JP2015045800A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2015045800A
JP2015045800A JP2013177794A JP2013177794A JP2015045800A JP 2015045800 A JP2015045800 A JP 2015045800A JP 2013177794 A JP2013177794 A JP 2013177794A JP 2013177794 A JP2013177794 A JP 2013177794A JP 2015045800 A JP2015045800 A JP 2015045800A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013177794A
Other languages
Japanese (ja)
Other versions
JP6197489B2 (en
Inventor
健 上原
Takeshi Uehara
健 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013177794A priority Critical patent/JP6197489B2/en
Publication of JP2015045800A publication Critical patent/JP2015045800A/en
Application granted granted Critical
Publication of JP6197489B2 publication Critical patent/JP6197489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system that copes with aberration fluctuation during power variation and camera shake correction and that has excellent optical performance, an optical device including the variable power optical system, and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system includes, in order from an object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power. During zooming from a wide-angle end state to a telephoto end state, a distance between the first lens group G1 and the second lens group G2 changes, a distance between the second lens group and the third lens group changes, and a distance between the third lens group and the fourth lens group changes. At least one single lens L21 in the second lens group moves so as to include a component in a direction orthogonal to an optical axis, and satisfies a predetermined conditional expression.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2007-078834号公報JP 2007-078834 A

従来の変倍光学系は、変倍時における収差変動が大きいという課題があった。また、手ぶれ補正の問題に対応できていないという課題があった。   The conventional variable magnification optical system has a problem that the aberration variation at the time of variable magnification is large. In addition, there is a problem that the camera shake correction problem cannot be dealt with.

本発明はこのような課題に鑑みてなされたものであり、変倍時における収差変動と手ぶれ補正に対応し、良好な光学性能を備えた変倍光学系、この変倍光学系を備えた光学装置、及び、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and a variable magnification optical system having excellent optical performance corresponding to aberration fluctuations and camera shake correction at the time of variable magnification, and an optical device including the variable magnification optical system It is an object of the present invention to provide an apparatus and a method for manufacturing a variable magnification optical system.

上記課題を解決するため、本発明は、
物体側から順に、
負の屈折力を有する第1レンズ群と、
正の屈折力を有する第2レンズ群と、
負の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
前記第2レンズ群は、少なくとも1枚の単レンズが光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
23 < f2A/d2A < 230
但し、
f2A:前記単レンズの焦点距離
d2A:前記単レンズの直後に配されたレンズとの光軸上の距離
In order to solve the above problems, the present invention provides:
From the object side,
A first lens group having negative refractive power;
A second lens group having a positive refractive power;
A third lens group having negative refractive power;
A fourth lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes,
The second lens group moves so that at least one single lens includes a component in a direction orthogonal to the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
23 <f2A / d2A <230
However,
f2A: Focal length of the single lens
d2A: Distance on the optical axis with the lens placed immediately after the single lens

また、本発明は、前記変倍光学系を具備することを特徴とする光学装置を提供する。   The present invention also provides an optical device comprising the variable magnification optical system.

また、本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を配置し、
前記第2レンズ群は、少なくとも1枚の単レンズが光軸と直交する方向の成分を含むように移動するようにし、
以下の条件式を満足するようにし、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するようにする、ことを特徴とする変倍光学系の製造方法を提供する。
23 < f2A/d2A < 230
但し、
f2A:前記単レンズの焦点距離
d2A:前記単レンズの直後に配されたレンズとの光軸上の距離
The present invention also provides:
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A group, and
The second lens group moves so that at least one single lens includes a component in a direction perpendicular to the optical axis;
So that the following conditional expression is satisfied,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, There is provided a variable magnification optical system manufacturing method characterized in that an interval between the third lens group and the fourth lens group is changed.
23 <f2A / d2A <230
However,
f2A: Focal length of the single lens
d2A: Distance on the optical axis with the lens placed immediately after the single lens

本発明によれば、変倍時における収差変動と手ぶれ補正に対応し、良好な光学性能を備えた変倍光学系、この変倍光学系を備えた光学装置、及び、変倍光学系の製造方法を提供することができる。   According to the present invention, a variable magnification optical system that has good optical performance, can handle aberration fluctuations and camera shake correction at the time of variable magnification, an optical device that includes this variable magnification optical system, and the manufacture of the variable magnification optical system A method can be provided.

第1実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図。FIG. 3 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the first example. (a)は、第1実施例に係る変倍光学系の広角端状態の無限遠合焦時の諸収差図であり、(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.18)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the wide angle end state of the variable magnification optical system according to the first example, and (b) is an image blur correction at infinity focusing in the wide angle end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.18). 第1実施例に係る変倍光学系の中間焦点距離状態の無限遠合焦時の諸収差図である。FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example. (a)は、第1実施例に係る変倍光学系の望遠端状態の無限遠合焦時の諸収差図であり、(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.18)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system according to the first example, and (b) is an image blur correction at infinity focusing in the telephoto end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.18). 第2実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図。FIG. 6 is a lens cross-sectional view in a wide-angle end state showing a configuration of a variable magnification optical system according to a second example. (a)は、第2実施例に係る変倍光学系の広角端状態の無限遠合焦時の諸収差図であり、(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.22)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the wide angle end state of the variable magnification optical system according to the second example, and (b) is an image blur correction at infinity focusing in the wide angle end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.22). 第2実施例に係る変倍光学系の中間焦点距離状態の無限遠合焦時の諸収差図である。FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example. (a)は、第2実施例に係る変倍光学系の望遠端状態の無限遠合焦時の諸収差図であり、(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.22)を行った時のコマ収差図である。(A) is various aberration diagrams at the time of infinity focusing in the telephoto end state of the variable magnification optical system according to the second example, and (b) is an image blur correction at infinity focusing in the telephoto end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.22). 第3実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図。FIG. 10 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the third example. (a)は、第3実施例に係る変倍光学系の広角端状態の無限遠合焦時の諸収差図であり、(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.20)を行った時のコマ収差図である。(A) is various aberration diagrams at the time of infinity focusing in the wide angle end state of the variable magnification optical system according to the third example, and (b) is image blur correction at infinity focusing in the wide angle end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.20). 第3実施例に係る変倍光学系の中間焦点距離状態の無限遠合焦時の諸収差図である。It is an aberration diagram at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the third example. (a)は、第3実施例に係る変倍光学系の望遠端状態の無限遠合焦時の諸収差図であり、(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.20)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system according to the third example, and (b) is an image blur correction at infinity focusing in the telephoto end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.20). 第4実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図。FIG. 10 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fourth example. (a)は、第4実施例に係る変倍光学系の広角端状態の無限遠合焦時の諸収差図であり、(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.34)を行った時のコマ収差図である。(A) is an aberration diagram of the variable magnification optical system according to Example 4 at the time of focusing at infinity in the wide angle end state, and (b) is image blur correction at the time of focusing at infinity in the wide angle end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.34). 第4実施例に係る変倍光学系の中間焦点距離状態の無限遠合焦時の諸収差図である。FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example. (a)は、第4実施例に係る変倍光学系の望遠端状態の無限遠合焦時の諸収差図であり、(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.33)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the telephoto end state of the zoom optical system according to the fourth example, and (b) is an image blur correction at infinity focusing in the telephoto end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.33). 第5実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図。FIG. 10 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fifth example. (a)は、第5実施例に係る変倍光学系の広角端状態の無限遠合焦時の諸収差図であり、(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.30)を行った時のコマ収差図である。(A) is an aberration diagram of the variable magnification optical system according to Example 5 at the time of focusing at infinity in the wide angle end state, and (b) is image blur correction at the time of focusing at infinity in the wide angle end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.30). 第5実施例に係る変倍光学系の中間焦点距離状態の無限遠合焦時の諸収差図である。FIG. 10 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fifth example. (a)は、第5実施例に係る変倍光学系の望遠端状態の無限遠合焦時の諸収差図であり、(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.31)を行った時のコマ収差図である。(A) is an aberration diagram at the time of infinity focusing in the telephoto end state of the variable magnification optical system according to the fifth example, and (b) is an image blur correction at infinity focusing in the telephoto end state. FIG. 12 is a coma aberration diagram when performing (shift amount of image blur correction group L21 = 0.31). 本願の変倍光学系を備えたカメラの構成を示す図。The figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図。The figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の実施形態にかかる変倍光学系、光学装置、及び変倍光学系の変倍方法について図面を参照しつつ説明する。なお、以下の実施の形態は、発明の理解を容易にするためのものに過ぎず、本願発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加・置換等を施すことを排除することは意図していない。   Hereinafter, a variable magnification optical system, an optical apparatus, and a variable magnification optical system according to an embodiment of the present application will be described with reference to the drawings. The following embodiments are only for facilitating the understanding of the invention, and excluding additions and substitutions that can be performed by those skilled in the art without departing from the technical idea of the present invention. It is not intended.

