactured by Toshiba Lighting & Technology Corp.) Set. The integrated product in the test body was at a position 10 cm immediately below the black light. Then, the black light is irradiated for 30 minutes, and after irradiation, the methanol gas concentration in the bag is measured using the Kitagawa gas detector tube No119U and the formaldehyde gas concentration is measured using the Kitagawa gas detector tube No171SA. The number of μmoles of methanol gas and formaldehyde gas was calculated (gas concentration (ppm) × residual air volume (ml) / {irradiation time (0.5 Hr) × photocatalyst weight (0.2 g) × 22400}). The temperature of the injected air was 32.5 ° C. and the humidity was 67%, and the measurement results were as shown in Table 1.
The gas remaining in the barrier bag after irradiation with black light was 1000 ml including 200 ml sucked in the measurement of two types of gas detector tubes.

特許請求範囲外の例。
3.1.1 (A)の調製
乳鉢に関東化学株式会社製高純度試薬の高純度酸化ジルコニウム3Nの0.5gと関東化学製試薬1級酸化コバルトの0.5gを取り均一にかきまぜた後強く擦りながらかき混ぜて二酸化チタンを含まない(A)に近似の組成の一体化物を調製した。
2.1.2 (B)の調製
(B)は1.1.2で調整したものを用いた。
3.1.3 一体化物(C)の調製
3.1.1で得られた(A)と1.1.2で得られた(B)を乳鉢に1:1の比率で計1.0g取り軽くかき混ぜて本発明の一体化物(二酸化チタン:酸化ジルコニウム:酸化コバルト:白金担持二酸化チタン=0:0、25:0.25:0.5)を調製した。
Examples outside the scope of claims.
3.1.1 Preparation of (A) After taking 0.5 g of high purity zirconium oxide 3N of high purity reagent manufactured by Kanto Chemical Co., Ltd. and 0.5 g of reagent grade 1 cobalt oxide manufactured by Kanto Chemical Co. Stirring with strong rubbing, an integrated product having a composition close to that of (A) containing no titanium dioxide was prepared.
2.1.2 Preparation of (B) (B) was prepared according to 1.1.2.
3.1.3 Preparation of integrated product (C) A total of 1.0 g of (A) obtained in 3.1.1 and (B) obtained in 1.1.2 at a ratio of 1: 1 in a mortar. It was lightly stirred to prepare an integrated product of the present invention (titanium dioxide: zirconium oxide: cobalt oxide: platinum-supported titanium dioxide = 0: 0, 25: 0.25: 0.5).

3.2.二酸化炭素の還元実験
内径68mmのガラス製シャーレに銅板を敷いたものに1.1.3で得られた一体化物0.2gを銅版上に一様に散布した試験体を、冷蔵庫(冷蔵庫内での結露を防止するためエステー株式会社製家庭用除湿剤ドライペット(成分塩化カルシウム)を入れた)中で2日間冷却した後取り出し(取り出し時の冷蔵庫内温湿度は4℃、24%)、ガスバリア袋(大倉工業株式会社製、OE−4)に入れ、入り口を熱シールする。ガスバリア袋に1cm角のウレタンテープを貼り、袋内の空気が約1000mlになるように注射器で空気を注入し、ブラックライト(東芝ライテック社製ブラックライト蛍光ランプ FL20S−BLB−A(20W))直下にセットした。試験体中の一体化物はブラックライトの直下10cmの位置であった。そしてブラックライトを30分間照射し、照射後、袋内のメタノールガス濃度を北川式ガス検知管No119U、ホルムアルデヒドガス濃度を北川式ガス検知管No171SAを用いて測定し、光触媒1gで1時間照射あたりのメタノールガスおよびホルムアルデヒドガスのμmol数を算出(ガス濃度(ppm)×残存空気容積(ml)/{照射時間(0.5Hr)×光触媒重量(0.2g)×22400})した。注入した空気の温度は31.6℃湿度60%であり、測定結果は表1の通りであった。
なお、ブラックライト照射後にバリア袋内に残った気体はガス検知管2種類の測定で吸引した200mlを含め1000mlであった。
3.2. Carbon dioxide reduction experiment A test specimen in which 0.2 g of an integrated product obtained in 1.1.3 was uniformly spread on a copper plate on a glass petri dish with an inner diameter of 68 mm was placed in a refrigerator (in the refrigerator). In order to prevent condensation, cool it for 2 days in a domestic dehumidifier dry pet (component calcium chloride) manufactured by Este Co., Ltd. and take it out (temperature and humidity in the refrigerator at the time of removal is 4 ° C, 24%), gas barrier Put in a bag (OE-4, OE-4) and heat seal the entrance. A 1cm square urethane tape is attached to the gas barrier bag, and air is injected with a syringe so that the air in the bag becomes about 1000 ml. Just under the black light (black light fluorescent lamp FL20S-BLB-A (20W) manufactured by Toshiba Lighting & Technology Corp.) Set. The integrated product in the test body was at a position 10 cm immediately below the black light. Then, the black light is irradiated for 30 minutes, and after irradiation, the methanol gas concentration in the bag is measured using the Kitagawa gas detector tube No119U and the formaldehyde gas concentration is measured using the Kitagawa gas detector tube No171SA. The number of μmoles of methanol gas and formaldehyde gas was calculated (gas concentration (ppm) × residual air volume (ml) / {irradiation time (0.5 Hr) × photocatalyst weight (0.2 g) × 22400}). The temperature of the injected air was 31.6 ° C. and the humidity was 60%, and the measurement results were as shown in Table 1.
The gas remaining in the barrier bag after irradiation with black light was 1000 ml including 200 ml sucked in the measurement of two types of gas detector tubes.

