JP2015044898A - Semiconductor sealing epoxy resin composition and resin sealing type semiconductor device using the same - Google Patents

Semiconductor sealing epoxy resin composition and resin sealing type semiconductor device using the same Download PDF

Info

Publication number
JP2015044898A
JP2015044898A JP2013175397A JP2013175397A JP2015044898A JP 2015044898 A JP2015044898 A JP 2015044898A JP 2013175397 A JP2013175397 A JP 2013175397A JP 2013175397 A JP2013175397 A JP 2013175397A JP 2015044898 A JP2015044898 A JP 2015044898A
Authority
JP
Japan
Prior art keywords
epoxy resin
hydrotalcite
resin composition
compound
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175397A
Other languages
Japanese (ja)
Other versions
JP6183061B2 (en
Inventor
東哲 姜
Dong-Cheol Kang
東哲 姜
遠藤 由則
Yoshinori Endo
由則 遠藤
阿部 秀則
Hidenori Abe
秀則 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013175397A priority Critical patent/JP6183061B2/en
Publication of JP2015044898A publication Critical patent/JP2015044898A/en
Application granted granted Critical
Publication of JP6183061B2 publication Critical patent/JP6183061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor sealing epoxy resin composition excellent in reliability without generating a leak failure, a short circuit failure between wires and a wire open failure when a bias is applied in high temperature and high humidity, and a resin sealing type semiconductor device using the same.SOLUTION: The semiconductor sealing epoxy resin composition comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) a hydrotalcite-like compound represented by the following general formula (1) and (E) an inorganic filler as an essential component. The hydrotalcite-like compound of the (D) component is 2.4≤Mg/Al (2.4≤a/b) and an un-sintered hydrotalcite-like compound has peaks of a (001) plane and a (002) plane in a layer direction observed by X-ray diffraction.

Description

本発明は、電気特性、耐湿性、耐マイグレーション性、信頼性に優れた半導体封止用エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置に関する。   The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in electrical characteristics, moisture resistance, migration resistance and reliability, and a resin-encapsulated semiconductor device using the same.

従来、半導体パッケージには、Auワイヤを使用するものが主流であった。しかし、金価格の高騰などにより、近年では、Cuワイヤを使用する傾向にある。封止材中の原材料の一つであるエポキシ樹脂は、エピクロロヒドリンを使用して作製されるものがほとんどのため、封止材中には、その塩基残さが、ワイヤ腐食性不純物として残留してしまう。CuはAuと比較して、化学的反応性に富んでいるため、塩素による腐食が激しく、信頼性に問題があった。不純物イオンをトラップするため、無機充填剤の一つである、ハイドロタルサイト様化合物が用いられることが多い。Cuワイヤの信頼性を満足させるため、様々なイオントラップ剤が検討されており、抽出水塩素イオンの低減を目的とした、半焼成ハイドロタルサイトや、焼成ハイドロタルサイトなどが検討されてきた(例えば、特許文献1、2参照)。これらは、抽出水塩素イオンの低減、耐湿信頼性の問題を解決する手段として、有効な結果を示したが、バイアス印加耐湿信頼性を、必ずしもクリアーするものではなかった。   Conventionally, semiconductor packages using Au wires have been the mainstream. However, due to soaring gold prices, in recent years, there is a tendency to use Cu wire. Most of the epoxy resin, which is one of the raw materials in the sealing material, is produced using epichlorohydrin, so the base residue remains as a corrosive impurity in the sealing material. Resulting in. Since Cu is more chemically reactive than Au, corrosion by chlorine is severe and there is a problem in reliability. In order to trap impurity ions, a hydrotalcite-like compound, which is one of inorganic fillers, is often used. In order to satisfy the reliability of Cu wire, various ion trapping agents have been studied, and semi-calcined hydrotalcite and calcined hydrotalcite for the purpose of reducing extracted water chlorine ions have been studied ( For example, see Patent Documents 1 and 2). Although these showed effective results as means for solving the problems of reduction of extracted water chloride ions and moisture resistance reliability, they did not necessarily clear the bias applied moisture resistance reliability.

特開2005−1902号公報JP-A-2005-1902 特開2009−29919号公報JP 2009-29919 A

本発明は、バイアス印加を加えた、高温高湿化での、リーク不良、ワイヤ間ショート不良、ワイヤオープン不良が発生せず、信頼性に優れた半導体封止用エポキシ樹脂組成物及び、それを用いた樹脂封止型半導体装置を提供することを目的とする。   The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in reliability without occurrence of leakage failure, wire-to-wire short-circuit failure, or wire-open failure at high temperature and high humidity with bias applied, and An object of the present invention is to provide a resin-encapsulated semiconductor device used.

本発明は、[1] (A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)下記一般式(1)で表されるハイドロタルサイト様化合物及び(E)無機充填材を必須成分として含有し、(D)成分のハイドロタルサイト様化合物が、2.4≦Mg/Al(2.4≦a/b)で、焼成を施していない未焼成であることを特徴とする半導体封止用エポキシ樹脂組成物に関する。   The present invention provides: [1] (A) epoxy resin, (B) curing agent, (C) curing accelerator, (D) hydrotalcite-like compound represented by the following general formula (1), and (E) inorganic filling It contains a material as an essential component, and the hydrotalcite-like compound of component (D) is 2.4 ≦ Mg / Al (2.4 ≦ a / b) and is not fired yet. It relates to an epoxy resin composition for semiconductor encapsulation.