本願の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、第2レンズ群は少なくとも1枚の単レンズが光軸と直交する方向の成分を含むように移動し、広角端状態から望遠端状態まで変倍する際に、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化する構成である。   The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, A second lens group that moves so that at least one single lens includes a component in a direction perpendicular to the optical axis, from the wide-angle end state to the telephoto end state. When zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group Is a configuration that changes.

これにより、変倍時の望遠端状態におけるコマ収差と広角端状態における像面湾曲収差を効果的に補正しつつ、光軸と略垂直方向の所定の像面移動量を確保することができる。   Thus, it is possible to ensure a predetermined amount of movement of the image plane in a direction substantially perpendicular to the optical axis while effectively correcting the coma aberration in the telephoto end state and the field curvature aberration in the wide-angle end state during zooming.

また、以下の条件式(1)を満足する構成である。
(1) 23.00 < f2A/d2A < 230.00
但し、
f2A:前記単レンズの焦点距離、
d2A:前記単レンズの直後に配されたレンズとの光軸上の距離、
である。
In addition, the following conditional expression (1) is satisfied.
(1) 23.00 <f2A / d2A <230.00
However,
f2A: focal length of the single lens,
d2A: distance on the optical axis with the lens arranged immediately after the single lens,
It is.

条件式(1)は第2レンズ群内で光軸と直交する方向の成分を含む方向に移動する単レンズの焦点距離に対する、当該単レンズの直後に配されたレンズとの光軸上の距離を規定するものである。条件式(1)を満足することにより、より良好な光学性能を達成することができる。   Conditional expression (1) is the distance on the optical axis between the lens arranged immediately after the single lens and the focal length of the single lens moving in the direction including the component orthogonal to the optical axis in the second lens group. It prescribes. By satisfying conditional expression (1), better optical performance can be achieved.

条件式(1)の上限値を上回ると、単レンズの屈折力が弱くなる、または単レンズと直後のレンズとの光軸上の距離が狭くなり望遠端状態における球面収差の補正が困難となる。   If the upper limit value of conditional expression (1) is exceeded, the refractive power of the single lens becomes weak, or the distance on the optical axis between the single lens and the lens immediately after it becomes narrow, making it difficult to correct spherical aberration in the telephoto end state. .

条件式(1)の下限値を下回ると、単レンズの屈折力が強くなる、または単レンズと直後のレンズとの光軸上の距離が広くなり望遠端状態における球面収差の補正が困難となる。また光学系全長が長くなる。   If the lower limit of conditional expression (1) is not reached, the refractive power of the single lens becomes strong, or the distance on the optical axis between the single lens and the immediately following lens becomes wide, making it difficult to correct spherical aberration in the telephoto end state. . In addition, the overall length of the optical system is increased.

なお、実施の形態の効果を確実にするために、条件式(1)の上限値を220.00とすることが好ましい。また、実施の形態の効果を確実にするために、条件式(1)の下限値を24.00とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 220.00. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to 24.00.

また、本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 12.00 < -r3A/D2w < 19.00
但し、
D2w:広角端状態における第2レンズ群と第3レンズ群との空気間隔
r3A:第3レンズ群の最も物体側の面の曲率半径、
である。
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 12.00 <-r3A / D2w <19.00
However,
D2w: Air distance between the second lens unit and the third lens unit in the wide-angle end state
r3A: radius of curvature of the surface of the third lens group closest to the object side,
It is.

条件式(2)は第2レンズ群と第3レンズ群との間隔に対する、適切な第3レンズ群の最も物側の面の曲率半径を規定するものである。条件式(2)を満足することにより、より良好な光学性能を達成することができる。   Conditional expression (2) defines an appropriate radius of curvature of the most object-side surface of the third lens group with respect to the distance between the second lens group and the third lens group. By satisfying conditional expression (2), better optical performance can be achieved.

条件式(2)の上限値を上回ると、広角端状態における第2レンズ群と第3レンズ群との空気間隔が狭くなる、または第3レンズ群の最も物体側の面の曲率半径が大きくなり変倍効率の低下と、広角端状態における球面収差の補正が困難となる。   If the upper limit of conditional expression (2) is exceeded, the air space between the second lens group and the third lens group in the wide-angle end state becomes narrow, or the radius of curvature of the surface closest to the object side of the third lens group becomes large. Reduction in zooming efficiency and correction of spherical aberration in the wide-angle end state are difficult.

条件式(2)の下限値を下回ると、広角端状態における第2レンズ群と第3レンズ群との空気間隔が広くなる、または第3レンズ群の最も物体側の面の曲率半径が小さくなり、広角端状態における球面収差の補正が困難となる。また光学系全長が長くなる。   If the lower limit value of conditional expression (2) is not reached, the air space between the second lens group and the third lens group in the wide-angle end state is widened, or the radius of curvature of the most object side surface of the third lens group is small. Thus, it becomes difficult to correct spherical aberration in the wide-angle end state. In addition, the overall length of the optical system is increased.

なお、実施の形態の効果を確実にするために、条件式(2)の上限値を18.50とすることが好ましい。また、実施の形態の効果を確実にするために、条件式(2)の下限値を12.50とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 18.50. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 12.50.

また、本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.60 < f4A/f4 < 2.00
但し、
f4 :第4レンズ群の焦点距離、
f4A:第4レンズ群の最も物体側のレンズの焦点距離、
である。
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 0.60 <f4A / f4 <2.00
However,
f4: focal length of the fourth lens group,
f4A: Focal length of the lens closest to the object side in the fourth lens group,
It is.

条件式(3)は第4レンズ群の焦点距離に対する、適切な第4レンズ群の最も物体側のレンズの焦点距離を規定するものである。条件式(3)を満足することにより、より良好な光学性能を達成することができる。   Conditional expression (3) defines the focal length of the most object-side lens of the fourth lens group with respect to the focal length of the fourth lens group. By satisfying conditional expression (3), better optical performance can be achieved.

条件式(3)の上限値を上回ると、第4レンズ群の屈折力バランスが崩れ、広角端状態における像面湾曲収差の補正が困難となる。   If the upper limit value of conditional expression (3) is exceeded, the refractive power balance of the fourth lens group will be lost, making it difficult to correct field curvature aberration in the wide-angle end state.

条件式(3)の下限値を下回ると、第4レンズ群の屈折力バランスが崩れ、広角端状態における像面湾曲収差の補正が困難となる。   If the lower limit of conditional expression (3) is not reached, the refractive power balance of the fourth lens group will be lost, making it difficult to correct field curvature aberration in the wide-angle end state.

なお、実施の形態の効果を確実にするために、条件式(3)の上限値を1.90とすることが好ましい。また、実施の形態の効果を確実にするために、条件式(3)の下限値を0.70とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 1.90. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.70.

また本願の変倍光学系では、第2レンズ群は以下の条件式(4)を満足する固体材料からなる光学素子を少なくとも1つ有することが望ましい。
(4) 1.85 < nd
但し、
nd:前記光学素子のd線(波長λ=587.6nm)における屈折率、
である。
In the zoom optical system of the present application, it is desirable that the second lens group has at least one optical element made of a solid material that satisfies the following conditional expression (4).
(4) 1.85 <nd
However,
nd: refractive index at the d-line (wavelength λ = 587.6 nm) of the optical element,
It is.

条件式(4)は、第2レンズ群に配される個体材料からなる光学素子の屈折率を規定するものである。条件式(4)を満足することにより、より良好な光学性能を達成することができる。   Conditional expression (4) defines the refractive index of an optical element made of a solid material disposed in the second lens group. By satisfying conditional expression (4), better optical performance can be achieved.

条件式(4)の下限値を下回ると、望遠端状態における球面収差の補正が困難となる。
なお、実施の形態の効果を確実にするために、条件式(4)の下限値を1.90とすることが好ましい。
If the lower limit value of conditional expression (4) is not reached, it will be difficult to correct spherical aberration in the telephoto end state.
In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.90.

また本願の変倍光学系では、第1レンズ群は最も物体側に凹形状のレンズを配し、以下の条件式(5)を満足することが望ましい。
(5) 1.00 < (f2AR1+f2AR2)/(f2AR1-f2AR2) < 5.00
但し、
f2AR1:第2レンズ群の少なくとも1枚の単レンズの物体側の面の曲率半径、
f2AR2:第2レンズ群の少なくとも1枚の単レンズの像側の面の曲率半径、
である。
In the variable magnification optical system of the present application, it is desirable that the first lens unit has a concave lens closest to the object side, and satisfies the following conditional expression (5).
(5) 1.00 <(f2AR1 + f2AR2) / (f2AR1-f2AR2) <5.00
However,
f2AR1: the radius of curvature of the object side surface of at least one single lens in the second lens group,
f2AR2: radius of curvature of the image side surface of at least one single lens of the second lens group,
It is.

