JP2015044700A - Substrate for diamond growth and manufacturing method for the same, and manufacturing method for large-area single-crystal diamond thin film and self-supporting film using the same - Google Patents

Substrate for diamond growth and manufacturing method for the same, and manufacturing method for large-area single-crystal diamond thin film and self-supporting film using the same Download PDF

Info

Publication number
JP2015044700A
JP2015044700A JP2013175746A JP2013175746A JP2015044700A JP 2015044700 A JP2015044700 A JP 2015044700A JP 2013175746 A JP2013175746 A JP 2013175746A JP 2013175746 A JP2013175746 A JP 2013175746A JP 2015044700 A JP2015044700 A JP 2015044700A
Authority
JP
Japan
Prior art keywords
diamond
hbn
growing
separation layer
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175746A
Other languages
Japanese (ja)
Other versions
JP6002100B2 (en
Inventor
一行 平間
Kazuyuki Hirama
一行 平間
慎一 狩元
Shinichi Karimoto
慎一 狩元
芳孝 谷保
Yoshitaka Taniyasu
芳孝 谷保
山本 秀樹
Hideki Yamamoto
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013175746A priority Critical patent/JP6002100B2/en
Publication of JP2015044700A publication Critical patent/JP2015044700A/en
Application granted granted Critical
Publication of JP6002100B2 publication Critical patent/JP6002100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crack-free, large-area single-crystal diamond thin film and self-supporting film, and also to provide a manufacturing method for the same.SOLUTION: A manufacture method for a diamond self-supporting film 13 comprises the steps of: growing a cBN layer 10 formed of a single-phase film on a base substrate 9; growing a separation layer 11 including hBN on the cBN layer 10; growing a diamond 12 on the separation layer 11 including the hBN; cleaving the separation layer 11 including the hBN along a surface perpendicular to a lamination direction of the separation layer 11 including the hBN to divide the cBN layer and the diamond 12; and removing the separated separation layer 11b including the hBN, which remains adhering to the diamond 12.

Description

本発明は、ダイヤモンド成長用基板及びその作製方法、並びにこの基板を持いた大面積でクラックがなく、さらに転位密度の低い高品質の単結晶ダイヤモンド薄膜及び自立膜の作製方法に関する。   The present invention relates to a diamond growth substrate and a method for producing the same, and a method for producing a high-quality single crystal diamond thin film and a self-supporting film having a large area free from cracks and having a low dislocation density.

ダイヤモンドは、大きなバンドギャップエネルギー(5.5eV)を有することから、ダイヤモンド、および単結晶ダイヤモンド薄膜の高耐圧電子デバイスや紫外発光デバイスへの応用が期待されている。このため、単結晶ダイヤモンド薄膜の作製に多くの努力がなされてきた。しかしながら、現在、1インチよりも大面積の単結晶ダイヤモンド薄膜は得られていない(非特許文献1)。これは、従来技術では、1インチよりも大面積の単結晶ダイヤモンドを作製するための、大面積のダイヤモンド成長用基板の作製が困難であることに起因する。また、従来のダイヤモンド成長用基板とダイヤモンドの結晶構造が大きく異なるため、従来のダイヤモンド成長用基板を用いて作製した単結晶ダイヤモンド薄膜はその転位密度が高く、この単結晶ダイヤモンドを用いて作製したデバイスにおいて、優れたデバイス特性が得られないという問題もある。さらに単結晶ダイヤモンド薄膜と成長用基板を容易に分離できないため単結晶ダイヤモンド自立膜が得られないという問題もある。上記の問題により、単結晶ダイヤモンド薄膜のデバイス応用は進んでいない。   Since diamond has a large band gap energy (5.5 eV), diamond and single crystal diamond thin films are expected to be applied to high voltage electronic devices and ultraviolet light emitting devices. For this reason, many efforts have been made to produce single crystal diamond thin films. However, currently, a single crystal diamond thin film having an area larger than 1 inch has not been obtained (Non-patent Document 1). This is due to the fact that it is difficult to produce a large-diameter diamond growth substrate for producing single-crystal diamond having an area larger than 1 inch in the prior art. Also, since the crystal structure of diamond differs greatly from the conventional diamond growth substrate, the single crystal diamond thin film produced using the conventional diamond growth substrate has a high dislocation density, and the device produced using this single crystal diamond. However, there is a problem that excellent device characteristics cannot be obtained. Furthermore, since the single crystal diamond thin film and the growth substrate cannot be easily separated, there is a problem that a single crystal diamond free-standing film cannot be obtained. Due to the above problems, device applications of single crystal diamond thin films have not progressed.

以下に従来のダイヤモンド成長用基板とその製造方法、及び該ダイヤモンド成長用基板を用いて作製した単結晶ダイヤモンド薄膜について述べる。   A conventional diamond growth substrate, a method for producing the same, and a single crystal diamond thin film produced using the diamond growth substrate will be described below.

従来のダイヤモンド成長用基板の作製工程を図1に示す。まず下地基板1上に単結晶Ir薄膜2を成長させる(図1(a))。下地基板1はMgO(001)またはSi(001)基板である。単結晶Ir薄膜2に負の電圧を印加しながら、メタンと水素のプラズマに暴露することで、高密度のダイヤモンド粒子核から成るダイヤモンド核成長層3を単結晶Ir薄膜2上に形成する(図1(b))。このダイヤモンド核成長層3の形成には下地基板にバイアス電圧を印可可能なプラズマCVD法が使われるが、この方法は大面積の下地基板に適用するのが難しい。このため、現在ダイヤモンド成長用基板の大きさと、この基板を用いて作製した単結晶ダイヤモンド薄膜の大きさは共に1インチ以下に留まっている。   A conventional process for producing a diamond growth substrate is shown in FIG. First, a single crystal Ir thin film 2 is grown on a base substrate 1 (FIG. 1 (a)). The base substrate 1 is an MgO (001) or Si (001) substrate. A diamond nucleation layer 3 composed of high-density diamond particle nuclei is formed on the single crystal Ir thin film 2 by exposing it to methane and hydrogen plasma while applying a negative voltage to the single crystal Ir thin film 2 (Fig. 1 (b)). The diamond nucleation layer 3 is formed by a plasma CVD method in which a bias voltage can be applied to the underlying substrate, but this method is difficult to apply to a large area underlying substrate. For this reason, the size of the diamond growth substrate and the size of the single crystal diamond thin film produced using this substrate are both currently less than 1 inch.

図2は図1(b)に示すダイヤモンド成長用基板上に作製された従来の単結晶ダイヤモンド薄膜の概略図である。図2の単結晶ダイヤモンド薄膜は、図1(b)のダイヤモンド成長用基板をメタンと水素のプラズマに暴露することで形成する。図3は、上記の方法で1インチのダイヤモンド成長用基板上に作製した、膜厚450μmの単結晶ダイヤモンド薄膜表面の光学顕微鏡像である。図3の単結晶ダイヤモンド薄膜表面には複数のクラック5a〜5eが観察された。これらのクラックは、従来のダイヤモンド成長用基板に含まれている単結晶Ir薄膜と単結晶ダイヤモンド薄膜との間の大きな熱膨張係数差に起因している。図3の単結晶ダイヤモンド薄膜の転位密度は107 /cm2と高い。この高い転位密度は従来のダイヤモンド成長用基板に含まれている単結晶Ir薄膜と単結晶ダイヤモンド薄膜との間の大きな格子不整合に起因している。また、図2の構造から単結晶ダイヤモンド薄膜のみを分離し、単結晶ダイヤモンド自立膜を得ることはできない。 FIG. 2 is a schematic view of a conventional single crystal diamond thin film fabricated on the diamond growth substrate shown in FIG. The single crystal diamond thin film of FIG. 2 is formed by exposing the diamond growth substrate of FIG. 1 (b) to methane and hydrogen plasma. FIG. 3 is an optical microscope image of the surface of a single-crystal diamond thin film having a thickness of 450 μm fabricated on a 1-inch diamond growth substrate by the above method. A plurality of cracks 5a to 5e were observed on the surface of the single crystal diamond thin film in FIG. These cracks are caused by a large difference in thermal expansion coefficient between the single crystal Ir thin film and the single crystal diamond thin film included in the conventional diamond growth substrate. The dislocation density of the single crystal diamond thin film in FIG. 3 is as high as 10 7 / cm 2 . This high dislocation density is due to a large lattice mismatch between the single crystal Ir thin film and the single crystal diamond thin film included in the conventional diamond growth substrate. Further, it is not possible to obtain a single crystal diamond free-standing film by separating only the single crystal diamond thin film from the structure of FIG.

このように単結晶Ir薄膜とダイヤモンド核成長層とを利用する従来技術では、大きさが1インチ以上であり、かつクラックのない厚膜の単結晶ダイヤモンド薄膜及び自立膜を成長させることはできなかった。   As described above, the conventional technology using the single crystal Ir thin film and the diamond nucleus growth layer cannot grow a single crystal diamond thin film and a free-standing film having a size of 1 inch or more and having no crack. It was.

「ヘテロエピタキシャルダイヤモンド基板の開発とそのデバイス応用」The journal of the Surface Finishing Society of Japan 62(3), 163-169, 2011-03-01"The development of heteroepitaxial diamond substrate and its device application" The journal of the Surface Finishing Society of Japan 62 (3), 163-169, 2011-03-01

以上のように、従来技術では1インチ以上の大きさのダイヤモンド成長用基板を作製できないため、1インチ以上の大きさの単結晶ダイヤモンド薄膜は成長できず、さらに膜厚が400μm以上に厚くなると単結晶ダイヤモンド薄膜表面にはクラックが生じる。またダイヤモンド成長用基板と単結晶ダイヤモンド薄膜を分離することができないため、単結晶ダイヤモンド自立膜が得られていない。   As described above, since the conventional technology cannot produce a diamond growth substrate with a size of 1 inch or more, a single crystal diamond thin film with a size of 1 inch or more cannot be grown. Cracks occur on the surface of the crystalline diamond thin film. Also, since the diamond growth substrate and the single crystal diamond thin film cannot be separated, a single crystal diamond free-standing film has not been obtained.

本発明の目的は、大面積の単結晶ダイヤモンド薄膜を作製できない問題、製作した単結晶ダイヤモンド薄膜の膜厚が厚い場合に表面にクラックが生じる問題、製作した単結晶ダイヤモンドの転位密度が高い問題、および自立膜を作成できない問題を解決し、大面積かつクラックのない単結晶ダイヤモンド薄膜及び自立膜を提供することである。   The object of the present invention is a problem that a single-crystal diamond thin film with a large area cannot be produced, a problem that the surface of the produced single-crystal diamond thin film is cracked, a problem that the dislocation density of the produced single-crystal diamond is high, Another object of the present invention is to provide a single-crystal diamond thin film and a self-supporting film that have a large area and are free from cracks.

大面積の単結晶ダイヤモンド薄膜を作製できない問題、単結晶ダイヤモンド薄膜の膜厚が厚い場合に表面にクラックが生じる問題、および製作した単結晶ダイヤモンドの転位密度が高い問題を解決するため、本発明のダイヤモンド薄膜成長用基板は、立方晶窒化ホウ素(cBN)層がMBE法を用いて下地基板上に形成されていることを特徴とする。また、下地基板がSi(001)、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)のいずれかであることを特徴とする。   In order to solve the problem that a single-crystal diamond thin film with a large area cannot be produced, the problem that the surface of a single-crystal diamond thin film is thick, and the problem that the dislocation density of the produced single-crystal diamond is high, The substrate for growing a diamond thin film is characterized in that a cubic boron nitride (cBN) layer is formed on a base substrate using an MBE method. The base substrate is any one of Si (001), Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), and MgO (111). To do.

さらに、単結晶ダイヤモンド自立膜が得られない問題を解決するため、ダイヤモンド成長用基板が、六方晶窒化ホウ素(hBN)を含む分離層をさらに含むことを特徴とする。   Further, in order to solve the problem that a single-crystal diamond free-standing film cannot be obtained, the diamond growth substrate further includes a separation layer containing hexagonal boron nitride (hBN).

従来のダイヤモンド成長用基板の作製工程を示す概略図である。It is the schematic which shows the manufacturing process of the conventional board | substrate for diamond growth. 従来のダイヤモンド成長用基板上に作製された単結晶ダイヤモンド薄膜の概略図である。It is the schematic of the single crystal diamond thin film produced on the conventional substrate for a diamond growth. 従来のダイヤモンド成長用基板上に作製された単結晶ダイヤモンド薄膜表面の光学顕微鏡像である。It is an optical microscope image of the surface of the single crystal diamond thin film produced on the conventional diamond growth board | substrate. 図4(a)は本発明のダイヤモンド成長用基板の概略図であり、図4(b)は本発明のダイヤモンド成長用基板と作製した単結晶ダイヤモンド薄膜の概略図である。FIG. 4 (a) is a schematic view of a diamond growth substrate of the present invention, and FIG. 4 (b) is a schematic view of a single crystal diamond thin film produced with the diamond growth substrate of the present invention. 本発明の実施例3にかかる単結晶ダイヤモンド自立膜を形成する作製工程を示す概略図である。FIG. 6 is a schematic view showing a manufacturing process for forming a single-crystal diamond free-standing film according to Example 3 of the present invention. 本発明の実施例4にかかる単結晶ダイヤモンド自立膜を形成する作製工程を示す概略図である。FIG. 6 is a schematic view showing a manufacturing process for forming a single-crystal diamond free-standing film according to Example 4 of the present invention.

[実施例1]
本実施例のダイヤモンド成長用基板を図4(a)に示す。下地基板6となる3インチのSi(001)上に、膜厚100nmのcBN層7をMBE法で成長した。ボロンは電子線加熱により高純度のボロン金属から供給した。窒素は窒素原子ラジカルと窒素分子イオンの両方、またはどちらかひとつによって供給した。窒素原子ラジカルはRFラジカルソースに、窒素分子イオンはRFイオンソースにより生成した。cBN構造の形成に必要なエネルギーを与えるために、成長中のBN薄膜にArイオンを照射した。ArイオンはRFイオンソースにより生成した。基板温度は400℃である。窒素原子の量とボロン原子の量の比であるV/III比は1、Arイオンが1ボロン原子当りに付与した運動量は200(eV*amu)1/2である。V/III比は窒素原子ラジカルと窒素分子イオンとボロンの供給量によって制御した。上記運動量はRFイオンソースの加速電圧によって制御した。
[Example 1]
The diamond growth substrate of this example is shown in FIG. 4 (a). A cBN layer 7 having a thickness of 100 nm was grown on the 3-inch Si (001) serving as the base substrate 6 by the MBE method. Boron was supplied from high-purity boron metal by electron beam heating. Nitrogen was supplied by nitrogen atom radicals and / or nitrogen molecular ions. Nitrogen atom radicals were generated by RF radical sources, and nitrogen molecular ions were generated by RF ion sources. In order to give the energy necessary for the formation of the cBN structure, the growing BN thin film was irradiated with Ar ions. Ar ions were generated by RF ion source. The substrate temperature is 400 ° C. The V / III ratio, which is the ratio of the amount of nitrogen atoms to the amount of boron atoms, is 1, and the momentum given by Ar ions per boron atom is 200 (eV * amu) 1/2 . The V / III ratio was controlled by the supply amount of nitrogen atom radical, nitrogen molecular ion and boron. The momentum was controlled by the acceleration voltage of the RF ion source.

下地基板としてSi(001)を使用したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、またはMgO(111)も同様に使用することが出来る。   Si (001) was used as the base substrate, but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), or MgO (111) should be used as well. I can do it.

また下地基板の大きさを3インチとしが、上記MBE法では12インチ基板上にも均一にcBN層を形成できるため、さらに大面積のダイヤモンド成長用基板も原理的には容易に得られると期待される。   In addition, although the size of the base substrate is 3 inches, the MBE method can form a cBN layer uniformly on a 12-inch substrate. Is done.

[実施例2]
実施例1で作製したダイヤモンド成長用基板上に、単結晶ダイヤモンド薄膜を形成する工程を説明する(図4(b))。実施例1の、3インチのSi(001)を下地基板6とし、その上にcBN層7成長させたダイヤモンド成長用基板上に、膜厚600μmの単結晶ダイヤモンド(001)薄膜8をプラズマCVD法で成長した。原料はメタンと水素である。基板温度は700℃である。下地基板にバイアス電圧は印可していない。作製した、膜厚600μmの単結晶ダイヤモンド薄膜8の表面にはクラックが形成されていなかった。cBN層7を含むダイヤモンド成長用基板上で、cBN層の膜厚に関わらずクラックのない単結晶ダイヤモンド薄膜8が得られた。また従来技術と比較して転位密度が大幅に低減した。
[Example 2]
A process of forming a single crystal diamond thin film on the diamond growth substrate produced in Example 1 will be described (FIG. 4B). A single crystal diamond (001) thin film 8 having a thickness of 600 μm is formed on the diamond growth substrate on which 3 inches of Si (001) is used as the base substrate 6 and the cBN layer 7 is grown thereon, in the plasma CVD method. I grew up. The raw materials are methane and hydrogen. The substrate temperature is 700 ° C. No bias voltage is applied to the underlying substrate. No cracks were formed on the surface of the produced single crystal diamond thin film 8 having a thickness of 600 μm. A single crystal diamond thin film 8 having no cracks was obtained on the diamond growth substrate including the cBN layer 7 regardless of the thickness of the cBN layer. In addition, the dislocation density was significantly reduced compared to the prior art.

ダイヤモンド成長用基板の下地基板としてSi(001)を使用したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、またはMgO(111)も同様に使用することが出来、これらを使用した場合においてもクラックのない単結晶ダイヤモンド薄膜が得られた。   Si (001) was used as the base substrate for the diamond growth substrate, but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), or MgO (111) were also used. A single crystal diamond thin film free from cracks was obtained even when these were used.

またダイヤモンド成長用基板の大きさを3インチとして説明したが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド薄膜も原理的には容易に得られると期待される。   The diamond growth substrate has been described as having a size of 3 inches. However, since the above-mentioned plasma CVD method enables uniform diamond growth on a diamond growth substrate with a larger area, a single crystal with a larger area can be obtained. A diamond thin film is also expected to be easily obtained in principle.

作製した、下地基板の材料と、下地基板の面方位と、単結晶ダイヤモンド薄膜の面方位との関係を表1に示す。   Table 1 shows the relationship between the material of the base substrate, the plane orientation of the base substrate, and the plane orientation of the single crystal diamond thin film.

[実施例3]
本実施例にかかる単結晶ダイヤモンド自立膜を形成する製造工程を図5に示す。3インチのSi(001)を下地基板9として、その上に実施例1と同様の方法で膜厚100nmのcBN層10を形成する(図5(a))。このcBN層上に、膜厚100nmのhBNを含む分離層11を形成することで、cBN層10、hBNを含む分離層11が形成された下地基板9をダイヤモンド成長用基板とした(図5(b))。ここで、「hBNを含む分離層」とは、hBNと乱層構造窒化ホウ素(tBN)との混合の層である。hBNの割合が50%以上になると分離が起こるようになり、hBNの割合が高いほど分離がしやすくなる。hBNを含む分離層11の形成にはMBE法を用いた。ボロンは電子線加熱により高純度のボロン金属から供給した。窒素は窒素原子ラジカルと窒素分子イオンの両方、またはどちらかひとつによって供給した。V/III比を0.5以下とすることで、hBNを含む分離層が形成される。上記ダイヤモンド成長用基板のhBNを含む分離層11上に、プラズマCVD法で膜厚600μmの単結晶ダイヤモンド薄膜12を成長した(図5(c))。hBNは、グラファイトと同様に、六角網面の層が積層された構造を有し、各層間は、弱いファンデルワールス力で結合されている。そのため、hBNは六角網面の層に沿ってへき開されることから、図5(d)、(e)に示すように、hBNを含む分離層11をhBNを含む分離層11a、11bに分離が可能である。最後に単結晶ダイヤモンド薄膜12の裏面に残ったhBNを含む分離層11bを熱混酸によって除去することで、下地基板の大きさに対応した大面積の単結晶ダイヤモンド自立膜13が得られた(図5(f))。単結晶ダイヤモンド自立膜の表面にクラックは形成されておらず、従来技術と比較して転位密度が大幅に低減していた。
[Example 3]
FIG. 5 shows a manufacturing process for forming a single-crystal diamond free-standing film according to this example. Using 3 inches of Si (001) as a base substrate 9, a cBN layer 10 having a thickness of 100 nm is formed thereon by the same method as in the first embodiment (FIG. 5A). By forming a separation layer 11 containing hBN having a thickness of 100 nm on the cBN layer, the base substrate 9 on which the cBN layer 10 and the separation layer 11 containing hBN were formed was used as a diamond growth substrate (FIG. 5 ( b)). Here, the “separation layer containing hBN” is a mixed layer of hBN and turbostratic boron nitride (tBN). Separation occurs when the hBN ratio exceeds 50%, and separation becomes easier as the hBN ratio increases. The MBE method was used to form the separation layer 11 containing hBN. Boron was supplied from high-purity boron metal by electron beam heating. Nitrogen was supplied by nitrogen atom radicals and / or nitrogen molecular ions. By setting the V / III ratio to 0.5 or less, a separation layer containing hBN is formed. A single crystal diamond thin film 12 having a thickness of 600 μm was grown by plasma CVD on the separation layer 11 containing hBN of the diamond growth substrate (FIG. 5 (c)). Similar to graphite, hBN has a structure in which layers of hexagonal mesh surfaces are laminated, and each layer is bonded with a weak van der Waals force. Therefore, since hBN is cleaved along the hexagonal mesh layer, the separation layer 11 containing hBN is separated into separation layers 11a and 11b containing hBN as shown in FIGS. 5 (d) and 5 (e). Is possible. Finally, the separation layer 11b containing hBN remaining on the back surface of the single crystal diamond thin film 12 was removed by hot mixed acid, thereby obtaining a single crystal diamond free-standing film 13 having a large area corresponding to the size of the base substrate (FIG. 5 (f)). Cracks were not formed on the surface of the single-crystal diamond free-standing film, and the dislocation density was significantly reduced as compared with the prior art.

cBN層の膜厚を100 nmとして説明したが、cBN層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。またhBNを含む分離層の膜厚を100 nmとして説明したが、hBNを含む分離層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。   Although the film thickness of the cBN layer was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the cBN layer. In addition, although the film thickness of the separation layer containing hBN was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the separation layer containing hBN.

ダイヤモンド成長用基板の下地基板をSi(001)として説明したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)とした場合も同様の工程であり、クラックのない単結晶ダイヤモンド自立膜が得られた。   The base substrate of the diamond growth substrate was described as Si (001), but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), MgO (111) were used. In this case, the same process was performed, and a single crystal diamond free-standing film free from cracks was obtained.

下地基板と単結晶ダイヤモンド自立膜の面方位の関係は、実施例2の表1と同じであった。   The relationship between the plane orientations of the base substrate and the single crystal diamond free-standing film was the same as in Table 1 of Example 2.

またダイヤモンド成長用基板の大きさを3インチとしたが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド自立膜も原理的には容易に得られると期待される。   Although the diamond growth substrate is 3 inches in size, the above-mentioned plasma CVD method allows for uniform diamond growth on a larger area diamond growth substrate. It is expected that a self-supporting film can be easily obtained in principle.

[実施例4]
本実施例にかかる単結晶ダイヤモンド自立膜を形成する製造工程を図6に示す。3インチのSi(001)を下地基板14として、その上に膜厚100nm以下のhBNを含む分離層15をMBE法で形成した(図6(a))。成長条件は実施例3と同様である。次にhBNを含む分離層15上に、膜厚100nmのcBN層16をMBE法で形成することで、hBNを含む分離層15、cBN層16が形成された下地基板14をダイヤモンド成長用基板とした(図6(b))。このダイヤモンド成長用基板上に、プラズマCVD法で膜厚600μmの単結晶ダイヤモンド薄膜17を成長した(図6(c))。次に図6(d)のように、hBNを含む分離層15を、hBNを含む分離層15a、15bに分離することによって、単結晶ダイヤモンド薄膜と下地基板を分離する。最後に単結晶ダイヤモンド薄膜17の裏面に残ったcBN層16とhBNを含む分離層15bを酸素プラズマでエッチングによって除去することで(図6(e))、下地基板の大きさに対応した大面積の単結晶ダイヤモンド自立膜が得られた(図6(f))。単結晶ダイヤモンド自立膜の表面にクラックは形成しておらず、従来技術と比較して転位密度が大幅に低減していた。
[Example 4]
FIG. 6 shows a manufacturing process for forming a single-crystal diamond free-standing film according to this example. Using 3 inches of Si (001) as a base substrate 14, a separation layer 15 containing hBN having a film thickness of 100 nm or less was formed thereon by the MBE method (FIG. 6A). The growth conditions are the same as in Example 3. Next, a cBN layer 16 having a film thickness of 100 nm is formed on the separation layer 15 containing hBN by the MBE method, whereby the separation layer 15 containing hBN and the base substrate 14 on which the cBN layer 16 is formed are used as a diamond growth substrate. (FIG. 6 (b)). On this diamond growth substrate, a single crystal diamond thin film 17 having a film thickness of 600 μm was grown by plasma CVD (FIG. 6C). Next, as shown in FIG. 6 (d), the single crystal diamond thin film and the base substrate are separated by separating the separation layer 15 containing hBN into separation layers 15a and 15b containing hBN. Finally, the cBN layer 16 remaining on the back surface of the single crystal diamond thin film 17 and the separation layer 15b containing hBN are removed by etching with oxygen plasma (FIG. 6 (e)), so that a large area corresponding to the size of the underlying substrate is obtained. A single-crystal diamond free-standing film was obtained (FIG. 6 (f)). No cracks were formed on the surface of the single crystal diamond free-standing film, and the dislocation density was significantly reduced as compared with the prior art.

hBNを含む分離層の膜厚を100nmとしたが、hBNを含む分離層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。またcBN層の膜厚を100 nmとして説明したが、cBN層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。   Although the thickness of the separation layer containing hBN was set to 100 nm, the same single crystal diamond free-standing film was obtained regardless of the thickness of the separation layer containing hBN. Also, although the film thickness of the cBN layer was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the cBN layer.

ダイヤモンド成長用基板の下地基板をSi(001)として説明したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)とした場合も同様の工程であり、クラックのない単結晶ダイヤモンド自立膜が得られた。   The base substrate of the diamond growth substrate was described as Si (001), but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), MgO (111) were used. In this case, the same process was performed, and a single crystal diamond free-standing film free from cracks was obtained.

下地基板と単結晶ダイヤモンド自立膜の面方位の関係は、実施例2の表1と同じであった。   The relationship between the plane orientations of the base substrate and the single crystal diamond free-standing film was the same as in Table 1 of Example 2.

またダイヤモンド成長用基板の大きさを3インチとして説明したが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド自立膜も原理的には容易に得られると期待される。   The diamond growth substrate has been described as having a size of 3 inches. However, since the above-mentioned plasma CVD method enables uniform diamond growth on a diamond growth substrate with a larger area, a single crystal with a larger area can be obtained. It is expected that a diamond free-standing film can be easily obtained in principle.

1、6、9、14 下地基板
2 単結晶Ir薄膜
3、12 ダイヤモンド核成長層
4 単結晶ダイヤモンド薄膜
5a、5b、5c、5d、5e クラック
7、10、16 cBN層
8 単結晶ダイヤモンド薄膜
11、11a、11b、15、15a、15b hBNを含む分離層
13 単結晶ダイヤモンド自立膜
1, 6, 9, 14 Base substrate 2 Single crystal Ir thin film 3, 12 Diamond nucleus growth layer 4 Single crystal diamond thin film 5a, 5b, 5c, 5d, 5e Crack 7, 10, 16 cBN layer 8 Single crystal diamond thin film 11, 11a, 11b, 15, 15a, 15b Separation layer containing hBN 13 Single-crystal diamond free-standing film

Claims (12)

下地基板と
前記下地基板上に形成された、単相膜からなるcBN層と
を備えたことを特徴とするダイヤモンド成長用基板。
A diamond growth substrate comprising: a base substrate; and a cBN layer made of a single phase film formed on the base substrate.
前記cBN層上に、hBNを含む分離層を備えたことを特徴とする請求項1に記載のダイヤモンド成長用基板。   2. The diamond growth substrate according to claim 1, further comprising a separation layer containing hBN on the cBN layer. 前記下地基板と前記cBN層との間に、hBNを含む分離層を備えたことを特徴とする請求項1に記載のダイヤモンド成長用基板。   2. The diamond growth substrate according to claim 1, further comprising a separation layer containing hBN between the base substrate and the cBN layer. 前記下地基板が、Si(001)、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)のいずれかであることを特徴とする請求項1及至3のいずれかに記載のダイヤモンド成長用基板   The base substrate is any one of Si (001), Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), MgO (111). The diamond growth substrate according to any one of claims 1 to 3 下地基板上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、hBNを含む分離層を成長させる工程と
を備えたことを特徴とするダイヤモンド成長用基板の作製方法。
A step of growing a cBN layer made of a single phase film on a base substrate;
And a step of growing a separation layer containing hBN on the cBN layer.
下地基板上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と
を備えたことを特徴とするダイヤモンド成長用基板の作製方法。
Growing a separation layer containing hBN on a base substrate;
And a step of growing a cBN layer made of a single-phase film on the separation layer containing hBN.
Si(001)、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)のいずれかを下地基板として作製されていることを特徴とする請求項5または6に記載のダイヤモンド成長用基板の作製方法。   It is manufactured using Si (001), Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), or MgO (111) as the base substrate. The method for producing a diamond growth substrate according to claim 5 or 6. 下地基板上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。
A step of growing a cBN layer made of a single phase film on a base substrate;
A method for producing a diamond thin film, comprising the step of growing diamond on the cBN layer.
下地基板上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。
A step of growing a cBN layer made of a single phase film on a base substrate;
Growing a separation layer containing hBN on the cBN layer;
And a step of growing diamond on the separation layer containing hBN.
下地基板上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。
Growing a separation layer containing hBN on a base substrate;
Growing a cBN layer composed of a single phase film on the separation layer containing hBN;
A method for producing a diamond thin film, comprising the step of growing diamond on the cBN layer.
下地基板上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、ダイヤモンドを成長させる工程と
前記hBNを含む分離層を、前記hBNを含む分離層の積層方向と垂直な面でへき開して、前記cBN層と前記ダイヤモンドを分離する工程と、
前記ダイヤモンドに付着している分離した前記hBNを含む分離層を除去する工程と
を備えたことを特徴とするダイヤモンド自立膜の作製方法。
A step of growing a cBN layer made of a single phase film on a base substrate;
Growing a separation layer containing hBN on the cBN layer;
The step of growing diamond on the separation layer containing hBN and the separation layer containing hBN are cleaved at a plane perpendicular to the stacking direction of the separation layer containing hBN to separate the cBN layer and the diamond. Process,
And a step of removing the separated layer containing the separated hBN adhering to the diamond.
下地基板上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、ダイヤモンドを成長させる工程と
前記hBNを含む分離層を、前記hBNを含む分離層の積層方向と垂直な面でへき開して、前記下地基板と前記cBN層を分離する工程と、
前記ダイヤモンドに付着している、前記cBN層と分離した前記hBNを含む分離層とを除去する工程と
を備えたことを特徴とするダイヤモンド自立膜の作製方法。
Growing a separation layer containing hBN on a base substrate;
Growing a cBN layer composed of a single phase film on the separation layer containing hBN;
A step of growing diamond on the cBN layer, and a step of cleaving the separation layer containing hBN in a plane perpendicular to the stacking direction of the separation layer containing hBN to separate the base substrate and the cBN layer; ,
And a step of removing the cBN layer and the separated separation layer containing hBN that are attached to the diamond.
JP2013175746A 2013-08-27 2013-08-27 Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate Active JP6002100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175746A JP6002100B2 (en) 2013-08-27 2013-08-27 Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175746A JP6002100B2 (en) 2013-08-27 2013-08-27 Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate

Publications (2)

Publication Number Publication Date
JP2015044700A true JP2015044700A (en) 2015-03-12
JP6002100B2 JP6002100B2 (en) 2016-10-05

Family

ID=52670583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175746A Active JP6002100B2 (en) 2013-08-27 2013-08-27 Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate

Country Status (1)

Country Link
JP (1) JP6002100B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108237A (en) * 2017-12-18 2019-07-04 日本電信電話株式会社 Crystal growth method and crystal laminated structure
CN112752737A (en) * 2018-09-27 2021-05-04 住友电工硬质合金株式会社 Polycrystalline cubic boron nitride and method for producing same
JP2022515495A (en) * 2018-12-28 2022-02-18 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of forming a heteroepitaxial diamond film on a single crystal iridium substrate
CN114318287A (en) * 2021-12-23 2022-04-12 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film
CN116348624A (en) * 2020-10-22 2023-06-27 住友电工硬质合金株式会社 Diamond sintered body and tool provided with diamond sintered body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173264A (en) * 1988-12-26 1990-07-04 Olympus Optical Co Ltd High-hardness multilayered film
JPH04119995A (en) * 1990-09-06 1992-04-21 Idemitsu Petrochem Co Ltd Production of diamond film
JPH04188717A (en) * 1990-11-22 1992-07-07 Sumitomo Electric Ind Ltd Diamond substrate and manufacture thereof
JPH04228497A (en) * 1990-06-13 1992-08-18 General Electric Co <Ge> Diamond thin sheet without base body and method and apparatus for preparation thereof
JPH05117086A (en) * 1991-10-28 1993-05-14 Sumitomo Electric Ind Ltd Production of diamond thin film and diamond substrate
US5236545A (en) * 1992-10-05 1993-08-17 The Board Of Governors Of Wayne State University Method for heteroepitaxial diamond film development
JP2006344618A (en) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp Structure containing functional film, and manufacturing method of functional film
US20090022969A1 (en) * 2007-07-19 2009-01-22 City University Of Hong Kong Ultrahard multilayer coating comprising nanocrystalline diamond and nanocrystalline cubic boron nitride

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173264A (en) * 1988-12-26 1990-07-04 Olympus Optical Co Ltd High-hardness multilayered film
JPH04228497A (en) * 1990-06-13 1992-08-18 General Electric Co <Ge> Diamond thin sheet without base body and method and apparatus for preparation thereof
JPH04119995A (en) * 1990-09-06 1992-04-21 Idemitsu Petrochem Co Ltd Production of diamond film
JPH04188717A (en) * 1990-11-22 1992-07-07 Sumitomo Electric Ind Ltd Diamond substrate and manufacture thereof
JPH05117086A (en) * 1991-10-28 1993-05-14 Sumitomo Electric Ind Ltd Production of diamond thin film and diamond substrate
US5236545A (en) * 1992-10-05 1993-08-17 The Board Of Governors Of Wayne State University Method for heteroepitaxial diamond film development
JP2006344618A (en) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp Structure containing functional film, and manufacturing method of functional film
US20090022969A1 (en) * 2007-07-19 2009-01-22 City University Of Hong Kong Ultrahard multilayer coating comprising nanocrystalline diamond and nanocrystalline cubic boron nitride

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108237A (en) * 2017-12-18 2019-07-04 日本電信電話株式会社 Crystal growth method and crystal laminated structure
CN112752737A (en) * 2018-09-27 2021-05-04 住友电工硬质合金株式会社 Polycrystalline cubic boron nitride and method for producing same
JP2022515495A (en) * 2018-12-28 2022-02-18 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of forming a heteroepitaxial diamond film on a single crystal iridium substrate
CN116348624A (en) * 2020-10-22 2023-06-27 住友电工硬质合金株式会社 Diamond sintered body and tool provided with diamond sintered body
CN114318287A (en) * 2021-12-23 2022-04-12 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film
CN114318287B (en) * 2021-12-23 2023-11-03 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film

Also Published As

Publication number Publication date
JP6002100B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6002100B2 (en) Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate
JP5377212B2 (en) Method for producing single crystal diamond substrate
JP6112485B2 (en) Method for producing single crystal diamond
JP2011079683A (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
Wang et al. Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes
WO2018165910A1 (en) Porous gallium nitride single crystal material, preparation method therefor and use thereof
US20130022813A1 (en) Method for preparing graphene nanoribbon on insulating substrate
WO2015046294A1 (en) Diamond substrate and diamond substrate manufacturing method
JP6450920B2 (en) Diamond substrate and method for manufacturing diamond substrate
Li et al. Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite
WO2013013418A1 (en) Hexagonal boron nitride substrate having steps of single atom layer, preparation process and use thereof
JP7161158B2 (en) Method for manufacturing diamond substrate layer
JP2021527618A (en) Systems and methods for the growth of silicon carbide on layers with graphene and / or hexagonal boron nitride and related articles.
Kim et al. Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy
Shengurov et al. Thin single-crystal Ge layers on 2 ″Si substrates
Liu et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene
US20230154747A1 (en) A seed layer, a heterostructure comprising the seed layer and a method of forming a layer of material using the seed layer
JP4769428B2 (en) Method for forming diamond film growth substrate
JP6274492B2 (en) Method for producing single crystal diamond
JP5545567B2 (en) Base material for single crystal diamond growth and method for producing single crystal diamond
JP2013203596A (en) Single crystal diamond substrate
JP2022168623A (en) Manufacturing method of substrate of single crystal diamond and substrate of single crystal diamond
WO2024116506A1 (en) Method for producing heteroepitaxial substrate
JP2016050139A (en) Method for manufacturing single crystal diamond, single crystal diamond, method for manufacturing single crystal diamond substrate, single crystal diamond substrate and semiconductor device
JP2010225733A (en) Method of manufacturing semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6002100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150