JP2015044700A - Substrate for diamond growth and manufacturing method for the same, and manufacturing method for large-area single-crystal diamond thin film and self-supporting film using the same - Google Patents
Substrate for diamond growth and manufacturing method for the same, and manufacturing method for large-area single-crystal diamond thin film and self-supporting film using the same Download PDFInfo
- Publication number
- JP2015044700A JP2015044700A JP2013175746A JP2013175746A JP2015044700A JP 2015044700 A JP2015044700 A JP 2015044700A JP 2013175746 A JP2013175746 A JP 2013175746A JP 2013175746 A JP2013175746 A JP 2013175746A JP 2015044700 A JP2015044700 A JP 2015044700A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- hbn
- growing
- separation layer
- cbn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、ダイヤモンド成長用基板及びその作製方法、並びにこの基板を持いた大面積でクラックがなく、さらに転位密度の低い高品質の単結晶ダイヤモンド薄膜及び自立膜の作製方法に関する。 The present invention relates to a diamond growth substrate and a method for producing the same, and a method for producing a high-quality single crystal diamond thin film and a self-supporting film having a large area free from cracks and having a low dislocation density.
ダイヤモンドは、大きなバンドギャップエネルギー(5.5eV)を有することから、ダイヤモンド、および単結晶ダイヤモンド薄膜の高耐圧電子デバイスや紫外発光デバイスへの応用が期待されている。このため、単結晶ダイヤモンド薄膜の作製に多くの努力がなされてきた。しかしながら、現在、1インチよりも大面積の単結晶ダイヤモンド薄膜は得られていない(非特許文献1)。これは、従来技術では、1インチよりも大面積の単結晶ダイヤモンドを作製するための、大面積のダイヤモンド成長用基板の作製が困難であることに起因する。また、従来のダイヤモンド成長用基板とダイヤモンドの結晶構造が大きく異なるため、従来のダイヤモンド成長用基板を用いて作製した単結晶ダイヤモンド薄膜はその転位密度が高く、この単結晶ダイヤモンドを用いて作製したデバイスにおいて、優れたデバイス特性が得られないという問題もある。さらに単結晶ダイヤモンド薄膜と成長用基板を容易に分離できないため単結晶ダイヤモンド自立膜が得られないという問題もある。上記の問題により、単結晶ダイヤモンド薄膜のデバイス応用は進んでいない。 Since diamond has a large band gap energy (5.5 eV), diamond and single crystal diamond thin films are expected to be applied to high voltage electronic devices and ultraviolet light emitting devices. For this reason, many efforts have been made to produce single crystal diamond thin films. However, currently, a single crystal diamond thin film having an area larger than 1 inch has not been obtained (Non-patent Document 1). This is due to the fact that it is difficult to produce a large-diameter diamond growth substrate for producing single-crystal diamond having an area larger than 1 inch in the prior art. Also, since the crystal structure of diamond differs greatly from the conventional diamond growth substrate, the single crystal diamond thin film produced using the conventional diamond growth substrate has a high dislocation density, and the device produced using this single crystal diamond. However, there is a problem that excellent device characteristics cannot be obtained. Furthermore, since the single crystal diamond thin film and the growth substrate cannot be easily separated, there is a problem that a single crystal diamond free-standing film cannot be obtained. Due to the above problems, device applications of single crystal diamond thin films have not progressed.
以下に従来のダイヤモンド成長用基板とその製造方法、及び該ダイヤモンド成長用基板を用いて作製した単結晶ダイヤモンド薄膜について述べる。 A conventional diamond growth substrate, a method for producing the same, and a single crystal diamond thin film produced using the diamond growth substrate will be described below.
従来のダイヤモンド成長用基板の作製工程を図1に示す。まず下地基板1上に単結晶Ir薄膜2を成長させる(図1(a))。下地基板1はMgO(001)またはSi(001)基板である。単結晶Ir薄膜2に負の電圧を印加しながら、メタンと水素のプラズマに暴露することで、高密度のダイヤモンド粒子核から成るダイヤモンド核成長層3を単結晶Ir薄膜2上に形成する(図1(b))。このダイヤモンド核成長層3の形成には下地基板にバイアス電圧を印可可能なプラズマCVD法が使われるが、この方法は大面積の下地基板に適用するのが難しい。このため、現在ダイヤモンド成長用基板の大きさと、この基板を用いて作製した単結晶ダイヤモンド薄膜の大きさは共に1インチ以下に留まっている。 A conventional process for producing a diamond growth substrate is shown in FIG. First, a single crystal Ir thin film 2 is grown on a base substrate 1 (FIG. 1 (a)). The base substrate 1 is an MgO (001) or Si (001) substrate. A diamond nucleation layer 3 composed of high-density diamond particle nuclei is formed on the single crystal Ir thin film 2 by exposing it to methane and hydrogen plasma while applying a negative voltage to the single crystal Ir thin film 2 (Fig. 1 (b)). The diamond nucleation layer 3 is formed by a plasma CVD method in which a bias voltage can be applied to the underlying substrate, but this method is difficult to apply to a large area underlying substrate. For this reason, the size of the diamond growth substrate and the size of the single crystal diamond thin film produced using this substrate are both currently less than 1 inch.