条件式(5)は、手ぶれ補正レンズである単レンズの面形状を規定するものである。条件式(5)を満足することにより、より良好な光学性能を達成することができる。   Conditional expression (5) defines the surface shape of a single lens which is a camera shake correction lens. By satisfying conditional expression (5), better optical performance can be achieved.

条件式(5)の上限値を上回ると、第2レンズ群のレンズ形状バランスが崩れ、広角端状態における像面湾曲収差と望遠端状態における球面収差の補正が困難となる。   If the upper limit of conditional expression (5) is exceeded, the lens shape balance of the second lens group will be lost, and it will be difficult to correct field curvature aberration in the wide-angle end state and spherical aberration in the telephoto end state.

条件式(5)の下限値を下回ると、第2レンズ群のレンズ形状バランスが崩れ、広角端状態における像面湾曲収差と望遠端状態における球面収差の補正が困難となる。   If the lower limit of conditional expression (5) is not reached, the balance of the lens shape of the second lens group will be lost, making it difficult to correct curvature of field aberrations in the wide-angle end state and spherical aberrations in the telephoto end state.

なお、実施の形態の効果を確実にするために、条件式(5)の上限値を4.00とすることが好ましい。また、実施の形態の効果を確実にするために、条件式(5)の下限値を1.20とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 4.00. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (5) to 1.20.

また、本願の変倍光学系では、第1レンズ群は最も物体側のレンズに非球面を有することが望ましい。これにより、広角端状態における像面湾曲収差と望遠端状態における球面収差を効果的に補正することができ、より良好な光学性能を達成することができる。   In the variable magnification optical system of the present application, it is desirable that the first lens group has an aspherical surface on the most object side lens. Thereby, the field curvature aberration in the wide-angle end state and the spherical aberration in the telephoto end state can be effectively corrected, and better optical performance can be achieved.

また本願の変倍光学系では、第3レンズ群は凸形状のレンズと凹形状のレンズとの貼り合わせレンズであることが望ましい。これにより、広角端における色コマ収差を効果的に補正することができ、より良好な光学性能を達成することができる。   In the variable magnification optical system of the present application, it is desirable that the third lens group is a cemented lens of a convex lens and a concave lens. Thereby, the chromatic coma aberration at the wide-angle end can be effectively corrected, and better optical performance can be achieved.

また、本願の変倍光学系は、広角端状態から望遠端状態まで変倍する際に、第2レンズ群と第3レンズ群との間隔が増大し、第3レンズ群と第4レンズ群との間隔が減少することが望ましい。これにより、球面収差と像面湾曲の変動を効果的に補正しつつ、所定の変倍比を確保することができる。   Further, in the zoom optical system of the present application, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases, and the third lens group and the fourth lens group It is desirable to reduce the interval. As a result, it is possible to ensure a predetermined zoom ratio while effectively correcting variations in spherical aberration and field curvature.

以下、本願の変倍光学系に係る数値実施例について添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
Hereinafter, numerical examples according to the variable magnification optical system of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the first example of the present application.

本第1実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4より構成される。   The zoom lens according to the first example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13からなり、負メニスカスレンズL11は、像側のレンズ面に樹脂層により非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The lens L11 is an aspherical lens having an aspherical surface formed of a resin layer on the image side lens surface.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23の接合レンズからなる。正メニスカスレンズL21は、光軸に対して直交する方向の成分を含むように移動させることにより像ぶれ補正を行う構成である。   The second lens group G2 is composed of a positive meniscus lens L21 having a concave surface directed toward the object side, a negative meniscus lens L22 having a convex surface directed toward the object side, and a positive meniscus lens L23 having a convex surface directed toward the object side. It consists of a lens. The positive meniscus lens L21 is configured to perform image blur correction by moving it so as to include a component in a direction orthogonal to the optical axis.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と、両凹形状の負レンズL32の接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a concave surface directed toward the object side. Become.

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と共に移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state.

また、無限遠物体から近距離物体へのフォーカシングは、第1レンズ群G1を物体方向に繰り出すことによって行う。   Further, focusing from an infinitely distant object to a close object is performed by extending the first lens group G1 in the object direction.

以下の表1に第1実施例に係る変倍光学系の諸元値を示す。表中において、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態を示す。また、[全体諸元]において、fは焦点距離、FNOはFナンバー、2ωは画角、TLは最も物体側のレンズ面と像面との距離を、それぞれW,Tについて示す。   Table 1 below shows specification values of the variable magnification optical system according to the first example. In the table, W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state. In [Overall Specifications], f is the focal length, FNO is the F number, 2ω is the angle of view, TL is the distance between the lens surface closest to the object side and the image plane, for W and T, respectively.

また[面データ]において、物面は物体面、面番号は物体側からの面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りSをそれぞれ表している。なお、曲率半径r欄の「∞」は平面であることを示す。   In [Surface data], the object surface is the object surface, the surface number is the surface number from the object side, r is the radius of curvature, d is the surface spacing, nd is the refractive index at the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, and (diaphragm) represents the aperture stop S. Note that “∞” in the radius of curvature r column indicates a plane.

[非球面データ]には、非球面の形状を次式で表した場合の非球面係数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、xは非球面の頂点を基準としたときの光軸からの高さhの位置での光軸方向の変位(サグ量)、κは円錐定数、A4,A6,A8,A10はそれぞれ4、6、8、10次の非球面係数、rは基準球面の曲率半径(近軸曲率半径)である。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、2次の非球面係数A2は零である。
[Aspherical data] shows the aspherical coefficient when the shape of the aspherical surface is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, x is the displacement (sag amount) in the direction of the optical axis at the position of the height h from the optical axis with respect to the apex of the aspheric surface, κ is the conic constant, and A4, A6, A8, and A10 are respectively The fourth, sixth, eighth and tenth-order aspherical coefficients, r is the radius of curvature of the reference sphere (paraxial radius of curvature). “En” indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspheric coefficient A2 is zero.

[レンズ群焦点距離]には、各レンズ群の始面と焦点距離をそれぞれ示す。
[可変間隔データ]には、W,M,Tにおける、焦点距離f、各可変間隔、及びバックフォーカスBfをそれぞれ示す。
[条件式対応値]は、それぞれの条件式の対応値を示す。
In [Lens Group Focal Length], the starting surface and focal length of each lens group are shown.
[Variable interval data] indicates the focal length f, variable intervals, and back focus Bf for W, M, and T, respectively.
[Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression.

なお、以下の各実施例全ての諸元値において掲載されている焦点距離f、曲率半径r等の長さの単位は一般に「mm」が使われる。しかし光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、単位は「mm」に限られるものではない。なお、その他の実施例の諸元値においても、本実施例と同様の符号を用い以後の説明を省略する。   Note that “mm” is generally used as the unit of length such as the focal length f and the radius of curvature r listed in the specification values of all the following embodiments. However, since the optical system can obtain the same optical performance even when proportionally enlarged or reduced, the unit is not limited to “mm”. In addition, also in the specification values of the other embodiments, the same reference numerals as in the present embodiment are used, and the subsequent description is omitted.