Figure 2015048351
Figure 2015048351

表1において、実施例1,2は特許請求範囲に含まれる例、実施例3は特許請求範囲外の例である。  In Table 1, Examples 1 and 2 are examples included in the claims, and Example 3 is an example outside the claims.

また、本実験で用いたバリア袋は、酸素分子や窒素分子は透過しないが、二酸化炭素分子は、比較的透過しやすいことがわかった。したがって、袋内の二酸化炭素分子が消費されると、濃度勾配が生じて、袋の外(つまり、大気中)の二酸化炭素分子が袋内へ侵入し、その二酸化炭素分子も還元されるので、還元生成物であるホルムアルデヒドやメタノールの濃度が大きな値となった可能性が高い。仮にそうであれば、実施例の結果は還元前のバリア袋内の二酸化炭素量によらず、本発明の一体化物の二酸化炭素還元能力の真の値が示されたと言える。  In addition, it was found that the barrier bag used in this experiment does not transmit oxygen molecules or nitrogen molecules, but carbon dioxide molecules are relatively easily transmitted. Therefore, when the carbon dioxide molecules in the bag are consumed, a concentration gradient is generated, and carbon dioxide molecules outside the bag (that is, in the atmosphere) enter the bag and are also reduced. It is highly possible that the concentration of formaldehyde and methanol, which are reduction products, has become large. If so, it can be said that the result of the example showed the true value of the carbon dioxide reducing ability of the integrated product of the present invention regardless of the amount of carbon dioxide in the barrier bag before the reduction.

本発明の方法を用いることにより、ブラックライト程度の比較的波長の大きな(つまり、比較的エネルギーが小さな)紫外線や紫外線を含む太陽光の照射の下で水蒸気と二酸化炭素からメタノール、ホルムアルデヒド等の有用な有機化合物が常温で多量に生成するので、大気中や燃焼排ガス中の二酸化炭素が化学工業資源となりうる。  By using the method of the present invention, it is useful to use steam, carbon dioxide, methanol, formaldehyde, etc. under irradiation of ultraviolet rays having a relatively large wavelength (that is, relatively small energy) such as black light or sunlight including ultraviolet rays. Since a large amount of organic compounds are produced at room temperature, carbon dioxide in the atmosphere or combustion exhaust gas can be a chemical industry resource.

二酸化チタンは照射紫外線に応答して光触媒作用によって電子と正孔を生成するが、光触媒表面近傍に水が解離して生じた水素イオンがあって、さらに二酸化炭素があると、電荷分離した電子の還元作用によって水素イオンが二酸化炭素に結合してホルムアルデヒドやメタノール等の低分子有機化合物を生成すると考えられる。また水が解離して生じた水酸化物イオンも存在すると思われ、水酸化物イオンを構成する−2価の酸素は正孔の強い酸化作用により正孔を消費して容易に酸素分子(O)が生成すると予想される。が、特に気相の場合には酸素分子は容易に生成せず、光触媒作用によって生成した電子と正孔のうち、電子が還元反応により消費された後に残った正孔を電気的に消去する工程が無いため正孔が過多になり、引き続いて起こる光触媒作用により生成した電子が残っている正孔と再結合して消滅してしまい電子の供給(還元作用)が顕著に減少してしまう。あるいは、光触媒が大気中にある場合には本発明者が特開2013−6180で指摘したように、光触媒表面への窒素の吸着により光触媒作用そのものが妨げられていると思われる。Titanium dioxide generates electrons and holes by photocatalytic action in response to irradiated ultraviolet rays, but if there are hydrogen ions generated by the dissociation of water near the surface of the photocatalyst and further carbon dioxide, It is considered that hydrogen ions are bonded to carbon dioxide by a reducing action to produce low molecular weight organic compounds such as formaldehyde and methanol. In addition, hydroxide ions generated by dissociation of water are considered to exist, and the -valent oxygen constituting the hydroxide ions easily consumes holes due to the strong oxidation action of the holes and easily generates oxygen molecules (O 2 ) is expected to generate. However, especially in the case of the gas phase, oxygen molecules are not easily generated, and among the electrons and holes generated by the photocatalytic action, a step of electrically erasing holes remaining after the electrons are consumed by the reduction reaction Therefore, the number of holes becomes excessive, and electrons generated by the subsequent photocatalytic action recombine with the remaining holes and disappear, and the supply (reduction action) of electrons is remarkably reduced. Alternatively, when the photocatalyst is in the atmosphere, it is considered that the photocatalytic action itself is hindered by the adsorption of nitrogen on the surface of the photocatalyst, as pointed out by the present inventor in JP2013-6180A.

混合気体導入前の試験体の処理方法としては、一定時間冷蔵庫内に保存すればよいが、さらに好ましくは、まず試験体を減圧して(A)と(B)からなる一体化物(C)の表面に物理吸着している窒素を除去し、次に(C)を冷却しておく。あるいは減圧と冷却を同時に行ってもよい。なお、段落[0032]と本段落で述べた減圧処理については、現時点では思考上のアイデアであって還元物の増大等の効果を実験で確認したわけでは無い。  As a method for treating the specimen before introducing the mixed gas, it may be stored in the refrigerator for a certain period of time, but more preferably, the specimen is first decompressed and the integrated body (C) composed of (A) and (B). Nitrogen physically adsorbed on the surface is removed, and then (C) is cooled. Or you may perform pressure reduction and cooling simultaneously. Note that the decompression process described in the paragraph [0032] and this paragraph is an idea at present, and the effects such as the increase of the reduced product have not been confirmed by experiments.

1.1 (A)と(B)からなる一体化物(C)の調整
1.1.1 (A)の調製
乳鉢にテイカ株式会社製アナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100(粒径6nm 比表面積260m/g)の0.3gと関東化学株式会社製高純度試薬の高純度酸化ジルコニウム3N(粒径10〜15ミクロン)の0.5gと、関東化学製試薬1級の酸化コバルト(Co)の0.2gを取り均一にかきまぜた後強く擦りながらかき混ぜて(A)を調製した。
1.1.2 (B)の調製
内径93mmのガラス製シャーレにテイカ株式会社製アナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100の1.0gを取り、純水30mlを加えて攪拌し1%塩化白金酸水溶液0.3gを加えて攪拌し、試薬特級エタノール0.1gを加えて攪拌し20Wブラックライト直下10cmに置きブラックライトを20時間照射した後、120℃1時間乾燥して、白金担持二酸化チタンを調製した。
1.1.3 一体化物(C)の調製
1.1.1で得られた(A)と1.1.2で得られた(B)を乳鉢に1:1の比率で計1.0g取り軽くかき混ぜて本発明の一体化物(二酸化チタン:酸化ジルコニウム:酸化コバルト:白金担持二酸化チタン=1.5:2.5:1.0:5)を調製した。
1.1 Preparation of integrated product (C) composed of (A) and (B) 1.1.1 Preparation of (A) White titanium dioxide AMT-100 having anatase type crystal structure manufactured by Teika Co., Ltd. in a mortar ( 0.3 g of particle size 6 nm, specific surface area 260 m 2 / g), 0.5 g of high purity zirconium oxide 3N (particle size 10-15 microns) manufactured by Kanto Chemical Co., Ltd., and grade 1 reagent manufactured by Kanto Chemical (A) was prepared by taking 0.2 g of cobalt oxide (Co 3 O 4 ) and stirring it uniformly, followed by stirring with strong rubbing.
1.1.2 Preparation of (B) Take 1.0 g of white titanium dioxide AMT-100 having an anatase type crystal structure manufactured by Teika Co., Ltd. into a glass petri dish with an inner diameter of 93 mm, add 30 ml of pure water and stir. Add 0.3 g of 1% aqueous solution of chloroplatinic acid and stir, add 0.1 g of reagent grade ethanol and stir, place under 10 cm of 20 W black light and irradiate with black light for 20 hours, then dry at 120 ° C. for 1 hour, Platinum-supported titanium dioxide was prepared.
1.1.3 Preparation of integrated product (C) A total of 1.0 g of (A) obtained in 1.1.1 and (B) obtained in 1.1.2 at a ratio of 1: 1 in a mortar. It was lightly stirred to prepare an integrated product of the present invention (titanium dioxide: zirconium oxide: cobalt oxide: platinum-supported titanium dioxide = 1.5: 2.5: 1.0: 5).

Figure 2015048351
Figure 2015048351

Claims (2)

水蒸気と二酸化炭素を含む混合気体中に、
二酸化チタンと酸化ジルコニウムと酸化コバルトからなる一体化物(A)と
二酸化チタンに白金を担持したもの(B)
を一体化した物(C)を電気伝導性物質上に散布した構成体(D)を配置し、
一体化物(C)に紫外光を照射して、
有機化合物を生成させることを特徴とする二酸化炭素の還元方法
In a mixed gas containing water vapor and carbon dioxide,
Integrated material consisting of titanium dioxide, zirconium oxide and cobalt oxide (A) and titanium dioxide carrying platinum (B)
The structure (D) in which the object (C) integrated with the material is dispersed on the electrically conductive material,
Irradiate the integrated product (C) with ultraviolet light,
Method for reducing carbon dioxide characterized by producing organic compound
電気伝導性物質が、銅板である請求項1に記載の二酸化炭素の還元方法The method for reducing carbon dioxide according to claim 1, wherein the electrically conductive substance is a copper plate.
JP2013192310A 2013-08-30 2013-08-30 Method for reducing carbon dioxide using photocatalyst Pending JP2015048351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192310A JP2015048351A (en) 2013-08-30 2013-08-30 Method for reducing carbon dioxide using photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192310A JP2015048351A (en) 2013-08-30 2013-08-30 Method for reducing carbon dioxide using photocatalyst

Publications (1)

Publication Number Publication Date
JP2015048351A true JP2015048351A (en) 2015-03-16

Family

ID=52698646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192310A Pending JP2015048351A (en) 2013-08-30 2013-08-30 Method for reducing carbon dioxide using photocatalyst

Country Status (1)

Country Link
JP (1) JP2015048351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066122A (en) * 2015-09-28 2017-04-06 森屋 市郎 Improved reduction method of carbon dioxide
JP2017178915A (en) * 2016-03-28 2017-10-05 森屋 市郎 Novel formation process for compound by chemical reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066122A (en) * 2015-09-28 2017-04-06 森屋 市郎 Improved reduction method of carbon dioxide
JP2017178915A (en) * 2016-03-28 2017-10-05 森屋 市郎 Novel formation process for compound by chemical reaction

Similar Documents

Publication Publication Date Title
Mu et al. Ultrathin and small‐size graphene oxide as an electron mediator for perovskite‐based Z‐scheme system to significantly enhance photocatalytic CO2 reduction
He et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction
Zhao et al. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation
Yi et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr (VI) reduction performance under white light
Liu et al. High‐yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon
Li et al. Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde
Zhang et al. A systematic investigation of decomposition of nano Zn4O (C8H4O4) 3 metal− organic framework
Tang et al. A graphitic-C 3 N 4-hybridized Ag 3 PO 4 tetrahedron with reactive {111} facets to enhance the visible-light photocatalytic activity
Guo et al. Biogenic Pt/CaCO3 nanocomposite as a robust catalyst toward benzene oxidation
Yang et al. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst
Mkhalid et al. S-scheme mesoporous Li2MnO3/g-C3N4 heterojunctions as efficient photocatalysts for the mineralization of trichloroethylene in aqueous media
WO2020192722A1 (en) Application of fullerene and derivative composite material thereof in degrading formaldehyde, indoor vocs or antibacterial
Tan et al. Role of surface oxygen species of mesoporous CeCu oxide catalyst in OVOCs catalytic combustion
CN102728339A (en) Porous inorganic ceramic membrane-graphene-TiO2 photocatalyst composite material and its preparation method
Zheng et al. Shape‐Dependent Performance of Cu/Cu2O for Photocatalytic Reduction of CO2
Chen et al. Metal organic frameworks derived manganese dioxide catalyst with abundant chemisorbed oxygen and defects for the efficient removal of gaseous formaldehyde at room temperature
Xue et al. Enhancement of redox capacity derived from O-doping of gC 3 N 4/WO 3 nanosheets for the photocatalytic degradation of tetracycline under different dissolved oxygen concentration
JP2015071578A (en) Method of reducing carbon dioxide by using photocatalyst
Xu et al. Water hyacinth powder-assisted in-situ fabrication of visible light responsive CQDs/BiOCl heterojunctions with exceptional photocatalytic detoxification performance
JP2013006180A (en) Method for reducing carbon dioxide, and reducing force supplying system
Chuaicham et al. Fabrication of visible-light-active ZnCr mixed metal oxide/fly ash for photocatalytic activity toward pharmaceutical waste ciprofloxacin
CN103028371B (en) Preparation method of MCM-41@TiO2 adsorptive-photocatalytic nano composite material
JP2015048351A (en) Method for reducing carbon dioxide using photocatalyst
Zhou et al. Bicomponent Cocatalyst Decoration on Flux‐assisted CaTaO2N Single Crystals for Photocatalytic CO2 Reduction under Visible Light
JP2009292821A (en) Method of reducing carbon dioxide, and system of providing reducing power