図2は図1(b)に示すダイヤモンド成長用基板上に作製された従来の単結晶ダイヤモンド薄膜の概略図である。図2の単結晶ダイヤモンド薄膜は、図1(b)のダイヤモンド成長用基板をメタンと水素のプラズマに暴露することで形成する。図3は、上記の方法で1インチのダイヤモンド成長用基板上に作製した、膜厚450μmの単結晶ダイヤモンド薄膜表面の光学顕微鏡像である。図3の単結晶ダイヤモンド薄膜表面には複数のクラック5a〜5eが観察された。これらのクラックは、従来のダイヤモンド成長用基板に含まれている単結晶Ir薄膜と単結晶ダイヤモンド薄膜との間の大きな熱膨張係数差に起因している。図3の単結晶ダイヤモンド薄膜の転位密度は107 /cm2と高い。この高い転位密度は従来のダイヤモンド成長用基板に含まれている単結晶Ir薄膜と単結晶ダイヤモンド薄膜との間の大きな格子不整合に起因している。また、図2の構造から単結晶ダイヤモンド薄膜のみを分離し、単結晶ダイヤモンド自立膜を得ることはできない。 FIG. 2 is a schematic view of a conventional single crystal diamond thin film fabricated on the diamond growth substrate shown in FIG. The single crystal diamond thin film of FIG. 2 is formed by exposing the diamond growth substrate of FIG. 1 (b) to methane and hydrogen plasma. FIG. 3 is an optical microscope image of the surface of a single-crystal diamond thin film having a thickness of 450 μm fabricated on a 1-inch diamond growth substrate by the above method. A plurality of cracks 5a to 5e were observed on the surface of the single crystal diamond thin film in FIG. These cracks are caused by a large difference in thermal expansion coefficient between the single crystal Ir thin film and the single crystal diamond thin film included in the conventional diamond growth substrate. The dislocation density of the single crystal diamond thin film in FIG. 3 is as high as 10 7 / cm 2 . This high dislocation density is due to a large lattice mismatch between the single crystal Ir thin film and the single crystal diamond thin film included in the conventional diamond growth substrate. Further, it is not possible to obtain a single crystal diamond free-standing film by separating only the single crystal diamond thin film from the structure of FIG.
このように単結晶Ir薄膜とダイヤモンド核成長層とを利用する従来技術では、大きさが1インチ以上であり、かつクラックのない厚膜の単結晶ダイヤモンド薄膜及び自立膜を成長させることはできなかった。 As described above, the conventional technology using the single crystal Ir thin film and the diamond nucleus growth layer cannot grow a single crystal diamond thin film and a free-standing film having a size of 1 inch or more and having no crack. It was.
以上のように、従来技術では1インチ以上の大きさのダイヤモンド成長用基板を作製できないため、1インチ以上の大きさの単結晶ダイヤモンド薄膜は成長できず、さらに膜厚が400μm以上に厚くなると単結晶ダイヤモンド薄膜表面にはクラックが生じる。またダイヤモンド成長用基板と単結晶ダイヤモンド薄膜を分離することができないため、単結晶ダイヤモンド自立膜が得られていない。 As described above, since the conventional technology cannot produce a diamond growth substrate with a size of 1 inch or more, a single crystal diamond thin film with a size of 1 inch or more cannot be grown. Cracks occur on the surface of the crystalline diamond thin film. Also, since the diamond growth substrate and the single crystal diamond thin film cannot be separated, a single crystal diamond free-standing film has not been obtained.
本発明の目的は、大面積の単結晶ダイヤモンド薄膜を作製できない問題、製作した単結晶ダイヤモンド薄膜の膜厚が厚い場合に表面にクラックが生じる問題、製作した単結晶ダイヤモンドの転位密度が高い問題、および自立膜を作成できない問題を解決し、大面積かつクラックのない単結晶ダイヤモンド薄膜及び自立膜を提供することである。 The object of the present invention is a problem that a single-crystal diamond thin film with a large area cannot be produced, a problem that the surface of the produced single-crystal diamond thin film is cracked, a problem that the dislocation density of the produced single-crystal diamond is high, Another object of the present invention is to provide a single-crystal diamond thin film and a self-supporting film that have a large area and are free from cracks.