(表1)[第1実施例]

[全体諸元]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 127.80 126.87

[面データ]
面 r d nd νd
物面 ∞ ∞
1 77.69 2.00 1.58913 61.2
2 16.00 0.17 1.56093 36.6
3 13.61 10.30 1.00000
4 -360.22 1.40 1.48749 70.3
5 32.09 2.30 1.00000
6 27.94 3.00 1.78472 25.6
7 50.93 可変 1.00000

8 -352.30 1.95 1.58913 61.2
9 -36.20 1.00 1.00000
10 18.42 0.90 1.90200 25.3
11 12.60 4.10 1.58913 61.2
12 282.15 可変 1.00000

13(絞り) ∞ 1.50 1.00000
14 -68.18 2.60 1.80518 25.5
15 -11.93 0.84 1.83400 37.2
16 49.24 可変 1.00000

17 -149.95 2.90 1.48749 70.3
18 -18.34 0.10 1.00000
19 88.45 4.23 1.48749 70.3
20 -15.97 1.10 1.83400 37.2
21 -48.83 Bf 1.00000
像面 ∞

[非球面データ]
第3面
κ = 0.0000
A4 = 2.49289E-05
A6 = 5.08645E-08
A8 = -4.32606E-11
A10 = 5.62561E-13

[レンズ群焦点距離]
始面 焦点距離
第1レンズ群 1 -25.65
第2レンズ群 8 26.73
第3レンズ群 14 -31.64
第4レンズ群 17 40.50

[可変間隔データ]
W M T
f 18.50 35.0 53.4
D7 32.88 10.20 2.94
D12 2.87 7.44 12.40
D16 13.06 8.49 3.53
Bf 38.60 54.74 67.61

[条件式対応値]
(1) f2A/d2A =68.33
(2) -r3A/D2w =15.61
(3) f4A/f4 =1.05
(4) nd =1.90
(5)(f2AR1+f2AR2)/(f2AR1-f2AR2)=1.23
(Table 1) [First Example]

[Overall specifications]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 127.80 126.87

[Surface data]
Face rd nd νd
Object ∞ ∞
1 77.69 2.00 1.58913 61.2
2 16.00 0.17 1.56093 36.6
3 13.61 10.30 1.00000
4 -360.22 1.40 1.48749 70.3
5 32.09 2.30 1.00000
6 27.94 3.00 1.78472 25.6
7 50.93 Variable 1.00000

8 -352.30 1.95 1.58913 61.2
9 -36.20 1.00 1.00000
10 18.42 0.90 1.90 200 25.3
11 12.60 4.10 1.58913 61.2
12 282.15 Variable 1.00000

13 (Aperture) ∞ 1.50 1.00000
14 -68.18 2.60 1.80518 25.5
15 -11.93 0.84 1.83400 37.2
16 49.24 Variable 1.00000

17 -149.95 2.90 1.48749 70.3
18 -18.34 0.10 1.00000
19 88.45 4.23 1.48749 70.3
20 -15.97 1.10 1.83400 37.2
21 -48.83 Bf 1.00000
Image plane ∞

[Aspherical data]
3rd surface κ = 0.0000
A4 = 2.49289E-05
A6 = 5.08645E-08
A8 = -4.32606E-11
A10 = 5.62561E-13

[Lens focal length]
Start surface Focal length 1st lens group 1 -25.65
Second lens group 8 26.73
Third lens group 14 -31.64
Fourth lens group 17 40.50

[Variable interval data]
W M T
f 18.50 35.0 53.4
D7 32.88 10.20 2.94
D12 2.87 7.44 12.40
D16 13.06 8.49 3.53
Bf 38.60 54.74 67.61

[Values for conditional expressions]
(1) f2A / d2A = 68.33
(2) -r3A / D2w = 15.61
(3) f4A / f4 = 1.05
(4) nd = 1.90
(5) (f2AR1 + f2AR2) / (f2AR1-f2AR2) = 1.23

図2(a)、図3、図4(a)は、本願の第1実施例に係る変倍光学系のそれぞれ、広角端状態、中間焦点距離状態、及び望遠端状態の無限遠合焦時の諸収差図である。   FIGS. 2A, 3 and 4A show the zoom optical system according to the first example of the present application at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. FIG.

図2(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.18)を行った時のコマ収差図である。   FIG. 2B is a coma aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.18) is performed at the time of focusing at infinity in the wide-angle end state.

図4(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.18)を行った時の収差図である。   FIG. 4B is an aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.18) is performed at infinity in the telephoto end state.

各収差図において、FNOはFナンバーを、Yは像高をそれぞれ示す。また、各収差図において、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)の収差曲線をそれぞれ示す。さらに非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の諸収差図において、本実施例と同様の符号を用い、以降の説明を省略する。   In each aberration diagram, FNO represents an F number, and Y represents an image height. In each aberration diagram, d represents an aberration curve of the d line (λ = 587.6 nm), and g represents an aberration curve of the g line (λ = 435.8 nm). Further, in the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In addition, in the various aberration diagrams of the following examples, the same reference numerals as in this example are used, and the following description is omitted.

各収差図から、第1実施例にかかる変倍光学系は、広角端状態Wから望遠端状態Tまでの各焦点距離状態において、無限遠物体から近距離物体にいたる全撮影領域において諸収差が良好に補正され、優れた光学性能を有することが分かる。   From the respective aberration diagrams, the variable magnification optical system according to the first example has various aberrations in the entire imaging region from an infinite object to a close object in each focal length state from the wide-angle end state W to the telephoto end state T. It can be seen that it is well corrected and has excellent optical performance.

(第2実施例)
図5は、本願の第2実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(Second embodiment)
FIG. 5 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the second example of the present application.

本第2実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4より構成される。   The variable magnification optical system according to the second example has, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a negative refractive power. It is composed of a third lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13からなり、負メニスカスレンズL11は、像側のレンズ面に樹脂層により非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The lens L11 is an aspherical lens having an aspherical surface formed of a resin layer on the image side lens surface.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と両凸形状の正レンズL23の接合レンズからなる。正メニスカスレンズL21は、光軸に対して直交する方向の成分を含むように移動させることにより像ぶれ補正を行う構成である。   The second lens group G2 includes, in order from the object side, a cemented lens of a positive meniscus lens L21 having a concave surface directed toward the object side, a negative meniscus lens L22 having a convex surface directed toward the object side, and a biconvex positive lens L23. The positive meniscus lens L21 is configured to perform image blur correction by moving it so as to include a component in a direction orthogonal to the optical axis.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と、両凹形状の負レンズL32の接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズと、両凸形状の正レンズL44からなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a concave surface directed toward the object side, It consists of a biconvex positive lens L44.

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と共に移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state.

また、無限遠物体から近距離物体へのフォーカシングは、第1レンズ群G1を物体方向に繰り出すことによって行う。   Further, focusing from an infinitely distant object to a close object is performed by extending the first lens group G1 in the object direction.

以下の表2に第2実施例に係る変倍光学系の諸元値を示す。
(表2)[第2実施例]

[全体諸元]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 131.01 130.88

[面データ]
面 r d nd νd
物面 ∞ ∞
1 39.48 2.00 1.58913 61.22
2 15.60 0.17 1.56093 36.64
3 13.61 11.50 1.00000
4 -88.35 1.40 1.48749 70.31
5 27.73 2.30 1.00000
6 26.22 3.00 1.78472 25.64
7 46.01 可変 1.00000

8 -136.58 1.95 1.58913 61.22
9 -35.98 0.50 1.00000
10 19.05 0.90 2.00069 25.46
11 13.08 4.10 1.62299 58.12
12 -466.72 可変 1.00000

13(絞り) ∞ 1.50 1.00000
14 -64.84 2.60 1.80518 25.45
15 -12.48 0.84 1.83400 37.18
16 52.03 可変 1.00000

17 -35.70 2.40 1.48749 70.31
18 -16.96 0.10 1.00000
19 66.89 4.23 1.48749 70.31
20 -16.30 1.10 1.83400 37.18
21 -43.00 0.10 1.00000
22 185.76 1.50 1.49782 82.57
23 -1024.12 Bf 1.00000
像面 ∞

[非球面データ]
第3面
κ = 0.0000
A4 = 3.07187E-05
A6 = 1.07086E-07
A8 = -3.81236E-10
A10 = 2.29942E-12

[レンズ群焦点距離]
始面 焦点距離
第1レンズ群 1 -25.43
第2レンズ群 8 26.46
第3レンズ群 14 -32.06
第4レンズ群 17 41.08

[可変間隔データ]
W M T
f 18.50 35.0 53.4
D7 33.81 11.12 3.87
D12 3.32 7.89 12.85
D16 13.10 8.53 3.57
Bf 38.60 54.09 68.41

[条件式対応値]
(1) f2A/d2A =164.68
(2) -r3A/D2w =13.47
(3) f4A/f4 =1.55
(4) nd =2.00
(5)(f2AR1+f2AR2)/(f2AR1-f2AR2)=1.72
Table 2 below shows specification values of the variable magnification optical system according to the second example.
(Table 2) [Second Example]

[Overall specifications]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 131.01 130.88

[Surface data]
Face rd nd νd
Object ∞ ∞
1 39.48 2.00 1.58913 61.22
2 15.60 0.17 1.56093 36.64
3 13.61 11.50 1.00000
4 -88.35 1.40 1.48749 70.31
5 27.73 2.30 1.00000
6 26.22 3.00 1.78472 25.64
7 46.01 Variable 1.00000

8 -136.58 1.95 1.58913 61.22
9 -35.98 0.50 1.00000
10 19.05 0.90 2.00069 25.46
11 13.08 4.10 1.62299 58.12
12 -466.72 Variable 1.00000

13 (Aperture) ∞ 1.50 1.00000
14 -64.84 2.60 1.80518 25.45
15 -12.48 0.84 1.83400 37.18
16 52.03 Variable 1.00000

17 -35.70 2.40 1.48749 70.31
18 -16.96 0.10 1.00000
19 66.89 4.23 1.48749 70.31
20 -16.30 1.10 1.83400 37.18
21 -43.00 0.10 1.00000
22 185.76 1.50 1.49782 82.57
23 -1024.12 Bf 1.00000
Image plane ∞

[Aspherical data]
3rd surface κ = 0.0000
A4 = 3.07187E-05
A6 = 1.07086E-07
A8 = -3.81236E-10
A10 = 2.29942E-12

[Lens focal length]
Start surface Focal length first lens group 1 -25.43
Second lens group 8 26.46
Third lens group 14 -32.06
Fourth lens group 17 41.08

[Variable interval data]
W M T
f 18.50 35.0 53.4
D7 33.81 11.12 3.87
D12 3.32 7.89 12.85
D16 13.10 8.53 3.57
Bf 38.60 54.09 68.41

[Values for conditional expressions]
(1) f2A / d2A = 164.68
(2) -r3A / D2w = 13.47
(3) f4A / f4 = 1.55
(4) nd = 2.00
(5) (f2AR1 + f2AR2) / (f2AR1-f2AR2) = 1.72

図6(a)、図7、図8(a)は、本願の第2実施例に係る変倍光学系のそれぞれ、広角端状態、中間焦点距離状態、及び望遠端状態の無限遠合焦時の諸収差図である。   FIGS. 6A, 7 and 8A show the zoom optical system according to the second example of the present application at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. FIG.

図6(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.22)を行った時のコマ収差図である。   FIG. 6B is a coma aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.22) is performed at the time of focusing at infinity in the wide-angle end state.

図8(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.22)を行った時の収差図である。   FIG. 8B is an aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.22) at the time of focusing at infinity in the telephoto end state.

各収差図から、第2実施例にかかる変倍光学系は、広角端状態Wから望遠端状態Tまでの各焦点距離状態において、無限遠物体から近距離物体にいたる全撮影領域において諸収差が良好に補正され、優れた光学性能を有することが分かる。   From the respective aberration diagrams, the variable magnification optical system according to the second example has various aberrations in the entire imaging region from the infinite object to the close object in each focal length state from the wide-angle end state W to the telephoto end state T. It can be seen that it is well corrected and has excellent optical performance.

(第3実施例)
図9は、本願の第3実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(Third embodiment)
FIG. 9 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the third example of the present application.

本第3実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4より構成される。   The variable magnification optical system according to the third example has, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a negative refractive power. It is composed of a third lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13からなり、負メニスカスレンズL11は、像側のレンズ面に樹脂層による非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The lens L11 is an aspheric lens in which an aspheric surface made of a resin layer is formed on the image side lens surface.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と両凸形状の正レンズL23の接合レンズからなる。正メニスカスレンズL21は、光軸に対して直交する方向の成分を含むように移動させることにより像ぶれ補正を行う構成である。   The second lens group G2 includes, in order from the object side, a cemented lens of a positive meniscus lens L21 having a concave surface directed toward the object side, a negative meniscus lens L22 having a convex surface directed toward the object side, and a biconvex positive lens L23. The positive meniscus lens L21 is configured to perform image blur correction by moving it so as to include a component in a direction orthogonal to the optical axis.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹レンズL32との接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave lens L32, in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と、物体側に凹面を向けた負メニスカスレンズL43とからなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface facing the object side, a positive bilens lens L42, and a negative meniscus lens L43 having a concave surface facing the object side.

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と共に移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state.

また、無限遠より近距離物体へのフォーカシングは、第1レンズ群G1を物体方向に繰り出すことによって行う。   Further, focusing from infinity to a close object is performed by extending the first lens group G1 in the object direction.

以下の表3に第3実施例に係る変倍光学系の諸元値を示す。
(表3)[第3実施例]

[全体諸元]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 129.65 129.03

[面データ]
面 r d nd νd
物面 ∞ ∞
1 62.01 2.00 1.58913 61.22
2 15.80 0.17 1.56093 36.64
3 13.58 10.50 1.00000
4 -1339.79 1.70 1.59319 67.90
5 30.66 1.50 1.00000
6 26.05 3.20 1.78472 25.64
7 50.98 可変 1.00000

8 -209.04 1.95 1.58913 61.22
9 -36.34 3.00 1.00000
10 18.55 0.90 1.90200 25.26
11 12.63 4.60 1.58913 61.22
12 -1839.83 可変 1.00000

13(絞り) ∞ 1.20 1.00000
14 -63.91 2.90 1.80518 25.45
15 -12.82 0.84 1.83400 37.18
16 52.03 可変 1.00000

17 -110.46 2.90 1.48749 70.31
18 -20.17 0.10 1.00000
19 114.25 4.33 1.51823 58.82
20 -19.96 0.40 1.00000
21 -18.47 1.10 1.90366 31.27
22 -40.21 Bf 1.00000
像面 ∞

[非球面データ]
第3面
κ = 0.0000
A4 = 2.83927E-05
A6 = 6.24047E-08
A8 = -5.57825E-11
A10 = 8.77670E-13

[レンズ群焦点距離]
始面 焦点距離
第1レンズ群 1 -25.59
第2レンズ群 8 26.74
第3レンズ群 14 -31.89
第4レンズ群 17 40.74

[可変間隔データ]
W M T
f 18.50 35.0 53.4
D7 32.59 9.97 2.65
D12 2.26 7.02 11.79
D16 12.91 8.15 3.38
Bf 38.60 53.50 67.92

[条件式対応値]
(1) f2A/d2A =24.79
(2) -r3A/D2w =17.02
(3) f4A/f4 =1.23
(4) nd =1.90
(5)(f2AR1+f2AR2)/(f2AR1-f2AR2)=1.42
Table 3 below shows specification values of the variable magnification optical system according to the third example.
(Table 3) [Third Example]

[Overall specifications]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 129.65 129.03

[Surface data]
Face rd nd νd
Object ∞ ∞
1 62.01 2.00 1.58913 61.22
2 15.80 0.17 1.56093 36.64
3 13.58 10.50 1.00000
4 -1339.79 1.70 1.59319 67.90
5 30.66 1.50 1.00000
6 26.05 3.20 1.78472 25.64
7 50.98 Variable 1.00000

8 -209.04 1.95 1.58913 61.22
9 -36.34 3.00 1.00000
10 18.55 0.90 1.90 200 25.26
11 12.63 4.60 1.58913 61.22
12 -1839.83 Variable 1.00000

13 (Aperture) ∞ 1.20 1.00000
14 -63.91 2.90 1.80518 25.45
15 -12.82 0.84 1.83400 37.18
16 52.03 Variable 1.00000

17 -110.46 2.90 1.48749 70.31
18 -20.17 0.10 1.00000
19 114.25 4.33 1.51823 58.82
20 -19.96 0.40 1.00000
21 -18.47 1.10 1.90366 31.27
22 -40.21 Bf 1.00000
Image plane ∞

[Aspherical data]
3rd surface κ = 0.0000
A4 = 2.83927E-05
A6 = 6.24047E-08
A8 = -5.57825E-11
A10 = 8.77670E-13

[Lens focal length]
Start surface Focal length first lens group 1 -25.59
Second lens group 8 26.74
Third lens group 14 -31.89
Fourth lens group 17 40.74

[Variable interval data]
W M T
f 18.50 35.0 53.4
D7 32.59 9.97 2.65
D12 2.26 7.02 11.79
D16 12.91 8.15 3.38
Bf 38.60 53.50 67.92

[Values for conditional expressions]
(1) f2A / d2A = 24.79
(2) -r3A / D2w = 17.02
(3) f4A / f4 = 1.23
(4) nd = 1.90
(5) (f2AR1 + f2AR2) / (f2AR1-f2AR2) = 1.42

図10(a)、図11、図12(a)は、本願の第3実施例に係る変倍光学系のそれぞれ、広角端状態、中間焦点距離状態、及び望遠端状態の無限遠合焦時の諸収差図である。   FIGS. 10 (a), 11 and 12 (a) show the zoom optical system according to the third example of the present application, respectively, at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state. FIG.

図10(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.20)を行った時のコマ収差図である。   FIG. 10B is a coma aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.20) is performed at the time of infinity focusing in the wide-angle end state.

図12(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.20)を行った時の収差図である。   FIG. 12B is an aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.20) at infinity in the telephoto end state is performed.

各収差図から、第3実施例にかかる変倍光学系は、広角端状態Wから望遠端状態Tまでの各焦点距離状態において、無限遠物体から近距離物体にいたる全撮影領域において諸収差が良好に補正され、優れた光学性能を有することが分かる。   From each aberration diagram, the variable magnification optical system according to the third example has various aberrations in the entire imaging region from an infinite object to a close object in each focal length state from the wide-angle end state W to the telephoto end state T. It can be seen that it is well corrected and has excellent optical performance.

(第4実施例)
図13は、本願の第4実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(Fourth embodiment)
FIG. 13 is a lens sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fourth example of the present application.

本第4実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4より構成される。   The variable magnification optical system according to the fourth example has, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and negative refractive power. It is composed of a third lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13からなり、負メニスカスレンズL11は、像側のレンズ面に樹脂層による非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The lens L11 is an aspheric lens in which an aspheric surface made of a resin layer is formed on the image side lens surface.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と両凸形状の正レンズL23の接合レンズと、物体側に凸面を向けた正メニスカスレンズL24からなる。正メニスカスレンズL21は、光軸に対して直交する方向の成分を含むように移動させることにより像ぶれ補正を行う構成である。   In order from the object side, the second lens group G2 includes a positive meniscus lens L21 having a concave surface directed toward the object side, a cemented lens of a negative meniscus lens L22 having a convex surface directed toward the object side, and a biconvex positive lens L23, and an object. It consists of a positive meniscus lens L24 with a convex surface on the side. The positive meniscus lens L21 is configured to perform image blur correction by moving it so as to include a component in a direction orthogonal to the optical axis.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と、両凹形状の負レンズL32の接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズからなる。   The fourth lens group G4 is composed of, in order from the object side, a cemented lens including a positive meniscus lens L41 having a concave surface directed toward the object side, a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. .

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と共に移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state.

また、無限遠物体から近距離物体へのフォーカシングは、第1レンズ群G1を物体方向に繰り出すことによって行う。   Further, focusing from an infinitely distant object to a close object is performed by extending the first lens group G1 in the object direction.

以下の表4に第4実施例に係る変倍光学系の諸元値を示す。
(表4)[第4実施例]

[全体諸元]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 129.22 128.02

[面データ]
面 r d nd νd
物面 ∞ ∞
1 84.78 2.00 1.51680 63.88
2 16.00 0.17 1.56093 36.64
3 13.61 10.30 1.00000
4 -1109.62 1.40 1.49782 82.57
5 30.40 2.30 1.00000
6 26.58 3.00 1.78472 25.64
7 42.48 可変 1.00000

8 -50.65 1.70 1.59319 67.90
9 -30.48 1.00 1.00000
10 22.42 0.90 2.00069 25.46
11 14.84 3.80 1.62299 58.12
12 57.77 0.00 1.00000
13 28.39 2.00 1.61272 58.54
14 996.53 可変 1.00000

15(絞り) ∞ 1.50 1.00000
16 -78.50 2.60 1.80518 25.45
17 -12.30 0.84 1.83400 37.18
18 45.05 可変 1.00000

19 -64.55 2.40 1.51860 69.89
20 -18.01 0.10 1.00000
21 48.20 4.23 1.51680 63.88
22 -17.52 1.10 1.90265 35.73
23 -62.83 Bf 1.00000
像面 ∞

[非球面データ]
第3面
κ = 0.0000
A4 = 2.68214E-05
A6 = 4.70056E-08
A8 = 2.26863E-11
A10 = 5.66760E-13

[レンズ群焦点距離]
始面 焦点距離
第1レンズ群 1 -25.78
第2レンズ群 8 26.88
第3レンズ群 16 -31.72
第4レンズ群 19 40.31

[可変間隔データ]
W M T
f 18.50 35.0 53.4
D7 32.96 10.27 3.02
D14 3.11 7.69 12.64
D18 13.21 8.64 3.68
Bf 38.60 53.61 67.34

[条件式対応値]
(1) f2A/d2A =125.11
(2) -r3A/D2w =17.02
(3) f4A/f4 =1.17
(4) nd =2.00
(5)(f2AR1+f2AR2)/(f2AR1-f2AR2)=4.02
Table 4 below shows specification values of the variable magnification optical system according to the fourth example.
(Table 4) [Fourth embodiment]

[Overall specifications]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.2 29.7
TL = 129.22 128.02

[Surface data]
Face rd nd νd
Object ∞ ∞
1 84.78 2.00 1.51680 63.88
2 16.00 0.17 1.56093 36.64
3 13.61 10.30 1.00000
4 -1109.62 1.40 1.49782 82.57
5 30.40 2.30 1.00000
6 26.58 3.00 1.78472 25.64
7 42.48 Variable 1.00000

8 -50.65 1.70 1.59319 67.90
9 -30.48 1.00 1.00000
10 22.42 0.90 2.00069 25.46
11 14.84 3.80 1.62299 58.12
12 57.77 0.00 1.00000
13 28.39 2.00 1.61272 58.54
14 996.53 Variable 1.00000

15 (Aperture) ∞ 1.50 1.00000
16 -78.50 2.60 1.80518 25.45
17 -12.30 0.84 1.83400 37.18
18 45.05 Variable 1.00000

19 -64.55 2.40 1.51860 69.89
20 -18.01 0.10 1.00000
21 48.20 4.23 1.51680 63.88
22 -17.52 1.10 1.90265 35.73
23 -62.83 Bf 1.00000
Image plane ∞

[Aspherical data]
3rd surface κ = 0.0000
A4 = 2.68214E-05
A6 = 4.70056E-08
A8 = 2.26863E-11
A10 = 5.66760E-13

[Lens focal length]
Start surface Focal length 1st lens group 1 -25.78
Second lens group 8 26.88
Third lens group 16 -31.72
Fourth lens group 19 40.31

[Variable interval data]
W M T
f 18.50 35.0 53.4
D7 32.96 10.27 3.02
D14 3.11 7.69 12.64
D18 13.21 8.64 3.68
Bf 38.60 53.61 67.34

[Values for conditional expressions]
(1) f2A / d2A = 125.11
(2) -r3A / D2w = 17.02
(3) f4A / f4 = 1.17
(4) nd = 2.00
(5) (f2AR1 + f2AR2) / (f2AR1-f2AR2) = 4.02

図14(a)、図15、図16(a)は、本願の第4実施例に係る変倍光学系のそれぞれ、広角端状態、中間焦点距離状態、及び望遠端状態の無限遠合焦時の諸収差図である。   FIGS. 14A, 15 and 16A show the zoom optical system according to the fourth example of the present application, respectively, at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state. FIG.

図14(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.34)を行った時のコマ収差図である。   FIG. 14B is a coma aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.34) is performed at the time of focusing at infinity in the wide-angle end state.

図16(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.33)を行った時の収差図である。   FIG. 16B is an aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.33) is performed at infinity in the telephoto end state.

各収差図から、第4実施例にかかる変倍光学系は、広角端状態Wから望遠端状態Tまでの各焦点距離状態において、無限遠物体から近距離物体にいたる全撮影領域において諸収差が良好に補正され、優れた光学性能を有することが分かる。   From the respective aberration diagrams, the variable magnification optical system according to the fourth example has various aberrations in the entire imaging region from the infinite object to the close object in each focal length state from the wide-angle end state W to the telephoto end state T. It can be seen that it is well corrected and has excellent optical performance.

(第5実施例)
図17は、本願の第5実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(5th Example)
FIG. 17 is a lens sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fifth example of the present application.

本第1実施例に係るズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4より構成される。   The zoom lens according to the first example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13からなり、負メニスカスレンズL11は、像側のレンズ面に樹脂層により非球面が形成された非球面レンズである。   The first lens group G1, in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. Thus, the negative meniscus lens L11 is an aspherical lens having an aspherical surface formed of a resin layer on the image side lens surface.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23の接合レンズからなる。正メニスカスレンズL21は、光軸に対して直交する方向の成分を含むように移動させることにより像ぶれ補正を行う構成である。   The second lens group G2 is composed of a positive meniscus lens L21 having a concave surface directed toward the object side, a negative meniscus lens L22 having a convex surface directed toward the object side, and a positive meniscus lens L23 having a convex surface directed toward the object side. It consists of a lens. The positive meniscus lens L21 is configured to perform image blur correction by moving it so as to include a component in a direction orthogonal to the optical axis.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と、両凹形状の負レンズL32の接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と、物体側に凹面を向けた負メニスカスレンズL43からなる。   The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a biconvex positive lens L42, and a negative meniscus lens L43 with a concave surface facing the object side.

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3とともに移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state.

また、無限遠物体から近距離物体へのフォーカシングは、第1レンズ群G1を物体方向に繰り出すことによって行う。   Further, focusing from an infinitely distant object to a close object is performed by extending the first lens group G1 in the object direction.

以下の表5に第5実施例に係る変倍光学系の諸元値を示す。
(表5)[第5実施例]

[全体諸元]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.1 29.7
TL = 127.04 114.30

[面データ]
面 r d nd νd
物面 ∞ ∞
1 85.00 2.00 1.58913 61.22
2 18.00 0.17 1.56093 36.78
3 15.76 11.50 1.00000
4 935.01 1.50 1.59319 67.90
5 40.41 1.50 1.00000
6 28.73 3.40 1.78472 25.64
7 55.36 可変 1.00000

8 -600.00 1.95 1.58913 61.22
9 -55.95 0.50 1.00000
10 22.49 0.90 1.90200 25.27
11 13.79 3.40 1.62299 58.12
12 615.82 可変 1.00000

13(絞り) ∞ 6.00 1.00000
14 -128.33 2.00 1.75520 27.57
15 -14.61 0.84 1.74950
16 136.51 可変 1.00000

17 110.01 2.90 1.48749 70.32
18 -32.20 0.10 1.00000
19 71.64 4.33 1.51823 58.82
20 -41.88 4.39 1.00000
21 -21.41 1.10 1.90366 31.27
22 -76.31 Bf 1.00000
像面 ∞

[非球面データ]
第3面
κ = 0.0000
A4 = 2.09610E-05
A6 = 2.12115E-08
A8 = 1.95428E-11
A10 = 1.83471E-13

[レンズ群焦点距離]
始面 焦点距離
第1レンズ群 1 -32.86
第2レンズ群 8 34.58
第3レンズ群 14 -90.63
第4レンズ群 17 65.97

[可変間隔データ]
W M T
f 18.50 35.00 53.40
d7 40.15 11.47 1.31
d12 1.00 10.62 15.88
d16 17.42 7.80 2.53
Bf 20.00 31.53 46.11

[条件式対応値]
(1) f2A/d2A =209.22
(2) -r3A/D2w =18.34
(3) f4A/f4 =0.78
(4) nd =1.90
(5)(f2AR1+f2AR2)/(f2AR1-f2AR2)=1.21
Table 5 below shows data values of the variable magnification optical system according to the fifth example.
(Table 5) [Fifth embodiment]

[Overall specifications]
W T
f = 18.50 53.4
FNO = 3.64 5.88
2ω = 78.1 29.7
TL = 127.04 114.30

[Surface data]
Face rd nd νd
Object ∞ ∞
1 85.00 2.00 1.58913 61.22
2 18.00 0.17 1.56093 36.78
3 15.76 11.50 1.00000
4 935.01 1.50 1.59319 67.90
5 40.41 1.50 1.00000
6 28.73 3.40 1.78472 25.64
7 55.36 Variable 1.00000

8 -600.00 1.95 1.58913 61.22
9 -55.95 0.50 1.00000
10 22.49 0.90 1.90 200 25.27
11 13.79 3.40 1.62299 58.12
12 615.82 Variable 1.00000

13 (Aperture) ∞ 6.00 1.00000
14 -128.33 2.00 1.75520 27.57
15 -14.61 0.84 1.74950
16 136.51 Variable 1.00000

17 110.01 2.90 1.48749 70.32
18 -32.20 0.10 1.00000
19 71.64 4.33 1.51823 58.82
20 -41.88 4.39 1.00000
21 -21.41 1.10 1.90366 31.27
22 -76.31 Bf 1.00000
Image plane ∞

[Aspherical data]
3rd surface κ = 0.0000
A4 = 2.09610E-05
A6 = 2.12115E-08
A8 = 1.95428E-11
A10 = 1.83471E-13

[Lens focal length]
Start surface Focal length 1st lens group 1 -32.86
Second lens group 8 34.58
Third lens group 14 -90.63
Fourth lens group 17 65.97

[Variable interval data]
W M T
f 18.50 35.00 53.40
d7 40.15 11.47 1.31
d12 1.00 10.62 15.88
d16 17.42 7.80 2.53
Bf 20.00 31.53 46.11

[Values for conditional expressions]
(1) f2A / d2A = 209.22
(2) -r3A / D2w = 18.34
(3) f4A / f4 = 0.78
(4) nd = 1.90
(5) (f2AR1 + f2AR2) / (f2AR1-f2AR2) = 1.21

図18(a)、図19、図20(a)は、本願の第5実施例に係る変倍光学系のそれぞれ、広角端状態、中間焦点距離状態、及び望遠端状態の無限遠合焦時の諸収差図である。   FIGS. 18A, 19, and 20 A show the zooming optical system according to the fifth example of the present application at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. FIG.

図18(b)は、広角端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.30)を行った時のコマ収差図である。   FIG. 18B is a coma aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.30) is performed at the time of focusing at infinity in the wide-angle end state.

図20(b)は、望遠端状態の無限遠合焦時における像ブレ補正(像ぶれ補正群L21のシフト量=0.31)を行った時の収差図である。   FIG. 20B is an aberration diagram when image blur correction (shift amount of the image blur correction group L21 = 0.31) is performed at the infinity focus in the telephoto end state.

各収差図から、第5実施例にかかる変倍光学系は、広角端状態Wから望遠端状態Tまでの各焦点距離状態において、無限遠物体から近距離物体にいたる全撮影領域において諸収差が良好に補正され、優れた光学性能を有することが分かる。   From the respective aberration diagrams, the variable magnification optical system according to the fifth example has various aberrations in the entire imaging region from the infinite object to the close object in each focal length state from the wide-angle end state W to the telephoto end state T. It can be seen that it is well corrected and has excellent optical performance.

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。また以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。   In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. Further, the following contents can be appropriately adopted within a range that does not impair the optical performance of the variable magnification optical system of the present application.

本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。   Although a four-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, five groups) can be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第1レンズ群の全体を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that the entire first lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第2レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the second lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第2レンズ群と第3レンズ群との間に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。   In the variable magnification optical system of the present application, it is preferable that the aperture stop be disposed between the second lens group and the third lens group. As a configuration in which the role is replaced by a lens frame without providing a member as the aperture stop. Also good.

また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。   Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の光学系を備えたカメラを図21に基づいて説明する。
図21は、本願の変倍光学系を備えたカメラの構成を示す図である。
Next, a camera equipped with the optical system of the present application will be described with reference to FIG.
FIG. 21 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.

カメラ1は、図21に示すように撮影レンズ2として前記本願の第1実施例に係る光学系を備えたレンズ交換式の所謂ミラーレスカメラである。   As shown in FIG. 21, the camera 1 is a so-called mirrorless camera of interchangeable lens provided with the optical system according to the first embodiment of the present application as the photographing lens 2.

本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。   Further, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

なお、上記第2〜第5実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。また、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Note that even if a camera in which the optical system according to the second to fifth embodiments is mounted as the photographing lens 2, the same effect as the camera 1 can be obtained. In this embodiment, an example of a mirrorless camera has been described. However, the optical system according to each of the above embodiments is mounted on a single-lens reflex type camera having a quick return mirror in the camera body and observing a subject with a finder optical system. Even in this case, the same effect as the camera 1 can be obtained.

最後に、本願の変倍光学系の製造方法の概略を図22に基づいて説明する。
図22は本願の変倍光学系の製造方法の概略を示す図である。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
FIG. 22 is a diagram showing an outline of the manufacturing method of the variable magnification optical system of the present application.

図22に示す本願の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1〜S3を含むものである。   The variable magnification optical system manufacturing method shown in FIG. 22 has, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and negative refractive power. A method of manufacturing a variable magnification optical system having a third lens group and a fourth lens group having a positive refractive power, and includes the following steps S1 to S3.

ステップS1:以下の条件式(1)を満足するレンズ群を含む、第1レンズ群から第4レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。
(1) 23.00 < f2A/d2A < 230.00
但し、f2Aは前記単レンズの焦点距離、d2Aは前記単レンズの直後に配されたレンズとの光軸上の距離である。
Step S1: First to fourth lens groups including a lens group that satisfies the following conditional expression (1) are prepared, and each lens group is sequentially arranged in the barrel from the object side.
(1) 23.00 <f2A / d2A <230.00
Here, f2A is the focal length of the single lens, and d2A is the distance on the optical axis with the lens arranged immediately after the single lens.

ステップS2:公知の移動機構を設けることにより、広角端状態から望遠端状態への変倍に際して、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化するように光軸方向へ移動するようにする。   Step S2: By providing a known moving mechanism, the distance between the first lens group and the second lens group changes upon zooming from the wide-angle end state to the telephoto end state, and the second lens group and the third lens group. And the distance between the third lens group and the fourth lens group is moved in the optical axis direction.

ステップS3:公知の移動機構を設けることにより、第2レンズ群の少なくとも1枚の単レンズが光軸と直交する方向の成分を含むように移動するようにする。   Step S3: By providing a known moving mechanism, at least one single lens of the second lens group is moved so as to include a component in a direction orthogonal to the optical axis.

斯かる本願の変倍光学系の製造方法によれば、変倍時の収差変動を抑え、広角端状態から望遠端状態にわたって良好な光学性能を備えた変倍光学系を製造することができる。   According to such a method for manufacturing a variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system having excellent optical performance from the wide-angle end state to the telephoto end state while suppressing aberration fluctuations during zooming.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
W 広角端状態
T 望遠端状態
1 カメラ
2 撮影レンズ
3 撮像部
4 EVF(電子ビューファインダ)
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image plane W Wide-angle end state T Telephoto end state 1 Camera 2 Shooting lens 3 Imaging unit 4 EVF (electronic viewfinder)

Claims (10)

物体側から順に、
負の屈折力を有する第1レンズ群と、
正の屈折力を有する第2レンズ群と、
負の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
前記第2レンズ群の少なくとも1枚の単レンズは、光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系
23.00 < f2A/d2A < 230.00
但し、
f2A:前記単レンズの焦点距離
d2A:前記単レンズの直後に配されたレンズとの光軸上の距離
From the object side,
A first lens group having negative refractive power;
A second lens group having a positive refractive power;
A third lens group having negative refractive power;
A fourth lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes,
At least one single lens of the second lens group moves to include a component in a direction orthogonal to the optical axis;
A variable magnification optical system characterized by satisfying the following conditional expression:
23.00 <f2A / d2A <230.00
However,
f2A: Focal length of the single lens
d2A: Distance on the optical axis with the lens placed immediately after the single lens
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
12.00 < -r3A/D2w < 19.00
但し、
D2m:広角端状態における前記第2レンズ群と前記第3レンズ群との空気間隔
R3A:前記第3レンズ群の最も物側の面の曲率半径
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
12.00 <-r3A / D2w <19.00
However,
D2m: Air distance between the second lens group and the third lens group in the wide-angle end state
R3A: radius of curvature of the surface of the third lens group closest to the object side
以下の条件式を満足することを特徴とする請求項1または2に記載の変倍光学系。
0.60 < f4A/f4 < 2.00
但し、
f4 :前記第4レンズ群の焦点距離
f4A:前記第4レンズ群の最も物側のレンズの焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.60 <f4A / f4 <2.00
However,
f4: focal length of the fourth lens group
f4A: Focal length of the lens on the most object side in the fourth lens group
前記第2レンズ群は、以下の条件式を満足する固体材料からなる光学素子を少なくとも1つ有することを特徴とする請求項1から3のいずれか一項に記載の変倍光学系。
1.85 < nd
但し、
nd:前記光学素子のd線(波長λ=587.6nm)における屈折率
4. The variable power optical system according to claim 1, wherein the second lens group includes at least one optical element made of a solid material that satisfies the following conditional expression. 5.
1.85 <nd
However,
nd: refractive index of the optical element at d-line (wavelength λ = 587.6 nm)
前記第1レンズ群は、最も物体側に凹形状のレンズを配し、
以下の条件式を満足することを特徴とする請求項1なら4のいずれか一項に記載の変倍光学系。
1.00 < (f2AR1+f2AR2)/(f2AR1-f2AR2) < 5.00
但し、
f2AR1:前記単レンズの物体側の面の曲率半径
f2AR2:前記単レンズの像側の面の曲率半径
The first lens group includes a concave lens closest to the object side,
5. The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
1.00 <(f2AR1 + f2AR2) / (f2AR1-f2AR2) <5.00
However,
f2AR1: Curvature radius of the object side surface of the single lens
f2AR2: radius of curvature of the image side surface of the single lens
前記第1レンズ群は、最も物体側のレンズに非球面を有することを特徴とする請求項1から5のいずれか一項に記載の変倍光学系。   6. The variable magnification optical system according to claim 1, wherein the first lens group has an aspherical surface in a lens closest to the object side. 前記第3レンズ群は、凸形状のレンズと凹形状のレンズとの貼り合わせレンズであることを特徴とする請求項1から6のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 6, wherein the third lens group is a cemented lens of a convex lens and a concave lens. 広角端状態から望遠端状態まで変倍する際に、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することを特徴とする請求項1から7のいずれか一項に記載の変倍光学系。   When zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases and the distance between the third lens group and the fourth lens group decreases. The variable power optical system according to any one of claims 1 to 7, wherein: 請求項1から8のいずれか一項に記載の変倍光学系を具備することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を配置し、
前記第2レンズ群の少なくとも1枚の単レンズは、光軸と直交する方向の成分を含むように移動するようにし、
以下の条件式を満足するようにし、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するようにする、ことを特徴とする変倍光学系の製造方法。
23.00 < f2A/d2A < 230.00
但し、
f2A:前記単レンズの焦点距離
d2A:前記単レンズの直後に配されたレンズとの光軸上の距離

In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A group, and
At least one single lens of the second lens group is moved so as to include a component in a direction orthogonal to the optical axis;
So that the following conditional expression is satisfied,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, A method of manufacturing a variable magnification optical system, characterized in that an interval between the third lens group and the fourth lens group is changed.
23.00 <f2A / d2A <230.00
However,
f2A: Focal length of the single lens
d2A: Distance on the optical axis with the lens placed immediately after the single lens

JP2013177794A 2013-08-29 2013-08-29 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP6197489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177794A JP6197489B2 (en) 2013-08-29 2013-08-29 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177794A JP6197489B2 (en) 2013-08-29 2013-08-29 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2015045800A true JP2015045800A (en) 2015-03-12
JP6197489B2 JP6197489B2 (en) 2017-09-20

Family

ID=52671345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177794A Active JP6197489B2 (en) 2013-08-29 2013-08-29 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6197489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474928A (en) * 2015-09-18 2018-08-31 株式会社尼康 The manufacturing method of variable-power optical system, Optical devices, photographic device, variable-power optical system
CN112014959A (en) * 2020-09-22 2020-12-01 上海理工大学 270 degree fisheye lens system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256695A (en) * 2006-03-24 2007-10-04 Nikon Corp Zoom lens, imaging apparatus and variable power method
JP2007279147A (en) * 2006-04-03 2007-10-25 Konica Minolta Opto Inc Variable power optical system and imaging apparatus
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
JP2008026880A (en) * 2006-06-22 2008-02-07 Nikon Corp Zoom lens, imaging apparatus and method for varying power of the zoom lens
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2010152146A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010152143A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2015031869A (en) * 2013-08-05 2015-02-16 キヤノン株式会社 Zoom lens and imaging apparatus including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256695A (en) * 2006-03-24 2007-10-04 Nikon Corp Zoom lens, imaging apparatus and variable power method
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
JP2007279147A (en) * 2006-04-03 2007-10-25 Konica Minolta Opto Inc Variable power optical system and imaging apparatus
JP2008026880A (en) * 2006-06-22 2008-02-07 Nikon Corp Zoom lens, imaging apparatus and method for varying power of the zoom lens
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2010152146A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010152143A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2015031869A (en) * 2013-08-05 2015-02-16 キヤノン株式会社 Zoom lens and imaging apparatus including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474928A (en) * 2015-09-18 2018-08-31 株式会社尼康 The manufacturing method of variable-power optical system, Optical devices, photographic device, variable-power optical system
CN108474928B (en) * 2015-09-18 2021-07-30 株式会社尼康 Variable magnification optical system, optical device, and imaging device
CN112014959A (en) * 2020-09-22 2020-12-01 上海理工大学 270 degree fisheye lens system

Also Published As

Publication number Publication date
JP6197489B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP2011175098A (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP6725000B2 (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP5839062B2 (en) Zoom lens, optical device
JP2015152811A (en) Optical system, optical device, and method for manufacturing the optical system
JP6264924B2 (en) Variable magnification optical system and optical apparatus
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP6197489B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2015152812A (en) Optical system, optical device, and method for manufacturing the optical system
JP6205858B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6372058B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6070054B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2018045261A (en) Variable magnification optical system, and optical device
JP6241143B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6241141B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6241142B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6354222B2 (en) Zoom lens, optical device
JP6323045B2 (en) Variable magnification optical system
JP6070053B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2015172695A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6205855B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6205856B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6205857B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250