JP2015045523A - Method for monitoring and controlling charge/discharge state of power storage facility - Google Patents

Method for monitoring and controlling charge/discharge state of power storage facility Download PDF

Info

Publication number
JP2015045523A
JP2015045523A JP2013175764A JP2013175764A JP2015045523A JP 2015045523 A JP2015045523 A JP 2015045523A JP 2013175764 A JP2013175764 A JP 2013175764A JP 2013175764 A JP2013175764 A JP 2013175764A JP 2015045523 A JP2015045523 A JP 2015045523A
Authority
JP
Japan
Prior art keywords
battery
actual
internal resistance
voltage
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175764A
Other languages
Japanese (ja)
Other versions
JP6314390B2 (en
Inventor
泰弘 高林
Yasuhiro Takabayashi
泰弘 高林
謙二 馬場
Kenji Baba
謙二 馬場
徹 引地
Toru Hikichi
徹 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013175764A priority Critical patent/JP6314390B2/en
Publication of JP2015045523A publication Critical patent/JP2015045523A/en
Application granted granted Critical
Publication of JP6314390B2 publication Critical patent/JP6314390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for monitoring and controlling the charge/discharge state of a power storage facility, the method capable of grasping, by monitoring, the remaining charge amount state, the progress of characteristic change (degradation), and the serviceable time, etc., of a lithium ion battery in the power storage facility and thereby optimally maintaining the charge/discharge operation and extending the life of the lithium ion battery in the power storage facility.SOLUTION: In a power storage facility provided with a lithium ion battery, an electromotive voltage and an internal resistance of the lithium ion battery are obtained from detection data such as the charge/discharge voltages, charge/discharge currents, etc., of the lithium ion battery during charging/discharging. A remaining charge amount of the battery is determined from the electromotive voltage. Further, the determined remaining charge amount is corrected by a change amount of the internal resistance, and the charge/discharge state of the lithium ion battery is monitored by the corrected remaining charge amount.

Description

この発明は、リチウムイオン電池(ここでは、単に「電池」と称することもある)を備えた蓄電設備の電池の充放電動作状態、すなわち、電池の充電量の残存状態、特性変化(劣化)進行状態、放電可能時間等を監視、制御するための蓄電設備の充放電状態監視制御方式に関する。   The present invention relates to a charging / discharging operation state of a battery of a power storage facility equipped with a lithium ion battery (herein, sometimes simply referred to as “battery”), that is, a remaining state of charge of the battery, and a characteristic change (deterioration) progress. The present invention relates to a charge / discharge state monitoring control method for a power storage facility for monitoring and controlling a state, a dischargeable time, and the like.

リチウムイオン電池を備えた蓄電設備を有効に使用するためには、電池の充放電状態を可能な限り正確に監視することが必要である。このような電池の充放電状態を監視するものとして、既に特許文献1に示すものが知られている。   In order to effectively use a power storage facility equipped with a lithium ion battery, it is necessary to monitor the charge / discharge state of the battery as accurately as possible. As what monitors the charging / discharging state of such a battery, what is shown to patent document 1 is already known.

この特許文献1に記載の蓄電設備の充放電状態監視方式は、基準となるリチウムイオン電池の内部抵抗を基準内部抵抗値として設定し、この設定した基準内部抵抗値と所定の充放電電流とに基づき予め基準I‐V特性パターンを作成し、この基準I‐V特性パターンと、別途検出された電池の動作中の実際の電圧、電流で示される動作点または、同電圧、電流から作成された実際のI‐V特性パターンとを比較してリチウムイオン電池の充放電状態を監視するものである。   In the charging / discharging state monitoring method of the power storage facility described in Patent Document 1, the internal resistance of a reference lithium ion battery is set as a reference internal resistance value, and the set reference internal resistance value and a predetermined charge / discharge current are set. A reference IV characteristic pattern was created in advance based on this reference IV characteristic pattern and an operating point indicated by an actual voltage or current during operation of the battery detected separately or created from the same voltage or current. It compares the actual IV characteristic pattern and monitors the charge / discharge state of the lithium ion battery.

しかし、この特許文献1の発明では、リチウムイオン電池の充電量の残存状態、特性変化(劣化)進度、使用可能時間等を監視することは行われていない。   However, the invention of Patent Document 1 does not monitor the remaining state of charge of the lithium ion battery, the progress of characteristic change (deterioration), the usable time, and the like.

特開2012‐172991号公報JP 2012-172991 A

この発明は、蓄電設備におけるリチウムイオン電池の充電量の残存状態、特性変化(劣化)進度、使用可能時間等を監視把握することができ、これにより、蓄電設備におけるリチウムイオン電池の充放電動作を最適に保ち、電池の寿命を延伸することのできる蓄電設備の充放電監視制御方式を提供することを課題とするものである。   This invention makes it possible to monitor and grasp the remaining state of the charge amount of the lithium ion battery in the power storage facility, the progress of characteristic change (deterioration), the usable time, etc., and thereby the charge / discharge operation of the lithium ion battery in the power storage facility. It is an object of the present invention to provide a charge / discharge monitoring control system for a power storage facility that can be maintained optimally and can extend the life of a battery.

このような課題を達成するため、請求項1の発明は、リチウムイオン電池を備えた蓄電設備において、前記リチウムイオン電池の充放電中の電池の充放電電圧、充放電電流等の検出データからこの電池の起電圧と内部抵抗を求め、前記起電圧から電池の残存充電量を判定し、さらに、この判定した残存充電量を前記内部抵抗の変化量によって補正し、この補正した残存充電量によって前記リチウムイオン電池の充放電状態を監視することを特徴とするものである。   In order to achieve such a problem, the invention of claim 1 is based on detection data such as charging / discharging voltage and charging / discharging current of a battery during charging / discharging of the lithium-ion battery in a power storage facility including a lithium-ion battery. Obtaining the electromotive voltage and internal resistance of the battery, determining the remaining charge amount of the battery from the electromotive voltage, further correcting the determined remaining charge amount by the amount of change in the internal resistance, and by the corrected remaining charge amount, It monitors the charge / discharge state of the lithium ion battery.

請求項2の発明は、請求項1の発明において、予め前記リチウムイオン電池の使用初期、使用中期および使用終期における基準となる基準内部抵抗、基準起電圧、基準起電圧に対する基準充電量等の基準データを設定し、この基準データと前記リチウムオン電池の充放電動作中に取得した実電池電圧および実電池電流から実内部抵抗、電池内部電圧降下、実起電圧等の実データ求め、前記基準起電圧と実起電圧とを比較して現在の電池の残存充電量を判定し、この判定した電池の残存充電量を前記基準内部抵抗と実内部抵抗を比較して求めた内部抵抗変化量に基づいて補正することを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the invention, a reference such as a reference internal resistance, a reference electromotive voltage, a reference charge amount with respect to the reference electromotive voltage, which is a reference in the initial use period, the intermediate use period and the end use period of the lithium ion battery Data is set, and actual data such as actual internal resistance, battery internal voltage drop, and actual voltage is obtained from the standard data and the actual battery voltage and actual battery current acquired during the charging / discharging operation of the lithium-on battery. The remaining charge amount of the current battery is determined by comparing the voltage with the actual electromotive voltage, and the determined remaining charge amount of the battery is based on the internal resistance change obtained by comparing the reference internal resistance and the actual internal resistance. Correction.

請求項3の発明は、請求項2の発明において、前記基準内部抵抗と実内部抵抗とを比較して求めた内部抵抗変化量によって前記リチウムイオン電池の特性変化(劣化)進度を判定するようにしたことを特徴とするものである。   According to a third aspect of the present invention, in the second aspect of the invention, the progress of characteristic change (deterioration) of the lithium ion battery is determined based on an internal resistance change amount obtained by comparing the reference internal resistance and the actual internal resistance. It is characterized by that.

請求項4の発明は、請求項1ないし3の何れか1つの発明において、前記判定した電池の残存充電量を予め定めた放電電流で除して放電可能時間を求めることを特徴とするものである。   The invention of claim 4 is characterized in that, in any one of the inventions of claims 1 to 3, the dischargeable time is obtained by dividing the determined remaining charge amount of the battery by a predetermined discharge current. is there.

請求項5の発明は、請求項1ないし4の何れか1つの発明において、予め前記リチウムイオン電池の電圧の上限レベル(L0)、通常使用レベル(Ll)、使用下限レベル(L2)、使用限界レベル(L3)を設定し、前記リチウムイオン電池の充電動作中に前記実電池電圧が前記通常使用レベル(L1)から前記上限レベル(L0)の範囲にあるときは、前記実電池電圧が前記上限レベル(L0)を越えないように前記リチウムイオン電池の充電動作を継続し、前記実電池電圧が前記上限レベル(L0)を越えたときは警告を発するとともに電池の充電動作を停止し、前記リチウムイオン電池の放電動作中に、前記実電池電圧が通常使用レベル(Ll)から使用下限レベル(L2)の範囲にあるときは、前記実電池電圧が使用下限レベル(L2)より低下しないように前記リチウムイオン電池の放電動作を継続し、前記実電池電圧が前記使用下限レベル(L2)から使用限界レベル(L3)の範囲にあるときは警報を発するとともに前記リチウムイオン電池の放電動作を使用限界レベル(L3)を越えないように制限し、使用限界レベル(L3)に達したときは警告を発するとともに前記リチウムイオン電池の放電動作を停止止することを特徴とするものである。   The invention of claim 5 is the invention according to any one of claims 1 to 4, wherein the upper limit level (L0), the normal use level (Ll), the lower limit use level (L2), the use limit of the voltage of the lithium ion battery in advance. When the level (L3) is set and the actual battery voltage is in the range from the normal use level (L1) to the upper limit level (L0) during the charging operation of the lithium ion battery, the actual battery voltage is set to the upper limit. The lithium ion battery is continuously charged so as not to exceed the level (L0). When the actual battery voltage exceeds the upper limit level (L0), a warning is issued and the battery charging operation is stopped. During the discharge operation of the ion battery, when the actual battery voltage is in the range of the normal use level (Ll) to the use lower limit level (L2), the actual battery voltage is reduced to the use lower limit level ( 2) The discharge operation of the lithium ion battery is continued so as not to decrease further, and when the actual battery voltage is in the range of the use lower limit level (L2) to the use limit level (L3), an alarm is issued and the lithium ion battery is discharged. The discharge operation of the battery is limited so as not to exceed the use limit level (L3), and when the use limit level (L3) is reached, a warning is issued and the discharge operation of the lithium ion battery is stopped. Is.

リチウムイオン電池の特性は、その起電圧、内部抵抗値によって変化し、電池内部抵抗値は使用時間経過によるカレンダ寿命、充放電回数によるサイクル寿命、温度変化によって増加し、一旦増加した内部抵抗は低下することなく特性劣化が進行するので、この発明のようにリチウムイオン電池の動作中の起電圧、内部抵抗から電池の残存充電量を求めて監視するようにすると、電池の充電量の残存状態を常に把握することができ、そして、蓄電設備における電池の特性劣化の状態を把握することが可能となる。   The characteristics of a lithium-ion battery vary depending on its electromotive voltage and internal resistance. The internal resistance of the battery increases with the calendar life over time, the cycle life with the number of charge / discharge cycles, and the temperature change. Therefore, if the battery charge amount is monitored from the electromotive voltage and internal resistance during operation of the lithium ion battery as in the present invention, the remaining state of the battery charge amount is monitored. It is possible to always grasp, and it is possible to grasp the state of characteristic deterioration of the battery in the power storage facility.

さらに、この電池の残存充電量を内部抵抗変化量によって補正を行うようにすると、より正確に電池の残存充電量を把握できるとともに、内部抵抗変化量によって特性劣化の進行、したがって電池の余寿命を判定することができる。   Furthermore, if the remaining charge amount of the battery is corrected by the internal resistance change amount, the remaining charge amount of the battery can be grasped more accurately, and the progress of characteristic deterioration, and therefore the remaining life of the battery can be determined by the internal resistance change amount. Can be determined.

この発明の実施例を示すブロック構成図。The block block diagram which shows the Example of this invention. この発明の動作説明に用いる特性線図。The characteristic diagram used for operation | movement description of this invention. この発明の定電流、定電圧充電動作時の動作波形図。The operation waveform figure at the time of the constant current and constant voltage charge operation | movement of this invention. この発明の充電電流変化時の動作波形図。The operation | movement waveform diagram at the time of the charging current change of this invention. この発明の定電流放電動作時の動作波形図。The operation | movement waveform diagram at the time of the constant current discharge operation | movement of this invention. この発明の放電電流変化時の動作波形図。The operation waveform figure at the time of the discharge current change of this invention. この発明の充放電動作時の動作波形図。The operation | movement waveform diagram at the time of charging / discharging operation | movement of this invention.

この発明の実施例について説明する前に、リチウムイオン電池の基本特性について説明する。   Before describing embodiments of the present invention, basic characteristics of a lithium ion battery will be described.

リチウムイオン電池の基本特性である起電圧は電池内部抵抗の増減によって変化し、また、残存充電量は起電圧によって変化するから、電池の起電圧および残存充電量は電池の電池内部抵抗によって変化することになる。   The electromotive voltage, which is a basic characteristic of a lithium ion battery, changes according to the increase and decrease of the battery internal resistance, and the remaining charge amount changes depending on the electromotive voltage. Therefore, the electromotive voltage and the remaining charge amount of the battery change depending on the battery internal resistance of the battery. It will be.

電池の特性を左右する電池内部抵抗は次の要因によって変化する。
1)充電量と電池内部抵抗の変化
電池内部抵抗は充電量すなわち残存する充電量が多い領域(満充電領域)では小さく、充電量(残存充電量)の少ない領域(放電終止領域)では大きくなり、充電量に応じて変化することが知られている。
2)使用期間経過に伴う電池内部抵抗の変化
また、電池内部抵抗は、電池の使用時間に基づくカレンダ寿命および充放電回数に基づくサイクル寿命によって変化し、余寿命が短くなるほど増加する。
3)温度変化と内部抵抗変化
温度変化によって電池内部抵抗は変化する。
The battery internal resistance that affects the battery characteristics varies depending on the following factors.
1) Change in charge amount and battery internal resistance Battery internal resistance is small in the charge amount, that is, in the region where the remaining charge amount is large (full charge region), and large in the region where the charge amount (remaining charge amount) is small (discharge end region). It is known that it changes according to the amount of charge.
2) Change in battery internal resistance as the usage period elapses Further, the battery internal resistance changes depending on the calendar life based on the battery use time and the cycle life based on the number of charge / discharge cycles, and increases as the remaining life becomes shorter.
3) Temperature change and internal resistance change Battery internal resistance changes with temperature change.

このように電池内部抵抗は、電池の充電状態、経年変化、温度変化によって変化する。   As described above, the battery internal resistance changes depending on the state of charge, aging, and temperature of the battery.

また、充放電動作による電池充電量、すなわち残存充電量が変化すると電池内部抵抗が変化する。すなわち、充電動作によって残存充電量が増加すれば起電圧が上昇して内部抵抗は低下し、放電動作によって残存充電量が減少すれば起電圧が低下して内部抵抗は増加する。   Further, when the battery charge amount due to the charge / discharge operation, that is, the remaining charge amount changes, the battery internal resistance changes. That is, if the remaining charge amount is increased by the charging operation, the electromotive voltage is increased and the internal resistance is decreased. If the remaining charge amount is decreased by the discharging operation, the electromotive voltage is decreased and the internal resistance is increased.

このように電池の特性は起電圧と内部抵抗との相関によって変化することから、次の方法によって電池動作状態の監視、評価、管理を行うことができる。
ァ)起電圧と内部抵抗の相関によって蓄電池の残存充電量を予測することができる。
イ)内部抵抗変化によって電池の特性変化(劣化)進度から余寿命を予測することができる。
ウ)残存充電量から放電可能時間を予測することができる。
As described above, since the characteristics of the battery change depending on the correlation between the electromotive voltage and the internal resistance, the battery operating state can be monitored, evaluated, and managed by the following method.
A) The remaining charge amount of the storage battery can be predicted by the correlation between the electromotive voltage and the internal resistance.
B) The remaining life can be predicted from the progress of the characteristic change (deterioration) of the battery by the internal resistance change.
C) The dischargeable time can be predicted from the remaining charge amount.

電池容量(充電容量)は、Ah(アンペアアワー:電流時間積)で表される。   The battery capacity (charge capacity) is represented by Ah (ampere hour: current time product).

例えば、電池容量が100Ahの電池は、100Aの放電電流で1時間放電できる容量と定義され、仮に充放電効率が100%とすれば、電池を100Aの充電電流で1時間充電すれば満充電にすることができることになる。   For example, a battery with a battery capacity of 100 Ah is defined as a capacity that can be discharged for 1 hour with a discharge current of 100 A. If the charge / discharge efficiency is 100%, the battery is fully charged if charged with a charge current of 100 A for 1 hour. Will be able to.

当然、電池には内部抵抗などの内部損失が内在するから充放電効率が100%になることはない。   Naturally, since internal loss such as internal resistance is inherent in the battery, the charge / discharge efficiency does not reach 100%.

電池の充放電動作における一般式は
放電動作式
VB=eB−IB×RB・・・・(1)
∴eB=VB+IB×RB・・・・(2)
充電動作式
VB=eB+IB×RB・・・・(3)
∴eB=VB−IB×RB・・・・(4)
で示される。ここで、VB:電池端子電圧、eB:電池起電圧、IB:充放電電流、RB
:電池内部抵抗である。
The general formula in the charge / discharge operation of the battery is the discharge operation formula VB = eB−IB × RB (1)
BeB = VB + IB × RB (2)
Charging operation formula VB = eB + IB × RB (3)
BeB = VB-IB × RB (4)
Indicated by Here, VB: battery terminal voltage, eB: battery electromotive voltage, IB: charge / discharge current, RB
: Battery internal resistance.

前記の(2)、(4)式から電池の起電圧eBは内部抵抗RBと充放電電流IBで決まることが明らかである。   It is clear from the equations (2) and (4) that the electromotive voltage eB of the battery is determined by the internal resistance RB and the charge / discharge current IB.

また、電池の起電圧eBは、図2に特性線Ae、Be、Ceで示すように残存充電量によって変化する特性を有する。   Further, the electromotive voltage eB of the battery has a characteristic that varies depending on the remaining charge amount as indicated by characteristic lines Ae, Be, and Ce in FIG.

図2は電池の起電圧と残存充電量との関係および内部抵抗と残存充電量との関係を示す。   FIG. 2 shows the relationship between the electromotive voltage of the battery and the remaining charge amount, and the relationship between the internal resistance and the remaining charge amount.

図2における特性線Ae、Be、Ceは、それぞれ、予めリチウムイオン電池の設計データ、または試験データに基づいて求めた、電池の使用初期A、使用中期Bおよび使用終期Cにおける電池の起電圧eBと基準充電量QVの関係を示す基準起電圧特性線である。   The characteristic lines Ae, Be, and Ce in FIG. 2 are the electromotive voltages eB of the battery at the initial use period A, the intermediate use period B, and the final use period C of the battery, which are obtained in advance based on the design data or test data of the lithium ion battery. And a reference electromotive force characteristic line showing a relationship between the reference charge amount QV and the reference charge amount QV.

また、特性線AR、BR、CRは、同様に予めリチウムイオン電池の設計データ、または試験データに基づいて求めた、電池の使用初期A、使用中期Bおよび使用終期Cにおける電池の内部抵抗RBと基準充電量QVとの関係を示す基準内部抵抗特性線である。   Similarly, the characteristic lines AR, BR, and CR are the internal resistance RB of the battery in the initial use period A, the intermediate use period B, and the final use period C of the battery, which are obtained in advance based on the design data or test data of the lithium ion battery. It is a reference | standard internal resistance characteristic line which shows the relationship with the reference | standard charge amount QV.

図2に示すように、使用初期Aにおける基準起電圧特性線Aeでは、起電圧eBが100%のとき、基準充電量QVが100%となるが、使用期間Bの基準起電圧特性線Beでは、起電圧eBが100%のとき、基準充電量QVは67%に、そして、使用終期Cにおける基準起電圧特性線Ceでは、起電圧eBが100%のとき、基準充電量QVは50%に減少する特性となる。   As shown in FIG. 2, in the reference electromotive voltage characteristic line Ae in the initial use A, when the electromotive voltage eB is 100%, the reference charge amount QV is 100%, but in the reference electromotive voltage characteristic line Be in the use period B, When the electromotive voltage eB is 100%, the reference charge amount QV is 67%. In the reference electromotive voltage characteristic line Ce at the end of use C, when the electromotive voltage eB is 100%, the reference charge amount QV is 50%. It becomes a decreasing characteristic.

また、内部抵抗特性線AR、BR、CRは、図2に示すように、使用初期Aにおける満充電状態(充電量100%)での内部抵抗RBを抵抗指数1としたとき、使用中期Bにおける満充電状態(充電量67%)での内部抵抗RBが抵抗指数1.5、使用終期Cにおける満充電状態(充電量50%)での内部抵抗RBが抵抗指数2となるように、使用時間の増加とともに内部抵抗RBが増大するものとして設定している。   Further, as shown in FIG. 2, the internal resistance characteristic lines AR, BR, and CR are obtained when the internal resistance RB in the fully charged state (charge amount 100%) in the initial use A is set to the resistance index 1, and in the middle use B. Use time so that the internal resistance RB in the fully charged state (charge amount 67%) has a resistance index of 1.5, and the internal resistance RB in the fully charged state (charge amount 50%) at the end of use C has a resistance index of 2. It is set that the internal resistance RB increases with the increase of.

この図2から、充放電動作において内部抵抗の大きい電池は内部電圧降下の増加により起電圧が低下し、起電圧の低下した電池は残存充電量が低下することが理解できる。   From FIG. 2, it can be understood that the battery having a large internal resistance in the charge / discharge operation has a lower electromotive voltage due to an increase in the internal voltage drop, and a battery having a decreased electromotive voltage has a lower remaining charge.

当然、残存充電量の低下した電池は、内部電圧降下が大きくかつ起電圧が低いため、放電可能時間は短くなる。   Naturally, a battery with a reduced remaining charge has a large internal voltage drop and a low electromotive voltage, and therefore the dischargeable time is shortened.

この図2において、通常使用範囲の起電圧のレベルをL0レベル(起電圧100%)からLlレベル(起電圧86%)とし、通常使用下限レベルをLlレベルからL2レベル(起電圧84%)とし、使用限界レベルをL2レベルからL3レベル(起電圧74%)とすれば、同じ起電圧レベルにおいて、使用時間の経過に伴って内部抵抗が増加することにより、それぞれ使用初期A、使用中期B、使用終期Cにおける起電圧‐充電量特性が、特性線Ae、Be、Ceで示すように変化し、満充電時の充電量が次第に減少する。これは、内部抵抗によって電池の充電量を補正できることを示している。   In FIG. 2, the level of the electromotive voltage in the normal use range is changed from the L0 level (electromotive voltage 100%) to the L1 level (electromotive voltage 86%), and the normal use lower limit level is changed from the L1 level to the L2 level (electromotive voltage 84%). If the use limit level is changed from the L2 level to the L3 level (electromotive voltage 74%), the internal resistance increases as the use time elapses at the same electromotive voltage level. The electromotive voltage-charge amount characteristic at the end of use C changes as indicated by characteristic lines Ae, Be, Ce, and the charge amount at the time of full charge gradually decreases. This indicates that the charge amount of the battery can be corrected by the internal resistance.

充放電動作のとき、充電量と起電圧の関係を示す起電圧特性線Ae、Be、Ceおよび、充電量と内部抵抗の関係を示す内部抵抗特性線AR、BR、CRは、それぞれ、L0〜Llレベル間はおおむね直線的に変化する特性を示し、Ll〜L2間はL0〜Ll間よりも起電圧、内部抵抗の変化量が増加する特性を示し、L2〜L3間は、さらに変化量が急激に増加する特性を示す。   In the charge / discharge operation, electromotive voltage characteristic lines Ae, Be, Ce indicating the relationship between the charge amount and the electromotive voltage, and internal resistance characteristic lines AR, BR, CR indicating the relationship between the charge amount and the internal resistance are L0 to L0, respectively. Between Ll levels, it shows a characteristic that changes almost linearly, between Ll and L2 shows a characteristic that the amount of change in electromotive voltage and internal resistance increases than between L0 and L1, and between L2 and L3, there is a further change amount It shows a rapidly increasing characteristic.

起電圧特性線Ae、Be、Ceで示すように、使用期間Aにおける満充電量は、充電量100%であるのに対して、使用中期Bにおける満充電量は、使用初期Aにおける満充電量100%の1/1.5=67%に減少し、使用終期Cにおける満充電量は、さらに、使用初期Aにおける満充電量100%の1/2=50%に減少する。そして、このとき、内部抵抗RBは、使用初期Aにおいて満充電時(充電量100%)に内部抵抗は抵抗指数1であるが、使用中期Bにおいては、満充電時(充電量67%)に内部抵抗は抵抗指数1.5となり、使用終期Cにおいては満充電時(充電量50%)に内部抵抗は抵抗指数2に大幅に増大する。   As shown by the electromotive voltage characteristic lines Ae, Be, and Ce, the full charge amount in the use period A is 100%, while the full charge amount in the in-use period B is the full charge amount in the initial use A. The full charge amount at the end of use C is further reduced to 1/2 = 50% of 100% of the full charge amount at the initial stage of use A. At this time, the internal resistance RB has a resistance index of 1 when fully charged in the initial use A (charge amount 100%), but at the time of full charge (charge amount 67%) in the middle period of use B. The internal resistance becomes a resistance index of 1.5, and at the end of use C, the internal resistance greatly increases to the resistance index of 2 when fully charged (charge amount 50%).

また、使用期間A、B、Cの起電圧レベルを同一値のL0レベル:eBL0(起電圧100%)、L1レベル:eBLl(起電圧86%)、L2レベル:eBL2(起電圧84%)、L3レベル:eBL3(起電圧74%)とすれば、満充電時の充電量が、起電圧特性線Ae、Be、Ceから理解できるように、使用初期Aでは100%、使用中期Bでは67%、使用終期Cでは50%と低下し、そして、これに合わせて、内部抵抗RBが内部抵抗特性AR、BR、CRで示すようにBLOAからBLOB、BLOCに増加する。   In addition, the electromotive voltage levels of the use periods A, B, and C are the same values of L0 level: eBL0 (electromotive voltage 100%), L1 level: eBLl (electromotive voltage 86%), L2 level: eBL2 (electromotive voltage 84%), L3 level: If eBL3 (electromotive voltage 74%), as can be understood from the electromotive voltage characteristic lines Ae, Be, Ce, the charge amount at full charge is 100% in the initial use A and 67% in the intermediate use B At the end of use C, it decreases to 50%, and accordingly, the internal resistance RB increases from BLOA to BLOB, BLOC as indicated by the internal resistance characteristics AR, BR, CR.

したがって、充電量補正は使用初期における内部抵抗を基準内部抵抗に設定し、増加した内部抵抗を基準内部抵抗に対する指数として表すと、この内部抵抗指数に応じて充電量の補正を行うことができる。   Therefore, in the charge amount correction, when the internal resistance in the initial stage of use is set as the reference internal resistance, and the increased internal resistance is expressed as an index with respect to the reference internal resistance, the charge amount can be corrected according to the internal resistance index.

この発明は、このようなリチウムイオン電池の特性を利用して、電池の充放電動作を監視制御するものであり、図1に、この発明の実施例による電池の充放電動作状態監視制御装置のブロック構成図を示す。   The present invention monitors and controls the charging / discharging operation of the battery by utilizing the characteristics of such a lithium ion battery. FIG. 1 shows a state of the charging / discharging operation state monitoring control device for a battery according to the embodiment of the present invention. A block diagram is shown.

図1において、20は、動作状態の監視対象となる蓄電設備である。この蓄電設備20は、起電圧eBを生じ、内部抵抗RBを有するリチウムイオン電池21と、この電池21を充電する発電装置22、電池21から供給される電力により駆動される推進装置23および補助動力機器24とで構成される。さらに、電池の端子電圧VBを検出する電圧検出器VDと電池の充放電電流IBを検出する電流検出器SHが設けられている。   In FIG. 1, reference numeral 20 denotes a power storage facility that is an operation state monitoring target. The power storage facility 20 generates an electromotive voltage eB, a lithium ion battery 21 having an internal resistance RB, a power generator 22 that charges the battery 21, a propulsion device 23 that is driven by power supplied from the battery 21, and auxiliary power. It is comprised with the apparatus 24. FIG. Further, a voltage detector VD for detecting the battery terminal voltage VB and a current detector SH for detecting the charge / discharge current IB of the battery are provided.

このような蓄電設備20の電池の基準となるデータを設定する手段として、基準内部抵抗パターン設定部1、基準起電圧パターン設定部8および基準電圧設定部9が設けられている。   A reference internal resistance pattern setting unit 1, a reference electromotive voltage pattern setting unit 8, and a reference voltage setting unit 9 are provided as means for setting data serving as a reference for the battery of the power storage facility 20.

基準内部抵抗パターン設定部1は、設計、または試験で得られた電池の使用初期Aにおける基準内部抵抗特性線AR、およびこれを基準として予想される使用中期Bにおける基準内部抵抗特性線BR、使用終期Cにおける基準内部抵抗特性線BRを夫々基準内部抵抗パターンとして設定する手段である。   The reference internal resistance pattern setting unit 1 includes a reference internal resistance characteristic line AR in the initial use A of the battery obtained by design or test, and a reference internal resistance characteristic line BR in the middle use B expected based on this. This is means for setting the reference internal resistance characteristic line BR at the end C as a reference internal resistance pattern.

基準起電圧パターン設定部8には、予め設定された図2に示す、電池21の使用初期Aにおける起電圧特性線Ae、使用中期Bにおける起電圧特性線Be、使用終期Cにおける起電圧特性線Ceのパターンおよび管理電圧レベルL0〜L3などが基準起電圧データとして設定される。   The reference electromotive voltage pattern setting unit 8 includes preset electromotive voltage characteristic lines Ae at the initial use A of the battery 21, electromotive voltage characteristic lines Be at the middle use B, and electromotive voltage characteristic lines at the end use C shown in FIG. The Ce pattern, the management voltage levels L0 to L3, and the like are set as reference electromotive voltage data.

例えば、使用初期Aの起電圧特性線Aeであれば、L0レベル=起電圧eBL0(起電圧100%)=充電量100%、Llレベル=起電圧eBLl(起電圧86%)=充電量30%等のデータおよび特性線Aeのパターンを設定する。また、使用中期Bの起電圧特性線Beや、使用終期Cの起電圧特性線Ceもそのパターンを設定記憶する。さらに、通常使用範囲のL0〜Llレベルは、起電圧が100%から86%に、充電量が100%から30%に、および内部抵抗RBがRBL0AからRBL1Aに略直線的に変化する範囲であり、使用下限レベルのLl〜L2レベルは、起電圧が86%から84%へ、充電量が30%から20%へ減少する範囲、使用限界レベルのL2〜L3レベルは起電圧が84%から74%へ、充電量は20%〜10%以下へ急激に減少する範囲とした基準動作パターンも設定格納しておく。   For example, in the case of the electromotive voltage characteristic line Ae in the initial use A, L0 level = electromotive voltage eBL0 (electromotive voltage 100%) = charge amount 100%, Ll level = electromotive voltage eBLl (electromotive voltage 86%) = charge amount 30% Etc. and the pattern of the characteristic line Ae are set. The patterns are also set and stored in the electromotive voltage characteristic line Be in the middle period of use B and the electromotive voltage characteristic line Ce in the period of use C. Furthermore, the L0 to Ll levels in the normal use range are ranges in which the electromotive voltage changes from 100% to 86%, the charge amount changes from 100% to 30%, and the internal resistance RB changes substantially linearly from RBL0A to RBL1A. The lower limit levels L1 to L2 are the ranges where the electromotive voltage decreases from 86% to 84% and the charging amount is decreased from 30% to 20%. The L2 to L3 levels of the use limit levels are the electromotive voltages from 84% to 74%. In addition, a reference operation pattern in which the charge amount is rapidly reduced to 20% to 10% or less is set and stored.

基準電圧設定部9には、図2に示すL0レベルの起電圧を基準起電圧eBL0として設定する。設定した基準起電圧eBL0は使用する電池の使用初期Aにおける充電量100%となる満充電時の最高電圧とし、全動作範囲の基準電圧(100%起電圧)とする他、電池の上限電圧とする。   In the reference voltage setting unit 9, the electromotive voltage at the L0 level shown in FIG. 2 is set as the reference electromotive voltage eBL0. The set reference electromotive voltage eBL0 is the maximum voltage at the time of full charge at which the charge amount is 100% in the initial use A of the battery to be used, and the reference voltage (100% electromotive voltage) of the entire operation range, To do.

微小電流検出部2は、電流検出器SHで検出された電池の充放電電流IBiが微小電流になったことを検出するもので、これを検出したとき検出信号S1を発生する。微小電流は、この発明では、電池の定格電流値の数%、例えば5%程度以下の電流に設定している。   The minute current detector 2 detects that the charge / discharge current IBi of the battery detected by the current detector SH has become a minute current, and generates a detection signal S1 when this is detected. In the present invention, the minute current is set to a current of several percent of the rated current value of the battery, for example, about 5% or less.

近似起電圧検出部3は、この微小電流検出部2から微小電流検出信号S1を受けたとき、電圧検出器VDで検出された電池の端子電圧VBiを読取り、これを電池の近似起電圧eBriとして保持する手段である。   When the approximate electromotive voltage detection unit 3 receives the micro current detection signal S1 from the micro current detection unit 2, the approximate electromotive voltage detection unit 3 reads the terminal voltage VBi of the battery detected by the voltage detector VD and uses this as the approximate electromotive voltage eBri of the battery. It is a means to hold.

実電圧電流記憶部4は、電池状態監視処理部13が常時監視している電流検出器SHで検出される電池21の充放電電流IBiの変化を検知したときこれから出力される計測指令信号Sに基づいて電圧検出器VDおよび電流検出器SHで検出された電池の実電圧VBiおよび実電流IBiを読取って、記憶する手段である。実電圧電流記憶部4は、今回の計測指令信号Sで読取り、記憶した実電圧VBi2、実電流IBi2と、直前の計測指令信号Sで読取り、記憶した実電圧VBi1および実電流IBi1とを保持する。したがって、実電圧電流記憶部4は、電池21の電流IBiの変化の直前の実電圧VBi1および実電流IBi1と、直後の実電圧VBi2、実電流IBi2とを記憶、保持する。   The actual voltage / current storage unit 4 detects the change in the charge / discharge current IBi of the battery 21 detected by the current detector SH constantly monitored by the battery state monitoring processing unit 13, and outputs a measurement command signal S to be output from now on. This is means for reading and storing the actual voltage VBi and the actual current IBi of the battery detected by the voltage detector VD and the current detector SH. The actual voltage / current storage unit 4 reads and stores the actual voltage VBi2 and actual current IBi2 read and stored with the current measurement command signal S, and holds the actual voltage VBi1 and actual current IBi1 read and stored with the immediately preceding measurement command signal S. . Therefore, the actual voltage / current storage unit 4 stores and holds the actual voltage VBi1 and the actual current IBi1 immediately before the change of the current IBi of the battery 21, and the actual voltage VBi2 and the actual current IBi2 immediately after the change.

実内部抵抗演算部5は、実電圧電流記憶部4に記憶された電流変化の直前の実電圧VBi1、実電流IBi1と、直後の実電圧VBi2、実電流IBi2に基づいて、次の(5)または(6)式の何れかを用いて演算により実内部抵抗RBiを求める手段である。   Based on the actual voltage VBi1 and actual current IBi1 immediately before the current change stored in the actual voltage / current storage unit 4, and the actual voltage VBi2 and actual current IBi2 immediately after that, Alternatively, it is means for obtaining the actual internal resistance RBi by calculation using any of the equations (6).

RBi=(VBi2−VBi1)÷(IBi2−IBi1)・・・・(5)
RBi=(VBi1−VBi2)÷(IBi1−IBi2)・・・・(6)
なお、(5)式は、変化直前の実電圧VBi1より直後実電圧VBi2が高いときに用い、(6)式は、直後実電圧VBi2が変化直前の実電圧VBi1より高いときに用いる。
RBi = (VBi2−VBi1) ÷ (IBi2−IBi1) (5)
RBi = (VBi1-VBi2) / (IBi1-IBi2) (6)
The equation (5) is used when the actual voltage VBi2 immediately after the actual voltage VBi1 just before the change is higher, and the equation (6) is used when the actual voltage VBi2 is immediately higher than the actual voltage VBi1 just before the change.

実電圧降下演算部6は、内部抵抗演算部5で求められた実内部抵抗RBiと、実電圧電流記憶部4から読取った実電流IBi1、IBi2とから次の(7)または(8)式の何れかを用いて演算により実電圧降下VBDiを求める手段である。   The actual voltage drop calculation unit 6 calculates the following equation (7) or (8) from the actual internal resistance RBi obtained by the internal resistance calculation unit 5 and the actual currents IBi1 and IBi2 read from the actual voltage / current storage unit 4. It is a means for obtaining the actual voltage drop VBDi by calculation using either of them.

VBDi=RBi×IBi2・・・・(7)
VBDi=RBi×IBi1・・・・(8)
実起電圧演算部7は、実電圧降下演算部6で求められた実電圧降下VBDiと実電圧電流記憶部4に記憶された前後の計測指令Sで検出した実電圧VBi1、VBi2とから充電時は(9)式、また放電時は(10)式を用いて実起電圧eBiを演算により求める手段である。
VBDi = RBi × IBi2 (7)
VBDi = RBi × IBi1 (8)
The actual electromotive voltage calculation unit 7 is charged from the actual voltage drop VBDi obtained by the actual voltage drop calculation unit 6 and the actual voltages VBi1 and VBi2 detected by the previous and subsequent measurement commands S stored in the actual voltage / current storage unit 4. Is a means for obtaining the actual electromotive voltage eBi by calculation using the equation (9) and at the time of discharge using the equation (10).

eBi=VBi1−VBDi・・・・(9)
eBi=VBi2+VBDi・・・・(10)
実起電圧演算部7で求められた実起電圧eBiは状態監視処理部13および比較補正演算部11に与えられる。
eBi = VBi1-VBDi (9)
eBi = VBi2 + VBDi (10)
The actual electromotive voltage eBi obtained by the actual electromotive voltage calculation unit 7 is given to the state monitoring processing unit 13 and the comparison correction calculation unit 11.

内部抵抗比較部10は、基準内部抵抗パターン設定部1に設定された基準内部抵抗特性線AR、BR、CRと実内部抵抗演算部5により求められた実内部抵抗RBiとを比較して、実内部抵抗RBiに近い基準抵抗値RBLを選択し、選択した基準抵抗値RBLに対する実内部抵抗RBiの変化比率を求め、これを充電量補正値S2として比較補正演算部11に出力する。   The internal resistance comparison unit 10 compares the reference internal resistance characteristic lines AR, BR, CR set in the reference internal resistance pattern setting unit 1 with the actual internal resistance RBi obtained by the actual internal resistance calculation unit 5, A reference resistance value RBL close to the internal resistance RBi is selected, a change ratio of the actual internal resistance RBi with respect to the selected reference resistance value RBL is obtained, and this is output to the comparison correction calculation unit 11 as a charge amount correction value S2.

例えば、図2において実内部抵抗RBiが抵抗指数1.05であったとすれば、この実内部抵抗RBiに最も近い基準内部抵抗RBL0A(使用初期Aにおける基準内部抵抗)を選択して抵抗変化比率演算を行えば、基準値(抵抗指数1.0)に対する実内部抵抗(抵抗指数1.05)の変化比率は、1.05÷1=1.05となり、実内部抵抗RBiが基準内部抵抗RBLに対して5%増加しているので、これの逆数1/1.05を充電量補正値S2として出力する。   For example, if the actual internal resistance RBi in FIG. 2 has a resistance index of 1.05, the reference internal resistance RBL0A (reference internal resistance at the initial use A) closest to the actual internal resistance RBi is selected to calculate the resistance change ratio. , The change ratio of the actual internal resistance (resistance index 1.05) to the reference value (resistance index 1.0) is 1.05 / 1 = 1.05, and the actual internal resistance RBi becomes the reference internal resistance RBL. On the other hand, since the increase is 5%, the reciprocal 1 / 1.05 is output as the charge amount correction value S2.

比較補正演算部11は基準起電圧データ設定部8に設定された図2に示す起電圧‐充電量の関係を示す起電圧特性線Ae〜Ceから、実起電圧eBiに対する基準充電量QVを求め、これに、内部抵抗比較部10からの補正値S2を乗じて、実内部抵抗RBiの基準内部抵抗に対する増減比率による基準充電量QVの補正演算を行い、補正充電量QZを求める。   The comparison correction calculation unit 11 obtains the reference charge amount QV with respect to the actual electromotive voltage eBi from the electromotive voltage characteristic lines Ae to Ce showing the relationship between the electromotive voltage and the charge amount shown in FIG. 2 set in the reference electromotive voltage data setting unit 8. Then, by multiplying this by the correction value S2 from the internal resistance comparison unit 10, a correction calculation of the reference charge amount QV based on the increase / decrease ratio of the actual internal resistance RBi with respect to the reference internal resistance is performed to obtain the corrected charge amount QZ.

例えば、使用初期Aにおいて、図2で実起電圧eBiがeBLl=86%、実内部抵抗RBiが抵抗指数で1.1であれば、使用初期Aの起電圧特性線Aeと実起電圧86%の交点P0から基準充電量QV=30%が求まる。次に、内部抵抗比較部10で、使用初期Aの内部抵抗特性線ARから、この特性線上の基準充電量QV=30%となるRBL1A点の基準内部抵抗(=抵抗指数1.1)を読取って基準内部抵抗RBLを抵抗指数で1.1とする。これに基づいて、充電量補正値S2は、実内部抵抗RBiと基準内部抵抗RBLとの比として求まれるので、この場合の補正値S2は次の式のとおり1となる。   For example, in the initial use A, if the actual electromotive voltage eBi is eBLl = 86% in FIG. 2 and the actual internal resistance RBi is 1.1 in the resistance index, the electromotive voltage characteristic line Ae in the initial use A and the actual electromotive voltage 86% The reference charge amount QV = 30% is obtained from the intersection P0. Next, the internal resistance comparison unit 10 reads the reference internal resistance (= resistance index 1.1) at the point RBL1A where the reference charge amount QV = 30% on the characteristic line from the internal resistance characteristic line AR in the initial use A. Thus, the reference internal resistance RBL is set to 1.1 as a resistance index. Based on this, the charge amount correction value S2 is obtained as a ratio of the actual internal resistance RBi and the reference internal resistance RBL. In this case, the correction value S2 is 1 as shown in the following equation.

補正値S2=(実内部抵抗RBi=1.1)÷
(基準内部抵抗RBL=1.1)=1.0
起電圧特性線Ae上の実起電圧eBi=86%の点P0の基準充電量QVは30%であるから、比較補正演算部11で、これに補正値S=1.0を乗じて求めた補正充電量QZは30%となりこれが状態監視処理部13に出力される。
Correction value S2 = (actual internal resistance RBi = 1.1) /
(Reference internal resistance RBL = 1.1) = 1.0
Since the reference charge amount QV at the point P0 at the actual electromotive voltage eBi = 86% on the electromotive voltage characteristic line Ae is 30%, the comparison correction calculation unit 11 multiplies this by the correction value S = 1.0. The corrected charge amount QZ is 30%, which is output to the state monitoring processing unit 13.

電流積算充電量演算部12は、検出した電池の実際の充放電電流IBiを、この電流が流れている時間の間、充電時は加算方向に積算し、放電時は減算方向に積算して、実電流積算充電量QHを求める動作をする。このような残存充電量の求め方を、ここでは、AH方式と呼ぶ。そして、AH方式により求めた電流積算充電量QHと補正充電量QZとの偏差が大きくなった場合は、電流積算充電量QHを補正充電量QZに置きかえることにより補正し、補正された電流積算充電量QHeを求めるものである。したがって、QHeは、QZと等しい値をとる。ここで求めたQHおよびQHeは状態監視処理部13へ出力される。電流積算充電量演算部12では、このようにして、電流積算充電量QHの補正が行われた後は、この補正された電流積算充電量QHeを基にして、充放電電流IBiを積算して電流積算充電量QHが求められる。   The current integrated charge amount calculation unit 12 integrates the detected actual charging / discharging current IBi of the battery in the addition direction at the time of charging, and in the subtraction direction at the time of discharging, The operation for obtaining the actual current integrated charge amount QH is performed. This method of obtaining the remaining charge amount is referred to herein as the AH method. When the deviation between the current accumulated charge amount QH obtained by the AH method and the corrected charge amount QZ becomes large, the current accumulated charge amount QH is corrected by replacing it with the corrected charge amount QZ, and the corrected current accumulated charge is corrected. The amount QHe is obtained. Therefore, QHe takes a value equal to QZ. The QH and QHe obtained here are output to the state monitoring processing unit 13. After the current integrated charge amount QH is corrected in this way, the current integrated charge amount calculation unit 12 integrates the charge / discharge current IBi based on the corrected current integrated charge amount QHe. An accumulated current charge amount QH is obtained.

状態監視処理部13は、前記の各部で検出された検出値、設定された設定値や、演算により求められた電池の実電圧VBi、実電流IBi、基準起電圧eBL、基準内部抵抗RBL、実起電圧eBi、実内部抵抗RBi、その他を全部読取って記憶し、各データの監視制御、表示部14の制御、およびその他の制御処理を行う。   The state monitoring processing unit 13 detects the detected values detected by the respective units, the set set values, the battery actual voltage VBi, the actual current IBi, the reference electromotive voltage eBL, the reference internal resistance RBL, the actual The electromotive voltage eBi, the actual internal resistance RBi, and others are all read and stored, and monitoring control of each data, control of the display unit 14, and other control processes are performed.

この状態監視処理部13には、放電可能時間を予測する機能が備えられている。すなわち、比較補正演算部11で求められた補正充電量QZ、あるいは電流積算充電量演算部12で求められた実電流積算充電量QHまたは補正電流積算充電量QHeを、放電電流設定部16に予め設定された放電電流Isで除算することにより放電可能時間Hを求め、これを表示部14に表示し、操作員に報知する。   The state monitoring processing unit 13 has a function of predicting a dischargeable time. That is, the corrected charge amount QZ obtained by the comparison correction calculation unit 11 or the actual current accumulated charge amount QH or the corrected current accumulated charge amount QHe obtained by the current integrated charge amount calculation unit 12 is stored in the discharge current setting unit 16 in advance. The dischargeable time H is obtained by dividing by the set discharge current Is, and this is displayed on the display unit 14 to notify the operator.

表示記録部14は、監視処理部13に集められた監視データを表示して蓄電設備の操作員の監視操作を援助するとともに、異常状態があれば、警報部15を作動させて操作員へ警報を報知する。   The display recording unit 14 displays the monitoring data collected in the monitoring processing unit 13 to assist the monitoring operation of the operator of the power storage facility, and if there is an abnormal state, activates the alarm unit 15 to alert the operator. Is notified.

次に具体的な監視制御項目について説明する。
1)充電量監視
従来から用いられている電池の充電量監視方式は、図1に示す電流積算充電量演算部12でAH方式により求めた電流積算充電量QHを監視する方式が一般的であるが、このAH方式による充電量QHを監視する方式では電池の劣化に伴う充電量QHの補正が行われない。
Next, specific monitoring control items will be described.
1) Charge amount monitoring Conventionally, the charge amount monitoring method of the battery used is generally a method of monitoring the current accumulated charge amount QH obtained by the AH method by the current accumulated charge amount calculation unit 12 shown in FIG. However, in the method of monitoring the charge amount QH by the AH method, the charge amount QH accompanying the deterioration of the battery is not corrected.

この発明では、充電量の監視を起電圧による充電量Qを監視する方式(起電圧方式)とAH方式による充電量QHによる方式を併用することにして、起電圧方式とAH方式の両方式において電池劣化に伴う充電量の低下の補正を行うことにしている。   In the present invention, the charge amount is monitored by using both the method of monitoring the charge amount Q by the electromotive voltage (electromotive voltage method) and the method by the charge amount QH of the AH method. Correction of a decrease in the amount of charge due to battery deterioration is performed.

この発明では、電池の起電圧値により充電量(残存充電量)QVを求め、この残存充電量を内部抵抗の変化比率により補正した補正残存充電量QZを監視するようにしているが、充電量監視に起電圧方式とAH方式を併用して、AH方式は比較的短期間の充放電サイクルの充電量監視に用い、起電圧方式は電池の使用開始から使用終期に至る長期間に亘る充電量監視に用いるようにすることもできる。   In this invention, the charge amount (remaining charge amount) QV is obtained from the electromotive voltage value of the battery, and the corrected remaining charge amount QZ obtained by correcting the remaining charge amount by the change ratio of the internal resistance is monitored. The electromotive voltage method and the AH method are used together for monitoring, the AH method is used for monitoring the charge amount of a relatively short charge / discharge cycle, and the electromotive voltage method is the charge amount over a long period from the start of use to the end of use of the battery. It can also be used for monitoring.

なぜなら、AH方式は、特性のバラツキのある電池が繰り返し充放電動作を積算するので、電流積算のたびに特性のバラツキが積算されて拡大するから、適当な短期間でリセット、すなわち、補正残存充電量QZに置き換える補正を行いながら充電量の監視、管理を行うのに適し、起電圧方式は長期間で変化する内部抵抗の増加によって変化する充電量の監視、管理に適しているから両方式を併用することにより、より的確な充電量の監視ができるようになるからである。   This is because, in the AH method, a battery with characteristic variation repeatedly accumulates charge / discharge operations, so that the characteristic variation is accumulated and expanded each time the current is accumulated. It is suitable for monitoring and managing the charge amount while correcting for the amount QZ, and the electromotive voltage method is suitable for monitoring and managing the charge amount that changes due to an increase in internal resistance that changes over a long period. This is because the charge amount can be more accurately monitored by using the combination.

放電電流指定部16に放電電流IBsを指定し、この電流で、起電圧方式で求めた基準充電量QVとAH方式で求めた充電量QHを除算(充電量QVまたはQH)÷(放電電流IBs)することにより放電可能時間Hを求めることができるので、これで放電可能時間Hを予測することがきる。この演算処理は、状態監視処理部13で行う。   The discharge current IBs is designated in the discharge current designating unit 16, and the reference charge amount QV obtained by the electromotive voltage method and the charge amount QH obtained by the AH method are divided by this current (charge amount QV or QH) / (discharge current IBs). ), The dischargeable time H can be obtained, so that the dischargeable time H can be predicted. This calculation process is performed by the state monitoring processing unit 13.

また、実放電電流IBiを用いて放電可能時間時間H=QV÷IBiを演算すれば、実放電電流IBiによる放電可能時間Hを予測することができる。
2)充電動作
2−1)定電流、定電圧充電動作(図3参照)
定電流充電‐定電圧充電を行った場合の動作波形を図3に示す。図3の(a)は、電池起電圧eBと電池端子電圧VBの時間的変化を示し、(b)は充電電流IB、(c)は内部抵抗RB、(d)は電圧降下VBDの時間的変化を示す。
Further, if the dischargeable time period H = QV ÷ IBi is calculated using the actual discharge current IBi, the dischargeable time period H by the actual discharge current IBi can be predicted.
2) Charging operation 2-1) Constant current and constant voltage charging operation (see FIG. 3)
FIG. 3 shows operation waveforms when constant current charging-constant voltage charging is performed. FIG. 3A shows temporal changes in the battery electromotive voltage eB and the battery terminal voltage VB, FIG. 3B shows the charging current IB, FIG. 3C shows the internal resistance RB, and FIG. 3D shows the voltage drop VBD over time. Showing change.

定電流充電期間tl〜t2〜t4で、充電により電池端子電圧VBが所定電圧VBCに達したことを検出すると、充電監視処理部13は、発電装置22への充電制御指令を定電流充電制御指令から定電圧充電制御指令に切り替え、t2〜t4〜t5〜t7において定電圧充電を行い、電池電圧VBが満充電電圧VBFに達したところで、満充電と判定して充電を完了する。   When it is detected that the battery terminal voltage VB has reached the predetermined voltage VBC by charging in the constant current charging period tl to t2 to t4, the charge monitoring processing unit 13 sends a charging control command to the power generator 22 as a constant current charging control command. Is switched to a constant voltage charge control command, and constant voltage charge is performed at t2 to t4 to t5 to t7. When the battery voltage VB reaches the full charge voltage VBF, it is determined that the battery is fully charged and the charging is completed.

図3(a)における実線の特性線Aeは、この時の使用初期Aにおける起電圧の変化を示し、点線の特性線AVは同じく使用初期Aにおける電池端子電圧の変化を示す。また、特性線BeおよびBVは、それぞれ使用中期Bにおける起電圧および端子電圧の変化を示す。そして、特性線CeおよびCVは、それぞれ使用終期Cにおける起電圧および端子電圧の変化を示し、内部抵抗の増加に伴い起電圧が低下する傾向を示している。   A solid characteristic line Ae in FIG. 3A indicates a change in electromotive voltage in the initial use A at this time, and a dotted characteristic line AV similarly indicates a change in battery terminal voltage in the initial use A. Characteristic lines Be and BV indicate changes in electromotive voltage and terminal voltage in the middle period of use B, respectively. Characteristic lines Ce and CV show changes in the electromotive voltage and terminal voltage at the end of use C, respectively, and show a tendency that the electromotive voltage decreases as the internal resistance increases.

内部抵抗RBは、図3(c)に示すように時間の経過とともに充電が進むにしたがって減少する。ここに示す特性線AR、BR、CRはそれぞれ使用初期A、使用中期B、使用終期Cの特性を示す。   As shown in FIG. 3C, the internal resistance RB decreases as charging progresses with time. The characteristic lines AR, BR, and CR shown here indicate the characteristics of the initial use A, the intermediate use B, and the final use C, respectively.

また、電池内部電圧降下VBDは、図3(d)に示すように内部抵抗の変化と同じく、充電時間が進むにしたがって減少する特性を示す。ここに示す特性線AD、BD、CDはそれぞれ使用初期A、使用中期B、使用終期Cの特性を示す。   Further, as shown in FIG. 3D, the battery internal voltage drop VBD exhibits a characteristic that decreases as the charging time proceeds, as in the case of the change in internal resistance. The characteristic lines AD, BD, and CD shown here indicate the characteristics of the initial use A, the intermediate use B, and the final use C, respectively.

使用初期Aにおける場合、t5時点で充電が完了し、充電電流が微小になり、微小電流検出部2がこれを検出して信号Slを近似起電圧検出部3に与えると、近似起電圧検出部3は、このときの電池端子電圧VBiが実起電圧に近似するので、この端子電圧VBiを近似起電圧eBriとして保持する。   In the initial use A, charging is completed at time t5, the charging current becomes minute, and when the minute current detector 2 detects this and gives the signal Sl to the approximate electromotive voltage detector 3, the approximate electromotive voltage detector 3 holds the terminal voltage VBi as an approximate electromotive voltage eBri because the battery terminal voltage VBi at this time approximates the actual electromotive voltage.

すなわち、充電電流が微小となる充電終止領域では、電池内部電圧降下VBD(=IBi×RB)が微小となるから、端子電圧VBiと起電圧eBiとがほぼ等しくなるので、この時読取った端子電圧VBiを近似起電圧eBriとし、これを比較補正演算部11に与える。比較補正演算部11では、図2に示す起電圧特性線から、この近似起電圧eBriに対応する充電量QVを求める。   That is, since the battery internal voltage drop VBD (= IBi × RB) is small in the charge termination region where the charge current is small, the terminal voltage VBi and the electromotive voltage eBi are substantially equal. VBi is set as an approximate electromotive voltage eBri, which is supplied to the comparison correction calculation unit 11. The comparison correction calculation unit 11 obtains the charge amount QV corresponding to the approximate electromotive voltage eBri from the electromotive voltage characteristic line shown in FIG.

この近似起電圧検出部3で検出された近似起電圧eBRiは、比較補正演算部11で、実起電圧演算部7で演算により求められた実起電圧eBiと比較して、この実起電圧eBiを近似起電圧eBriで補正されるので、より正確な実起電圧eBiを求めることができる
2−2)充電電流変化充電動作(図4参照)
充電動作中の充電電流が変化した際の動作波形を図4に示す。
The approximate electromotive voltage eBRi detected by the approximate electromotive voltage detection unit 3 is compared with the actual electromotive voltage eBi obtained by the operation of the actual electromotive voltage calculation unit 7 by the comparison correction calculation unit 11 and compared with the actual electromotive voltage eBi. Is corrected by the approximate electromotive voltage eBri, so that a more accurate actual electromotive voltage eBi can be obtained. 2-2) Charging current change charging operation (see FIG. 4)
FIG. 4 shows operation waveforms when the charging current during the charging operation changes.

図4において、充電開始初期のtl〜t2点間では、充電電流が微小のIB1(例えば電池の定格電流の5%程度の電流)となっているので、この微小電流IB1を微小電流検出部2が検出して信号Slを近似起電圧検出部3に与える。近似起電圧検出部3は、この信号S1が与えられた時の電圧検出器VDで検出された電池端子電圧VBiを読取って、これを近似起電圧eBirとして保持する。   In FIG. 4, the charging current is very small IB1 (for example, about 5% of the rated current of the battery) between the tl and t2 points at the beginning of charging, and this minute current IB1 is used as the minute current detection unit 2. Is detected and the signal S1 is supplied to the approximate electromotive voltage detector 3. The approximate electromotive voltage detector 3 reads the battery terminal voltage VBi detected by the voltage detector VD when the signal S1 is given, and holds this as the approximate electromotive voltage eBir.

t2点で充電電流がIBlからIB2へ増加すると、状態監視処理部13がこの電流変化を検知して計測指令Sを実電圧実電流検出記憶部4、実内部抵抗演算部5、実電圧降下演算部6、実起電圧演算部7、内部抵抗比較部10、比較補正演算部11に与えて比較、演算等を行う。   When the charging current increases from IBl to IB2 at the point t2, the state monitoring processing unit 13 detects this current change and sends the measurement command S to the actual voltage actual current detection storage unit 4, actual internal resistance calculation unit 5, actual voltage drop calculation. This is given to the unit 6, the actual electromotive voltage calculation unit 7, the internal resistance comparison unit 10, and the comparison correction calculation unit 11 for comparison and calculation.

計測指令Sを受けた実電圧実電流検出記憶部4は、その直後の電圧検出器VDおよび電流検出器SHで検出した実電圧BVi2、実電流IBi2を読取って記憶、保持する。実電圧実電流検出記憶部4は、今回の計測指令Sで読取って記憶された実電圧VBi2、実電流IBi2とともに、直前の回の計測指令Sで読取って記憶した直前の実電圧VBi1、実電流IBi1も記憶、保持している。   Receiving the measurement command S, the actual voltage actual current detection storage unit 4 reads, stores and holds the actual voltage BVi2 and the actual current IBi2 detected by the voltage detector VD and the current detector SH immediately after that. The actual voltage actual current detection storage unit 4 reads the actual voltage VBi2 and actual current IBi2 read and stored in the current measurement command S, and the actual voltage VBi1 and actual current immediately before read and stored in the previous measurement command S. IBi1 is also stored and held.

計測指令Sにしたがって実内部抵抗演算部5は、実電圧電流記憶部4に記憶された今回の計測信号Sの直前、直後、すなわち、電流変化の直前、直後の実電圧VBi1、VBi2と、実電流IBi1、IBi2を読取り、これらに基づいて、前記の(5)または(6)式により内部抵抗RBiを演算により求める動作をする。   In accordance with the measurement command S, the actual internal resistance calculation unit 5 calculates the actual voltages VBi1 and VBi2 immediately before and immediately after the current measurement signal S stored in the actual voltage / current storage unit 4, that is, immediately before and immediately after the current change, The currents IBi1 and IBi2 are read, and based on these, an operation for obtaining the internal resistance RBi by the above equation (5) or (6) is performed.

実電圧降下演算部6も計測指令Sにしたがって、実内部抵抗演算部5から与えられた実内部抵抗RBiと実電圧電流記憶部4から読取った電流変化の直前、直後の実電流IBi1、IBi2とから前記の(7)または(8)式を用いて実電圧降下VBDiを求める演算を行う。   In accordance with the measurement command S, the actual voltage drop calculation unit 6 also includes the actual internal resistance RBi given from the actual internal resistance calculation unit 5 and the actual currents IBi1 and IBi2 immediately before and after the current change read from the actual voltage / current storage unit 4 To calculate the actual voltage drop VBDi using the above-described equation (7) or (8).

さらに、実起電圧演算部7は、計測指令Sにしたがって実電圧降下演算部6で求められた実電圧降下VBDiと実電圧電流記憶部4から読取った電流変化の直前、直後の実電圧VBi1、VBi2とから前記の(9)または(10)式により実起電圧eBiを求める演算処理をする。   Further, the actual electromotive voltage calculation unit 7 determines the actual voltage drop VBDi obtained by the actual voltage drop calculation unit 6 according to the measurement command S and the actual voltage VBi1 immediately before and immediately after the current change read from the actual voltage current storage unit 4, An arithmetic process for obtaining the actual electromotive voltage eBi from VBi2 by the above-described equation (9) or (10) is performed.

比較補正演算部11は図2に示す起電圧特性線、内部抵抗特性線と、実内部抵抗演算部5で求めた実内部抵抗RBiおよび実起電圧演算部7で求めた実起電圧eBiとを比較して残存基準充電量QVおよび補正残存充電量QZを求める演算処理をする。   The comparison correction calculation unit 11 includes the electromotive voltage characteristic line and the internal resistance characteristic line shown in FIG. 2, the actual internal resistance RBi obtained by the actual internal resistance calculation unit 5, and the actual electromotive voltage eBi obtained by the actual electromotive voltage calculation unit 7. Comparing is performed to obtain the remaining reference charge amount QV and the corrected remaining charge amount QZ.

例えば、図2において、実起電圧eBiが使用初期Aの起電圧特性線Ae上のeBLl(起電圧86%)、実内部抵RBiが抵抗指数1.1であれば、起電圧特性線Aeと実起電圧eBV=eBLl(起電圧86%)とが交わる点P0から残存基準充電量QV=30
%が求まる。
For example, in FIG. 2, if the actual electromotive voltage eBi is eBLl (electromotive voltage 86%) on the electromotive voltage characteristic line Ae at the initial use A and the actual internal resistance RBi is the resistance index 1.1, the electromotive voltage characteristic line Ae From the point P0 where the actual electromotive voltage eBV = eBLl (electromotive voltage 86%) intersects, the remaining reference charge amount QV = 30
% Is obtained.

実内部抵抗RBi=抵抗指数1.1と、充電量30%の縦線と交わる内部抵抗特性線上の内部抵抗と最も近い抵抗として、内部抵抗特性線ARの基準抵抗RBL1A点が選択され、この基準内部抵抗が抵抗指数1.1と判定される。実内部抵抗RBi=1.1の基準内部抵抗RBL1A=1.1に対する比率は1となるため充電量補正値は1となる。   The reference resistance RBL1A point of the internal resistance characteristic line AR is selected as the resistance closest to the internal resistance on the internal resistance characteristic line intersecting with the vertical line of the actual internal resistance RBi = resistance index 1.1 and the charge amount of 30%. The internal resistance is determined to be a resistance index of 1.1. Since the ratio of the actual internal resistance RBi = 1.1 to the reference internal resistance RBL1A = 1.1 is 1, the charge amount correction value is 1.

このため、比較補正演算部11で求められる補正充電量QZは
補正基準充電量QV=(残存基準充電量QV=30%)×(補正値=1)=30%
から30%が求まる。この場合は、実内部抵抗RBiと基準内部抵抗RBLとが等しいたため補正値が1となり、補正充電量QZが残存基準充電量QVと等しくなる。
For this reason, the correction charge amount QZ obtained by the comparison correction calculation unit 11 is: correction reference charge amount QV = (remaining reference charge amount QV = 30%) × (correction value = 1) = 30%
30% is obtained. In this case, since the actual internal resistance RBi and the reference internal resistance RBL are equal, the correction value is 1, and the correction charge amount QZ is equal to the remaining reference charge amount QV.

さらに、t3点で充電電流が、さらにIB2からIB3へ増加すると、この電流変化を状態監祝処理部13が検知して計測指令Sを出力し、前記と同様に変化時点の直前、直後の実電圧、実電流を読取って記憶を更新し、この更新したデータによって各部で演算処理を行う。   Further, when the charging current further increases from IB2 to IB3 at the point t3, the state monitoring processing unit 13 detects this current change and outputs a measurement command S. The memory is updated by reading the voltage and the actual current, and each part performs arithmetic processing based on the updated data.

このときのデータが、例えば、使用初期Aであり、電池の実起電圧eBが94%電圧、実内部抵抗RBiが抵抗指数1.2であったとした場合の補正残存充電量QZは、比較補正演算部11で次のような演算処理により求められる。   The corrected remaining charge amount QZ when the data at this time is, for example, the initial use A, the actual electromotive voltage eB of the battery is 94% voltage, and the actual internal resistance RBi is the resistance index 1.2 is a comparative correction. It is obtained by the following calculation process in the calculation unit 11.

まず、基準起電圧パターン設定部8に設定されている図2に示す使用初期Aの起電圧特性線Aeと起電圧94%が交わる点P1から70%の残存基準充電量QVが求められる。そしてこの充電量70%の縦線と実内部抵抗=抵抗指数1.2の横線との交点P2に実内部抵抗点が求まる。このP2点の内部抵抗=抵抗指数1.2は、図2に示した使用初期Aの基準内部内部抵抗線ARと充電量70%の縦線との交点P3の基準抵抗=抵抗指数1.05に最も接近している。   First, a residual reference charge amount QV of 70% is obtained from a point P1 where the electromotive voltage characteristic line Ae shown in FIG. 2 set in the reference electromotive voltage pattern setting unit 8 and the electromotive voltage 94% intersect. Then, the actual internal resistance point is obtained at the intersection P2 between the vertical line of 70% charge and the horizontal line of the actual internal resistance = resistance index 1.2. The internal resistance at the point P2 = resistance index 1.2 is equal to the reference resistance at the intersection P3 between the reference internal resistance line AR in the initial use A shown in FIG. Is the closest.

そこで、内部抵抗比較部10でこの実内部抵抗=抵抗指数1.2に最も近い基準内部抵抗としてP3点の抵抗指数1.05を選定し、これに基づいて充電量補正値S2を求める演算処理を行う。このときの充電量補正値S2は、
充電量補正値S2=(実内部抵抗RBi=抵抗指数1.2)
÷(基準内部抵抗RBL=抵抗指数1.05)=1.14
となる
この補正値S2に基づいて比較補正演算部11で補正充電量QZが求められる。補正充電量QZは、
補正残存充電量QZ=(残存基準充電量QV=70%)×
1÷(補正値S2=1.14)=61%
により求まり、61%となる。
Therefore, the internal resistance comparison unit 10 selects the resistance index 1.05 at the point P3 as the reference internal resistance closest to the actual internal resistance = resistance index 1.2, and calculates the charge amount correction value S2 based on this. I do. The charge amount correction value S2 at this time is
Charge amount correction value S2 = (actual internal resistance RBi = resistance index 1.2)
÷ (reference internal resistance RBL = resistance index 1.05) = 1.14
Based on this correction value S2, the correction charge calculating unit 11 obtains the correction charge amount QZ. The corrected charge amount QZ is
Corrected remaining charge QZ = (residual reference charge QV = 70%) ×
1 / (correction value S2 = 1.14) = 61%
To be 61%.

この場合は、実内部抵抗RBiが、基準内部抵抗RBLより増加しているため、補正残存充電量QZが残存基準充電量QVより減少側に補正される。   In this case, since the actual internal resistance RBi is higher than the reference internal resistance RBL, the corrected remaining charge amount QZ is corrected to be on the decrease side with respect to the remaining reference charge amount QV.

次の例は、使用終期Cでの使用中に、計測、演算により求められた実起電圧eBiが94%電圧、実内部抵抗RBiが抵抗指数2.0である場合の演算処理手順である。   The following example is a calculation processing procedure when the actual electromotive voltage eBi obtained by measurement and calculation is 94% voltage and the actual internal resistance RBi is the resistance index 2.0 during use at the end of use C.

前記の場合と同様に、まず、基準データ設定部8に設定されている図2に示す使用初期Cの起電圧特性線Ceと起電圧94%の交点P4から33%の残存基準充電量QVが求められる。そしてこの充電量33%の縦線と実内部抵抗=抵抗指数2の横線との交点P5に実内部抵抗点がプロットされる。この交点P5の実内部抵抗=2は、図2に示した使終期期Cの基準内部抵抗線CRと充電量33%の縦線との交点P6の基準抵抗=抵抗指数2.05に最も接近している。   As in the above case, first, the remaining reference charge amount QV of 33% from the intersection P4 of the electromotive voltage characteristic line Ce of the initial use C shown in FIG. Desired. The actual internal resistance point is plotted at the intersection P5 between the vertical line of the charge amount of 33% and the horizontal line of the actual internal resistance = resistance index 2. The actual internal resistance = 2 at the intersection P5 is closest to the reference resistance = resistance index 2.05 at the intersection P6 between the reference internal resistance line CR at the end-of-use period C shown in FIG. doing.

そこで、内部抵抗比較部10で、この実内部抵抗=抵抗指数2に最も近い基準内部抵抗として抵抗指数2.05を選定して充電量補正値S2求める演算処理を行う。   Therefore, the internal resistance comparison unit 10 selects the resistance index 2.05 as the reference internal resistance closest to the actual internal resistance = resistance index 2, and performs a calculation process for obtaining the charge amount correction value S2.

ここで、求めた充電量補正値S2は、
充電量補正値S2=(実内部抵抗RBi=抵抗指数2)÷
(基準内部抵抗RBL=抵抗指数2.05)=0.98
となる
この補正値S2に基づいて比較補正演算部11で求められる補正残存充電量QZは、
補正残存充電量QZ=(残存基準充電量QV=33%)×
1÷(補正値S2=0.98)=34%
となる。
Here, the obtained charge amount correction value S2 is:
Charge amount correction value S2 = (actual internal resistance RBi = resistance index 2) ÷
(Reference internal resistance RBL = resistance index 2.05) = 0.98
Based on this correction value S2, the correction remaining charge amount QZ obtained by the comparison correction calculation unit 11 is
Corrected remaining charge QZ = (residual reference charge QV = 33%) ×
1 / (correction value S2 = 0.98) = 34%
It becomes.

この場合は、実内部抵抗RBiが基準内部抵抗RBLより増加していないため、補正残存充電量QZが残存基準充電量QVより増加側に補正される。   In this case, since the actual internal resistance RBi has not increased from the reference internal resistance RBL, the corrected remaining charge amount QZ is corrected to an increase side with respect to the remaining reference charge amount QV.

当然、各演算部5、6、7、11では、電流変化前のデータはリセットして変化時点のデータで演算処理を行うが、変化前のデータは状態監視処理部13で記憶して時系列で変化するデータにより電池の動作状態の履歴を監視できるようにする。   Naturally, in each of the calculation units 5, 6, 7, and 11, the data before the current change is reset and the calculation process is performed with the data at the time of change, but the data before the change is stored in the state monitoring processing unit 13 and time-series The battery operating state history can be monitored based on the data that changes in (1).

さらに、t4点で充電電流IBがIB3から微小充電電流IB4に移行し、またはt5点で微小放電電流IB5へ移行したときは、微小電流になるため微小電流検出部2と電圧検出部3によってt4、t5点でそれぞれ実電圧VBiを読取って近似起電圧eBirとして保持する。
3)定電流放電動作(図5参照)
図5は、t0点のL0レベルの起電圧eBL0からLlレベルの起電圧eBLlまで定電流で放電したとき、使用初期Aの電池ではt3点、使用中期Bの電池ではt2点、使用終期Cの電池ではtl点まで放電できることを示している。ここで、特性線Ae、Be,Ceは、それぞれ、使用初期A、使用中期、使用終期Cにおける電圧の内部起電圧eBの変化を示す特性線である。また。特性線AV、BV、CVは、それぞれ、使用初期A、使用中期、使用終期Cにおける電圧の端子電圧VBの変化を示す特性線である。内部抵抗RBを示す特性線AR、BR、CRおよび電圧降下VBDの変化を示す特性線AVD、BVD、CVDも、それぞれ使用初期A、使用中期、使用終期Cにおける内部抵抗および電圧降下の変化を示すものである。
Further, when the charging current IB shifts from the IB3 to the minute charging current IB4 at the point t4 or when the charging current IB shifts to the minute discharging current IB5 at the point t5, the minute current detection unit 2 and the voltage detection unit 3 perform t4. The actual voltage VBi is read at each point t5 and held as the approximate electromotive voltage eBir.
3) Constant current discharge operation (see Fig. 5)
FIG. 5 shows that when a constant current is discharged from the electromotive voltage eBL0 at the L0 level at the point t0 to the electromotive voltage eBLl at the L1 level, the battery at the initial use A is at the point t3, the battery at the intermediate use B is at the point t2, and the final use C This shows that the battery can be discharged up to the tl point. Here, the characteristic lines Ae, Be, and Ce are characteristic lines showing changes in the internal electromotive voltage eB of the voltage in the initial use A, the intermediate use, and the final use C, respectively. Also. Characteristic lines AV, BV, and CV are characteristic lines that indicate changes in the terminal voltage VB of the voltage at the initial use A, the intermediate use, and the final use C, respectively. Characteristic lines AVD, BVD, and CVD indicating changes in the characteristic lines AR, BR, and CR indicating the internal resistance RB and the voltage drop VBD also indicate changes in the internal resistance and the voltage drop in the initial use A, the intermediate use, and the final use C, respectively. Is.

tl〜t3点の何れかの点で放電電流が電池の使用期間に対応してIB0から微小電流のIB1C、IB1B、IB1Aに低下したとき、それぞれ、微小電流検出部2と近似起電圧検出部3の動作により実電圧VBiを読取って近似起電圧eBirとして保持する。   When the discharge current drops from IB0 to IB1C, IB1B, and IB1A of minute currents corresponding to the battery usage period at any one of the points tl to t3, the minute current detector 2 and the approximate electromotive voltage detector 3 respectively. The actual voltage VBi is read by this operation and held as the approximate electromotive voltage eBir.

当然、実内部抵抗演算部5で求めた実内部抵抗RBiを内部抵抗比較部10、比較補正演算部11に与えて、前記説明の電池内部抵抗、起電圧、充電量補正データを求めて電池の動作状態を監視する。
4)電流変化放電動作(図6参照)
図6におけるt0〜tl点間において微小電流で放電動作しているときに、微小電流検出部2と近似起電圧検出部3が、実電圧VBiを読取って近似起電圧eBirとして保持する。
Naturally, the actual internal resistance RBi obtained by the actual internal resistance calculation unit 5 is given to the internal resistance comparison unit 10 and the comparison correction calculation unit 11 to obtain the battery internal resistance, electromotive voltage, and charge amount correction data described above, and Monitor the operating status.
4) Current change discharge operation (see Fig. 6)
When the discharge operation is performed with a minute current between the points t0 to tl in FIG. 6, the minute current detection unit 2 and the approximate electromotive voltage detection unit 3 read the actual voltage VBi and hold it as the approximate electromotive voltage eBir.

tl点で放電電流がIBlからIB2へ増加すると状態監視処理部13が電流変化を検知して計測指令Sを出力し、実電圧実電流記憶部4に記憶された電流変化の直前および直後の実電圧、実電流データによって各演算部5、6、7、11でそれぞれの演算処理を行う。   When the discharge current increases from IB1 to IB2 at the time point tl, the state monitoring processing unit 13 detects a current change and outputs a measurement command S. The actual value immediately before and immediately after the current change stored in the actual voltage actual current storage unit 4 is output. Each calculation unit 5, 6, 7, 11 performs each calculation process according to the voltage and actual current data.

前記の説明と同様、変化直前の記憶データと変化直後の実電圧、実電流データからの演算値と基準データを比較補正演算部11で演算処理して求めた特性劣化進度値CV、残存基準充電量QV、補正残存充電量QZを電池動作状態処理部13に与えて電池動作状態の監視、管理を行う。   Similar to the above description, the characteristic deterioration progress value CV obtained by processing the stored data immediately before the change, the actual voltage immediately after the change, the calculated value from the actual current data and the reference data by the comparison correction calculation unit 11, the remaining reference charge The amount QV and the corrected remaining charge amount QZ are given to the battery operation state processing unit 13 to monitor and manage the battery operation state.

電流IBのt2点でIB2からIB3へ増加し、t3点でIB3からIB4へ減少する電流変化時点で、それぞれ、前記と同様に実電圧VBi、実電流IBiの読込みを行い、各演算部で必要なデータを求めて電池の状態を監視、管理する。   At the time of current change when the current IB increases from IB2 to IB3 at the point t2 and decreases from IB3 to IB4 at the point t3, the actual voltage VBi and the actual current IBi are read in the same manner as described above, and are necessary for each calculation unit. To monitor and manage battery status in search of new data.

また、t4点で微小放電IB5となると、微小電流検出部2によってこれが検知され、近似起電圧検出部3によってそのときの実電圧VBiが近似起電圧eBirとして取り込み保持される。
5)充放電動作(図7参照)
図7を参照して充放電動作について説明する。
Further, when the minute discharge IB5 is reached at the point t4, this is detected by the minute current detection unit 2, and the actual voltage VBi at that time is captured and held as the approximate electromotive voltage eBir by the approximate electromotive voltage detection unit 3.
5) Charging / discharging operation (see Fig. 7)
The charge / discharge operation will be described with reference to FIG.

図7のt0〜tl点間では、微小電流−IB1で放電動作を、tl〜t2点間では発電装置22を運転して充電電流を0Aにして浮動充電動作を行っているので、微小電流検出部2によってこれが検知され、近似起電圧検出部3によってそのときの実電圧VBiを近似起電圧eBirとして取り込み保持し、近似起電圧eBirが比較補正演算部11に与えられる。   The discharge operation is performed with a minute current -IB1 between the points t0 and tl in FIG. 7, and the floating charging operation is performed with the charging current set to 0 A by operating the power generation device 22 between the points tl and t2. This is detected by the unit 2, and the actual voltage VBi at that time is fetched and held as the approximate electromotive voltage eBir by the approximate electromotive voltage detection unit 3, and the approximate electromotive voltage eBir is given to the comparison correction calculation unit 11.

t2点において充電電流を定電流の+IB1にして、電池21への印加電圧(端子電圧)VBをVB2にして定電流充電を開始すると、この時点で状態監視処理部13が電流の変化を検知して計測指令信号Sを出力し、前記と同様に各演算部5、6、7で実内部抵抗RBi、実電圧降下VBDi、実起電圧eBiの演算を行う。   When the charging current is set to + IB1 of the constant current at the point t2 and the applied voltage (terminal voltage) VB to the battery 21 is set to VB2, and constant current charging is started, the state monitoring processing unit 13 detects a change in current at this point. The measurement command signal S is output, and the calculation units 5, 6, and 7 calculate the actual internal resistance RBi, the actual voltage drop VBDi, and the actual electromotive voltage eBi in the same manner as described above.

また、実起電圧演算部7で演算した実起電圧eBiと、t0〜tl点で計測した近似起電圧eBiと基準データとを比較して、電池の劣化状態を確認することができる。   Further, the deterioration state of the battery can be confirmed by comparing the actual electromotive voltage eBi calculated by the actual electromotive voltage calculation unit 7 with the approximate electromotive voltage eBi measured at the points t0 to tl and the reference data.

充電の進行によって起電圧eBが上昇すると実内部抵抗RBは減少し、実電圧降下VBDは低下する。   When the electromotive voltage eB increases due to the progress of charging, the actual internal resistance RB decreases and the actual voltage drop VBD decreases.

定電流充電が完了したt3点において充電電流が0Aとなって浮動充電へ移行すると、前記と同様、状態監視処理部13が電流変化を検出して計測指令信号Sを出力して演算部5、6、7で実内部抵抗RBi、実電圧降下VBDi、実起電圧eBiの演算を行う。   When the charging current becomes 0A at the time point t3 when the constant current charging is completed and a transition is made to floating charging, the state monitoring processing unit 13 detects a current change and outputs a measurement command signal S to calculate the calculation unit 5, 6 and 7, the actual internal resistance RBi, the actual voltage drop VBDi, and the actual electromotive voltage eBi are calculated.

また、比較補正演算部11は、実起電圧eBiと基準データ設定部8に設定された基準起電圧パターンAe、Be、Ceとから残存基準充電量QVを求め、さらに、この基準充電量QVを内部抵抗比較部10で求められた充電量補正値S2により補正して補正残存充電量QZ、および、特性変化進度値CVを求めて、状態監視処理部13に与えて表示、記録などを行う。   Further, the comparison correction calculation unit 11 obtains the remaining reference charge amount QV from the actual electromotive voltage eBi and the reference electromotive voltage patterns Ae, Be, and Ce set in the reference data setting unit 8, and further calculates the reference charge amount QV. The corrected remaining charge amount QZ and the characteristic change progress value CV are obtained by correction with the charge amount correction value S2 obtained by the internal resistance comparison unit 10, and are given to the state monitoring processing unit 13 for display and recording.

比較補正演算部11では、内部抵抗変化量=内部抵抗指数=内部抵抗増加値によって特性変化進度値CVが求められる。状態監視処理部13でこの特性変化進度値CVを監視することにより、電池劣化進度を把握する。   In the comparison correction calculation unit 11, the characteristic change progress value CV is obtained from the internal resistance change amount = internal resistance index = internal resistance increase value. The state monitoring processing unit 13 monitors the characteristic change progress value CV to grasp the battery deterioration progress.

例えば、電池21の使用開始時の内部抵抗RBiを内部抵抗指数1であり、その後のある使用時間経過後の、実内部抵抗指数が1.5であったとすれば、電池劣化進度値CVは、両者の比率で示されるので、
電池劣化進度量CV=(使用開始時の内部抵抗RBi=内部抵抗指数1)÷
(使用時間経過後の内部抵抗RBi=内部抵抗指数1.5)=67(%)
を演算することにより求めることができる。これにより求められた電池劣化進度値CV=67%から、電池容量が当初容量の67%に減少するまで劣化が進行していることを把握することができる。
For example, if the internal resistance RBi at the start of use of the battery 21 is the internal resistance index 1, and the actual internal resistance index after a certain period of use thereafter is 1.5, the battery deterioration progress value CV is: Since it is shown in the ratio of both,
Battery degradation progress amount CV = (Internal resistance RBi at the start of use = Internal resistance index 1) ÷
(Internal resistance after use time RBi = Internal resistance index 1.5) = 67 (%)
Can be obtained by calculating. Thus, it is possible to grasp that the deterioration is progressing from the battery deterioration progress value CV = 67% obtained thereby until the battery capacity is reduced to 67% of the initial capacity.

t5点で、電池電流が−IB2で放電する動作に移行すると、状態監視処理部13は、この電流変化を検出して計測指令信号Sを各演算部に出力して前記と同様に実内部抵抗RBi、実電圧降下VBDi、実起電圧eBiを求める演算処理を行う。これにより、電池21の電圧VBがVB4、起電圧eBがeB4へ低下したことが検知される。また、放電
動作が進行するにしたがって内部抵抗RB、電圧降下VBDが増加する。
When the battery current is shifted to the operation of discharging at −IB2 at the point t5, the state monitoring processing unit 13 detects this current change and outputs a measurement command signal S to each calculation unit to output the actual internal resistance as described above. Arithmetic processing for obtaining RBi, actual voltage drop VBDi, and actual electromotive voltage eBi is performed. Thereby, it is detected that the voltage VB of the battery 21 is lowered to VB4 and the electromotive voltage eB is lowered to eB4. Further, as the discharge operation proceeds, the internal resistance RB and the voltage drop VBD increase.

t6点で微小電流に移行すると状態監視処理部13は、この電流変化を検出して計測指令信号Sを各演算部に出力して前記と同様に実内部抵抗RBi、実電圧降下VBDi、実起電圧eBiを求める演算処理を行う。また、近似起電圧検出部3で近似起電圧eBriの検出、保持が行われる。   When transitioning to a minute current at the point t6, the state monitoring processing unit 13 detects this current change and outputs a measurement command signal S to each calculation unit so that the actual internal resistance RBi, the actual voltage drop VBDi, and the actual occurrence are the same as described above. An arithmetic process for obtaining the voltage eBi is performed. Further, the approximate electromotive voltage detector 3 detects and holds the approximate electromotive voltage eBri.

また、t6〜t8点間の微小電流で浮動充電を行う期間では、ここで求めた起電圧データを電池状態監視処理13で読取って、監視・表示・記録部14によって監視、表示、記録を行う。   Further, during the period in which floating charging is performed with a minute current between points t6 to t8, the electromotive voltage data obtained here is read by the battery state monitoring process 13, and is monitored, displayed and recorded by the monitoring / display / recording unit 14. .

t8〜t9点間は、定電流で充電を行う期間、t9〜tll点間は定電流充電が完了して、浮動充電動作状態となる期間である。さらに、t11〜t12点間で定電流放電動作状態、t12〜t14点間で浮動充電動作状態、t14〜t15点間で定電流充電状態のように充放電動作が変わり、電池電流IBが変化する各時点で実電圧VBi、実電流IBi、これらから求めた実起電圧eBi、実内部抵抗RBi、および予め設定した基準起電圧VBL、基準内部抵抗RBL等の変化を監視し、電池動作状態監視・処理・表示・記録を行う。   The period between t8 and t9 is a period during which charging is performed at a constant current, and the period between t9 and tll is a period during which constant current charging is completed and a floating charging operation state is established. Further, the charging / discharging operation changes between the t11 to t12 points, the floating charging operation state between the t12 to t14 points, and the constant current charging state between the t14 to t15 points, and the battery current IB changes. At each time, the actual voltage VBi, the actual current IBi, the actual electromotive voltage eBi obtained from these, the actual internal resistance RBi, the preset reference electromotive voltage VBL, the reference internal resistance RBL, and the like are monitored to monitor the battery operating state. Process, display and record.

次に図1に示す電池状態監視処理13、表示記録部14にて行う、電池状態監視処理・表示・記録の動作について説明する。
1)基準値管理と実動作管理
前記で説明した基準起電圧eBL、基準充電量QV、基準内部抵抗RBL(使用初期A/使用中期B/使用終期C)の基準データを基準内部抵抗パターン設定部1、基準起電圧パターン設置部8、基準起電圧設置部9等に格納しておき、これらの基準値データCSと実起電圧eBi、使用初期A、使用中期B、使用終期Cの実内部抵抗RBiとを比較補正演算部11で比較演算して求めた充電量QV、補正充電量QZ、特性変化進度値CVに基づいて、状態監視処理部13によって電池の動作状態変化の監視、管理を行う。
Next, the battery state monitoring process / display / recording operation performed by the battery state monitoring process 13 and the display recording unit 14 shown in FIG. 1 will be described.
1) Reference value management and actual operation management The reference internal resistance pattern setting unit uses the reference data of the reference electromotive voltage eBL, the reference charge amount QV, and the reference internal resistance RBL (use initial A / use middle B / use end C) described above. 1. Stored in the reference electromotive voltage pattern installation unit 8, the reference electromotive voltage installation unit 9, etc., and the actual internal resistance of these reference value data CS and actual electromotive voltage eBi, initial use A, intermediate use B, and final use C Based on the charge amount QV, the corrected charge amount QZ, and the characteristic change progress value CV obtained by comparing and calculating RBi with the comparison correction calculation unit 11, the state monitoring processing unit 13 monitors and manages the change in the operating state of the battery. .

例えば、図2に示す基準起電圧特性線Ae、Be、Ceの表示された表示部14上に演算部7で求められた実起電圧eBiを☆マーク等で表示することにより、現在の動作状況を直感的に把握することができる。
2)特性変化(劣化進度)進度の管理
特性変化(劣化進度)は内部抵抗の変化によって判定する。
For example, by displaying the actual electromotive voltage eBi obtained by the computing unit 7 on the display unit 14 displaying the reference electromotive voltage characteristic lines Ae, Be, and Ce shown in FIG. Can be grasped intuitively.
2) Management of characteristic change (degradation progress) The characteristic change (degradation progress) is determined by the change in internal resistance.

すなわち、予め設定した電池21の使用初期A、使用中期Bおよび使用終期Cのそれぞれにおける基準内部抵抗特性線AR、BRおよびCR上の基準内部抵抗RBLとその都度測定した電池21の端子電圧VBi、充放電電流IBiから演算により求めた実内部抵抗RBiとを比較して、その比率を求め、実内部抵抗の基準内部抵抗に対する百分率を電池の特性劣化進度値CVとして監視、管理するのである。このデータを時系列的に記録、保持することにより時系列による特性変化を把握、監視することができる。
3)実電流積算(AH)充電量とAH充電量の補正
前記で説明した充放電量演算部12で求めた電流積算(AH)充電量QHによる充電量の監視は、比較的短期間、例えば充放電1サイクルの充放電動作における充電量管理に用いる。
That is, the reference internal resistance characteristic lines AR, BR and CR on the reference internal resistance characteristic lines AR, BR and CR in the initial use A, the intermediate use B and the final use C of the battery 21 and the terminal voltage VBi of the battery 21 measured each time, The actual internal resistance RBi obtained by calculation from the charge / discharge current IBi is compared to determine the ratio, and the percentage of the actual internal resistance with respect to the reference internal resistance is monitored and managed as the battery characteristic deterioration progress value CV. By recording and holding this data in time series, it is possible to grasp and monitor characteristic changes due to time series.
3) Correction of actual current integration (AH) charge amount and AH charge amount Monitoring of the charge amount by the current integration (AH) charge amount QH obtained by the charge / discharge amount calculation unit 12 described above is performed in a relatively short period of time, for example, It is used for charge amount management in charge / discharge operation of one charge / discharge cycle.

図1の充放電量演算部12は計測した充放電電流IB(A)を時間(H)で積算して求めた実電流積算(AH)充電量QHを比較演算部11で求めた補正充電量QZで置き換えることにより補正し、この補正AH充電量QHeによる電池の残存充電量の監視・記録、表示を行う。
4)基準充電量QVと充電量の補正
前記で説明した電池の起電圧により求めた基準充電量QVを監視する方式は、基準起電圧値eBLと実起電圧eBiから得た基準充電量QVと、これを基準抵抗値RBLと実内部抵抗RBiの比較演算して求めた補正値S2により補正した充電量QZを状態監視処理部13で監視、管理し、表示記録部14で記録、表示を行う。
The charge / discharge amount calculation unit 12 in FIG. 1 corrects the charge amount obtained by integrating the measured charge / discharge current IB (A) by time (H) and the actual current integration (AH) charge amount QH obtained by the comparison calculation unit 11. Correction is performed by replacing with QZ, and the remaining charge amount of the battery is monitored, recorded, and displayed by this corrected AH charge amount QHe.
4) Correction of reference charge amount QV and charge amount The method of monitoring the reference charge amount QV obtained from the battery electromotive voltage described above is based on the reference charge amount QV obtained from the reference electromotive voltage value eBL and the actual electromotive voltage eBi. The charge amount QZ corrected by the correction value S2 obtained by comparing and calculating the reference resistance value RBL and the actual internal resistance RBi is monitored and managed by the state monitoring processing unit 13, and recorded and displayed by the display recording unit 14. .

なお、起電圧により求めた基準充電量QVの監視は、長期間(カレンダ寿命)の監視を目的とし、電流を積算して求めたAH充電量QHによる充電量の監視は、短期間の監視を目的とするので、両方を併用して監視、記録、表示を行うのがよい。
5)放電可能時間の予測
前記で説明したように、起電圧方式による基準充電量QVを内部抵抗の変化に基づいて補正した補正(残存)充電量QZが定格容量の40%であったとすれば、QZ40%を定格AH充電量QHの40%に換算して、この補正したAH充電量QHeを図1に示す放電電流指定部16で指定した放電電流Dsで除算(AH÷A)して求めた時間Hにより、おおよその放電可能時間Hを予測する。
6)実電圧VBi、実電流IBiの監視、管理、記録、表示
実電圧VBi、実電流IBiは次のように監視、管理する。
ァ)前記で説明した実電圧VBi、実電流IBiの実電流の変化時点で計測した実電圧VBi、実電流IBiから実内部抵抗RBi、実電圧降VBDi、実起電圧eBiを演算により求める。
イ)図2に示す電池電圧のL0〜L3レベルを監視する。
The reference charge amount QV obtained from the electromotive voltage is monitored for the long term (calendar life), and the charge amount monitoring by the AH charge amount QH obtained by integrating the current is monitored for a short period. Because it is the purpose, it is better to monitor, record, and display both in combination.
5) Prediction of dischargeable time As described above, if the corrected (remaining) charge amount QZ obtained by correcting the reference charge amount QV by the electromotive voltage method based on the change in the internal resistance is 40% of the rated capacity, QZ40% is converted to 40% of the rated AH charge amount QH, and this corrected AH charge amount QHe is obtained by dividing (AH ÷ A) by the discharge current Ds specified by the discharge current specifying portion 16 shown in FIG. The approximate dischargeable time H is predicted based on the remaining time H.
6) Monitoring, management, recording, and display of the actual voltage VBi and the actual current IBi The actual voltage VBi and the actual current IBi are monitored and managed as follows.
A) The actual internal voltage RBi, the actual voltage drop VBDi, and the actual electromotive voltage eBi are obtained by calculation from the actual voltage VBi and the actual voltage VBi measured at the time of change of the actual current IBi and the actual current IBi.
B) The L0 to L3 levels of the battery voltage shown in FIG. 2 are monitored.

例えば、充電動作において実起電圧eBiがL0以上を示せば過充電状態であるから、図1の警報部15から警報、警告を発するようにする。   For example, if the actual electromotive voltage eBi indicates L0 or more in the charging operation, the battery is in an overcharged state, so an alarm or warning is issued from the alarm unit 15 in FIG.

また、この警報、警告と連動して発電機制御指令信号SGを発電機制御装置22に与えて電池の起電圧eBiがL0レベル(図2)を超過しないように発電機電圧を制限し、万一、電池起電圧eBiがeBL0を超過した場合には発電機の出力電圧を低下する等して充電を停止する処理を行う。   Further, in conjunction with the warning and warning, a generator control command signal SG is given to the generator control device 22 to limit the generator voltage so that the electromotive voltage eBi of the battery does not exceed the L0 level (FIG. 2). First, when the battery electromotive voltage eBi exceeds eBL0, a process for stopping charging is performed by, for example, reducing the output voltage of the generator.

放電動作においては、起電圧が充電量QVの少ない起電圧レベルであるL1〜L2の領域に至れば、警報部15から警報、警告を発するようにする。   In the discharging operation, when the electromotive voltage reaches the range of L1 to L2 that is an electromotive voltage level with a small charge amount QV, an alarm or warning is issued from the alarm unit 15.

例えば、この警報、警告と連動して電動機制御指令信号SMを電動機制御装置18に与えて電池電圧がL2より低下しないように電動機回転速度を低下、すなわち、電池の負荷を低下させて放電電流IBを抑制する制御を行う。   For example, the motor control command signal SM is given to the motor control device 18 in conjunction with the alarm and warning to reduce the motor rotation speed so that the battery voltage does not drop below L2, that is, the battery load is reduced to reduce the discharge current IB. The control which suppresses is performed.

さらに、電池起電圧がレベルL3(eBL3)より低下したときは電動機を停止させるなどして、電池電流を遮断する処理を行う。
7)特性劣化進度の監視
前記で説明したように、リチウムイオン電池の特性変化、すなわち特性劣化進度CVは内部抵抗の増加の比率で示される。したがって、基準内部抵抗と実内部抵抗を比較、補正演算部10で比較、演算した特性劣化進度値CVによって特性変化進度を監視する。
Further, when the battery electromotive voltage drops below the level L3 (eBL3), a process for cutting off the battery current is performed by stopping the electric motor.
7) Monitoring of characteristic deterioration progress As described above, the characteristic change of the lithium ion battery, that is, the characteristic deterioration progress CV is indicated by the rate of increase in internal resistance. Therefore, the reference internal resistance and the actual internal resistance are compared, and the characteristic change progress is monitored by the characteristic deterioration progress value CV compared and calculated by the correction calculation unit 10.

1:基準抵抗パターン設定部 2:微小電流検出部 3:近似起電圧検出部 4:実電圧電流記憶部 5:実内部抵抗演算部 6:実電圧降下演算部 実起電圧演算部 8:基準起電圧パターン設定部 9:基準起電圧設置部 10:内部抵抗比較部 11:比較補正演算部 12:電流積算充電量演算部 13:状態監視処理部 14:表示記録部 15:警報部 20:蓄電設備 21:リチウムイオン電池。 1: reference resistance pattern setting unit 2: minute current detection unit 3: approximate electromotive voltage detection unit 4: actual voltage / current storage unit 5: actual internal resistance calculation unit 6: actual voltage drop calculation unit actual voltage generation calculation unit 8: reference voltage generation Voltage pattern setting unit 9: Reference electromotive voltage installation unit 10: Internal resistance comparison unit 11: Comparison correction calculation unit 12: Current integrated charge amount calculation unit 13: State monitoring processing unit 14: Display recording unit 15: Alarm unit 20: Power storage equipment 21: Lithium ion battery.

Claims (5)

リチウムイオン電池を備えた蓄電設備において、前記リチウムイオン電池の充放電中の電池の充放電電圧、充放電電流等の検出データからこの電池の起電圧と内部抵抗を求め、前記起電圧から電池の残存充電量を判定し、さらに、この判定した残存充電量を前記内部抵抗の変化量によって補正し、この補正した残存充電量によって前記リチウムイオン電池の充放電状態を監視することを特徴とする蓄電設備の充放電状態監視制御方式。   In a power storage facility equipped with a lithium ion battery, an electromotive voltage and an internal resistance of the battery are obtained from detection data such as a charge / discharge voltage and a charge / discharge current of the battery during charge / discharge of the lithium ion battery. The remaining charge amount is determined, the determined remaining charge amount is corrected by the change amount of the internal resistance, and the charge / discharge state of the lithium ion battery is monitored by the corrected remaining charge amount. Facility charge / discharge status monitoring and control system. 請求項1に記載の蓄電設備の充放電状態監視制御方式において、予め前記リチウムイオン電池の使用初期、使用中期および使用終期における基準となる基準内部抵抗、基準起電圧、基準起電圧に対する基準充電量等の基準データを設定し、この基準データと前記リチウムオン電池の充放電動作中に取得した実電池電圧および実電池電流から実内部抵抗、電池内部電圧降下、実起電圧等の実データ求め、前記基準起電圧と実起電圧とを比較して現在の電池の残存充電量を判定し、この判定した電池の残存充電量を前記基準内部抵抗と実内部抵抗を比較して求めた内部抵抗変化量に基づいて補正することを特徴とする蓄電設備の充放電状態監視制御方式。   The charging / discharging state monitoring control system for the power storage device according to claim 1, wherein a reference internal resistance, a reference electromotive voltage, and a reference charge amount with respect to a reference electromotive voltage, which are used in advance in the initial use period, the intermediate use period, and the final use period of the lithium ion battery The actual data such as the actual internal resistance, the battery internal voltage drop, and the actual electromotive voltage are obtained from the reference data and the actual battery voltage and the actual battery current acquired during the charge / discharge operation of the lithium-on battery. A comparison between the reference electromotive voltage and the actual electromotive voltage is performed to determine a remaining charge amount of the current battery, and the remaining charge amount of the determined battery is determined by comparing the reference internal resistance and the actual internal resistance. A charge / discharge state monitoring control system for a power storage facility, wherein correction is performed based on the amount. 請求項2に記載の蓄電設備の充放電状態監視制御方式において、前記基準内部抵抗と実内部抵抗とを比較して求めた内部抵抗変化量によって前記リチウムイオン電池の特性変化(劣化)進度を判定するようにしたことを特徴とする蓄電設備の充放電状態監視制御方式。   3. The charging / discharging state monitoring control system for a power storage facility according to claim 2, wherein the progress of characteristic change (deterioration) of the lithium ion battery is determined based on an internal resistance change amount obtained by comparing the reference internal resistance with an actual internal resistance. A charge / discharge state monitoring control system for a power storage facility, characterized in that: 請求項1ないし3の何れか1つの請求項に記載の蓄電設備の充放電状態監視制御方式において、前記判定した電池の残存充電量を予め定めた放電電流で除して放電可能時間を求めることを特徴とする蓄電設備の充放電状態監視制御方式。   4. The charge / discharge state monitoring control system for a power storage facility according to claim 1, wherein a dischargeable time is obtained by dividing the determined remaining charge amount of the battery by a predetermined discharge current. Charging / discharging state monitoring and control system for power storage equipment. 請求項1ないし4の何れか1つの請求項に記載の蓄電設備の充放電状態監視制御方式において、予め前記リチウムイオン電池の電圧の上限レベル(L0)、通常使用レベル(Ll)、使用下限レベル(L2)、使用限界レベル(L3)を設定し、前記リチウムイオン電池の充電動作中に前記実電池電圧が前記通常使用レベル(L1)から前記上限レベル(L0)の範囲にあるときは、前記実電池電圧が前記上限レベル(L0)を越えないように前記リチウムイオン電池の充電動作を継続し、前記実電池電圧が前記上限レベル(L0)を越えたときは警告を発するとともに電池の充電動作を停止し、前記リチウムイオン電池の放電動作中に、前記実電池電圧が通常使用レベル(Ll)から使用下限レベル(L2)の範囲にあるときは、前記実電池電圧が使用下限レベル(L2)より低下しないように前記リチウムイオン電池の放電動作を継続し、前記実電池電圧が前記使用下限レベル(L2)から使用限界レベル(L3)の範囲にあるときは警報を発するとともに前記リチウムイオン電池の放電動作を使用限界レベル(L3)を越えないように制限し、使用限界レベル(L3)に達したときは警告を発するとともに前記リチウムイオン電池の放電動作を停止止することを特徴とする蓄電設備の充放電状態監視制御方式。   5. The charge / discharge state monitoring and control method for a power storage facility according to claim 1, wherein an upper limit level (L0), a normal use level (Ll), and a use lower limit level of the voltage of the lithium ion battery are preliminarily determined. (L2), a use limit level (L3) is set, and when the actual battery voltage is in the range from the normal use level (L1) to the upper limit level (L0) during the charging operation of the lithium ion battery, The charging operation of the lithium ion battery is continued so that the actual battery voltage does not exceed the upper limit level (L0). When the actual battery voltage exceeds the upper limit level (L0), a warning is issued and the battery charging operation is performed. When the actual battery voltage is in the range of the normal use level (Ll) to the use lower limit level (L2) during the discharge operation of the lithium ion battery, The discharge operation of the lithium ion battery is continued so that the voltage does not drop below the lower limit use level (L2), and an alarm occurs when the actual battery voltage is in the range from the lower use limit level (L2) to the lower limit use level (L3). The discharge operation of the lithium ion battery is restricted so as not to exceed the use limit level (L3), and when the use limit level (L3) is reached, a warning is issued and the discharge operation of the lithium ion battery is stopped. A charge / discharge state monitoring control system for power storage equipment.
JP2013175764A 2013-08-27 2013-08-27 Charge / discharge status monitoring and control system for power storage equipment Active JP6314390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175764A JP6314390B2 (en) 2013-08-27 2013-08-27 Charge / discharge status monitoring and control system for power storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175764A JP6314390B2 (en) 2013-08-27 2013-08-27 Charge / discharge status monitoring and control system for power storage equipment

Publications (2)

Publication Number Publication Date
JP2015045523A true JP2015045523A (en) 2015-03-12
JP6314390B2 JP6314390B2 (en) 2018-04-25

Family

ID=52671143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175764A Active JP6314390B2 (en) 2013-08-27 2013-08-27 Charge / discharge status monitoring and control system for power storage equipment

Country Status (1)

Country Link
JP (1) JP6314390B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242211A (en) * 2015-09-02 2016-01-13 国网电力科学研究院武汉南瑞有限责任公司 All-vanadium redox flow battery fault rapid detection and location method
WO2016147326A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program
KR20170006400A (en) * 2015-07-08 2017-01-18 현대모비스 주식회사 Device for checking of battery SOC on vehicle and method thereof
JP2017090297A (en) * 2015-11-12 2017-05-25 株式会社豊田自動織機 Method for detecting degree of degradation of lead battery and method for controlling charging of lead battery
US10634729B2 (en) 2015-03-27 2020-04-28 Gs Yuasa International Ltd. Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
CN113517483A (en) * 2021-07-15 2021-10-19 深圳市清新电源研究院 Method for prolonging service life of lithium ion battery on product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571531A (en) * 1984-04-11 1986-02-18 Lin Ming Hsin Automatic protective circuit system for emergency lights
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
US6888468B2 (en) * 2003-01-22 2005-05-03 Midtronics, Inc. Apparatus and method for protecting a battery from overdischarge
JP2005130572A (en) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd Distributed power generating system
JP2007017357A (en) * 2005-07-08 2007-01-25 Toyota Central Res & Dev Lab Inc Method and device for detecting remaining capacity of battery
JP2007188767A (en) * 2006-01-13 2007-07-26 Fujitsu Ten Ltd Battery condition monitoring device, battery condition monitoring system and battery condition monitoring method
JP2007253716A (en) * 2006-03-22 2007-10-04 Fujitsu Ten Ltd Battery monitor
JP2009145065A (en) * 2007-12-11 2009-07-02 Toyota Motor Corp State detection device of secondary battery
JP2011015520A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Control device of vehicle
JP2012172991A (en) * 2011-02-17 2012-09-10 Fuji Electric Co Ltd Monitoring system for charge/discharge operation status of lithium ion batteries

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571531A (en) * 1984-04-11 1986-02-18 Lin Ming Hsin Automatic protective circuit system for emergency lights
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
US6888468B2 (en) * 2003-01-22 2005-05-03 Midtronics, Inc. Apparatus and method for protecting a battery from overdischarge
JP2005130572A (en) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd Distributed power generating system
JP2007017357A (en) * 2005-07-08 2007-01-25 Toyota Central Res & Dev Lab Inc Method and device for detecting remaining capacity of battery
JP2007188767A (en) * 2006-01-13 2007-07-26 Fujitsu Ten Ltd Battery condition monitoring device, battery condition monitoring system and battery condition monitoring method
JP2007253716A (en) * 2006-03-22 2007-10-04 Fujitsu Ten Ltd Battery monitor
JP2009145065A (en) * 2007-12-11 2009-07-02 Toyota Motor Corp State detection device of secondary battery
JP2011015520A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Control device of vehicle
JP2012172991A (en) * 2011-02-17 2012-09-10 Fuji Electric Co Ltd Monitoring system for charge/discharge operation status of lithium ion batteries

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147326A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program
US10634729B2 (en) 2015-03-27 2020-04-28 Gs Yuasa International Ltd. Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
KR20170006400A (en) * 2015-07-08 2017-01-18 현대모비스 주식회사 Device for checking of battery SOC on vehicle and method thereof
KR102448627B1 (en) * 2015-07-08 2022-09-28 현대모비스 주식회사 Device for checking of battery SOC on vehicle and method thereof
CN105242211A (en) * 2015-09-02 2016-01-13 国网电力科学研究院武汉南瑞有限责任公司 All-vanadium redox flow battery fault rapid detection and location method
JP2017090297A (en) * 2015-11-12 2017-05-25 株式会社豊田自動織機 Method for detecting degree of degradation of lead battery and method for controlling charging of lead battery
CN113517483A (en) * 2021-07-15 2021-10-19 深圳市清新电源研究院 Method for prolonging service life of lithium ion battery on product

Also Published As

Publication number Publication date
JP6314390B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314390B2 (en) Charge / discharge status monitoring and control system for power storage equipment
US10892631B2 (en) Apparatus for fast battery charging
JP5282789B2 (en) Battery capacity detection device for lithium ion secondary battery
US10557890B2 (en) Battery capacity monitor
US10359474B2 (en) Charge state calculation device and charge state calculation method
JP6460860B2 (en) Method for estimating the health of battery cells
US10523029B2 (en) Power storage system and charging method for secondary battery
JP6991591B2 (en) How to predict the state of charge of the battery
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
CN111289902B (en) Method for estimating battery electric quantity state
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
EP2887085B1 (en) Method and apparatus for indicating a low battery level
EP3977146A1 (en) Method for estimating state of health of a battery
JP2019185969A (en) Diagnostic device and diagnostic method for secondary battery
JP2019165553A (en) Charging device for secondary battery unit
JP5729000B2 (en) Lithium-ion battery charge / discharge operation monitoring system
JP5620423B2 (en) Electronic device and battery charging method for electronic device
JPWO2018088084A1 (en) Battery capacity display device and battery capacity display method
CN111391607A (en) Drive control method and device, air conditioner, vehicle and storage medium
KR101342529B1 (en) Energy storage system controller, method and computer readable recording medium thereof
JP2023066868A (en) power storage device
JP2014119394A (en) Battery deterioration method
JP5772615B2 (en) Power storage system
US20190285701A1 (en) Determining Capacitance of an Energy Store of an Uninterruptible Direct Current Supply Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250