大面積の単結晶ダイヤモンド薄膜を作製できない問題、単結晶ダイヤモンド薄膜の膜厚が厚い場合に表面にクラックが生じる問題、および製作した単結晶ダイヤモンドの転位密度が高い問題を解決するため、本発明のダイヤモンド薄膜成長用基板は、立方晶窒化ホウ素(cBN)層がMBE法を用いて下地基板上に形成されていることを特徴とする。また、下地基板がSi(001)、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)のいずれかであることを特徴とする。 In order to solve the problem that a single-crystal diamond thin film with a large area cannot be produced, the problem that the surface of a single-crystal diamond thin film is thick, and the problem that the dislocation density of the produced single-crystal diamond is high, The substrate for growing a diamond thin film is characterized in that a cubic boron nitride (cBN) layer is formed on a base substrate using an MBE method. The base substrate is any one of Si (001), Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), and MgO (111). To do.
さらに、単結晶ダイヤモンド自立膜が得られない問題を解決するため、ダイヤモンド成長用基板が、六方晶窒化ホウ素(hBN)を含む分離層をさらに含むことを特徴とする。 Further, in order to solve the problem that a single-crystal diamond free-standing film cannot be obtained, the diamond growth substrate further includes a separation layer containing hexagonal boron nitride (hBN).
[実施例1]
本実施例のダイヤモンド成長用基板を図4(a)に示す。下地基板6となる3インチのSi(001)上に、膜厚100nmのcBN層7をMBE法で成長した。ボロンは電子線加熱により高純度のボロン金属から供給した。窒素は窒素原子ラジカルと窒素分子イオンの両方、またはどちらかひとつによって供給した。窒素原子ラジカルはRFラジカルソースに、窒素分子イオンはRFイオンソースにより生成した。cBN構造の形成に必要なエネルギーを与えるために、成長中のBN薄膜にArイオンを照射した。ArイオンはRFイオンソースにより生成した。基板温度は400℃である。窒素原子の量とボロン原子の量の比であるV/III比は1、Arイオンが1ボロン原子当りに付与した運動量は200(eV*amu)1/2である。V/III比は窒素原子ラジカルと窒素分子イオンとボロンの供給量によって制御した。上記運動量はRFイオンソースの加速電圧によって制御した。
[Example 1]
The diamond growth substrate of this example is shown in FIG. 4 (a). A cBN layer 7 having a thickness of 100 nm was grown on the 3-inch Si (001) serving as the base substrate 6 by the MBE method. Boron was supplied from high-purity boron metal by electron beam heating. Nitrogen was supplied by nitrogen atom radicals and / or nitrogen molecular ions. Nitrogen atom radicals were generated by RF radical sources, and nitrogen molecular ions were generated by RF ion sources. In order to give the energy necessary for the formation of the cBN structure, the growing BN thin film was irradiated with Ar ions. Ar ions were generated by RF ion source. The substrate temperature is 400 ° C. The V / III ratio, which is the ratio of the amount of nitrogen atoms to the amount of boron atoms, is 1, and the momentum given by Ar ions per boron atom is 200 (eV * amu) 1/2 . The V / III ratio was controlled by the supply amount of nitrogen atom radical, nitrogen molecular ion and boron. The momentum was controlled by the acceleration voltage of the RF ion source.
下地基板としてSi(001)を使用したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、またはMgO(111)も同様に使用することが出来る。 Si (001) was used as the base substrate, but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), or MgO (111) should be used as well. I can do it.
また下地基板の大きさを3インチとしが、上記MBE法では12インチ基板上にも均一にcBN層を形成できるため、さらに大面積のダイヤモンド成長用基板も原理的には容易に得られると期待される。 In addition, although the size of the base substrate is 3 inches, the MBE method can form a cBN layer uniformly on a 12-inch substrate. Is done.
