JP2015046335A - Zinc secondary battery suppressed in generation of dendrite - Google Patents

Zinc secondary battery suppressed in generation of dendrite Download PDF

Info

Publication number
JP2015046335A
JP2015046335A JP2013177590A JP2013177590A JP2015046335A JP 2015046335 A JP2015046335 A JP 2015046335A JP 2013177590 A JP2013177590 A JP 2013177590A JP 2013177590 A JP2013177590 A JP 2013177590A JP 2015046335 A JP2015046335 A JP 2015046335A
Authority
JP
Japan
Prior art keywords
zinc
secondary battery
negative electrode
koh
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013177590A
Other languages
Japanese (ja)
Other versions
JP6195154B2 (en
Inventor
勝己 片倉
Katsumi Katakura
勝己 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2013177590A priority Critical patent/JP6195154B2/en
Publication of JP2015046335A publication Critical patent/JP2015046335A/en
Application granted granted Critical
Publication of JP6195154B2 publication Critical patent/JP6195154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc secondary battery in which the generation of dendrite can be suppressed.SOLUTION: A zinc secondary battery includes a negative electrode mainly containing zinc, and an electrolyte in contact with the negative electrode and mainly containing KCO. Thus, the generation of dendrite at the negative electrode can be suppressed.

Description

この発明は亜鉛二次電池、特にそのデンドライトの生成を抑制する技術に関する。   The present invention relates to a zinc secondary battery, and more particularly to a technique for suppressing the formation of dendrite.

金属亜鉛は、安価かつ安全なエネルギー密度が高いことから、古くより一次電池の負極材料として利用されてきた。亜鉛は、二次電池の負極としても魅力的な材料であり、多くの研究者によって二次電池負極材料としての可能性が検討されてきた。   Metallic zinc has long been used as a negative electrode material for primary batteries because it is inexpensive and has a high safe energy density. Zinc is an attractive material as a negative electrode for a secondary battery, and many researchers have examined its possibility as a negative electrode material for a secondary battery.

亜鉛を負極に用いる場合、電解液は中性またはアルカリ性のものを用いる。電解液を酸性にすると、水素が発生して好ましくないからである。一次電池においては、電解液としてKOHが用いられることが多い。   When zinc is used for the negative electrode, a neutral or alkaline electrolyte is used. This is because if the electrolyte is made acidic, hydrogen is generated, which is not preferable. In primary batteries, KOH is often used as the electrolyte.

特開平10−144314JP-A-10-144314

しかしながら、亜鉛電極を負極とし、電解液としてKOHを用いた二次電池では、次のような問題があった。すなわち、充電の際に、負極から溶け出した亜鉛が、再び負極に戻り針状となって析出する。これは、デンドライトと呼ばれる。充電を繰り返すと、デンドライトが成長し、負極と正極を短絡する可能性があり危険であった。また、充電効率が低いという問題もあった。   However, a secondary battery using a zinc electrode as a negative electrode and KOH as an electrolyte has the following problems. That is, at the time of charging, zinc dissolved from the negative electrode returns to the negative electrode and precipitates in a needle shape. This is called a dendrite. When charging was repeated, dendrites grew and there was a possibility that the negative electrode and the positive electrode could be short-circuited, which was dangerous. There is also a problem that charging efficiency is low.

これは、電解液である濃厚水酸化アルカリ中での亜鉛の高い溶解性に起因するところが大きいと考えられる。これまでの試みの多くは、亜鉛負極や電解質への添加剤導入による改善が主体であったが、いずれも実用化には至っていない。たとえば、特許文献1には、銀で亜鉛粒子の表面を被覆した粉末を、負極活物質として用いることでデンドライトの発生を抑制することが記載されているが、製造コストなどの問題から実用化されていない。   This is thought to be largely due to the high solubility of zinc in the concentrated alkali hydroxide that is the electrolytic solution. Many of the attempts so far have mainly been improvements by introducing additives into the zinc negative electrode and the electrolyte, but none has been put into practical use. For example, Patent Document 1 describes that generation of dendrites is suppressed by using a powder in which the surface of zinc particles is coated with silver as a negative electrode active material. Not.

この発明は、デンドライトの生成を抑えることのできる亜鉛電極二次電池を提供することを目的とする。   An object of this invention is to provide the zinc electrode secondary battery which can suppress the production | generation of a dendrite.

(1)この発明に係る亜鉛二次電池は、亜鉛を主成分とする負極と、当該負極に接し、K2CO3を主成分とする電解液とを備えている。これにより、負極におけるデンドライトの生成を抑制することができる。 (1) A zinc secondary battery according to the present invention includes a negative electrode containing zinc as a main component and an electrolyte solution which is in contact with the negative electrode and contains K 2 CO 3 as a main component. Thereby, the production | generation of the dendrite in a negative electrode can be suppressed.

(2)この発明に係る亜鉛二次電池は、電解液が、KOHをさらに含むことを特徴としている。これにより、負極におけるデンドライトの生成を抑制することができる。 (2) The zinc secondary battery according to the present invention is characterized in that the electrolytic solution further contains KOH. Thereby, the production | generation of the dendrite in a negative electrode can be suppressed.

(3)この発明に係る亜鉛二次電池は、負極が、多孔質、表面粗化、球状体の集合のいずれかであることを特徴としている。これにより、充電電流、放電電流を増加させることができる。 (3) The zinc secondary battery according to the present invention is characterized in that the negative electrode is any one of porous, surface roughened, and spherical aggregates. Thereby, a charging current and a discharging current can be increased.

この発明の一実施形態による亜鉛−空気二次電池の構造である。1 is a structure of a zinc-air secondary battery according to an embodiment of the present invention. 一実施形態による電解液の効果を計測するための装置を示す図である。It is a figure which shows the apparatus for measuring the effect of the electrolyte solution by one Embodiment. 各電解液の伝導度を示すグラフである。It is a graph which shows the conductivity of each electrolyte solution. K2CO3電解液のサイクリックボルタンメトリーの測定結果である。The measurement results of the cyclic voltammetry of K 2 CO 3 electrolyte. K2CO3電解液、K2CO3およびKOH混合電解液のサイクリックボルタンメトリーの測定結果である。K 2 CO 3 electrolyte, the measurement results of the cyclic voltammetry of K 2 CO 3 and KOH mixture electrolyte. K2CO3およびKOH混合電解液のサイクリックボルタンメトリーの測定結果である。The measurement results of the cyclic voltammetry of K 2 CO 3 and KOH mixture electrolyte. K2CO3電解液、KOH電解液、K2CO3およびKOH混合電解液の充電後の負極の様子を示す写真である。K 2 CO 3 electrolyte, KOH electrolyte is a photograph showing the state of the negative electrode after charging of K 2 CO 3 and KOH mixture electrolyte. K2CO3電解液、KOH電解液、K2CO3およびKOH混合電解液におけるデンドライト生成の有無である。K 2 CO 3 electrolyte, KOH electrolyte, presence or absence of dendrite generation in K 2 CO 3 and KOH mixture electrolyte. 電極構造の一例である。It is an example of an electrode structure.

この発明の一実施形態による亜鉛電極二次電池は、電解液としてK2CO3を主成分としている。これにより、電極におけるデンドライトの生成が抑制された。その原因は定かではないが、電解液としてK2CO3を用いることで、負極の亜鉛表面自体に、亜鉛の溶解を阻害する非常に薄い(数10nm程度)膜が形成されたか、あるいは、負極を取り囲む電解液に亜鉛の溶解を阻害する非常に薄い層が形成されたか、またはその双方が形成されたためではないかと推測される。 The zinc electrode secondary battery according to one embodiment of the present invention contains K 2 CO 3 as a main component as an electrolytic solution. Thereby, the production | generation of the dendrite in an electrode was suppressed. The cause is not clear, but by using K 2 CO 3 as the electrolyte, a very thin film (about several tens of nanometers) that inhibits zinc dissolution was formed on the zinc surface of the negative electrode itself, or the negative electrode It is speculated that a very thin layer that inhibits dissolution of zinc was formed in the electrolyte solution surrounding the substrate, or that both were formed.

なお、K2CO3を用いると、デンドライトが抑制される一方で電流が小さくなるため、負極の表面積を大きくすることが好ましい。負極を多孔質にする、表面を粗くする、球状にすることなどが可能である。たとえば、図9に示すようなブドウの実のような形状にすることで、表面積を大きくすることができる。 Note that when K 2 CO 3 is used, the surface area of the negative electrode is preferably increased because the current is reduced while dendrite is suppressed. It is possible to make the negative electrode porous, roughen the surface, or make it spherical. For example, the surface area can be increased by making the shape like a grape fruit as shown in FIG.

また、K2CO3にKOHを混合することにより、二次電池としての特性向上がみられた。 Further, by mixing KOH in K 2 CO 3, characteristic improvement of the secondary battery was observed.

図1に、この発明の一実施形態による空気亜鉛二次電池の構造を示す。筐体2の内部に、亜鉛負極8が収納されている。亜鉛負極8を覆うように負極端子6が設けられている。亜鉛負極8の下部には、セパレータ10が設けられている。さらにその下には、正極である空気極12が設けられている。その下部に、撥水膜14、拡散紙16が設けられている。なお、空気孔18を介して、正極である空気が供給される。最下層には、シール紙20が設けられている。この実施形態では、セパレータ10に電解液としてのK2CO3を含浸させている。 FIG. 1 shows the structure of a zinc-air secondary battery according to an embodiment of the present invention. A zinc negative electrode 8 is housed inside the housing 2. A negative electrode terminal 6 is provided so as to cover the zinc negative electrode 8. A separator 10 is provided below the zinc negative electrode 8. Further below that, an air electrode 12 as a positive electrode is provided. A water repellent film 14 and a diffusion paper 16 are provided at the lower part. Note that air as a positive electrode is supplied through the air hole 18. A sticker paper 20 is provided in the lowermost layer. In this embodiment, the separator 10 is impregnated with K 2 CO 3 as an electrolytic solution.

本発明の一実施形態によるK2CO3電解液の効果を確認するため、図2のような装置にて、サイクリックボルタンメトリーを行った。作用極WEは亜鉛、対極CEはNiOH2、参照極REはHg/HgOとした。ポテンショ/ガルバノスタット30により電流を制御するようにしている。電解液32としては、K2CO3、KOH、両者の混合液を、濃度を変化させて用いた。 In order to confirm the effect of the K 2 CO 3 electrolyte according to one embodiment of the present invention, cyclic voltammetry was performed using an apparatus as shown in FIG. The working electrode WE was zinc, the counter electrode CE was NiOH 2 , and the reference electrode RE was Hg / HgO. The current is controlled by the potentio / galvanostat 30. As the electrolytic solution 32, K 2 CO 3 , KOH, and a mixture of both were used with varying concentrations.

図3Aに、K2CO3、KOHを、それぞれ単独で電解液として用い、濃度を7Mまで変化させた場合の、電解液の伝導度の変化を示す。KOHと比べて、K2CO3の伝導度が高いことが分かる。 FIG. 3A shows the change in conductivity of the electrolytic solution when K 2 CO 3 and KOH are each used alone as the electrolytic solution and the concentration is changed to 7M. It can be seen that the conductivity of K 2 CO 3 is higher than that of KOH.

図3Bに、K2CO3とKOHを混合した電解液において、K2CO3の濃度を5Mに固定し、KOHの濃度を変化させた場合の、電解液の伝導度の変化を示す。KOHの濃度変化にもかかわらず、安定した伝導度が示されている。 FIG. 3B shows the change in conductivity of the electrolytic solution when the concentration of K 2 CO 3 is fixed at 5 M and the concentration of KOH is changed in the electrolytic solution in which K 2 CO 3 and KOH are mixed. Despite the change in KOH concentration, stable conductivity is shown.

作用極WEの電位を徐々に増加させ、所定電位まで到達したら徐々に減少させ、その際の、両電極間の電流の変化を測定した。K2CO3の濃度を、0.5M〜5.0Mに変化させて測定した。図4AにK2CO3の濃度を0.5M〜3.0Mに変化させた場合、図4BにK2CO3の濃度を0.5M〜5.0Mに変化させた場合の電流の変化を示す。このグラフより、2.0Mより濃度が高くなれば、十分な電流が得られることがわかる。なお、3.0Mより高い濃度であることが好ましい。 The potential of the working electrode WE was gradually increased, and when the potential reached a predetermined potential, the potential was gradually decreased, and the change in current between the electrodes at that time was measured. The concentration of K 2 CO 3 was measured while changing from 0.5M to 5.0M. 4A shows the change in current when the concentration of K 2 CO 3 is changed from 0.5M to 3.0M, and FIG. 4B shows the change in current when the concentration of K 2 CO 3 is changed from 0.5M to 5.0M. Show. From this graph, it can be seen that if the concentration is higher than 2.0M, a sufficient current can be obtained. It is preferable that the concentration is higher than 3.0M.

なお、K2CO3の濃度が電流増加に寄与しているのか、単に電解液のPH値が寄与しているのかを明らかにするため、5.0MのK2CO3と同じPHとなるように、1MのK2CO3に0.1MのKOHを混ぜた溶液にて、電流値を測定した。その結果を、図5に示す。この図から明らかなように、1MのK2CO3に0.1MのKOHを混ぜた溶液では、十分な電流値を得ることはできなかった。このように、K2CO3の濃度が高い方が好ましいことが明らかとなった。 In order to clarify whether the concentration of K 2 CO 3 contributes to the current increase or simply the PH value of the electrolyte solution, the PH is the same as 5.0 M K 2 CO 3. In addition, the current value was measured in a solution in which 0.1 M KOH was mixed with 1 M K 2 CO 3 . The result is shown in FIG. As is apparent from this figure, a sufficient current value could not be obtained with a solution in which 0.1 M KOH was mixed with 1 M K 2 CO 3 . Thus, it was revealed that a higher concentration of K 2 CO 3 is preferable.

次に、電解液として5MのK2CO3にKOHを混合し、KOHの濃度を変化させて実験を行った。ここでは、KOHの濃度を、0.05M〜限界濃度まで変化させた。図6Aに、0.05M、0.1M、0.2M、0.5Mと変化させた場合の電流値を示す。 Next, an experiment was performed by mixing KOH with 5M K 2 CO 3 as an electrolyte and changing the concentration of KOH. Here, the concentration of KOH was varied from 0.05M to the limit concentration. FIG. 6A shows current values when changed to 0.05M, 0.1M, 0.2M, and 0.5M.

KOHの濃度が0.2Mを超えたところから電流が大きく流れ始めている。また、充電と放電のバランス(プラスの側の電流波形面積が放電量、マイナスの側の電流波形面積が充電量を示す)が良いのは、0.5M近傍であることも明らかとなった。   A large current starts to flow when the KOH concentration exceeds 0.2M. It was also found that the balance between charging and discharging (the positive current waveform area indicates the amount of discharge and the negative current waveform area indicates the amount of charge) is around 0.5M.

次に、電解液として6MのKOH、5MのK2CO3、0.5MのKOHと5MのK2CO3の混合液を用いた場合の亜鉛電極におけるデンドライトの発生を調べた。それぞれの電解液について、2mA/cm2の電流を110分流したときの亜鉛電極の状況を調べた。亜鉛電極表面の拡大写真を、図7に示す。図7Aは6MのKOHの電解液を用いた場合である。この写真から明らかなようにデンドライトの発生が確認できる。図7Bは5MのK2CO3の電解液を用いた場合である。図7Cは0.5MのKOHと5MのK2CO3の混合液を用いた場合である。図7B、図7Cから明らかなように、これらの場合、デンドライトの発生は見られなかった。 Next, the generation of dendrites at the zinc electrode was investigated when 6 M KOH, 5 M K 2 CO 3 , 0.5 M KOH and 5 M K 2 CO 3 mixed solution was used as the electrolyte. About each electrolyte solution, the condition of the zinc electrode when a current of 2 mA / cm 2 was passed for 110 minutes was examined. An enlarged photograph of the zinc electrode surface is shown in FIG. FIG. 7A shows the case of using an electrolyte solution of 6M KOH. As is apparent from this photograph, the occurrence of dendrites can be confirmed. FIG. 7B shows the case where 5M K 2 CO 3 electrolyte is used. FIG. 7C shows the case where a mixed solution of 0.5 M KOH and 5 M K 2 CO 3 is used. As is apparent from FIGS. 7B and 7C, no dendrite was observed in these cases.

図8に、2mA/cm2の電流を110分流したとき、5mA/cm2の電流を44分流したとき、10mA/cm2の電流を22分流したとき、22mA/cm2の電流を10分流したときのデンドライトの発生状況を調べた結果を示す。丸印はデンドライトが発生したこと、バツ印はデンドライトが発生しなかったことを表している。電流値にかかわらず、6MのKOHの場合にはデンドライトが発生し、5MのK2CO3、0.5MのKOHと5MのK2CO3の混合液の場合にはデンドライトの発生は見られなかった。 8, when a current of 2 mA / cm 2 and 110 shunt, when a current of 5 mA / cm 2 44 diverted, when a current of 10 mA / cm 2 22 shunting and 10 shunting a current of 22mA / cm 2 The result of investigating the state of occurrence of dendrites is shown. A circle indicates that dendrite has occurred, and a cross indicates that no dendrite has occurred. Regardless of the current value, dendrites are generated in the case of 6M KOH, and dendrites are generated in the case of a mixture of 5M K 2 CO 3 , 0.5M KOH and 5M K 2 CO 3. There wasn't.

Claims (3)

亜鉛を主成分とする負極と、
当該負極に接し、K2CO3を主成分とする電解液と、
を備えた亜鉛二次電池。
A negative electrode mainly composed of zinc;
An electrolyte in contact with the negative electrode and containing K 2 CO 3 as a main component;
A zinc secondary battery comprising:
請求項1の二次電池において、
前記電解液は、KOHをさらに含むことを特徴とする亜鉛二次電池。
The secondary battery according to claim 1,
The zinc secondary battery, wherein the electrolytic solution further contains KOH.
請求項1または2の亜鉛二次電池において、
前記負極は、多孔質、表面粗化、球状体の集合のいずれかであることを特徴とする亜鉛二次電池。


The zinc secondary battery according to claim 1 or 2,
The zinc secondary battery is characterized in that the negative electrode is any one of porous, roughened surface, and spherical aggregate.


JP2013177590A 2013-08-29 2013-08-29 Zinc secondary battery with reduced generation of dendrites Expired - Fee Related JP6195154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177590A JP6195154B2 (en) 2013-08-29 2013-08-29 Zinc secondary battery with reduced generation of dendrites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177590A JP6195154B2 (en) 2013-08-29 2013-08-29 Zinc secondary battery with reduced generation of dendrites

Publications (2)

Publication Number Publication Date
JP2015046335A true JP2015046335A (en) 2015-03-12
JP6195154B2 JP6195154B2 (en) 2017-09-13

Family

ID=52671678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177590A Expired - Fee Related JP6195154B2 (en) 2013-08-29 2013-08-29 Zinc secondary battery with reduced generation of dendrites

Country Status (1)

Country Link
JP (1) JP6195154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167330A1 (en) * 2022-03-03 2023-09-07 国立大学法人千葉大学 Secondary battery having zinc negative electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164229A (en) * 1977-12-08 1979-12-27 Imatra Paristo Oy Battery
JPS62262367A (en) * 1986-05-06 1987-11-14 Sanyo Electric Co Ltd Alkaline zing storage battery
JPH03272563A (en) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd Alkali zinc storage battery
JPH06124706A (en) * 1992-10-07 1994-05-06 Yuasa Corp Sealed nickel-zinc storage battery
JP2014165099A (en) * 2013-02-27 2014-09-08 Sumitomo Chemical Co Ltd Air secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164229A (en) * 1977-12-08 1979-12-27 Imatra Paristo Oy Battery
JPS62262367A (en) * 1986-05-06 1987-11-14 Sanyo Electric Co Ltd Alkaline zing storage battery
JPH03272563A (en) * 1990-03-20 1991-12-04 Sanyo Electric Co Ltd Alkali zinc storage battery
JPH06124706A (en) * 1992-10-07 1994-05-06 Yuasa Corp Sealed nickel-zinc storage battery
JP2014165099A (en) * 2013-02-27 2014-09-08 Sumitomo Chemical Co Ltd Air secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167330A1 (en) * 2022-03-03 2023-09-07 国立大学法人千葉大学 Secondary battery having zinc negative electrode

Also Published As

Publication number Publication date
JP6195154B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP5876950B2 (en) Negative electrode material for magnesium fuel cell
Miyazaki et al. Suppression of dendrite formation of zinc electrodes by the modification of anion-exchange ionomer
JP2009093983A (en) Secondary battery
JP6836603B2 (en) Metal-air battery
JP2020155266A (en) Zinc battery electrolyte and zinc battery
JP5660086B2 (en) Magnesium secondary battery
US8304121B2 (en) Primary aluminum hydride battery
JP2010182606A (en) Lithium air cell
JP6195154B2 (en) Zinc secondary battery with reduced generation of dendrites
Li et al. Self-discharge mechanism of Ni-MH battery by using acrylic acid grafted polypropylene separator
US10211464B2 (en) Electrochemical cell aluminum-manganese
JP5578123B2 (en) Liquid lead-acid battery
KR101575769B1 (en) Zinc-Air cell with structure for improvement of reversibility
Gbadamasi et al. Zinc Batteries: Basics, Materials Functions, and Applications
US20220352557A1 (en) Secondary battery and secondary battery system
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas
CN112602228B (en) Electrolyte for lithium air battery and lithium air battery using same
KR101198029B1 (en) Zinc-air cell
Sumboja et al. A Stability Improvement of Rechargeable Zn-air Batteries by Introducing Thiourea and Polyethylenimine as Electrolyte Additives
US20200083504A1 (en) Separator for batteries
US20190067765A1 (en) Lithium air battery that includes nonaqueous lithium ion conductor
JP2020532829A (en) Electrodes with multiple current collector arrays
Egashira Influence of Polymer Coating on the Electrode Properties of Fe3O4/Carbon Nano-fiber Composite in Alkaline Electrolyte
Masri The Study of Agar Binder and Super P Additive in Porous Zinc Anode for Zinc-air Batteries
JP2010033962A (en) Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6195154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees