JP2015045508A - Gas sampling apparatus - Google Patents

Gas sampling apparatus Download PDF

Info

Publication number
JP2015045508A
JP2015045508A JP2013175321A JP2013175321A JP2015045508A JP 2015045508 A JP2015045508 A JP 2015045508A JP 2013175321 A JP2013175321 A JP 2013175321A JP 2013175321 A JP2013175321 A JP 2013175321A JP 2015045508 A JP2015045508 A JP 2015045508A
Authority
JP
Japan
Prior art keywords
sample water
tank
bubbling
exhaust gas
concentration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175321A
Other languages
Japanese (ja)
Other versions
JP6124737B2 (en
Inventor
島本 聡
Satoshi Shimamoto
聡 島本
和也 岩倉
Kazuya Iwakura
和也 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2013175321A priority Critical patent/JP6124737B2/en
Publication of JP2015045508A publication Critical patent/JP2015045508A/en
Application granted granted Critical
Publication of JP6124737B2 publication Critical patent/JP6124737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas sampling apparatus that can make possible long-period sampling for a few days without requiring a large number of bubbling tanks and moreover a significant raise of sensitivity in detecting radioactive substances.SOLUTION: High-temperature exhaust gas from a smoke duct or the like of an incineration plant is led to bubbling tanks 1 and 2, each storing sample water in its lower half, to collect radioactive substances in the exhaust gas. When dew condensation of water content of the exhaust gas causes the water levels in the bubbling tanks 1 and 2 to rise and an optical sensor S1 or S3 to detect the sample water, the increments of the sample water in the sampling tanks 1 and 2 are delivered to a concentration tank 3. When the sample water in the concentration tank 3 increases and an optical sensor S5 in the concentration tank 3 detects the sample water, the sample water is evaporated and concentrated by heating the concentration tank 3. When a prescribed period of time has passed since the start of collecting radioactive substances in the exhaust gas, the concentrated liquid in the concentration tank 3 is cooled in a cooler 4 and then delivered to a radiation measuring apparatus.

Description

本発明は、焼却施設等の排ガス中に含まれる放射性物質、例えば、セシウムを捕集するガスサンプリング装置に関する。   The present invention relates to a gas sampling device that collects radioactive substances, for example, cesium, contained in exhaust gas from an incineration facility or the like.

放射能に汚染された廃棄物等を処理する焼却施設等においては、廃棄物等の特性やその処理処分施設における状況を踏まえた放射能の調査を行うことが必要となっており、排ガス中の放射性物質を捕集して放射性物質の測定を行っている。   Incineration facilities that treat radioactively contaminated waste, etc., it is necessary to conduct a survey of radioactivity based on the characteristics of the waste, etc. and the situation at the disposal facility. Radioactive material is collected and measured.

このような排ガス中に含まれる放射性物質を捕集する方法として、排ガス中の水分を加圧冷却凝縮し、回収する方法、露点計によりガス中の水分量を確認しながら一部の水蒸気を冷却凝縮し、回収する方法、シリカゲルなどの吸着材を用いる方法、あるいは、水を溜めたタンク内でサンプルガスをバブリングする方法等がある。   As a method of collecting radioactive substances contained in such exhaust gas, a method of condensing and recovering moisture in exhaust gas under pressure, cooling, and collecting some water vapor while confirming the amount of moisture in the gas with a dew point meter There are a method of condensing and collecting, a method of using an adsorbent such as silica gel, a method of bubbling a sample gas in a tank in which water is stored, and the like.

サンプルガスをバブリングする方法としては、排ガスを冷却水中に導き、冷却水中でバブリングし、排ガス中に含まれる放射性物質を冷却水で冷却し液化して捕集することが行われている(例えば、特許文献1参照)。   As a method for bubbling sample gas, exhaust gas is introduced into cooling water, bubbling in cooling water, and radioactive substances contained in the exhaust gas are cooled with cooling water and liquefied and collected (for example, Patent Document 1).

特開平3−73884号公報Japanese Patent Laid-Open No. 3-73884

上記のように、従来、試料水を入れたバブリング槽に高温の排ガスを導入して排ガス中に含まれる放射性物質を捕集し、放射性物質が捕集された試料水の一定量に含まれる放射線を別途シンチレーションセンサ等で測定することにより、排ガス中の放射性物質の量を測定しているが、焼却設備等からの排ガス中の放射性物質は極少量であり、バブリング槽に大量の排ガスを吸引しなければ放射性物質を検出することができず、例えば、1分間に20リットルの排ガスを吸引する場合、1週間程度排ガスの吸引を継続しなければ放射性物質を検出することができない。   As described above, conventionally, radiation contained in a certain amount of sample water in which radioactive material is collected by introducing high-temperature exhaust gas into a bubbling tank containing sample water and collecting the radioactive material contained in the exhaust gas. The amount of radioactive material in the exhaust gas is measured by measuring separately using a scintillation sensor, etc., but the amount of radioactive material in the exhaust gas from incineration facilities is extremely small, and a large amount of exhaust gas is sucked into the bubbling tank. Otherwise, the radioactive substance cannot be detected. For example, when 20 liters of exhaust gas is sucked in one minute, the radioactive substance cannot be detected unless the exhaust gas is sucked for about one week.

一方、焼却設備等からの排ガス中にはガス状の水分が40%程度含まれており、バブリング槽内でこれらの水分が結露する結果、1分間に20リットルの排ガスを吸引する場合、1時間で0.6リットル程度結露するので、この結露によりバブリング槽がオーバーフローする。このため、バブリング槽を直列に複数個設けて試料液のオーバーフローを防止するようにしているが、それでも、排ガス中水分が結露してバブリング槽内が満水になるため、サンプリング時間に制約があり、数日にわたる長時間サンプリングは不可能であった。   On the other hand, about 40% of gaseous moisture is contained in the exhaust gas from the incineration facilities and the like, and as a result of condensation of these moisture in the bubbling tank, when sucking 20 liters of exhaust gas per minute, 1 hour In this case, about 0.6 liter of condensation is formed, so that the bubbling tank overflows due to this condensation. For this reason, a plurality of bubbling tanks are provided in series so as to prevent overflow of the sample solution.However, since moisture in the exhaust gas is condensed and the inside of the bubbling tank is full, sampling time is limited, Long-term sampling over several days was not possible.

本発明は、上記の課題を解決するために創案されたものであり、多くのバブリング槽を設けることなく、数日の長時間サンプリングを可能にするとともに、放射性物質の検出感度を大幅に上昇させることができるガスサンプリング装置を提供することを目的とする。   The present invention was devised to solve the above-mentioned problems, and enables long-time sampling for several days without providing many bubbling tanks, and greatly increases the detection sensitivity of radioactive substances. It is an object of the present invention to provide a gas sampling device capable of performing the above.

請求項1に係る発明のガスサンプリング装置は、試料水を蓄えるバブリング槽と、上記バブリング槽内の試料水が移送される濃縮槽とを備え、上記バブリング槽内の試料水にサンプルガスが導入されるとともに、上記バブリング槽内の試料水の増量分が上記濃縮槽に移送され、加熱、蒸発されることを特徴とする。   The gas sampling device of the invention according to claim 1 includes a bubbling tank for storing sample water and a concentration tank to which the sample water in the bubbling tank is transferred, and the sample gas is introduced into the sample water in the bubbling tank. In addition, the increased amount of the sample water in the bubbling tank is transferred to the concentration tank and heated and evaporated.

また、請求項2に係る発明のガスサンプリング装置は、請求項1に記載されたガスサンプリング装置において、上記濃縮槽内の試料水を循環する機構を備え、試料水の加熱中、上記濃縮槽内の試料水を試料水上部からスプレー噴射することを特徴とする。
さらに、請求項3に係る発明のガスサンプリング装置は、請求項1または請求項2に記載されたガスサンプリング装置において、上記バブリング槽がひょうたん型をしていることを特徴とする。
A gas sampling device according to a second aspect of the present invention is the gas sampling device according to the first aspect, comprising a mechanism for circulating the sample water in the concentration tank, and the sample water in the concentration tank is heated during the heating of the sample water. The sample water is sprayed from above the sample water.
Furthermore, a gas sampling device according to a third aspect of the invention is characterized in that, in the gas sampling device according to the first or second aspect, the bubbling tank has a gourd shape.

請求項1に係る発明のガスサンプリング装置によれば、サンプルガス中水分によるバブリング槽内での試料水増量分を一定時間ごとに濃縮槽へ移送して、加熱することにより、試料水の不要水分を蒸発させることができるので、多くのバブリング槽を設けることなく、バブリング槽のオーバーフローを防止することができ、数日にわたる長時間サンプリングが可能となるとともに、試料水が濃縮されるので、放射性物質の検出感度を大幅に上昇させることができる。   According to the gas sampling device of the first aspect of the present invention, the sample water increase in the bubbling tank due to the moisture in the sample gas is transferred to the concentration tank at regular intervals and heated, so that unnecessary moisture of the sample water is obtained. Since it is possible to evaporate the sample, it is possible to prevent overflow of the bubbling tank without providing many bubbling tanks, and it is possible to sample for a long time over several days, and the sample water is concentrated. Detection sensitivity can be greatly increased.

また、上記のように、濃縮槽で試料水を加熱して蒸発させると、気体中に微粒子が多数浮かんだエアロゾルが発生するが、請求項2に係る発明のガスサンプリング装置によれば、濃縮槽内で試料水を循環させることにより、試料水が加熱中の試料水上部からスプレー噴射されるので、エアロゾルの発生を低減し、放射性物質の検出感度の低下を防止することができる。
さらに、請求項3に係る発明のガスサンプリング装置によれば、バブリング槽がひょうたん型をしており、バブリング時のガス流により試料水が2層に分割されるので、バブリング部が増えることになり、放射性物質の捕集効率を向上させることができる。
Further, as described above, when the sample water is heated and evaporated in the concentration tank, an aerosol in which a large number of fine particles float in the gas is generated. According to the gas sampling device of the invention of claim 2, the concentration tank By circulating the sample water inside, the sample water is sprayed from the upper part of the heated sample water, so that the generation of aerosol can be reduced and the detection sensitivity of the radioactive substance can be prevented from being lowered.
Furthermore, according to the gas sampling device of the invention according to claim 3, the bubbling tank has a gourd shape, and the sample water is divided into two layers by the gas flow during bubbling, so the bubbling part increases. The collection efficiency of radioactive substances can be improved.

本発明のガスサンプリング装置の概略を示すブロック図である。It is a block diagram which shows the outline of the gas sampling apparatus of this invention. 図1のガスサンプリング装置のバブリング槽の詳細を示す図である。It is a figure which shows the detail of the bubbling tank of the gas sampling apparatus of FIG. 本発明のガスサンプリング装置を制御する制御機構のブロック図である。It is a block diagram of the control mechanism which controls the gas sampling device of the present invention.

以下、本発明のガスサンプリング装置について図面により説明する。
図1は本発明のガスサンプリング装置の概略を示すブロック図であり、1、2はバブリング槽、3は濃縮槽、4は冷却部、5はドレン槽、6は洗浄水槽、7は積算流量計、P1は試料ポンプ、P2〜P11は送液ポンプ、Vは切替バルブである。
Hereinafter, the gas sampling apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an outline of a gas sampling apparatus according to the present invention, wherein 1, 2 are bubbling tanks, 3 is a concentration tank, 4 is a cooling unit, 5 is a drain tank, 6 is a washing water tank, and 7 is an integrating flow meter. , P1 is a sample pump, P2 to P11 are liquid feed pumps, and V is a switching valve.

バブリング槽1、2は放射性物質捕集用の調整溶液を試料水として蓄えたものであり、この試料水に焼却設備の煙道等からの高温の排ガスが導入され、バブリングにより排ガス中の放射性物質が捕集される。この放射性物質捕集用の調整溶液は第1族元素アルカリ金属イオンを含む酸性溶液であり、第1族元素アルカリ金属の塩、例えばNaClを溶解して調整する。
図2はバブリング槽1の詳細構造を示す図であり、図に示すように、バブリング槽1はひょうたん型をしており、水位を計測するための外管8に光センサS1、S2が設けられている。また、バブリング槽1に直列接続されたバブリング槽2も同様の構造をしており、水位検出のための光センサS3、S4が設けられている。
The bubbling tanks 1 and 2 store the adjustment solution for collecting radioactive substances as sample water, and high-temperature exhaust gas from the flue of the incinerator is introduced into this sample water, and the radioactive material in the exhaust gas by bubbling Is collected. The adjustment solution for collecting radioactive substances is an acidic solution containing a Group 1 element alkali metal ion, and is prepared by dissolving a Group 1 element alkali metal salt, for example, NaCl.
FIG. 2 is a diagram showing a detailed structure of the bubbling tank 1, and as shown in the figure, the bubbling tank 1 has a gourd shape and is provided with optical sensors S1 and S2 on the outer tube 8 for measuring the water level. ing. The bubbling tank 2 connected in series to the bubbling tank 1 has the same structure, and is provided with optical sensors S3 and S4 for detecting the water level.

濃縮槽3は試料水の増量分を加熱蒸発させることにより放射性物質が捕集された試料水を濃縮するためのものであり、槽外部に設けられ、試料水を加熱するヒータ9と、試料水を循環して加熱中の試料水上部よりスプレー噴射するための噴射口10を備えている。また、この濃縮槽3内の試料水の水位を計測するための光センサS5、S6が設けられている。
冷却部4は、濃縮槽3からの蒸気及び試料水を冷却するためのものであり、冷却ファン11と、この冷却ファン11により冷却されるパイプ12、13を備えている。ドレン槽5は濃縮槽3からの蒸気が冷却部4で冷却されて生じたドレン液を貯めるための槽であり、ドレン液が一定量貯まったことを検知するためのフロートスイッチ14を備えている。
The concentration tank 3 is for concentrating the sample water in which the radioactive material is collected by heating and evaporating the increased amount of the sample water. The concentration tank 3 is provided outside the tank and has a heater 9 for heating the sample water, and the sample water. And an injection port 10 for spraying from the upper part of the sample water being heated. Further, optical sensors S5 and S6 for measuring the water level of the sample water in the concentration tank 3 are provided.
The cooling unit 4 is for cooling the vapor and sample water from the concentration tank 3, and includes a cooling fan 11 and pipes 12 and 13 cooled by the cooling fan 11. The drain tank 5 is a tank for storing the drain liquid generated by cooling the steam from the concentration tank 3 in the cooling unit 4 and includes a float switch 14 for detecting that a certain amount of drain liquid has been stored. .

試料ポンプP1は煙道等から排ガスを吸引してバブリング槽1、2に導入するためのものであり、送液ポンプP2、P3はバブリング槽1、2の試料水の増量分を濃縮槽3に送るためのポンプである。また、送液ポンプP4は濃縮槽3内の試料水を循環して加熱中の試料水上部よりスプレー噴射するためのポンプであり、送液ポンプP5は濃縮槽3内の試料水をパイプ13を介して放射性物質測定装置(図示せず)に送るためのポンプである。   The sample pump P1 is for sucking exhaust gas from a flue or the like and introducing it into the bubbling tanks 1 and 2; It is a pump for sending. The liquid feed pump P4 is a pump for circulating the sample water in the concentration tank 3 and spraying it from the upper part of the heated sample water, and the liquid feed pump P5 supplies the sample water in the concentration tank 3 through the pipe 13. It is a pump for sending to a radioactive substance measuring apparatus (not shown) via.

送液ポンプP6、P7は濃縮槽3内の試料水、ドレン槽5内のドレン液を排液出口に送るためのポンプである。また、送液ポンプP8は洗浄水槽6内の試料水を排ガスの導管に送るためのポンプであり、送液ポンプP9、P10は洗浄水槽6内の試料水をバブリング槽1、2に送るためのポンプである。また、送液ポンプP11は洗浄水槽6内の試料水を濃縮槽3に送るためのポンプであり、切替バルブVは導管を排ガス側と大気側に切り替えるためのバルブである。   The liquid feeding pumps P6 and P7 are pumps for sending the sample water in the concentration tank 3 and the drain liquid in the drain tank 5 to the drain outlet. The liquid feed pump P8 is a pump for sending the sample water in the washing water tank 6 to the exhaust gas conduit, and the liquid feed pumps P9 and P10 are for sending the sample water in the washing water tank 6 to the bubbling tanks 1 and 2. It is a pump. The liquid feed pump P11 is a pump for sending the sample water in the washing water tank 6 to the concentration tank 3, and the switching valve V is a valve for switching the conduit between the exhaust gas side and the atmosphere side.

一方、図3は本発明のガスサンプリング装置を制御する制御機構のブロック図であり、制御部20には光センサS1〜S6の出力及びフロートスイッチ14の出力が入力され、この制御部20が、試料ポンプP1、送液ポンプP2〜P11の駆動、ヒータ9への通電、冷却ファン11の駆動、及び、切替バルブVの切替えを制御する。   On the other hand, FIG. 3 is a block diagram of a control mechanism for controlling the gas sampling device of the present invention. The outputs of the optical sensors S1 to S6 and the output of the float switch 14 are input to the control unit 20, and the control unit 20 It controls the driving of the sample pump P1, the liquid feeding pumps P2 to P11, the energization of the heater 9, the driving of the cooling fan 11, and the switching of the switching valve V.

次に、本発明のガスサンプリング装置の作用について詳細に説明する。
操作者が制御部20に排ガス中の放射性物質の捕集開始を指示すると、制御部20が試料ポンプP1を駆動するので、下半分に試料水15を蓄えたバブリング槽1、2に、焼却設備の煙道等からの高温の排ガスが導入される。これにより、排ガスがバブリング槽1、2内の試料水15中に導入されてバブリングされ、排ガス中の放射性物質の極微粒子と試料水15が接触して極微粒子が捕集される。このとき、図2に示すように、バブリングガス流により発生した気層16により、試料水15がひょうたん型のバブリング槽1の上部に上昇し、試料水15が上下2層に分割される。このため、上層の試料水15でもバブリングされることになるので、排ガスは2度バブリングされ放射性物質の極微粒子の捕集効率が上昇する。バブリング槽1を通過した排ガスはバブリング槽2に導入され、同様にして排ガス中の放射性物質の極微粒子が捕集される。
Next, the operation of the gas sampling device of the present invention will be described in detail.
When the operator instructs the control unit 20 to start collecting radioactive substances in the exhaust gas, the control unit 20 drives the sample pump P1, so that the incinerator is installed in the bubbling tanks 1 and 2 in which the sample water 15 is stored in the lower half. High temperature exhaust gas from the flue and the like is introduced. As a result, the exhaust gas is introduced into the sample water 15 in the bubbling tanks 1 and 2 and bubbled, and the very fine particles of the radioactive substance in the exhaust gas and the sample water 15 come into contact with each other to collect the extremely fine particles. At this time, as shown in FIG. 2, due to the gas layer 16 generated by the bubbling gas flow, the sample water 15 rises to the upper part of the gourd-type bubbling tank 1, and the sample water 15 is divided into two upper and lower layers. For this reason, since the upper sample water 15 is also bubbled, the exhaust gas is bubbled twice and the collection efficiency of the ultrafine particles of the radioactive substance is increased. The exhaust gas that has passed through the bubbling tank 1 is introduced into the bubbling tank 2, and in the same manner, the ultrafine particles of the radioactive substance in the exhaust gas are collected.

一方、焼却設備等からの高温の排ガス中にはガス状の水分が含まれており、バブリング槽1内でこれらの水分が結露するので、試料水が増加する。そして、水位が上昇して外管8の光センサS1が試料水15を検知すると、制御部20が送液ポンプP2を駆動してサンプリング槽1内の試料水15を濃縮槽3に送り、光センサS2が試料水15を検知しなくなると、制御部20が送液ポンプP2の駆動を停止する。バブリング槽2についても、同様に、光センサS3が試料水15を検知すると、制御部20が送液ポンプP3を駆動してサンプリング槽2内の試料水15を濃縮槽3に送り、光センサS4が試料水15を検知しなくなると、制御部20が送液ポンプP3の駆動を停止する。   On the other hand, gaseous water is contained in the high-temperature exhaust gas from the incineration facility and the like, and these waters are condensed in the bubbling tank 1, so that the sample water increases. Then, when the water level rises and the optical sensor S1 of the outer tube 8 detects the sample water 15, the control unit 20 drives the liquid feed pump P2 to send the sample water 15 in the sampling tank 1 to the concentration tank 3, and light When the sensor S2 stops detecting the sample water 15, the control unit 20 stops driving the liquid feed pump P2. Similarly, for the bubbling tank 2, when the optical sensor S3 detects the sample water 15, the control unit 20 drives the liquid feed pump P3 to send the sample water 15 in the sampling tank 2 to the concentration tank 3, and the optical sensor S4. When the sample water 15 is no longer detected, the control unit 20 stops driving the liquid feeding pump P3.

そして、濃縮槽3内の試料水が増加し、濃縮槽3の光センサS5が試料水を検知すると、制御部20はヒータ9に通電して濃縮槽3を加熱するとともに、送液ポンプP4を駆動して濃縮槽3内の試料水を循環させる。これにより、試料水の増量分が加熱されて蒸発するので、放射性物質が捕集された試料水が濃縮されるとともに、濃縮槽3内の試料水が循環して噴射口10から加熱中の試料水上部よりスプレー噴射されるので、エアロゾルを低減することができる。濃縮槽3内の試料水の濃縮が進行し、濃縮槽3の光センサS6が試料水を検知しなくなると、制御部20は、ヒータ9への通電、送液ポンプP4の駆動を停止する。   When the sample water in the concentration tank 3 increases and the optical sensor S5 of the concentration tank 3 detects the sample water, the controller 20 energizes the heater 9 to heat the concentration tank 3, and the liquid feed pump P4 is turned on. The sample water in the concentration tank 3 is driven to circulate. As a result, since the increased amount of the sample water is heated and evaporated, the sample water in which the radioactive substance is collected is concentrated, and the sample water in the concentration tank 3 is circulated to be heated from the injection port 10. Since the spray is sprayed from above the water, the aerosol can be reduced. When the concentration of the sample water in the concentration tank 3 proceeds and the optical sensor S6 of the concentration tank 3 stops detecting the sample water, the control unit 20 stops energizing the heater 9 and driving the liquid feed pump P4.

一方、制御部20は濃縮槽3の加熱と同時に冷却ファン11を駆動しており、濃縮槽3で発生した蒸気は冷却部4のパイプ12を通過する際に冷却されてドレン液となり、生じたドレン液はドレン槽5に送られる。そして、ドレン槽5内のドレン液が増加し、フロートスイッチ14が液を検知すると、制御部20は送液ポンプP7を所定時間、例えば、2〜5分間駆動し、ドレン槽5に貯まったドレン液を排液出口から排出する。   On the other hand, the control unit 20 drives the cooling fan 11 simultaneously with the heating of the concentration tank 3, and the steam generated in the concentration tank 3 is cooled when passing through the pipe 12 of the cooling unit 4 to become a drain liquid. The drain liquid is sent to the drain tank 5. When the drain liquid in the drain tank 5 increases and the float switch 14 detects the liquid, the control unit 20 drives the liquid feed pump P7 for a predetermined time, for example, 2 to 5 minutes, and the drain accumulated in the drain tank 5 Drain the liquid from the drain outlet.

排ガス中の放射性物質の捕集を開始してから、例えば、1週間が経過し、一定量の排ガスサンプリングが終了すると、制御部20は放射線の測定動作を開始する。制御部20は、試料ポンプP1の駆動を停止した後、送液ポンプP5を駆動するとともに、冷却ファン11を駆動するので、濃縮槽3内の濃縮液が冷却部4のパイプ13を通過する際に冷却された後、放射線測定装置(図示せず)に送られる。すなわち、放射線測定装置、例えば、シンチレーションセンサは50℃以上では劣化するため、冷却部4により濃縮液を50℃以下に冷却して放射線測定装置に送るようにしている。
そして、放射線測定装置で測定された放射線量と積算流量計7の積算流量に基づいて排ガス中の放射線量が検出される。一定時間送液ポンプP5を駆動して濃縮液の放射線測定が終了すると、制御部20は送液ポンプP5の駆動を停止するとともに、送液ポンプP2、送液ポンプP3及び送液ポンプP6を一定時間駆動することにより、バブリング槽1、2内の試料水、及び、濃縮槽3に残った濃縮液を排液出口から排出する。
For example, when one week has passed after the collection of the radioactive substance in the exhaust gas has started and a certain amount of exhaust gas sampling has been completed, the control unit 20 starts a radiation measurement operation. Since the control unit 20 drives the liquid feed pump P5 and stops the cooling fan 11 after stopping the driving of the sample pump P1, the concentrated solution in the concentration tank 3 passes through the pipe 13 of the cooling unit 4. Then, it is sent to a radiation measuring device (not shown). That is, since a radiation measuring apparatus, for example, a scintillation sensor, deteriorates at 50 ° C. or higher, the cooling liquid is cooled to 50 ° C. or lower by the cooling unit 4 and sent to the radiation measuring apparatus.
Then, the radiation dose in the exhaust gas is detected based on the radiation dose measured by the radiation measuring device and the integrated flow rate of the integrating flow meter 7. When the liquid feed pump P5 is driven for a certain period of time and the radiation measurement of the concentrated liquid is completed, the control unit 20 stops driving the liquid feed pump P5 and keeps the liquid feed pump P2, the liquid feed pump P3, and the liquid feed pump P6 constant. By driving for a time, the sample water in the bubbling tanks 1 and 2 and the concentrate remaining in the concentration tank 3 are discharged from the drain outlet.

試料水、濃縮液の排出が完了すると、制御部20は、次に、ガスサンプリング装置全体の洗浄を実行する。
まず、制御部20は、送液ポンプP8、送液ポンプP2及び送液ポンプP6を一定時間駆動し、洗浄水槽6内の試料水を導管内に流して導管の洗浄を実行する。次に、制御部20は、送液ポンプP9、送液ポンプP10を駆動して洗浄水槽6内の試料水をバブリング槽1、2に送る。そして、バブリング槽1、2の光センサS2、S4が試料水を検知すると、制御部20は送液ポンプP9、送液ポンプP10の駆動を停止する。この後、制御部20は、切替バルブVを切り替えて導管を外気側に切り替えた後、試料ポンプP1を一定時間駆動し、バブリング槽1、2内に外気を導入してバブリングを実行することにより、バブリング槽1、2の壁面の汚れを洗浄する。
When the discharge of the sample water and the concentrated liquid is completed, the control unit 20 next executes cleaning of the entire gas sampling device.
First, the control unit 20 drives the liquid feeding pump P8, the liquid feeding pump P2, and the liquid feeding pump P6 for a certain period of time, and causes the sample water in the cleaning water tank 6 to flow into the conduit to execute the cleaning of the conduit. Next, the control unit 20 drives the liquid feeding pump P9 and the liquid feeding pump P10 to send the sample water in the washing water tank 6 to the bubbling tanks 1 and 2. When the optical sensors S2 and S4 of the bubbling tanks 1 and 2 detect sample water, the control unit 20 stops driving the liquid feeding pump P9 and the liquid feeding pump P10. Thereafter, the control unit 20 switches the switching valve V to switch the conduit to the outside air side, then drives the sample pump P1 for a certain period of time, introduces outside air into the bubbling tanks 1 and 2, and executes bubbling. The dirt on the wall surfaces of the bubbling tanks 1 and 2 is washed.

バブリング槽1、2の洗浄が完了すると、制御部20は送液ポンプP2、送液ポンプP3及び送液ポンプP6を一定時間駆動してバブリング槽1、2内の試料水を排出した後、送液ポンプP11を駆動して洗浄水槽6内の試料水を濃縮槽3に送り、光センサ5が試料水を検出すると、送液ポンプP11の駆動を停止する。この後、制御部20は送液ポンプP6を一定時間駆動し、濃縮槽3内の試料水を排出し、洗浄を終了する。   When the cleaning of the bubbling tanks 1 and 2 is completed, the control unit 20 drives the liquid feeding pump P2, the liquid feeding pump P3, and the liquid feeding pump P6 for a certain period of time to discharge the sample water in the bubbling tanks 1 and 2, and then When the liquid pump P11 is driven to send the sample water in the washing water tank 6 to the concentration tank 3, and the optical sensor 5 detects the sample water, the driving of the liquid feed pump P11 is stopped. Thereafter, the control unit 20 drives the liquid feeding pump P6 for a predetermined time, discharges the sample water in the concentration tank 3, and ends the cleaning.

洗浄が終了し、再び、放射性物質の捕集を行う場合、操作者が制御部20に排ガス中の放射性物質の捕集開始を指示すると、制御部20は、切替弁Vを外気側から排ガス側に切り替えるとともに、送液ポンプP9、送液ポンプP10を一定時間駆動して洗浄水槽6内の試料水をバブリング槽1、2に送液し、バブリング槽1、2の下半分に試料水を蓄えた後、試料ポンプP1を駆動するので、バブリング槽1、2に焼却設備の煙道等からの排ガスが導入され、同様にして、排ガス中の放射性物質の捕集が実行される。   When the cleaning is completed and the radioactive material is collected again, when the operator instructs the control unit 20 to start collecting the radioactive material in the exhaust gas, the control unit 20 moves the switching valve V from the outside air side to the exhaust gas side. In addition, the liquid feed pump P9 and the liquid feed pump P10 are driven for a certain period of time to feed the sample water in the washing water tank 6 to the bubbling tanks 1 and 2, and the sample water is stored in the lower half of the bubbling tanks 1 and 2. After that, since the sample pump P1 is driven, the exhaust gas from the flue or the like of the incineration facility is introduced into the bubbling tanks 1 and 2, and in the same manner, collection of radioactive substances in the exhaust gas is executed.

上記のように、サンプルガス中水分によるバブリング槽内での試料水増量分を一定時間ごとに濃縮槽へ移送して、加熱することにより、試料水の不要水分を蒸発させることができるので、多くのバブリング槽を設けることなく、バブリング槽のオーバーフローを防止することができ、数日にわたる長時間サンプリングが可能となるとともに、試料液が濃縮されるので放射性物質の検出感度を大幅に上昇させることができる。   As described above, the sample water increase in the bubbling tank due to moisture in the sample gas is transferred to the concentration tank at regular intervals and heated to evaporate unnecessary water in the sample water. Without providing a bubbling tank, overflow of the bubbling tank can be prevented, sampling for a long time over several days is possible, and the sample solution is concentrated, so that the detection sensitivity of radioactive substances can be greatly increased. it can.

なお、上記実施例では、バブリング槽を2個設けたが、3個以上設けることもでき、また、上記実施例では、バブリング槽をひょうたん型にしたが、通常の円筒形のバブリング槽を使用することも可能である。   In the above embodiment, two bubbling tanks are provided, but three or more can be provided. In the above embodiment, the bubbling tank is a gourd type, but a normal cylindrical bubbling tank is used. It is also possible.

1、2 バブリング槽
3 濃縮槽
4 冷却部
5 ドレン槽
6 洗浄水槽
7 積算流量計
P1 試料ポンプ
P2〜P11 送液ポンプ
V 切替バルブ
S1〜S6 光センサ
9 ヒータ
10 噴射口
11 冷却ファン
12、13 パイプ
14 フロートスイッチ
DESCRIPTION OF SYMBOLS 1, 2 Bubbling tank 3 Concentration tank 4 Cooling part 5 Drain tank 6 Washing water tank 7 Integrated flow meter P1 Sample pump P2-P11 Liquid feed pump V Switching valve S1-S6 Optical sensor 9 Heater 10 Injection port 11 Cooling fan 12, 13 Pipe 14 Float switch

Claims (3)