[実施例2]
実施例1で作製したダイヤモンド成長用基板上に、単結晶ダイヤモンド薄膜を形成する工程を説明する(図4(b))。実施例1の、3インチのSi(001)を下地基板6とし、その上にcBN層7成長させたダイヤモンド成長用基板上に、膜厚600μmの単結晶ダイヤモンド(001)薄膜8をプラズマCVD法で成長した。原料はメタンと水素である。基板温度は700℃である。下地基板にバイアス電圧は印可していない。作製した、膜厚600μmの単結晶ダイヤモンド薄膜8の表面にはクラックが形成されていなかった。cBN層7を含むダイヤモンド成長用基板上で、cBN層の膜厚に関わらずクラックのない単結晶ダイヤモンド薄膜8が得られた。また従来技術と比較して転位密度が大幅に低減した。
[Example 2]
A process of forming a single crystal diamond thin film on the diamond growth substrate produced in Example 1 will be described (FIG. 4B). A single crystal diamond (001) thin film 8 having a thickness of 600 μm is formed on the diamond growth substrate on which 3 inches of Si (001) is used as the base substrate 6 and the cBN layer 7 is grown thereon, in the plasma CVD method. I grew up. The raw materials are methane and hydrogen. The substrate temperature is 700 ° C. No bias voltage is applied to the underlying substrate. No cracks were formed on the surface of the produced single crystal diamond thin film 8 having a thickness of 600 μm. A single crystal diamond thin film 8 having no cracks was obtained on the diamond growth substrate including the cBN layer 7 regardless of the thickness of the cBN layer. In addition, the dislocation density was significantly reduced compared to the prior art.
ダイヤモンド成長用基板の下地基板としてSi(001)を使用したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、またはMgO(111)も同様に使用することが出来、これらを使用した場合においてもクラックのない単結晶ダイヤモンド薄膜が得られた。 Si (001) was used as the base substrate for the diamond growth substrate, but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), or MgO (111) were also used. A single crystal diamond thin film free from cracks was obtained even when these were used.
またダイヤモンド成長用基板の大きさを3インチとして説明したが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド薄膜も原理的には容易に得られると期待される。 The diamond growth substrate has been described as having a size of 3 inches. However, since the above-mentioned plasma CVD method enables uniform diamond growth on a diamond growth substrate with a larger area, a single crystal with a larger area can be obtained. A diamond thin film is also expected to be easily obtained in principle.
作製した、下地基板の材料と、下地基板の面方位と、単結晶ダイヤモンド薄膜の面方位との関係を表1に示す。 Table 1 shows the relationship between the material of the base substrate, the plane orientation of the base substrate, and the plane orientation of the single crystal diamond thin film.
[実施例3]
本実施例にかかる単結晶ダイヤモンド自立膜を形成する製造工程を図5に示す。3インチのSi(001)を下地基板9として、その上に実施例1と同様の方法で膜厚100nmのcBN層10を形成する(図5(a))。このcBN層上に、膜厚100nmのhBNを含む分離層11を形成することで、cBN層10、hBNを含む分離層11が形成された下地基板9をダイヤモンド成長用基板とした(図5(b))。ここで、「hBNを含む分離層」とは、hBNと乱層構造窒化ホウ素(tBN)との混合の層である。hBNの割合が50%以上になると分離が起こるようになり、hBNの割合が高いほど分離がしやすくなる。hBNを含む分離層11の形成にはMBE法を用いた。ボロンは電子線加熱により高純度のボロン金属から供給した。窒素は窒素原子ラジカルと窒素分子イオンの両方、またはどちらかひとつによって供給した。V/III比を0.5以下とすることで、hBNを含む分離層が形成される。上記ダイヤモンド成長用基板のhBNを含む分離層11上に、プラズマCVD法で膜厚600μmの単結晶ダイヤモンド薄膜12を成長した(図5(c))。hBNは、グラファイトと同様に、六角網面の層が積層された構造を有し、各層間は、弱いファンデルワールス力で結合されている。そのため、hBNは六角網面の層に沿ってへき開されることから、図5(d)、(e)に示すように、hBNを含む分離層11をhBNを含む分離層11a、11bに分離が可能である。最後に単結晶ダイヤモンド薄膜12の裏面に残ったhBNを含む分離層11bを熱混酸によって除去することで、下地基板の大きさに対応した大面積の単結晶ダイヤモンド自立膜13が得られた(図5(f))。単結晶ダイヤモンド自立膜の表面にクラックは形成されておらず、従来技術と比較して転位密度が大幅に低減していた。
[Example 3]
FIG. 5 shows a manufacturing process for forming a single-crystal diamond free-standing film according to this example. Using 3 inches of Si (001) as a base substrate 9, a cBN layer 10 having a thickness of 100 nm is formed thereon by the same method as in the first embodiment (FIG. 5A). By forming a separation layer 11 containing hBN having a thickness of 100 nm on the cBN layer, the base substrate 9 on which the cBN layer 10 and the separation layer 11 containing hBN were formed was used as a diamond growth substrate (FIG. 5 ( b)). Here, the “separation layer containing hBN” is a mixed layer of hBN and turbostratic boron nitride (tBN). Separation occurs when the hBN ratio exceeds 50%, and separation becomes easier as the hBN ratio increases. The MBE method was used to form the separation layer 11 containing hBN. Boron was supplied from high-purity boron metal by electron beam heating. Nitrogen was supplied by nitrogen atom radicals and / or nitrogen molecular ions. By setting the V / III ratio to 0.5 or less, a separation layer containing hBN is formed. A single crystal diamond thin film 12 having a thickness of 600 μm was grown by plasma CVD on the separation layer 11 containing hBN of the diamond growth substrate (FIG. 5 (c)). Similar to graphite, hBN has a structure in which layers of hexagonal mesh surfaces are laminated, and each layer is bonded with a weak van der Waals force. Therefore, since hBN is cleaved along the hexagonal mesh layer, the separation layer 11 containing hBN is separated into separation layers 11a and 11b containing hBN as shown in FIGS. 5 (d) and 5 (e). Is possible. Finally, the separation layer 11b containing hBN remaining on the back surface of the single crystal diamond thin film 12 was removed by hot mixed acid, thereby obtaining a single crystal diamond free-standing film 13 having a large area corresponding to the size of the base substrate (FIG. 5 (f)). Cracks were not formed on the surface of the single-crystal diamond free-standing film, and the dislocation density was significantly reduced as compared with the prior art.