Figure 2015044898
Figure 2015044898

また、本発明は、[2] (D)成分のハイドロタルサイト様化合物が、(A)エポキシ樹脂100質量部に対し、1〜15質量部を配合する上記[1]に記載の半導体封止用エポキシ樹脂組成物に関する。
また、本発明は、[3] (D)成分のハイドロタルサイト様化合物が、(A)エポキシ樹脂100質量部に対し、10〜15質量部を配合する上記[2]に記載の半導体封止用エポキシ樹脂組成物に関する。
また、本発明は、[4] (E)無機充填材を75〜97質量%含有することを特徴とする上記[1]〜[3]のいずれかに記載の半導体封止用エポキシ樹脂組成物に関する。
また、本発明は、[5] 上記[1]〜[4]のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなる樹脂封止型半導体装置に関する。
Moreover, this invention is [1] The semiconductor sealing as described in [1] above, wherein the hydrotalcite-like compound of component (D) is blended in an amount of 1 to 15 parts by mass with respect to 100 parts by mass of (A) epoxy resin. The present invention relates to an epoxy resin composition.
Moreover, this invention is [3] The semiconductor sealing as described in [2] above, wherein the hydrotalcite-like compound of component (D) is blended in an amount of 10 to 15 parts by mass with respect to 100 parts by mass of (A) epoxy resin. The present invention relates to an epoxy resin composition.
Moreover, this invention contains 75-97 mass% of [4] (E) inorganic fillers, The epoxy resin composition for semiconductor sealing in any one of said [1]-[3] characterized by the above-mentioned. About.
The present invention also relates to [5] a resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition for encapsulating a semiconductor according to any one of [1] to [4].

本発明の半導体封止用エポキシ樹脂組成物を用いることにより、Cuワイヤを使用してもCuワイヤが腐食し抵抗が上昇するのを抑制することができ、バイアス印加した、高温高湿化での、リーク不良、ワイヤ間ショート不良、ワイヤオープン不良が発生せず、信頼性に優れた半導体封止用エポキシ樹脂組成物及び、それを用いた樹脂封止型半導体装置を提供することができる。   By using the epoxy resin composition for semiconductor encapsulation of the present invention, it is possible to suppress the corrosion of the Cu wire and increase the resistance even when the Cu wire is used. In addition, it is possible to provide a highly reliable epoxy resin composition for encapsulating a semiconductor and a resin-encapsulated semiconductor device using the same without causing a leak defect, a short-circuit between wires, or a wire open defect.

本発明の半導体封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)上記一般式(1)で表されるハイドロタルサイト様化合物及び(E)無機充填材を必須成分として含有し、(D)成分のハイドロタルサイト様化合物が、2.4≦Mg/Al(2.4≦a/b)で、焼成を施していない未焼成(X線回折において、層方向ピークである001面、002面ピークが共に観察されるもの)であることを特徴とする。
以下に、本発明の半導体封止用エポキシ樹脂組成物について説明する。
The epoxy resin composition for semiconductor encapsulation of the present invention comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, and (D) a hydrotalcite-like compound represented by the above general formula (1). And (E) containing an inorganic filler as an essential component, and the hydrotalcite-like compound of component (D) is 2.4 ≦ Mg / Al (2.4 ≦ a / b) and not fired It is characterized in that it is fired (both 001 plane and 002 plane peaks which are layer direction peaks are observed in X-ray diffraction).
Below, the epoxy resin composition for semiconductor encapsulation of this invention is demonstrated.

(A)エポキシ樹脂
本発明の(A)エポキシ樹脂は、特に限定されるものではなく、封止用エポキシ樹脂成形材料で一般に使用されているエポキシ樹脂を使用することができる。
それを例示すれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールAD、ビスフェノールF、ビスフェノールS、アルキル置換または非置換のビフェノール等のジグリシジルエーテル、フェノール・アラルキル樹脂をエポキシ化したもの、フェノール類とジシクロペンタジエンやテルペン類との付加物または重付加物をエポキシ化したもの、フタル酸、ダイマー酸などの多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂などが挙げられ、これらを適宜何種類でも併用することができる。
(A) Epoxy resin The (A) epoxy resin of this invention is not specifically limited, The epoxy resin generally used with the epoxy resin molding material for sealing can be used.
For example, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin and other phenols, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and other phenols and / or α-naphthol, β- Epoxidized novolak resin obtained by condensation or cocondensation of naphthols such as naphthol and dihydroxynaphthalene with aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde, etc. in the presence of an acidic catalyst, bisphenol A, bisphenol Epoxidize AD, bisphenol F, bisphenol S, diglycidyl ethers such as alkyl-substituted or unsubstituted biphenol, and phenol / aralkyl resins , Epoxidized adduct or polyaddition product of phenol and dicyclopentadiene or terpene, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, diamino Examples include glycidylamine type epoxy resins obtained by reaction of polyamines such as diphenylmethane and isocyanuric acid with epichlorohydrin, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and alicyclic epoxy resins. Any number of these can be used in combination.

これら(A)成分のエポキシ樹脂の純度、特に加水分解性塩素量は、ICなど素子上のアルミ配線、銅配線腐食に係わるため少ない方がよく、耐湿性の優れた半導体封止用エポキシ樹脂成形材料(半導体封止用エポキシ樹脂組成物)を得るためには500ppm以下であることが好ましい。ここで、加水分解性塩素量とは試料のエポキシ樹脂1gをジオキサン30mlに溶解し、1N−KOHメタノール溶液5mlを添加して30分間リフラックス後、電位差滴定により求めた値を尺度としたものである。   The purity of these (A) component epoxy resins, especially the amount of hydrolyzable chlorine, is better because it involves corrosion of aluminum wiring and copper wiring on devices such as ICs. Molding epoxy resin for semiconductor encapsulation with excellent moisture resistance In order to obtain a material (epoxy resin composition for semiconductor encapsulation), the content is preferably 500 ppm or less. Here, the amount of hydrolyzable chlorine is a value obtained by dissolving 1 g of an epoxy resin of a sample in 30 ml of dioxane, adding 5 ml of a 1N-KOH methanol solution and refluxing for 30 minutes, and then obtaining by potentiometric titration. is there.

(B)硬化剤
硬化剤は特に限定はないが、たとえば、半導体封止用エポキシ樹脂成形材料で一般に使用されているもので、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂、フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等があり、単独又は併用して用いることができる。中でも、耐リフロー性向上の観点から好適なものとして、フェノール・アラルキル樹脂が挙げられる。硬化剤は、エポキシ樹脂のエポキシ基1当量に対して、エポキシ基との反応基、例えば、上記ノボラック樹脂のフェノール性水酸基、が0.5〜1.5当量になるように配合されることが好ましく、特に、0.7〜1.2当量配合することが好ましい。
(B) Curing agent The curing agent is not particularly limited. For example, phenols such as phenol, cresol, resorcin, catechol, bisphenol A, and bisphenol F are generally used in epoxy resin molding materials for semiconductor encapsulation. There are novolak resins, phenol / aralkyl resins, naphthol / aralkyl resins, etc. obtained by condensation or cocondensation of naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene with aldehydes such as formaldehyde under an acidic catalyst. These can be used alone or in combination. Among them, a phenol / aralkyl resin is preferable from the viewpoint of improving reflow resistance. The curing agent may be blended so that the reactive group with the epoxy group, for example, the phenolic hydroxyl group of the novolak resin is 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin. It is particularly preferable to add 0.7 to 1.2 equivalents.

(C)硬化促進剤
硬化促進剤としては、特に制限はなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5,6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモテトラフェニルホスホニウム−テトラフェニルボレート、トリフェニルホスフィン、トリフェニルホスフィンとベンゾキノンの付加物、トリパラトリルフォスフィンとベンゾキノンの付加物、1,8−ジアザービシクロ(5,4,0)−ウンデセン−7,2−フェニル−4メチル−イミダゾール、トリフェニルホスホニウム−トリフェニルボラン等があり、単独又は併用して用いることができる。硬化促進剤は、エポキシ樹脂と硬化剤の合計量に対して、0.1〜8質量%使用することが好ましい。
(C) Curing accelerator The curing accelerator is not particularly limited, and for example, 1,8-diaza-bicyclo (5,4,0) undecene-7,1,5-diaza-bicyclo (4,3,0) 3) Nonene, 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, etc. Secondary amines and their derivatives, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and their derivatives, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenyl Organic phosphines such as phosphine and these phosphines Phosphorus compounds having intramolecular polarization formed by adding a compound having a π bond such as maleic anhydride, benzoquinone, diazophenylmethane, etc., tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetraphenylborate, 2-ethyl-4 -Methylimidazole tetraphenylborate, N-methylmotetraphenylphosphonium-tetraphenylborate, triphenylphosphine, adduct of triphenylphosphine and benzoquinone, adduct of triparatolyphosphine and benzoquinone, 1,8-diazabicyclo ( 5,4,0) -undecene-7,2-phenyl-4methyl-imidazole, triphenylphosphonium-triphenylborane, and the like, which can be used alone or in combination. It is preferable to use 0.1-8 mass% of hardening accelerators with respect to the total amount of an epoxy resin and a hardening | curing agent.

(D)一般式(1)で表されるハイドロタルサイト様化合物
本発明で用いるハイドロタルサイト様化合物は、上記一般式(1)で表されるものである。その構造は層状の結晶構造を有し、ひとつひとつの結晶片は葉片状あるいは鱗状を呈している。構造の主骨格[MgAl(OH)16]はシート状の金属水酸化物であり、ハイドロタルサイトは、構造式[M2+ 1−x3+ (OH)][An− x/n・mHO]で表される様々な化合物のうちのひとつである。M2+とM3+は、2価および3価の金属イオンを、An− x/nは層間陰イオンを表し、[M2+ 1−x3+ (OH)]が水酸化物シートで、金属イオンを6つのOHが取り囲んで形成する八面体が互いに稜を共有することによって作られている。水酸化物シートが何枚も重なってハイドロタルサイト様化合物の層状構造を形成し、シートとシートの間(層間)には陰イオンと水分子が入っている。ハイドロタルサイト様化合物の水酸化物シートは2価金属の一部を3価金属が置き換えているので全体として正に荷電する。静電的なバランスは、層間に陰イオンが取り込まれることによって保たれるとされている。この特徴を利用してイオントラップ剤として用いることが可能となる。近年、ハイドロタルサイト様化合物を焼成することで比表面積を増大させ、化合物表面でのトラップを可能にしたイオントラップ剤が作製されているが、これはハイドロタルサイト様化合物の特徴である層構造を破壊してしまうため、本発明で用いるハイドロタルサイト様化合物とは未焼成ハイドロタルサイトのことを示す。
(D) Hydrotalcite-like compound represented by general formula (1) The hydrotalcite-like compound used in the present invention is represented by the above general formula (1). The structure has a layered crystal structure, and each crystal piece has a leaf shape or a scale shape. The main skeleton [Mg 6 Al 2 (OH) 16 ] of the structure is a sheet-like metal hydroxide, and the hydrotalcite is represented by the structural formula [M 2+ 1-x M 3+ x (OH) 2 ] [A n− x / n · mH 2 O]. M 2+ and M 3+ are divalent and trivalent metal ions, A n- x / n represents an interlayer anion is a hydroxide sheet [M 2+ 1-x M 3+ x (OH) 2] The octahedron, which is formed by surrounding 6 OH with metal ions, is made by sharing a ridge with each other. A number of hydroxide sheets overlap to form a layered structure of a hydrotalcite-like compound, and anions and water molecules are contained between the sheets (interlayer). The hydrotalcite-like compound hydroxide sheet is positively charged as a whole because the trivalent metal replaces part of the divalent metal. The electrostatic balance is said to be maintained by incorporating anions between layers. Using this feature, it can be used as an ion trapping agent. In recent years, an ion trap agent that increases the specific surface area by firing a hydrotalcite-like compound and enables trapping on the surface of the compound has been produced. This is a layer structure that is a feature of hydrotalcite-like compounds. Therefore, the hydrotalcite-like compound used in the present invention means unfired hydrotalcite.

本発明で用いるハイドロタルサイト様化合物は、2.4≦Mg/Al(2.4≦a/b)となるようにMg塩とAl塩のモル比を調整し作製する。得られたハイドロタルサイト様化合物は、焼成を施していないもので、X線回折において、層方向ピークである001面、002面ピークが共に5°〜45°付近におよそ等間隔で観察される。
ハイドロタルサイト様化合物の二次粒子径は、250μm以上であることが好ましく、また、BET比表面積が10〜100m/gが好ましい。粒度測定には、ふるい分析装置に比べ再現性に優れ短時間で測定可能な、レーザー回折/散乱式粒度分布測定装置を用いるのが好ましい。比表面積は、正確に単分子吸着量が測定可能なBET法を用いるのが好ましい。
(D)成分のハイドロタルサイト様化合物は、(A)成分のエポキシ樹脂100質量部に対し、1〜15質量部を配合することが好ましい。1質量部未満では、添加効果に乏しく、15質量部を超えると効果が飽和してくる。
The hydrotalcite-like compound used in the present invention is prepared by adjusting the molar ratio of Mg salt to Al salt so that 2.4 ≦ Mg / Al (2.4 ≦ a / b). The obtained hydrotalcite-like compound is not calcined, and in X-ray diffraction, the 001 plane and 002 plane peaks, which are layer direction peaks, are observed at approximately equal intervals in the vicinity of 5 ° to 45 °. .
The secondary particle size of the hydrotalcite-like compound is preferably 250 μm or more, and the BET specific surface area is preferably 10 to 100 m 2 / g. For the particle size measurement, it is preferable to use a laser diffraction / scattering particle size distribution measuring device which is excellent in reproducibility compared with a sieve analyzer and can be measured in a short time. For the specific surface area, it is preferable to use the BET method capable of accurately measuring the amount of adsorbed single molecules.
The hydrotalcite-like compound as the component (D) is preferably blended in an amount of 1 to 15 parts by mass with respect to 100 parts by mass of the epoxy resin as the component (A). If it is less than 1 part by mass, the effect of addition is poor, and if it exceeds 15 parts by mass, the effect is saturated.

(E)無機充填材
本発明で用いる無機充填材としては、吸湿性低減及び強度向上の観点から無機充填材を用いることが必要である。(E)成分の無機充填材は、(C)成分のハイドロタルサイト様化合物を除いたものであり、無機充填材としては、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化ホウ素、ベリリア、ジルコニア等の粉体、又はこれらを球形化したビーズ、チタン酸カリウム、炭化珪素、窒化珪素、アルミナ等の単結晶繊維、ガラス繊維等を1種類以上配合することができる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられ、これらを単独または併用することができる。無機充填材の配合量としては、吸湿性、線膨張係数の低減、強度向上及び半田耐熱性の観点から、本発明おける半導体封止用エポキシ樹脂組成物全体に対して75〜97質量%の範囲内であることが好ましく、特に、80〜95質量%の範囲内であることが好ましい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性及び金型摩耗性の点から球形が好ましい。
(E) Inorganic filler As an inorganic filler used by this invention, it is necessary to use an inorganic filler from a viewpoint of a hygroscopic reduction and an intensity | strength improvement. The (E) component inorganic filler is obtained by removing the hydrotalcite-like compound (C), and the inorganic filler includes fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, carbonized. One or more kinds of powders such as silicon, boron nitride, beryllia, zirconia, or beads made by spheroidizing these, single crystal fibers such as potassium titanate, silicon carbide, silicon nitride, alumina, glass fibers, and the like can be blended. . Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide and zinc borate, and these can be used alone or in combination. The blending amount of the inorganic filler is in the range of 75 to 97% by mass with respect to the entire epoxy resin composition for semiconductor encapsulation in the present invention, from the viewpoints of hygroscopicity, reduction of linear expansion coefficient, strength improvement and solder heat resistance. It is preferable that it is in the range of 80 to 95% by mass. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the filler shape is spherical from the viewpoint of fluidity and mold wear during molding. Is preferred.

(カップリング剤)
本発明における半導体封止用エポキシ樹脂組成物には、カップリング剤を添加することができる。カップリング剤については、特に制限はなく、シランカップリング剤以外に従来公知のカップリング剤を併用してもよい。たとえば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ−アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、あるいはイソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤を1種以上併用することができる。カップリング剤は、本発明おける半導体封止用エポキシ樹脂組成物全体に対して3質量%以下で使用することが好ましく、その効果を発揮させるためには0.1質量%以上使用することが好ましい。
(Coupling agent)
A coupling agent can be added to the epoxy resin composition for semiconductor encapsulation in the present invention. There is no restriction | limiting in particular about a coupling agent, You may use a conventionally well-known coupling agent together with a silane coupling agent. For example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyl Trimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, Tiltrimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxy Silane coupling agents such as silane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, or isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate Tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dio Tylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyltri (dioctylphosphate) One or more titanate coupling agents such as titanate, isopropyl tricumylphenyl titanate, and tetraisopropyl bis (dioctyl phosphite) titanate can be used in combination. The coupling agent is preferably used in an amount of 3% by mass or less based on the entire epoxy resin composition for semiconductor encapsulation in the present invention, and is preferably used in an amount of 0.1% by mass or more in order to exert the effect. .

(離型剤)
また、本発明における半導体封止用エポキシ樹脂組成物には、離型剤を添加することができる。離型剤についても、特に制限はないが、高級脂肪酸、例えばカルナバワックス等とポリエチレン系ワックスを単独又は併用して用いることができる。離型剤は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下で使用することが好ましく、その効果を発揮させるためには、0.5質量%以上が好ましい。
(Release agent)
Moreover, a mold release agent can be added to the epoxy resin composition for semiconductor sealing in this invention. The release agent is not particularly limited, and higher fatty acids such as carnauba wax and polyethylene wax can be used alone or in combination. The release agent is preferably used in an amount of 10% by mass or less based on the total amount of the epoxy resin and the curing agent, and 0.5% by mass or more is preferable in order to exert the effect.

(着色剤、改質剤)
本発明における半導体封止用エポキシ樹脂組成物には、着色剤(カーボンブラック等)、改質材(シリコーン、シリコーンゴム等)を用いることができる。着色剤としてカーボンブラック等の導電性粒子を併用する場合は、本発明の目的を達成するために、粒径10μm以上の粒子が1質量%以下のものを用いることが好ましく、その添加量としては(A)エポキシ樹脂と(B)硬化剤の合計量に対し3質量%以下が好ましい。
(Colorant, modifier)
In the epoxy resin composition for semiconductor encapsulation in the present invention, a colorant (carbon black and the like) and a modifier (silicone, silicone rubber and the like) can be used. When conductive particles such as carbon black are used in combination as a colorant, in order to achieve the object of the present invention, it is preferable to use particles having a particle size of 10 μm or more and 1% by mass or less. (A) 3 mass% or less is preferable with respect to the total amount of an epoxy resin and (B) hardening | curing agent.

以上のような原材料を用いて成形材料を作製する一般的な方法としては、所定の配合量の原材料混合物をミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕、することによって成形材料(半導体封止用エポキシ樹脂組成物粉)を得ることができる。本発明で得られる半導体封止用エポキシ樹脂組成物を用いて電子部品(半導体素子)を封止する方法としては、低圧トランスファー成形法が最も一般的であるが、インジェクション成形、圧縮成形、注型等の方法によっても可能である。上記した手段を用いて製造したエポキシ樹脂組成物は、バイアス印加耐湿信頼性試験において、リーク不良、ワイヤ間ショート不良、ワイヤオープン不良が発生せず、信頼性に優れており、IC、LSI等の封止に好適に用いることができる。   As a general method for producing a molding material using the raw materials as described above, a raw material mixture of a predetermined blending amount is sufficiently mixed by a mixer or the like, then kneaded by a hot roll, an extruder, etc., cooled, pulverized, By doing so, a molding material (epoxy resin composition powder for semiconductor encapsulation) can be obtained. As a method for sealing an electronic component (semiconductor element) using the epoxy resin composition for semiconductor sealing obtained in the present invention, the low pressure transfer molding method is the most common, but injection molding, compression molding, casting It is also possible by such a method. The epoxy resin composition produced by using the above-mentioned means is excellent in reliability without occurrence of a leak failure, a wire short-circuit failure, or a wire open failure in a bias applied moisture resistance reliability test. It can be suitably used for sealing.

以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(実施例1〜4及び比較例1〜4)
表1中に示す各種の素材を予備混合(ドライブレンド)した後、二軸ロール(ロール表面約80℃)で約15分間混練し、冷却粉砕して半導体封止用エポキシ樹脂組成物粉を製造した。
(Examples 1-4 and Comparative Examples 1-4)
Various materials shown in Table 1 are premixed (dry blended), then kneaded with a biaxial roll (roll surface about 80 ° C.) for about 15 minutes, cooled and pulverized to produce an epoxy resin composition powder for semiconductor encapsulation. did.

Figure 2015044898
Figure 2015044898

E1:YSLV−80XY(3,3´,5,5´−テトラメチル−4,4´−ジヒドロキシジフェニルメタンのエポキシ化合物)、新日鐵化学(株)商品名
E2:YX−4000(ビフェニル型エポキシ樹脂)、油化シェルエポキシ(株)商品名
E3:HP−5000(ナフタレン変性クレゾールノボラックエポキシ樹脂)、DIC(株)商品名
E4:CER−3000L(ビフェニルノボラック型エポキシ樹脂とビフェニル型エポキシ樹脂の混合物)、日本化薬(株)商品名
E5:YSLV−120TE(ジメチルジヒドロキシ・ジターシャリーブチルジフェニルスルフィド型エポキシ樹脂)、新日鐵化学(株)商品名
E6:NC−3000(ビフェニル・アラルキル型エポキシ樹脂)、日本化薬(株)商品名
H1:HE910(多官能型フェノール樹脂)、エア・ウォータ(株)商品名
H2:HE200C(ビフェニル・アラルキル型フェノール樹脂)、エア・ウォータ(株)商品名
H3:MEH−7800(フェノール・アラルキル樹脂)、明和化成(株)商品名
HA−1:TBP2(トリブチルホスフィンとベンゾキノンの付加物)、黒金化成(株)商品名
HA−2:P−2(トリフェニルホスフィンとベンゾキノンの付加物)、北興化学工業(株)商品名
HT−1:ハイドロタルサイト、Mg/Al≒3.0、未焼成タイプ
HT−2:ハイドロタルサイト、Mg/Al≒2.5、焼成タイプ
E1: YSLV-80XY (epoxy compound of 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane), Nippon Steel Chemical Co., Ltd., trade name E2: YX-4000 (biphenyl type epoxy resin) ), Yuka Shell Epoxy Co., Ltd., trade name E3: HP-5000 (Naphthalene-modified cresol novolac epoxy resin), DIC Corporation, trade name E4: CER-3000L (mixture of biphenyl novolac type epoxy resin and biphenyl type epoxy resin) Nippon Kayaku Co., Ltd. trade name E5: YSLV-120TE (dimethyl dihydroxy ditertiary butyl diphenyl sulfide type epoxy resin), Nippon Steel Chemical Co., Ltd. trade name E6: NC-3000 (biphenyl aralkyl type epoxy resin) Nippon Kayaku Co., Ltd. trade name H1: HE910 (polyfunctional phenol) Fat), Air Water Co., Ltd. trade name H2: HE200C (biphenyl aralkyl type phenol resin), Air Water Co., Ltd. trade name H3: MEH-7800 (phenol aralkyl resin), Meiwa Kasei Co., Ltd. trade name HA-1: TBP2 (addition product of tributylphosphine and benzoquinone), Kurokin Kasei Co., Ltd. trade name HA-2: P-2 (addition product of triphenylphosphine and benzoquinone), Hokuko Chemical Co., Ltd. trade name HT -1: Hydrotalcite, Mg / Al≈3.0, unfired type HT-2: Hydrotalcite, Mg / Al≈2.5, fired type

上記で得られた半導体封止用エポキシ樹脂組成物粉を用い、トランスファー成形機により、金型温度175〜180℃、成形圧力17kgf/cm(1.67MPa)、硬化時間90秒の条件で半導体を封止し下記の評価に用いる試験片を作製した。 Using the epoxy resin composition powder for semiconductor encapsulation obtained above, a transfer molding machine was used to form a semiconductor under conditions of a mold temperature of 175 to 180 ° C., a molding pressure of 17 kgf / cm 2 (1.67 MPa), and a curing time of 90 seconds. The test piece used for the following evaluation was produced.

性能評価;
<HAST(Highly Accelerated temperature and humidity Stress Test、超加速寿命試験)特性>
電極には、Al/Si/Cu=98.9%/0.8%/0.3%、幅60μmのパッドを使用し、ワイヤには純銅ワイヤ(直径20μm)を用いた。この評価基板を130℃、湿度85%雰囲気の高温高湿槽に入れ、電圧5Vを印加し、累計24時間、48時間、96時間、168時間、336時間、槽内HAST試験を行った。上記時間経過時、電気特性評価を行い、ワイヤオープンしたパッケージ(抵抗値上昇100%)を「NG」、抵抗上昇値100%未満のパッケージを「OK」と評価した。
Performance evaluation;
<HAST (Highly Accelerated temperature and humidity Stress Test) characteristics>
A pad of Al / Si / Cu = 98.9% / 0.8% / 0.3% and a width of 60 μm was used for the electrode, and a pure copper wire (diameter 20 μm) was used for the wire. This evaluation substrate was placed in a high-temperature and high-humidity tank having an atmosphere of 130 ° C. and a humidity of 85%, a voltage of 5 V was applied, and a total HAST test was performed for 24 hours, 48 hours, 96 hours, 168 hours, and 336 hours. When the time elapsed, electrical characteristics were evaluated, and a wire-open package (resistance value increase 100%) was evaluated as “NG”, and a package with a resistance increase value less than 100% was evaluated as “OK”.

表1で使用したハイドロタルサイト種は、HT−1(Mg/Al≒3.0かつ未焼成タイプ)、HT−2(Mg/Al≒2.5かつ焼成タイプ)を用いた。実施例1、比較例1はともに同種の樹脂系を選択し、ハイドロタルサイト様化合物種のみ変更してある。HASTの評価結果を表2に示した。Mg/Al比率が高く、未焼成タイプのハイドロタルサイト様化合物を使用した実施例1が、比較例1に比べ、HAST試験結果が良好となった。同様に、樹脂系を変えて実施例2から実施例4まで、HASTの評価試験を行ったところ、全ての系で、比較例より良好な結果となった。   As hydrotalcite species used in Table 1, HT-1 (Mg / Al≈3.0 and unfired type) and HT-2 (Mg / Al≈2.5 and fired type) were used. In both Example 1 and Comparative Example 1, the same type of resin system was selected, and only the hydrotalcite-like compound type was changed. The evaluation results of HAST are shown in Table 2. The HAST test result of Example 1 using a non-fired hydrotalcite-like compound with a high Mg / Al ratio was better than that of Comparative Example 1. Similarly, when the HAST evaluation test was performed from Example 2 to Example 4 by changing the resin system, the results were better than the comparative example in all systems.

Figure 2015044898
Figure 2015044898

(実施例5、6及び比較例5−1〜5−3)
上記実施例と同様に表3に示した配合で半導体封止用エポキシ樹脂組成物粉を作製し、試験片を作製した。
(Examples 5 and 6 and Comparative Examples 5-1 to 5-3)
The epoxy resin composition powder for semiconductor sealing was produced by the mixing | blending shown in Table 3 similarly to the said Example, and the test piece was produced.

Figure 2015044898
E1:YSLV-80XY、新日鐵化学(株)商品名
E2:YX-4000、油化シェルエポキシ(株)商品名
H1:HE910、エア・ウォータ(株)商品名
H2:HE200C、エア・ウォータ(株)商品名
HA−1:TBP2、黒金化成(株)商品名
HT−1:ハイドロタルサイト、Mg/Al≒3.0、未焼成タイプ
HT−3:ハイドロタルサイト、Mg/Al≒0.6、未焼成タイプ
HT−4:ハイドロタルサイト、Mg/Al≒1.8、未焼成タイプ
HT−5:ハイドロタルサイト、Mg/Al≒2.1、未焼成タイプ
HT−6:ハイドロタルサイト、Mg/Al≒2.7、未焼成タイプ
Figure 2015044898
E1: YSLV-80XY, Nippon Steel Chemical Co., Ltd. trade name E2: YX-4000, Yuka Shell Epoxy Co., Ltd. trade name H1: HE910, Air Water Co., Ltd. trade name H2: HE200C, Air Water ( Co., Ltd. Trade name HA-1: TBP2, Kurogane Kasei Co., Ltd. trade name HT-1: Hydrotalcite, Mg / Al≈3.0, Unfired type HT-3: Hydrotalcite, Mg / Al≈0 .6, unfired type HT-4: hydrotalcite, Mg / Al≈1.8, unfired type HT-5: hydrotalcite, Mg / Al≈2.1, unfired type HT-6: hydrotalcite Site, Mg / Al ≒ 2.7, unfired type

表3で使用したハイドロタルサイト種は、全て未焼成タイプである。また、HT−1のMg/Al比率はおよそ3.0、HT−6はMg/Al≒2.7であり、HT−3はMg/Al≒0.6、HT−4はMg/Al≒1.8、HT−5はMg/Al≒2.1と徐々にMg比率を上げたものを比較例としてある。HASTの評価結果を表4に示した。結果として、Mg比率が高いほどHAST試験で良好な結果を得られることがわかった。   The hydrotalcite species used in Table 3 are all unfired types. Further, the Mg / Al ratio of HT-1 is approximately 3.0, HT-6 is Mg / Al≈2.7, HT-3 is Mg / Al≈0.6, and HT-4 is Mg / Al≈. 1.8 and HT-5 are comparative examples in which the Mg ratio is gradually increased to Mg / Al≈2.1. The evaluation results of HAST are shown in Table 4. As a result, it was found that the higher the Mg ratio, the better the results obtained in the HAST test.

Figure 2015044898
Figure 2015044898

(実施例7〜8及び比較例6〜9)
上記実施例と同様に表5に示した配合で半導体封止用エポキシ樹脂組成物粉を作製し、試験片を作製した。
(Examples 7-8 and Comparative Examples 6-9)
The epoxy resin composition powder for semiconductor sealing was produced by the mixing | blending shown in Table 5 similarly to the said Example, and the test piece was produced.

Figure 2015044898

E1:YSLV-80XY、新日鐵化学(株)商品名
E2:YX-4000、油化シェルエポキシ(株)商品名
H1:HE910、エア・ウォータ(株)商品名
H2:HE200C、エア・ウォータ(株)商品名
HA−1:TBP2、黒金化成(株)商品名
HT−1:ハイドロタルサイト、Mg/Al≒3.0、未焼成タイプ
HT−3:ハイドロタルサイト、Mg/Al≒0.6、未焼成タイプ
HT−6:ハイドロタルサイト、Mg/Al≒2.7、未焼成タイプ
HT−7:ハイドロタルサイト、Mg/Al≒3.0、焼成タイプ
HT−8:ハイドロタルサイト、Mg/Al≒0.6、焼成タイプ
HT−9:ハイドロタルサイト、Mg/Al≒2.7、焼成タイプ
Figure 2015044898

E1: YSLV-80XY, Nippon Steel Chemical Co., Ltd. trade name E2: YX-4000, Yuka Shell Epoxy Co., Ltd. trade name H1: HE910, Air Water Co., Ltd. trade name H2: HE200C, Air Water ( Co., Ltd. Trade name HA-1: TBP2, Kurogane Kasei Co., Ltd. trade name HT-1: Hydrotalcite, Mg / Al≈3.0, Unfired type HT-3: Hydrotalcite, Mg / Al≈0 .6, unfired type HT-6: hydrotalcite, Mg / Al≈2.7, unfired type HT-7: hydrotalcite, Mg / Al≈3.0, fired type HT-8: hydrotalcite Mg / Al≈0.6, fired type HT-9: hydrotalcite, Mg / Al≈2.7, fired type

表5では、未焼成タイプ、焼成タイプの効力の違いを検証した。実施例7ではHT−1を使用した系、比較例6はHT−1の焼成タイプであるHT−7を使用した系を検証した。同様に、Mg/Al比率を変更して同様の検証を行った。比較例7は、HT−3を使用した系、比較例8はHT−3の焼成タイプであるHT−8を使用した系を検証した。実施例8は、HT−6を使用した系、比較例9は、HT−6の焼成タイプであるHT−9を使用した系を検証した。それぞれのHAST検証結果を表6に示した。結果としては、ハイドロタルサイト様化合物のMg/Al比率が変わっても、焼成タイプより、未焼成タイプを使用した系が、バイアス印加HAST試験では良好な結果が得られることがわかった。   In Table 5, the difference in efficacy between the unfired type and the fired type was verified. In Example 7, a system using HT-1 was tested, and in Comparative Example 6, a system using HT-7, which was a baked type of HT-1, was verified. Similarly, the same verification was performed by changing the Mg / Al ratio. The comparative example 7 verified the system which used HT-3, and the comparative example 8 verified the system which used HT-8 which is a baking type of HT-3. Example 8 verified the system using HT-6, and Comparative Example 9 verified the system using HT-9, which is a firing type of HT-6. The respective HAST verification results are shown in Table 6. As a result, it was found that even when the Mg / Al ratio of the hydrotalcite-like compound was changed, a system using an unfired type was better than a fired type in the bias applied HAST test.

Figure 2015044898
Figure 2015044898

従来から、不純物抽出液測定では、焼成タイプのハイドロタルサイト様化合物を使用した方が良好な結果が得られるため、HAST試験には有効だとされてきた(例えば、特許文献1、2参照)。
それは、層間でイオンをトラップする未焼成タイプのハイドロタルサイト様化合物と比較して、焼成タイプは、焼成することにより表面部分にポーラスが多く発生し、表面積が非常に高くなり、表面トラップ能が高くなるためである。しかし、バイアスを印加するHAST試験では、トラップしたイオンの保持能力が高くなければならないため、表面トラップ能では不十分である。そのため、層間に不純物イオンをトラップできる未焼成タイプが、バイアス印加HAST試験には有効と言える。
Conventionally, in the measurement of an impurity extract, it has been considered effective for a HAST test because a better result is obtained when a calcined hydrotalcite-like compound is used (for example, see Patent Documents 1 and 2). .
Compared with the uncalcined hydrotalcite-like compound that traps ions between layers, the calcined type generates a lot of porosity on the surface part when calcined, the surface area becomes very high, and the surface trapping ability is high. This is because it becomes higher. However, in the HAST test in which a bias is applied, the trapping ion retention capability must be high, so the surface trapping capability is insufficient. Therefore, it can be said that an unfired type capable of trapping impurity ions between layers is effective for the bias applied HAST test.

Claims (5)

(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)下記一般式(1)で表されるハイドロタルサイト様化合物及び(E)無機充填材を必須成分として含有し、(D)成分のハイドロタルサイト様化合物が、2.4≦Mg/Al(2.4≦a/b)で、焼成を施していない未焼成であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2015044898
It contains (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) a hydrotalcite-like compound represented by the following general formula (1) and (E) an inorganic filler as essential components. And (D) component hydrotalcite-like compound is 2.4 ≦ Mg / Al (2.4 ≦ a / b) and is not fired yet unfired epoxy for semiconductor encapsulation Resin composition.
Figure 2015044898
(D)成分のハイドロタルサイト様化合物が、(A)エポキシ樹脂100質量部に対し、1〜15質量部を配合する請求項1に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the hydrotalcite-like compound of component (D) is blended in an amount of 1 to 15 parts by mass with respect to 100 parts by mass of (A) epoxy resin. (D)成分のハイドロタルサイト様化合物が、(A)エポキシ樹脂100質量部に対し、10〜15質量部を配合する請求項2に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 2, wherein the hydrotalcite-like compound of component (D) is blended in an amount of 10 to 15 parts by mass with respect to 100 parts by mass of (A) epoxy resin. (E)無機充填材を75〜97質量%含有することを特徴とする請求項1〜3のいずれかに記載の半導体封止用エポキシ樹脂組成物。   (E) 75-97 mass% of inorganic fillers are contained, The epoxy resin composition for semiconductor sealing in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなる樹脂封止型半導体装置。   A resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition for encapsulating a semiconductor according to claim 1.
JP2013175397A 2013-08-27 2013-08-27 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device using the same Active JP6183061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175397A JP6183061B2 (en) 2013-08-27 2013-08-27 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175397A JP6183061B2 (en) 2013-08-27 2013-08-27 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2015044898A true JP2015044898A (en) 2015-03-12
JP6183061B2 JP6183061B2 (en) 2017-08-23

Family

ID=52670682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175397A Active JP6183061B2 (en) 2013-08-27 2013-08-27 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6183061B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209047A1 (en) * 2016-05-30 2017-12-07 日立化成株式会社 Sealing composition and semiconductor device
WO2019054217A1 (en) * 2017-09-15 2019-03-21 日立化成株式会社 Epoxy resin composition and electronic component device
JP2021054883A (en) * 2019-09-27 2021-04-08 小川香料株式会社 Flavor improver for vanilla flavor beverage and food product
JP7472931B2 (en) 2017-03-31 2024-04-23 株式会社レゾナック Epoxy resin composition for sealing and electronic component device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294032A (en) * 2001-03-30 2002-10-09 Toshiba Chem Corp Resin composition for liquid sealing
WO2005097892A1 (en) * 2004-03-30 2005-10-20 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for the encapsulation of semiconductors and semiconductor devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294032A (en) * 2001-03-30 2002-10-09 Toshiba Chem Corp Resin composition for liquid sealing
WO2005097892A1 (en) * 2004-03-30 2005-10-20 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for the encapsulation of semiconductors and semiconductor devices

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164871A (en) * 2016-05-30 2020-10-08 日立化成株式会社 Sealing composition and semiconductor device
US11854919B2 (en) 2016-05-30 2023-12-26 Resonac Corporation Sealing composition and semiconductor device
CN109219637A (en) * 2016-05-30 2019-01-15 日立化成株式会社 Sealing compositions and semiconductor device
KR20190005934A (en) * 2016-05-30 2019-01-16 히타치가세이가부시끼가이샤 Sealing composition and semiconductor device
KR102153807B1 (en) * 2016-05-30 2020-09-08 히타치가세이가부시끼가이샤 Sealing composition and semiconductor device
JPWO2017209047A1 (en) * 2016-05-30 2018-12-20 日立化成株式会社 Sealing composition and semiconductor device
WO2017209047A1 (en) * 2016-05-30 2017-12-07 日立化成株式会社 Sealing composition and semiconductor device
TWI733821B (en) * 2016-05-30 2021-07-21 日商昭和電工材料股份有限公司 Sealing composition and semiconductor device
CN109219637B (en) * 2016-05-30 2021-05-25 昭和电工材料株式会社 Sealing composition and semiconductor device
JP7472931B2 (en) 2017-03-31 2024-04-23 株式会社レゾナック Epoxy resin composition for sealing and electronic component device
WO2019054217A1 (en) * 2017-09-15 2019-03-21 日立化成株式会社 Epoxy resin composition and electronic component device
JP7375541B2 (en) 2017-09-15 2023-11-08 株式会社レゾナック Epoxy resin composition and electronic component equipment
JPWO2019054217A1 (en) * 2017-09-15 2020-10-29 日立化成株式会社 Epoxy resin composition and electronic component equipment
JP2021054883A (en) * 2019-09-27 2021-04-08 小川香料株式会社 Flavor improver for vanilla flavor beverage and food product

Also Published As

Publication number Publication date
JP6183061B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6988952B2 (en) Encapsulation composition and semiconductor device
JP6870778B1 (en) Resin composition for molding and electronic component equipment
WO2007058261A1 (en) Sealing epoxy resin forming material and electronic component device
JP6183061B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device using the same
JP2007023273A (en) Epoxy resin molding compound for sealing use and electronic component device
JP7420559B2 (en) Sealing resin composition
JPWO2020137989A1 (en) A resin composition for encapsulation, a semiconductor device, and a method for manufacturing the semiconductor device.
JP2023067951A (en) Sealing composition and semiconductor device
JP2009263601A (en) Epoxy resin molding material for sealing and electronic part device
TW202116913A (en) Sealing material for compression molding and electronic component device
JP7343978B2 (en) Epoxy resin composition and electronic component equipment
WO2022149601A1 (en) Sealing composition and semiconductor device
JP2008208176A (en) Epoxy resin composition and semiconductor device
JP2007031556A (en) Epoxy resin composition and semiconductor device
CN111527145A (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device encapsulated using the same
JP2003253092A (en) Epoxy resin molding material for sealing and electronic part device using the same
JP2003327789A (en) Sealing epoxy resin molding material and electronic component device
TWI791075B (en) Sealing composition and semiconductor device
KR20200103683A (en) Sealing composition and its manufacturing method and semiconductor device
JP6439612B2 (en) Epoxy resins, compositions, cured products, and electrical / electronic components
JP2023085411A (en) Encapsulation composition and semiconductor device
JP2021178953A (en) Epoxy resin composition for sealing semiconductor element, and semiconductor device sealed using the same
JP2008274041A (en) Epoxy resin composition for encapsulating semiconductor, and resin molded semiconductor device using the same
JP2003327791A (en) Sealing epoxy resin molding material and electronic component device
JP2003327790A (en) Sealing epoxy resin molding material and electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R151 Written notification of patent or utility model registration

Ref document number: 6183061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350