試料水を蓄えるバブリング槽と、上記バブリング槽内の試料水が移送される濃縮槽とを備え、上記バブリング槽内の試料水にサンプルガスが導入されるとともに、上記バブリング槽内の試料水の増量分が上記濃縮槽に移送され、加熱、蒸発されることを特徴とするガスサンプリング装置。   A bubbling tank for storing the sample water; and a concentrating tank to which the sample water in the bubbling tank is transferred, the sample gas being introduced into the sample water in the bubbling tank, and an increase in the sample water in the bubbling tank A gas sampling apparatus characterized in that a minute is transferred to the concentration tank, heated and evaporated. 請求項1に記載されたガスサンプリング装置において、上記濃縮槽内の試料水を循環する機構を備え、試料水の加熱中、上記濃縮槽内の試料水を試料水上部からスプレー噴射することを特徴とするガスサンプリング装置。   2. The gas sampling device according to claim 1, further comprising a mechanism for circulating the sample water in the concentration tank, wherein the sample water in the concentration tank is sprayed from above the sample water during heating of the sample water. Gas sampling device. 請求項1または請求項2に記載されたガスサンプリング装置において、上記バブリング槽がひょうたん型をしていることを特徴とするガスサンプリング装置。   3. The gas sampling apparatus according to claim 1, wherein the bubbling tank has a gourd shape.
JP2013175321A 2013-08-27 2013-08-27 Gas sampling device Active JP6124737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175321A JP6124737B2 (en) 2013-08-27 2013-08-27 Gas sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175321A JP6124737B2 (en) 2013-08-27 2013-08-27 Gas sampling device

Publications (2)

Publication Number Publication Date
JP2015045508A true JP2015045508A (en) 2015-03-12
JP6124737B2 JP6124737B2 (en) 2017-05-10

Family

ID=52671131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175321A Active JP6124737B2 (en) 2013-08-27 2013-08-27 Gas sampling device

Country Status (1)

Country Link
JP (1) JP6124737B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492230Y1 (en) * 1970-01-14 1974-01-19
JPH0373884A (en) * 1989-08-16 1991-03-28 Toshiba Corp Tritium capturing device
JPH05288654A (en) * 1992-04-13 1993-11-02 Mitsubishi Electric Corp Apparatus and method for sampling concentration of minute amount of dissolved gas
JPH0875620A (en) * 1994-09-09 1996-03-22 Nitto Boseki Co Ltd Method and apparatus for sampling of smoke contained gas
US6042634A (en) * 1998-04-22 2000-03-28 Bacharach, Inc. Moisture extractor system for gas sampling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492230Y1 (en) * 1970-01-14 1974-01-19
JPH0373884A (en) * 1989-08-16 1991-03-28 Toshiba Corp Tritium capturing device
JPH05288654A (en) * 1992-04-13 1993-11-02 Mitsubishi Electric Corp Apparatus and method for sampling concentration of minute amount of dissolved gas
JPH0875620A (en) * 1994-09-09 1996-03-22 Nitto Boseki Co Ltd Method and apparatus for sampling of smoke contained gas
US6042634A (en) * 1998-04-22 2000-03-28 Bacharach, Inc. Moisture extractor system for gas sampling

Also Published As

Publication number Publication date
JP6124737B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
RU2404842C2 (en) System to entrap carbon dioxide from waste gas
KR101168948B1 (en) System for sampling and measuring particulated matters
CN103350104B (en) In-polluted-site heat-intensifying vapor extracting and repairing integrated device and application method
US10480822B2 (en) Condensate neutralizer device
KR101073637B1 (en) Air-conditioner
JP2018159516A (en) Cooling tower facility, and water quality control method thereof
JP6124737B2 (en) Gas sampling device
US7367225B2 (en) Apparatus for measuring mecury contained in gaseous medium
KR100893680B1 (en) Removing method of radioactive containment in air and apparatus using the same
JP2007029537A (en) Decontamination method of sequestered flexible member, and condensation detector of sequestered flexible component used for decontamination method
CN104296125B (en) Condensing hot air furnace processing system for gas fired-boiler
JP5069642B2 (en) Tritium sampler
US9213341B2 (en) Biological safety cabinet with a falling-film evaporator
JP2007218827A (en) Tritium inspection device and tritium inspection method
KR101696373B1 (en) Moving Type Tritium Removal System
JP2003004894A (en) Processing method for radioactive ion exchanger resin and its processing device
CN102708940B (en) Wet waste drying device for nuclear power plant
KR101100456B1 (en) Apparatus and method for collecting steam of stack
JP2599979B2 (en) Iodine measuring device
JP2015187565A (en) Washing unit of evaporation processing system and washing method
JP2004101261A (en) Pretreating apparatus and metal analyzing apparatus
GB2528787A (en) A condensate disposal system for disposing of condensate from a condensing fuel burning appliance, a condensing fuel burning appliance having a condensate
JP2016130651A (en) Exhaust gas/waste liquid collection treatment apparatus and corrosion acceleration testing machine using the same
JP2013198870A (en) Evaporative concentration apparatus and cleaning method for the same
KR101696888B1 (en) Treatment methods and system for treatment and reduction of liquid waste including radioactive compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6124737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250