cBN層の膜厚を100 nmとして説明したが、cBN層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。またhBNを含む分離層の膜厚を100 nmとして説明したが、hBNを含む分離層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。 Although the film thickness of the cBN layer was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the cBN layer. In addition, although the film thickness of the separation layer containing hBN was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the separation layer containing hBN.
ダイヤモンド成長用基板の下地基板をSi(001)として説明したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)とした場合も同様の工程であり、クラックのない単結晶ダイヤモンド自立膜が得られた。 The base substrate of the diamond growth substrate was described as Si (001), but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), MgO (111) were used. In this case, the same process was performed, and a single crystal diamond free-standing film free from cracks was obtained.
下地基板と単結晶ダイヤモンド自立膜の面方位の関係は、実施例2の表1と同じであった。 The relationship between the plane orientations of the base substrate and the single crystal diamond free-standing film was the same as in Table 1 of Example 2.
またダイヤモンド成長用基板の大きさを3インチとしたが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド自立膜も原理的には容易に得られると期待される。 Although the diamond growth substrate is 3 inches in size, the above-mentioned plasma CVD method allows for uniform diamond growth on a larger area diamond growth substrate. It is expected that a self-supporting film can be easily obtained in principle.
[実施例4]
本実施例にかかる単結晶ダイヤモンド自立膜を形成する製造工程を図6に示す。3インチのSi(001)を下地基板14として、その上に膜厚100nm以下のhBNを含む分離層15をMBE法で形成した(図6(a))。成長条件は実施例3と同様である。次にhBNを含む分離層15上に、膜厚100nmのcBN層16をMBE法で形成することで、hBNを含む分離層15、cBN層16が形成された下地基板14をダイヤモンド成長用基板とした(図6(b))。このダイヤモンド成長用基板上に、プラズマCVD法で膜厚600μmの単結晶ダイヤモンド薄膜17を成長した(図6(c))。次に図6(d)のように、hBNを含む分離層15を、hBNを含む分離層15a、15bに分離することによって、単結晶ダイヤモンド薄膜と下地基板を分離する。最後に単結晶ダイヤモンド薄膜17の裏面に残ったcBN層16とhBNを含む分離層15bを酸素プラズマでエッチングによって除去することで(図6(e))、下地基板の大きさに対応した大面積の単結晶ダイヤモンド自立膜が得られた(図6(f))。単結晶ダイヤモンド自立膜の表面にクラックは形成しておらず、従来技術と比較して転位密度が大幅に低減していた。
[Example 4]
FIG. 6 shows a manufacturing process for forming a single-crystal diamond free-standing film according to this example. Using 3 inches of Si (001) as a base substrate 14, a separation layer 15 containing hBN having a film thickness of 100 nm or less was formed thereon by the MBE method (FIG. 6A). The growth conditions are the same as in Example 3. Next, a cBN layer 16 having a film thickness of 100 nm is formed on the separation layer 15 containing hBN by the MBE method, whereby the separation layer 15 containing hBN and the base substrate 14 on which the cBN layer 16 is formed are used as a diamond growth substrate. (FIG. 6 (b)). On this diamond growth substrate, a single crystal diamond thin film 17 having a film thickness of 600 μm was grown by plasma CVD (FIG. 6C). Next, as shown in FIG. 6 (d), the single crystal diamond thin film and the base substrate are separated by separating the separation layer 15 containing hBN into separation layers 15a and 15b containing hBN. Finally, the cBN layer 16 remaining on the back surface of the single crystal diamond thin film 17 and the separation layer 15b containing hBN are removed by etching with oxygen plasma (FIG. 6 (e)), so that a large area corresponding to the size of the underlying substrate is obtained. A single-crystal diamond free-standing film was obtained (FIG. 6 (f)). No cracks were formed on the surface of the single crystal diamond free-standing film, and the dislocation density was significantly reduced as compared with the prior art.
hBNを含む分離層の膜厚を100nmとしたが、hBNを含む分離層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。またcBN層の膜厚を100 nmとして説明したが、cBN層の膜厚に関わらず同様の単結晶ダイヤモンド自立膜が得られた。 Although the thickness of the separation layer containing hBN was set to 100 nm, the same single crystal diamond free-standing film was obtained regardless of the thickness of the separation layer containing hBN. Also, although the film thickness of the cBN layer was described as 100 nm, the same single crystal diamond free-standing film was obtained regardless of the film thickness of the cBN layer.
ダイヤモンド成長用基板の下地基板をSi(001)として説明したが、Si(110)、Si(111)、サファイヤ(0001)、サファイヤ(10-12)、MgO(001)、MgO(111)とした場合も同様の工程であり、クラックのない単結晶ダイヤモンド自立膜が得られた。 The base substrate of the diamond growth substrate was described as Si (001), but Si (110), Si (111), sapphire (0001), sapphire (10-12), MgO (001), MgO (111) were used. In this case, the same process was performed, and a single crystal diamond free-standing film free from cracks was obtained.
下地基板と単結晶ダイヤモンド自立膜の面方位の関係は、実施例2の表1と同じであった。 The relationship between the plane orientations of the base substrate and the single crystal diamond free-standing film was the same as in Table 1 of Example 2.
またダイヤモンド成長用基板の大きさを3インチとして説明したが、上記プラズマCVD法ではさらに大面積のダイヤモンド成長用基板上にも均一なダイヤモンドの成長が可能であることから、さらに大面積の単結晶ダイヤモンド自立膜も原理的には容易に得られると期待される。 The diamond growth substrate has been described as having a size of 3 inches. However, since the above-mentioned plasma CVD method enables uniform diamond growth on a diamond growth substrate with a larger area, a single crystal with a larger area can be obtained. It is expected that a diamond free-standing film can be easily obtained in principle.
1、6、9、14 下地基板
2 単結晶Ir薄膜
3、12 ダイヤモンド核成長層
4 単結晶ダイヤモンド薄膜
5a、5b、5c、5d、5e クラック
7、10、16 cBN層
8 単結晶ダイヤモンド薄膜
11、11a、11b、15、15a、15b hBNを含む分離層
13 単結晶ダイヤモンド自立膜
1, 6, 9, 14 Base substrate 2 Single crystal Ir thin film 3, 12 Diamond nucleus growth layer 4 Single crystal diamond thin film 5a, 5b, 5c, 5d, 5e Crack 7, 10, 16 cBN layer 8 Single crystal diamond thin film 11, 11a, 11b, 15, 15a, 15b Separation layer containing hBN 13 Single-crystal diamond free-standing film
Claims (12)
前記下地基板上に形成された、単相膜からなるcBN層と
を備えたことを特徴とするダイヤモンド成長用基板。 A diamond growth substrate comprising: a base substrate; and a cBN layer made of a single phase film formed on the base substrate.
前記cBN層上に、hBNを含む分離層を成長させる工程と
を備えたことを特徴とするダイヤモンド成長用基板の作製方法。 A step of growing a cBN layer made of a single phase film on a base substrate;
And a step of growing a separation layer containing hBN on the cBN layer.
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と
を備えたことを特徴とするダイヤモンド成長用基板の作製方法。 Growing a separation layer containing hBN on a base substrate;
And a step of growing a cBN layer made of a single-phase film on the separation layer containing hBN.
前記cBN層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。 A step of growing a cBN layer made of a single phase film on a base substrate;
A method for producing a diamond thin film, comprising the step of growing diamond on the cBN layer.
前記cBN層上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。 A step of growing a cBN layer made of a single phase film on a base substrate;
Growing a separation layer containing hBN on the cBN layer;
And a step of growing diamond on the separation layer containing hBN.
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、ダイヤモンドを成長させる工程と
を備えたことを特徴とするダイヤモンド薄膜の作製方法。 Growing a separation layer containing hBN on a base substrate;
Growing a cBN layer composed of a single phase film on the separation layer containing hBN;
A method for producing a diamond thin film, comprising the step of growing diamond on the cBN layer.
前記cBN層上に、hBNを含む分離層を成長させる工程と、
前記hBNを含む分離層上に、ダイヤモンドを成長させる工程と
前記hBNを含む分離層を、前記hBNを含む分離層の積層方向と垂直な面でへき開して、前記cBN層と前記ダイヤモンドを分離する工程と、
前記ダイヤモンドに付着している分離した前記hBNを含む分離層を除去する工程と
を備えたことを特徴とするダイヤモンド自立膜の作製方法。 A step of growing a cBN layer made of a single phase film on a base substrate;
Growing a separation layer containing hBN on the cBN layer;
The step of growing diamond on the separation layer containing hBN and the separation layer containing hBN are cleaved at a plane perpendicular to the stacking direction of the separation layer containing hBN to separate the cBN layer and the diamond. Process,
And a step of removing the separated layer containing the separated hBN adhering to the diamond.
前記hBNを含む分離層上に、単相膜からなるcBN層を成長させる工程と、
前記cBN層上に、ダイヤモンドを成長させる工程と
前記hBNを含む分離層を、前記hBNを含む分離層の積層方向と垂直な面でへき開して、前記下地基板と前記cBN層を分離する工程と、
前記ダイヤモンドに付着している、前記cBN層と分離した前記hBNを含む分離層とを除去する工程と
を備えたことを特徴とするダイヤモンド自立膜の作製方法。 Growing a separation layer containing hBN on a base substrate;
Growing a cBN layer composed of a single phase film on the separation layer containing hBN;
A step of growing diamond on the cBN layer, and a step of cleaving the separation layer containing hBN in a plane perpendicular to the stacking direction of the separation layer containing hBN to separate the base substrate and the cBN layer; ,
And a step of removing the cBN layer and the separated separation layer containing hBN that are attached to the diamond.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013175746A JP6002100B2 (en) | 2013-08-27 | 2013-08-27 | Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013175746A JP6002100B2 (en) | 2013-08-27 | 2013-08-27 | Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015044700A true JP2015044700A (en) | 2015-03-12 |
JP6002100B2 JP6002100B2 (en) | 2016-10-05 |
Family
ID=52670583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013175746A Active JP6002100B2 (en) | 2013-08-27 | 2013-08-27 | Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6002100B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019108237A (en) * | 2017-12-18 | 2019-07-04 | 日本電信電話株式会社 | Crystal growth method and crystal laminated structure |
CN112752737A (en) * | 2018-09-27 | 2021-05-04 | 住友电工硬质合金株式会社 | Polycrystalline cubic boron nitride and method for producing same |
JP2022515495A (en) * | 2018-12-28 | 2022-02-18 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method of forming a heteroepitaxial diamond film on a single crystal iridium substrate |
CN114318287A (en) * | 2021-12-23 | 2022-04-12 | 深圳技术大学 | Preparation method of diamond self-supporting film and diamond self-supporting film |
CN116348624A (en) * | 2020-10-22 | 2023-06-27 | 住友电工硬质合金株式会社 | Diamond sintered body and tool provided with diamond sintered body |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02173264A (en) * | 1988-12-26 | 1990-07-04 | Olympus Optical Co Ltd | High-hardness multilayered film |
JPH04119995A (en) * | 1990-09-06 | 1992-04-21 | Idemitsu Petrochem Co Ltd | Production of diamond film |
JPH04188717A (en) * | 1990-11-22 | 1992-07-07 | Sumitomo Electric Ind Ltd | Diamond substrate and manufacture thereof |
JPH04228497A (en) * | 1990-06-13 | 1992-08-18 | General Electric Co <Ge> | Diamond thin sheet without base body and method and apparatus for preparation thereof |
JPH05117086A (en) * | 1991-10-28 | 1993-05-14 | Sumitomo Electric Ind Ltd | Production of diamond thin film and diamond substrate |
US5236545A (en) * | 1992-10-05 | 1993-08-17 | The Board Of Governors Of Wayne State University | Method for heteroepitaxial diamond film development |
JP2006344618A (en) * | 2005-06-07 | 2006-12-21 | Fujifilm Holdings Corp | Structure containing functional film, and manufacturing method of functional film |
US20090022969A1 (en) * | 2007-07-19 | 2009-01-22 | City University Of Hong Kong | Ultrahard multilayer coating comprising nanocrystalline diamond and nanocrystalline cubic boron nitride |
-
2013
- 2013-08-27 JP JP2013175746A patent/JP6002100B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02173264A (en) * | 1988-12-26 | 1990-07-04 | Olympus Optical Co Ltd | High-hardness multilayered film |
JPH04228497A (en) * | 1990-06-13 | 1992-08-18 | General Electric Co <Ge> | Diamond thin sheet without base body and method and apparatus for preparation thereof |
JPH04119995A (en) * | 1990-09-06 | 1992-04-21 | Idemitsu Petrochem Co Ltd | Production of diamond film |
JPH04188717A (en) * | 1990-11-22 | 1992-07-07 | Sumitomo Electric Ind Ltd | Diamond substrate and manufacture thereof |
JPH05117086A (en) * | 1991-10-28 | 1993-05-14 | Sumitomo Electric Ind Ltd | Production of diamond thin film and diamond substrate |
US5236545A (en) * | 1992-10-05 | 1993-08-17 | The Board Of Governors Of Wayne State University | Method for heteroepitaxial diamond film development |
JP2006344618A (en) * | 2005-06-07 | 2006-12-21 | Fujifilm Holdings Corp | Structure containing functional film, and manufacturing method of functional film |
US20090022969A1 (en) * | 2007-07-19 | 2009-01-22 | City University Of Hong Kong | Ultrahard multilayer coating comprising nanocrystalline diamond and nanocrystalline cubic boron nitride |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019108237A (en) * | 2017-12-18 | 2019-07-04 | 日本電信電話株式会社 | Crystal growth method and crystal laminated structure |
CN112752737A (en) * | 2018-09-27 | 2021-05-04 | 住友电工硬质合金株式会社 | Polycrystalline cubic boron nitride and method for producing same |
JP2022515495A (en) * | 2018-12-28 | 2022-02-18 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method of forming a heteroepitaxial diamond film on a single crystal iridium substrate |
CN116348624A (en) * | 2020-10-22 | 2023-06-27 | 住友电工硬质合金株式会社 | Diamond sintered body and tool provided with diamond sintered body |
CN114318287A (en) * | 2021-12-23 | 2022-04-12 | 深圳技术大学 | Preparation method of diamond self-supporting film and diamond self-supporting film |
CN114318287B (en) * | 2021-12-23 | 2023-11-03 | 深圳技术大学 | Preparation method of diamond self-supporting film and diamond self-supporting film |
Also Published As
Publication number | Publication date |
---|---|
JP6002100B2 (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6002100B2 (en) | Diamond growth substrate and method for producing the same, and method for producing large-area single-crystal diamond thin film and free-standing film using the substrate | |
JP5377212B2 (en) | Method for producing single crystal diamond substrate | |
JP6112485B2 (en) | Method for producing single crystal diamond | |
JP2011079683A (en) | Base material for growing single crystal diamond and method for producing single crystal diamond substrate | |
Wang et al. | Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes | |
WO2018165910A1 (en) | Porous gallium nitride single crystal material, preparation method therefor and use thereof | |
US20130022813A1 (en) | Method for preparing graphene nanoribbon on insulating substrate | |
WO2015046294A1 (en) | Diamond substrate and diamond substrate manufacturing method | |
JP6450920B2 (en) | Diamond substrate and method for manufacturing diamond substrate | |
Li et al. | Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite | |
WO2013013418A1 (en) | Hexagonal boron nitride substrate having steps of single atom layer, preparation process and use thereof | |
JP7161158B2 (en) | Method for manufacturing diamond substrate layer | |
JP2021527618A (en) | Systems and methods for the growth of silicon carbide on layers with graphene and / or hexagonal boron nitride and related articles. | |
Kim et al. | Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy | |
Shengurov et al. | Thin single-crystal Ge layers on 2 ″Si substrates | |
Liu et al. | Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene | |
US20230154747A1 (en) | A seed layer, a heterostructure comprising the seed layer and a method of forming a layer of material using the seed layer | |
JP4769428B2 (en) | Method for forming diamond film growth substrate | |
JP6274492B2 (en) | Method for producing single crystal diamond | |
JP5545567B2 (en) | Base material for single crystal diamond growth and method for producing single crystal diamond | |
JP2013203596A (en) | Single crystal diamond substrate | |
JP2022168623A (en) | Manufacturing method of substrate of single crystal diamond and substrate of single crystal diamond | |
WO2024116506A1 (en) | Method for producing heteroepitaxial substrate | |
JP2016050139A (en) | Method for manufacturing single crystal diamond, single crystal diamond, method for manufacturing single crystal diamond substrate, single crystal diamond substrate and semiconductor device | |
JP2010225733A (en) | Method of manufacturing semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6002100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |